DSP | By Asst., Prof. Maha George
Lec. 7 Windowing and FFT

7.1 Spectral Estimation Using Window Functions

Consider the pure 1-Hz sine wave with 32 samples shown in Fig. 7.1. As shown in the
figure, if we use a window size of N =16 samples, which is a multiple of the two waveform
cycles, the second window repeats with continuity. However, when the window size is chosen to
be 18 samples, which is not a multiple of the waveform cycles (2.25 cycles), the second window
repeats the first window with discontinuity. It is this discontinuity that produces harmonic
frequencies that are not present in the original signal (spectral leakage ). Fig.7.2 shows the

spectral plots for both cases using the DFT/FFT directly.
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Fig. 7.1 Sampling a 1-Hz sine wave using Fig. 7.2 Signal samples and spectra
(top) 16 samples per cycle and (bottom) without and with spectral leakage.

18 samples per cycle.

The amount of spectral leakage shown in the second plot is due to amplitude
discontinuity in time domain. The bigger the discontinuity, the more is the leakage. To reduce
the effect of spectral leakage, a window function can be used whose amplitude tapers smoothly

and gradually toward zero at both ends. Applying the window function w(n) to a data sequence

x(n) to obtain a windowed sequence Xy,(n) is better illustrated in Fig. 7.3 using :

Xoli) = xlmwin), forn=0,1,...., N=1. (7.1)
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The common window functions are listed as follows:

The rectangular window (no window function):

wrln) = 1 l=n=N-1 (7.2)
The triangular window:
T — N
) = 1= 2N ooy ey
N-1 (7.3)

The Hamming window:

e
Wigl) = 0.54 = [}.4ﬁcn.~:( alll ] 0=n=N-1
N -1 (7.4)

The Hanning window:

C =

W) [}_5—[}_54:05( allll

), l=n=N-1
-1, (7.5)

Plots for each window function for a size of 20 samples are shown in Figure 7.4.
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Example (1): Considering the sequence x(0) = 1, x(1) =2, x(2) = 3, and x(3) = 4, and given f; =
100 Hz, T = 0.01 seconds, compute the amplitude spectrum, phase spectrum, and power
spectrum
a. Using the triangular window function.
b. Using the Hamming window function.
Solution:
a) Since N =4, from the triangular window function given in equation (7.3), we have:
Wiri(0) = 0, Wi (1) = 0.6667, Wyi (2) = 0.6667, and Wyi (3)= 0.
Now, applying eq. (7.1), we have:
Xw(0) = x(0) Wyi(0) =0. Similarly xy(1) = 1.3334, xw(2) =2, and x4(3) =0
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Applying DFT equation (6.3) to xy(n) for K=0, 1, 2, and 3 , we have:
X(0)=3.3334, X(1) =-2—j1.3334, X(2) = 0.6666, and X(3) =—2+j 1.3334
Af=1/NT=25Hz

Applying equations (6.11), (6.13), and (6.14):

1 0
Ap ==X ()| = 08334, ¢, = tan~' | —— | = 0",
o = H1X00) g0 = tan (33334)

1 )
Py = 25| X(0)]*= 0.6954

K Ag Dk in degree Px

1 0.6009 —146.31 0.3611
2 0.1667 0 0.0278
3 0.6009 146.31 0.3611

b. Since N = 4, from the Hamming window function given in eq. (7.4), we have:
Whm(0) = 0.08, Whm(1) = 0.77, Whm(2) = 0.77, and Wpn(3) = 0.08. The windowed sequence is
computed using eq. (7.1) as:

Xw(0) =x(0) Whm(0) =0.08, xyw(1) =1.54, x4(2) =2.31, and x(3) = 0.32
Applying DFT equation (6.3) to xy(n) for K=0, 1, 2, and 3 , we have:
X(0)=4.25,X(1)=-2.23-j1.22 ,X(2)=0.53,and X(3) =—2.23 +j 1.22

Af=1/NT=25Hz

Applying equations (6.11), (6.13), and (6.14):

1 0
_ _ - _ =1 _nh
Ao = 71X(0)] = 1.0625, ¢, = tan (425) =0°,

Py = %IXUNIZ: 1.1289

K Ag Dk in degree Py

1 0.6355 —151.32 0.4308
2 0.1325 0 0.0176
3 0.6355 151.32 0.4308
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7.2 Application to Speech Spectral Estimation

The following plots show the comparisons of amplitude spectral estimation for speech
data with 2,001 samples and a sampling rate of 8,000 Hz using the rectangular window (no
window) function and the Hamming window function. As demonstrated in Fig. 7.5 (two-sided
spectrum) and Fig. 7.6 (one-sided spectrum), there is little difference between the amplitude
spectrum using the Hamming window function and the spectrum without using the window
function. This is due to the fact that when the data length of the sequence (e.g., 2,001 samples)
increases, the frequency resolution will be improved and spectral leakage will become less
significant. However, when data length is short, reduction of spectral leakage using a window

function will come to be prominent.
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Fig. 7.5 Comparison of a spectrum without Fig. 7.6 Comparison of a one-sided
using a window function and a spectrum spectrum without using a window function
using the Hamming window for speech and a one-sided spectrum using the

data. Hamming window for speech data.

