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Lec. 9                                          Digital Filter Design 
 

9.1 Introduction: 

 A discrete time filter takes a discrete time input sequence x(n) and produces a discrete 

time output sequence y(n).  

 A special class of a discrete time shift-invariant system can be characterized by a unit 

sample response h(n), a system function H(Z), or difference equation. 
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A filter may be required to have a given frequency response, or specific response to an 

impulse, step, or ramp, or simulate a continuous analog system. The simulation of analog filter is 

shown in Fig. (9.1). 

 

 

 

 

 

 
xa(t)                                       x(n)                         y(n)                                 ya(t) 
 
 
                                             
                                              Equivalent analog filter 

D/A converter 
(1/T) samples / 
sec. 

Discrete 
time filter 

H(Z) 
A/D converter 
(1/T) samples / 
sec. 

Fig. (9.1) Equivalent analog filter 

A/D converter consists of sampler, quantizer, and coder. 

D/A converter consists of decoder, sample and hold, and low-pass filter. 

 

9.1.1 Definitions 

1. If unit sample response h(n) is of finite duration, the system is said to be a finite impulse 

response (FIR) system. Eq. (9.1) represents FIR system if a0≠ 0 and ak = 0 for k=1, 2,..N. 
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2.  If unit sample response h(n) is of infinite duration, the system is said to be an infinite 

impulse response (IIR) system. 

3. IIR filter is usually implemented by recursive realization (is one in which the present 

value of the output depends on both the input present and or past values), i.e., with 

feedback. 

4. FIR filter is usually implemented by either a nonrecursive realization (without  feedback) 

or an FFT realization. 

 

9.1.2 A comparison between FIR and IIR filters:

FIR IIR 

1- Finite impulse response h(n) 

n1  ≤  n   ≤  n2

1- Infinite impulse response h(n) 

n1  ≤  n   ≤  ∞ 

2-Complex requires large number of 

computations 

2- Simple, does not require large 

number of computations 

3- Due to large number of computations, 

it requires large memory   

3- Dose not require large memory   

4- Always stable because its poles lie at 

the origin 

4- Stable only if its poles lie inside the 

unit circle of the Z-plane 

5- Linear phase characteristics 5- nonlinear phase characteristics 

 

9.2 Infinite Impulse Response (IIR) filter format 

An IIR filter is described using the difference equation (9.1) as: 

    (9.4) 

The IIR filter transfer function given in eq.(9.2) as: 

     (9.5) 

Example (1): Given the following IIR filter: 

y(n) = 0.2 x(n) +  0.4 x(n − 1)  + 0.5 y(n − 1), 

Determine the transfer function, nonzero coefficients, and impulse response. 

Solution: 
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Using the inverse z-transform and shift theorem, we obtain the impulse response as 

 
 

9.3 Techniques for designing H(Z) for IIR filter: 

 

9.3.1 Design by using numerical solutions of differential equations: 

A continuous time linear filter is specified by the following difference equation: 
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Approximate the derivates using first backward differences: 

Tnynyny /)]1()([)]([)1( −−=∇       (9.8) 

Higher order backward differences are found by applying the first backward difference 

repeatedly, as follows: 

])]([[)]([ )1()1()( nyny kk −∇∇=∇       (9.9) 

Using the kth order differences as approximations to the derivatives given in eq. (9.6), we have: 
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The Z. Transform of the 1st and kth order differences are given below: 

TZZYnyZ /}]1{)()]([{ 1)1( −−=∇       (9.11) 

kk TZZYnyZ ]/)}1{[)()]([{ 1)( −−=∇      (9.12) 

Letting x(n) = xa(n T), and y(n) = ya(n T). Taking the Z. Transform of eq. (9.10): 
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Comparing eq. (9.7) and eq. (9.13), we find: 
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SS

SH use the numerical solutions of differential equations to obtain 

H(Z) for, a) T = 1 sec., and b) fs = 100 Hz. 

 

9.3.2 Bilinear transformation (BLT) Design method: 

Figure (9.2) illustrates a flow chart of the BLT design used 
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9.2 General procedure for IIR filter design using bilinear transformation. 
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ecomes smaller, we get more linear characteristics [ (W/2) << 1 ]. If the bilinear 

ion is applied to an Ha(S) with critical frequency Ωc, the digital filter will have 

uency Wc.  
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If the resulting H(Z) is used in an A/D-H(Z)-D/A structure, the equivalent critical frequency 

becomes: 

TW eqcc Ω=          (9.20) 
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Which will give Ωc only if Ωc T / 2 is so small, that tan-1(Ω T / 2) ≈ Ω T / 2. 

