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Lec.8                               Analog Filter Design 
 

8.1 Introduction: 

Let us review analog filter design using lowpass prototype transformation. This method 

converts the analog lowpass filter with a cutoff frequency of 1 radian per second, called the 

lowpass prototype, into practical analog lowpass, highpass, bandpass, and bandstop filters with 

their frequency specifications. 

 

8.2 Butterworth Filters 

8.2.1 Butterworth low-pass filter (LPF)  

 A typical frequency response for a Butterworth low-pass filter of order n is shown in Fig. 

8.1. 
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                                                                       Fig.8.1 Butterworth LPF c/cs 
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2)( ΩjHn is monotonically decreasing function of Ω, it is also called maximally flat at the 

origin since all derivatives exist and are zero. As n → ∞ , we get ideal response. 

 The normalized LP Butterworth is obtained when: 

Ωc = 1 rad / sec. 

Substituting S = j Ω in eq. (8.1), and rearrange to get the LP Butterworth poles, then: 

S = (−1) [(n +1) / 2 n ] 

For n odd, 12,...,2,1,0,/1 −=∠= nknkSK π     (8.2a) 

For n even, 12,...,2,1,0,)2/()/(1 −=+∠= nknnkSK ππ   (8.2.b) 

For stable and causal filter: 
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)(SBn : Butterworth polynomial of order n (see Table (1) ). 
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LHP: Left half plane. 

Example(1): Find the transfer function H1(S) for the normalized Butterworth filter of order one. 

Solution: applying eq.(8.2a), where n=1, k = 0,1 

)(010 SHS n −=∠=  

)(11 SHS n=∠= π . Using eq. (8.3) and taking LHP poles S1: 
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8.2.2 Analog- to analog transformation 

To obtain Butterworth filters with cutoff frequencies other than 1 rad /sec. It is 

convenient to use 1 rad /sec. Butterworth filters as prototypes and apply analog-to-analog 

transformation (see Table (2)). The transformational method is not limited in its application to 

Butterworth filters.  

 

         ImS 
 
           *           *        ReS 
    Hn(S)        Hn(-S)   
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8.2.3 Design Equations of Butterworth Filters: 

A Butterworth LPF Filter of order n is given by the following equation: 
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Here, rur Ω′Ω=Ω //1  , see Table (2). 

Where, k1, k2,  , and are the pass-band gain and stop-band attenuation with their 

relative frequencies respectively(see Table (2)).  
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To satisfy our requirement at exactly, then: uΩ
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To satisfy our requirement at rΩ′  exactly, then: 
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Ωc  is the cutoff frequency at – 3dB 

 

Example (2): design an analog Butterworth LPF that has a – 2 dB butter cutoff frequency of 20 

rad/sec. and at least 10 dB of attenuation at 30 rad/sec. 

Solution: Applying eq. (8.4), where k1= -2 dB, k2 = -10 dB, uΩ = 20 rad/sec., and rΩ′ = 30 

rad/sec  
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To satisfy our requirement at uΩ  exactly, then: 

sec/3836.21)110(/20 8/12.0 radc =−=Ω   

From Table (1) of normalized Butterworth LPF ( Ωc  =1 rad/ sec ) with n = 4 : 

)184776.1()176536.0(
1)( 224 ++++

=
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Using Table (2) and applying LP → LP transformation, S→ S / 21.3836, and rearranging: 
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For Butterworth HPF:   

1- Put urr ΩΩ′=Ω //1  in equation (8.4), and find its order n .(see Table(2)) 
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2- Use Table (1) to find the normalized Butterworth LPF equation with order n. 

3- Apply LP → HP transformation, S→ Ωc  / S, and rearrange the equation obtained in step 

2. 

For Butterworth BPF:  

1- Calculate Ωr = min {│A│, │B│ } using equations given in Table (2). Find the filter 

order using eq.(8.4) 

2- Use Table (1) to find the normalized Butterworth LPF equation with order n. 

3- Apply LP → BP transformation, 
)(

2

lu

ul

S
S

S
Ω−Ω
ΩΩ+

→ , and rearrange the equation 

obtained in step 2 

  

For Butterworth BSF:  

Refer to Table (2) to see the variables.   

 

 

 

 

                                                                                   Fig. 8.2 Butterworth BPF 

Example (3): Design an analog Butterworth BPF with the following c/cs: 

A – 3.0103 dB upper and lower cutoff frequencies of 50 Hz and 20 KHz. 

A stop-band attenuation of at least 20 dB at 20 Hz and 45 kHz. 

Solution:  

Ω1 = 2 π (20) = 125.663 rad / sec. 

Ω2 = 2 π (45 x 103) = 2.82743 x105 rad / sec. 

Ωu = 2 π (20 x 103) = 1.25663 x 105 rad / sec. 

Ωl = 2 π (50) = 314.159 rad / sec 

Calculate Ωr = min {│A│, │B│ } = min (│2.5053│, │2.2545│) = 2.2545 by using equations 

given in Table (2) . Apply eq. (8.4) to find: 

⎡ ⎤ 3829.2 ==n    

From Table (1) of normalized Butterworth LPF ( Ωc  =1 rad/ sec ) with n = 3: 
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Apply LP → BP transformation by substituting
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above equation and rearrange it to obtain HBPF (as H.W) 
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8.3 Chebyshev Filters: 

There are two types of Chebyshev Filters: 

1- One containing a ripple in the pass-band (type 1). 