7.3 Fast Fourier Transform

FFT is a very efficient algorithm in computing DFT coefficients and can reduce a very
large amount of computational complexity (multiplications).

Consider the digital sequence x(n) consisting of 2™ samples, where m is a positive
integer—the number of samples of the digital sequence x(n) is a power of 2, N =2, 4, 8, 16, etc.
If x(n) does not contain 2" samples, then we simply append it with zeros until the number of the
appended sequence is equal to an integer of a power of 2 data points.

The number of points N = 2", where the stages m = log , N.

In this section, we focus on two formats. One is called the decimation in- frequency

algorithm, while the other is the decimation-in-time algorithm. They are referred to as the radix-

2 FFT algorithms.
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7.3.1 Method of Decimation-in-Frequency (Reduced DIF FFT)

Beginning with the definition of DFT :

AN-1
X(k) =Y xmWy fork=0,1,.... N—1,

=0 (7.6)

Where, Wy = e 7N i the twiddle factor, and N = 0, 2, 4, 8, 16, .....Equation (7.6) can be

expanded as:

’ r AN —
X (k) = x(0) + x(WWE + ...+ x(N = )Wy 7.7)
If we split equation (7.7):
.\r
X(k) =x(0) + x()WE + . +x (— - 1) Wz
.\r
—.a.-(,j) AN (N = DY
- (7.8)
Then we can rewrite as a sum of the following two parts:
(N/2)=1 N—1
X(ky= > xmWg+ > xmWwy.
n=0 n=N /2 (7 9)
Modifying the second term in Equation (7.9) yields:
(N/2)—1 (N [2)—1 N
Xthy= > xmwi+wy" N (n n ?> whn
n=l n="0 (710)
N2 ] s
Recall Wy'~ = ¢~ F =¢7" = —1; then we have
(N/2)-1 .-'\,'.r
X(k) = E (_r{n} (= 1}""_1-(1 —7) W,
=0 - (7.11)
Now letting k = 2m as an even number achieves:
(N D=1 I.xlr
X(2m) = 2 (_r[n} + x (n + 7)) H"_E..””*
=0 ) (7.12)

While substituting k = 2m + 1 as an odd number yields:
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(N/2)-1 '
Jﬁ\' >
X2m+1) = Z (.r[n}l — X (n - 7)) WL W™,

=0 (7.13)

2l

Using the fact that W} = ¢ 7% = ¢ /73 = Wy, it follows that

(N/2)-1
X(2m) = E a(n) H"'_,f,:ffz = DFT{a(n) with (N/2) points}
n=0 (7.14)
(N /21
XQm+1)= Y bmWyWyl = DFT{b(m)W} with (N/2) points},
=0 (7.15)
Where, a(n) and b(n) are introduced and expressed as:
:ﬁh'r :ﬁh'r
a(n) = x(n) + x| n+-—J, forn=0.1... =1
;ﬁ'u'r ;ﬁ'u'r
b(n) = x(n) — x(n —7)* forn=10.1.... .5 — L
< < (7.16)
B e ar DFT{a(n) with (N/2) points}
DFT{x(n) with N points} = { L}f'l'{h[n}ﬂ’_,{f.- with (N/2) pﬂin[s} (7.17)

Figure 7.7(a) illustrates the block diagram of N-point DIF FFT. Fig. 7.7(b) illustrates
reduced DIF FFT computation for the eight-point DFT, where there are 12 complex
multiplications as compared with the eight-point DFT with 64 complex multiplications. For a

data length of N, the number of complex multiplications for DFT and FFT, respectively, are

determined by:

Complex multiplications of DFT = Nz, and (7.18a)
Complex multiplications of FFT (With Reduction) = (N /2 ) logy (N) (7.18b)
— N4 [

x(0) N XO)
i point N/4 :
i I;n t N/4 i
E P N/2 :
| point v
x(N-1 N4 X(N-D)

Fig. 7.7(a) Block diagram of DIF FFT
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x(0)
x(1)
x(2)
x(3)
x4)
x(5)
x(6)
X(7)