In bilinear transformation, the design of digital filter does not depend on the sampling 

rate (T =1, prewarp case). For a low-pass filter, with S → S / Ωc , and applying eq. (9.17), then: 
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Example (2): Design and realize a digital low-pass filter using bilinear transformation method to 

satisfy the following c/cs: 

1.  − 3.01 dB cutoff frequency of 0.5 π  rad 

2. Magnitude down at least 15 dB at 0.75 π rad. 

Solution: 

Step (1): applying eq. (9.17), where T=1 (prewarp case) 
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Step (2) : applying eq. (8.4) and (8.5a): 
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Referring to lecture 8, Table (1) to write the normalized Butterworth LPF equation, and then 

using LP → LP transformation: 

422
4
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SH SSa  

Step (3): Applying bilinear transformation, eq.(9.15), T = 1 
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y(n) = 0.2928932 { x(n) + 2 x(n−1) + x(n−2) } − 0.1715729 y(n−2) 

 

9.3.3 Digital-to digital transformation design method 

1. Use digital specifications to calculate the order of digital unit bandwidth low-pass 

Butterworth prototype and corresponding critical frequency Wp. The order of the digital 

filter can be obtained by using eq. (9.17) of the prewarped digital frequencies uΩ , and  

 in the standard formula for the analog Butterworth filter { eq. (8.4) }, as: rΩ′

2.  
⎥
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Note: Refer to lecture 8, Table (2) to substitute for Ωr in eq. (9.22) in terms of eq.(9.17). 

Table (1) Digital-to digital transformation 
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3- From Table (1), calculate  
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4- Table (2) gives HBn (Z) for normalized low-pass Butterworth digital filter. Calculate 
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Example (3): Use Digital-to digital transformation method. Find H(Z) for LP digital filter that 

satisfies the following requirements: 

1- A − 3.0102 dB cutoff digital frequency of 0.5 π rad. 

2- Attenuation at and past 0.75 π rad is at least 15 dB 

Solution: 
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Using Table (2)  that gives HBn (Z) for normalized low-pass Butterworth digital filter 

21

21

2 253921.0677496.01
)1(144106.0)( −−

−

+−
+

=
ZZ

ZZH B  

Applying eq.(9.25) , then: 
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9.3.4 Impulse invariant design method 

 If ha(t) represents the response of an analog filter to a unit impulse δ(t), then the unit 

sample response of a discrete-time filter used in an A/D-H(Z)-D/A structure is selected to be the 

sampled version of h(n).  

})({})({)( Tnta thZnhZZH ===        (9.26) 

If an analog filter with system function Ha(S) is given, the corresponding impulse invariant 

design filter has 

})({)( 1
Tnta SHLZZH =

−=        (9.27) 

Example (4): Find H(Z) corresponding to the impulse invariant design using sampling rate of 

(1/T) samples / sec. for an analog filter Ha(S) specified as: Ha(S)  = A / ( S + α ) 
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Solution:  

ha(t) = L -1 Ha(S) = A e – α t  u(t)  

h(n) =  ha(t) t = nT = A e – α nT  u( nT) 
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(a) Represents α = 1, T = 0.1, │Ha ( j Ω)│and│Heq(j Ω)│are very close. 

(b) Represents α = 1, T = 1, │Ha ( j Ω)│and│Heq(j Ω)│are different. 
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Good results using impulse invariant design are obtained when the time between samples is 

selected small. 

 

9.4 Pole-Zero Placement Method for Simple Infinite Impulse Response Filters Design 

  This section introduces a pole-zero placement method for a simple IIR filter design. Let 

us first examine effects of the pole-zero placement on the magnitude response in the z-plane 

shown in Fig .(9.3). 

 In the z-plane, when we place a pair of complex conjugate zeros at a given point on the 

unit circle with an angle θ, we will have a numerator factor of (z − e j θ)(z − e−j θ) in the transfer 

function. Its magnitude contribution to the frequency response at z = e jW is (e jW − e j θ)(e jW − e−j 

θ). When W = θ, the magnitude will reach zero. 