2- One containing a ripple in the stop-band (type 2). 
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Tn(Ω) is the nth order Chebyshev polynomial where  T0(x) =1, and T1(x) = x as listed in Table 

(3).   is a parameter chosen to provide the proper pass-band ripple. Fig. (8.3) shows 

normalized Chebyshev Filters of both types. 
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               n odd                                                  n even 

Fig.( 8.3) Normalized Chebyshev filters of type 1 for (n odd), and (n even) 

gn Equations of Chebyshev Filters: 
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ble (4) gives Vn(S) for n =1 to n =10 and ε corresponding to 0.5, 1, 2, and 3 dB ripples. 

gives the zeros {poles of Hn(S) } for the same n and ε. 
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8.3.2 Design steps of Chebeshev LPF, HPF, BPF, and BSF : 

1- Use the backward design equations from Table (2) to obtain normalized LPF requirements   

     (Ωr). 

2-Calculate A  using  eq. (8.8a) 

3-Calculate  from eq. (8.8b), then apply eq.(8.7) to find the order n. g

4- Use Table (4) and Table (5) to find the Chebeshev Filter equation with order n. 

5- Apply LP → LP or HP or BP or BS transformation (Table (2)) and rearrange the equation  

     obtained in step 4. 

 

Example (4): Design a Chebshev filter to satisfy the following specifications: 

1-Acceptable pass-band ripple of 2dB 

2-Cutoff frequency of  40 rad/sec. 

3- stop-band attenuation of 20 dB or more at 52 rad/sec. 

Solution: From Table (2) 

urr ΩΩ′=Ω /  = 52/ 40 = 1.3 rad/sec. 

20]/1[log20 2/12
10 −=A ,   A  = 10, using ε = 2 dB = 0.76478 (see Table (4) and Table (5)) 

Applying eq. (8.8b), then  = 13.01 g
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From Table (4) with n = 5 and ε = 2 dB = 0.76478 
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08172.0)( 23455 +++++
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Using poles from Table (5): 

)393115.035323.0()95215.0134922.0()218303.0(
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Using Table (2) and applying LP → LP transformation, S→ S / 40, and rearranging the above 

equation: 

)984.6281292.14()44.15233969.5()73212.8(
10366.8)( 22
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×
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SSSSS

SH LPF  

 

Notes: 

1. Butterworth or maximally flat amplitude; as the order (n) is increased the response 

becomes flatter in the pass-band and the attenuation is greater in the stop-band. 
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2. Chebshev Filter has a sharper cutoff; i.e., a narrower transition band ( best amplitude 

response) than a Butterworth filter of the same order (n) 

3. Chebshev Filter provides poorest phase response (most nonlinear). The Butterworth filter 

compromise between amplitude and phase ( this is one of the reasons for its widespread 

popularity). 

 

8.4 Elliptic Filters: 

A LP elliptic filter provides a smaller transition width and is optimum in the sense that no 

other filter of the same order has a narrower transition width for a given pass-band ripple and 

stop-band attenuation.  

 
  

    Fig. 8.4(a) normalized elliptic LPF                           Fig. 8.4(b) elliptic LP filters types  

 

Fig. 8.4 (a) shows a normalized elliptic LPF and Fig. 8.4 (b) shows elliptic LP filters of 

type 1 (n odd), and type 2 (n even). 

 

8.4.1 Design steps of Elliptic LPF, HPF, BPF, and BSF : using Table (6) 

1. Locate k1= acceptable pass-band ripple (dB) , and k2 = stop-band attenuation (dB). 

2. Calculate Ωr using Table (2), pp.55. 

3. At Ωr column, take a value less than Ωr . 

4. The filter order (n) is the far left of that row, and the coefficients for the filter are found 

in all rows corresponding to that (n). 

5. According to (n), the normalized elliptic LPF equations are: 
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6- Apply LP → LP or HP or BP or BS transformation (Table (2)) and rearrange the equation    

    obtained in step 5.  

 

Notes: 

For normalized elliptic filter, Ω0 = (Ω2  Ω1 ) 
0.5 = 1 = geometric mean, and Ωr = Ω2 / Ω1 

,then Ω1 = (Ωr ) 
− 0.5  , and Ω2 = (Ωr ) 

0.5   

For not normalized elliptic filter, 5.0
120 )( ′

Ω′Ω=Ω , where 011 / Ω′Ω=Ω  and 022 / Ω′Ω=Ω  

Then . 1212 // ΩΩ=′Ω′Ω=Ω r

n (elliptic)  ≤ n (chebeshev)  ≤ n (Butterworth) 

 

Example (5) : Find the transfer function for an elliptic LPF with − 2 dB cutoff value at 10000 

rad/sec., and a stop-band attenuation of 40 dB for all Ω past 14400 rad/sec. 

 

Solution: 

5.0
120 )( ′

Ω′Ω=Ω = {(14400) (10000)}0.5 = 12000 

011 / Ω′Ω=Ω = 10000/12000= 5/6 and 022 / Ω′Ω=Ω = 14400/12000 = 6/5 

1212 // ΩΩ=′Ω′Ω=Ω r =  1.44, k1= − 2 dB, and k2 = − 40 dB. From Table (6), n =4 

Applying eq. (8.10 b), Where: 

H0 = 0.01, A01 = 7.25202, B01 = 0.212344, and B11 = 0.467290,   i =1 

                 A02 = 1.57676, B02 = 0.677934, and B12 = 0.127954  i = 2 

 

)677934.0127954.0()212344.0467290.0(
)57676.1()25202.7(01.0)( 22

22

4 ++++
++

=
SSSS

SSSH  

 

Apply LP → LP transformation (Table (2)), where Ω0 = geometric mean = 12000. Substituting  

S → S / 12000 in the above equation: 

)97622497448.1535()3057753648.5607(
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