 When a pair of complex conjugate poles are placed at a given point within the unit circle, 

we have a denominator factor of (z − r e j θ)(z − r e−j θ), where r is the radius chosen to be less 

than and close to 1 to place the poles inside the unit circle. The magnitude contribution to the 

frequency response at W = θ will rise to a large magnitude, since the first factor (e j θ − r e j θ) = 

(1 − r ) e+j θ gives a small magnitude of 1 − r, which is the length between the pole and the unit 

circle at the angle W = θ. Note that the magnitude of e+j θ is 1. 

Therefore, we can reduce the magnitude response using zero placement, while we increase the 

magnitude response using pole placement. Placing a combination of poles and zeros will result in 

different frequency responses. such as lowpass, highpass, bandpass, and bandstop. It is easy to 

compute filter coefficients for simple IIR filters. Practically, the pole-zero placement method has 

good performance when the bandpass and bandstop filters have very narrow bandwidth 

requirements and the lowpass and highpass filters have either very low cutoff frequencies close 

to the DC or very high cutoff frequencies close to the folding frequency (the Nyquist limit). 
 
 
 

 

 

 

 

 

 

 

 

F
ig. (9.3) Effects of pole-zero placement on the magnitude response. 
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9.4.1 Second-Order Bandpass Filter Design 

Poles in a band-pass filter are complex conjugate, with the magnitude r controlling the 

bandwidth and the angle θ controlling the center frequency. The zeros are placed at z = 1, 

corresponding to DC, and z = -1, corresponding to the folding frequency. 

The poles will raise the magnitude response at the center frequency while the zeros will 

cause zero gains at DC (zero frequency) and at the folding frequency. The following equations 

give the band-pass filter design formulas using pole-zero placement: 

 

   (9.28) 

Where, K is a scale factor to adjust the band-pass filter to have a unit pass-band gain 

       

Example (5):  A second-order bandpass filter is required to satisfy the following specifications: 

1. Sampling rate = 8,000 Hz 

2. A 3 dB bandwidth: BW = 200 Hz 

3. Narrow passband centered at f0 = 1,000 Hz 

4. Zero gain at 0 Hz and 4,000 Hz. 

Find the transfer function using the pole-zero placement method. 

Solution: Applying eq.(9.28),  
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9.4.2 Second-Order Bandstop (Notch) Filter Design 

For this type of filter, the pole placement is the same as the bandpass filter. The zeros are 

placed on the unit circle with the same angles with respect to the poles. This will improve 

passband performance. The magnitude and the angle of the complex conjugate poles determine 

the 3 dB bandwidth and the center frequency, respectively. 

 

 

 

 

 

 

 

Design formulas for band-stop filters are given in the following equations: 

 

       (9.29) 

Example (6): A second-order notch filter is required to satisfy the following specifications: 

1. Sampling rate = 8,000 Hz 

2. A 3 dB bandwidth: BW = 100 Hz 

3. Narrow pass-band centered at f0 = 1,500 Hz: 

Find the transfer function using the pole-zero placement approach. 

Solution: 
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9.4.3 First-Order Low-pass Filter Design 

The first-order pole-zero placement can be operated in two cases. The first situation is 

when the cutoff frequency is less than fs /4. Then the pole-zero placement is shown in Fig. (9.4a). 

As shown in Fig.(9.4a), the pole z = α is placed in the real axis. The zero is placed at z = -

1 to ensure zero gain at the folding frequency (Nyquist limit). When the cutoff frequency is 

above fs / 4, the pole-zero placement is adopted as shown in Fig.(9.4b). 

 

 

 

 

 

 

 

 Fig. (9.4a) Pole-zero placement for the 

first-order lowpass filter with fc <fs/4. 

Fig.(9.4b) Pole-zero placement for the 

first-order lowpass filter with fc >fs/4. 
 

 

Design formulas for lowpass filters using the pole-zero placement are given in the following 

equations: 

 

         (9.30) 

Example (7): A first-order lowpass filter is required to satisfy the following specifications: 

1. Sampling rate = 8,000 Hz 

2 A 3 dB cutoff frequency: fc = 100 Hz 

3. Zero gain at 4,000 Hz. 

Find the transfer function using the pole-zero placement method. 

  

Solution: Since the cutoff frequency of 100 Hz is much less than fs / 4 = 2,000 Hz, we determine 

the pole as: 
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Which is above 0.9. Hence, we have a good approximation. The unit-gain scale factor is 

calculated by: 

 

 
Note that we can also determine the unit-gain factor K by substituting Z = e j0 = 1 to the transfer 

function H(Z) = (Z + 1) / (Z - α), then find a DC gain. Set the scale factor to be a reciprocal of 

the DC gain. This can be easily done, that is, 

 
 

9.4.4 First-Order High-pass Filter Design 

Similar to the low-pass filter design, the pole-zero placements for first-order high-pass 

filters in two cases are shown in Figures (9.5a) and (9.5b). 

 

  

 

 

 

 

 

Fig.(9.5a) Pole-zero placement for the 

first-order highpass filter with fc <fs/4. 
 

Fig.(9.5b) Pole-zero placement for the 

first-order highpass filter with fc >fs/4. 

Formulas for designing highpass filters using the pole-zero placement are listed in the following 

equations: 
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       (9.31) 

Example (8): A first-order highpass filter is required to satisfy the following specifications: 

1. Sampling rate = 8,000 Hz 

2.  A 3 dB cutoff frequency: fc = 3800 Hz 

3. Zero gain at 0 Hz. 

Find the transfer function using the pole-zero placement method. 

Solution: 

Since the cutoff frequency of 3,800 Hz is much larger than fs / 4 = 2,000 Hz, we determine the 

pole as: 

 

 
Note that we can also determine the unit-gain scale factor K by substituting Z = e j180 = -1 into 

the transfer function H(Z) = (Z -1) / (Z - α), finding a passband gain at the Nyquist limit fs/2 = 

4,000 Hz. We then set the scale factor to be a reciprocal of the passband gain. That is, 

 
9. 5 Application: Digital Audio Equalizer 

For an audio application such as the CD player, the digital audio equalizer is used to 

make the sound as one desires by changing filter gains for different audio frequency bands. 

Other applications include adjusting the sound source to take room acoustics into account, 

removing undesired noise, and boosting the desired signal in the specified pass-band. The 

simulation is based on the consumer digital audio processor—such as a CD player—handling the 

16-bit digital samples with a sampling rate of 44.1 kHz and an audio signal bandwidth at 22.05 

kHz. A block diagram of the digital audio equalizer is depicted in Fig (9.6). 
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A seven-band audio equalizer is adopted for discussion. The center frequencies are listed 

in Table (2). The 3 dB bandwidth for each band-pass filter is chosen to be 50% of the center 

frequency. As shown in Fig (9.6), g0 through g6 are the digital gains for each band-pass filter 

output and can be adjusted to make sound effects, while y0(n) through y6(n) are the digital 

amplified bandpass filter outputs. Finally, the equalized signal is the sum of the amplified 

bandpass filter outputs and itself. By changing the digital gains of the equalizer, many sound 

effects can be produced. A IIR bandpass Butterworth filters are chosen for the audio equalizer. 

The coefficients are achieved using the BLT method.  

 

 

 

 

 

 

 

 

 

F

Tab

 

 

 

 

 

 

 

 

 

 

Fig. (

 

 

ig. (9.6) Simplified block diagram of the audio equalizer. 

 

le (2) Specifications for an audio equalizer to be designed. 

 

 

 

 

 

9.7) Magnitude frequency responses for the audio equalizer. 
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The audio test signal having frequency components of 100 Hz, 200 Hz, 400 Hz, 1,000 

Hz, 2,500 Hz, 6,000 Hz, and 15,000 Hz. 

The gains set for the filter banks are: go = 10; g1 = 10; g2 = 0; g3 = 0; g4 = 0; g5 = 10; g6 = 

10. The frequency components at 100 Hz, 200 Hz, 6,000 Hz, and 15,000 Hz will be boosted by 

20  log10 10 =20 dB. The top plot in Fig. (9.8), shows the spectrum for the audio test signal, 

while the bottom plot depicts the spectrum for the equalized audio test signal. Before audio 

digital equalization, the spectral peaks at all bands are at the same level; after audio digital 

equalization, the frequency components at bank 0, bank 1, bank 5, and bank 6 are amplified. The 

operation of the digital equalizer boosts the low frequency components and the high frequency 

components.  

 

 

 

 

 

 

 

 

 

 
 

 
Fig. (9.8)  Audio spectrum and equalized audio spectrum.  
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