Fig. 7.7(b) The eight-point FFT (total twelve multiplications).
Reduced DIF FFT

Note: The input sequence is in normal order index and the output frequency bin number is in

reversal bits order. The Butterfly structure for DIF FFT and DIT FFT is shown below:

A DIF C E DIT F
B D G

-1 W, W, -1
C=A+B,D=(A-B)W, (7.19¢), F=E+W G, H=E -W G (7.19)

The inverse FFT is defined as:

R I o |
M) =5 > XOOW" == > XMW, for k=0, 1,.... N —1.
' k=0

=0 (7.20)

x(0)
x(1)
x(2)
x(3)
x(4)
x(5)
x(8)
x(7)

Fig. 7.8 Block diagram for the inverse of eight-point FFT.
Reduced DIF IFFT

r i — -
The twiddle factor W is changed to be Wy =Wy , and the sum is multiplied by a factor of

1/N. Hence, the inverse FFT block diagram is achieved as shown in Fig. 7.8
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Example (2): Given a sequence x(n) for 0 <n < 3, where x(0) = 1, x(1) = 2, x(2) = 3, and
x(3) =4,

a. Evaluate its DFT X(k) using the decimation-in-frequency FFT method.

b. Determine the number of complex multiplications.

Solution:
L2 L2
-j==(0) == )
W)=e 4 =land W, =e ¢4 =—j
Bit reversal
T +  X(0) o0
i
e W4=1 —2
T +
o T X2) 10
'E'ﬁ°=1 lj' X(1) o
st (3 1

b) The number of complex multiplications is four, which can also be determined from eq.

(7.18b), where N=4

7.3.2 Method of Decimation-in-Time (Reduced DIT FFT):

In this method, we split the input sequence x(n) into the even indexed x(2m) and x(2m + 1), each

with N data points. Then Equation (7.6) becomes:

(/21 (AN 2—1

Xik)y= Z x(2n1) Hf'_,%.—’”k + Z x(2m + I}H’_f.- H"'_E.—’ e
=1 =1
f.t'}rf{:ﬂ.. ].q---q.'ﬁ'l'r_].. (721)
O WE = Wi,
Using it follows that:
(N /2)—1 (N 2—1
Xk = Z x( 2m) H"_.‘.',:.-‘fz 4+ H"_jf,f.— Z x(2m + I}H"_.‘.':.-’_'fr
=0 =0
fﬂ.‘}I‘f-{:f\]. ]........"\'r—].. (722)
Define new functions as:
(N 2)—1
Glk) = Z x(2m) [“l»"_.’.',:.-*_'fz = DFT{ x(2m) with (N /2) points}
=10
(MW 2)—1
Hik) = Z x(2m + l}l“l"_.::f_'fz = DFT{x(2m + 1) with (N/2) points}.
=10
(7.23)
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Note that:

N N
{r[r{l}:{r(ﬂ—?)..fﬂrﬂ:ﬂ* 1...-”.?—1
H[k}:H(k—%}ﬂark:ﬂ* 1;— 1.

(7.24)
Substituting Equations (7.24) into Equation (7.22) yields the first half frequency bins
N

X(k) = G(k) + WEH(K), for k=0, 1,...,.=— 1.
) < (7.25)
Considering the following fact and using Equations (7.24):
AN =k
) ) (7.26)
Then the second half of frequency bins can be computed as follows:
N - . N
X ?_.I{{ :{’I[I{{}_ I:"I‘K_I\.rH[k}-. f'{}rk :t.-.]q. ].q.---«?_ ]..
B - (7.27)

The block diagram for the eight-point DIT FFT algorithm is illustrated in Fig.. 7.9

. IR e e X[D
o =N N A
2 oL D}{HL QNS Xi2)
% E.‘.HI' .--_::H_'-'_-:-._ %2* \\“‘E-l N \W s X(3)

Xi4)
X13)
XIE)
Xi7)

Fig.7.9 The eight-point FFT algorithm using decimation-in-time (twelve complex
multiplications). Reduced DIT FFT

The index for each input sequence element can be achieved by bit reversal of the frequency

index in a sequential order. Similar to the method of decimation-in-frequency, after we change

Wy to Wy in Fig. 7.9 and multiply the output sequence by a factor of 1/N, we derive the
inverse FFT block diagram for the eight-point inverse FFT in Fig. 7.10.
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1
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Fig. 7.10 The eight-point IFFT using decimation-in-time (Reduced method).

Example(3): Given a sequence x(n) for 0 <n <3, where x(0) =1, x(1) =2, x(2) = 3, and
x(3) = 4. Evaluate its DFT X(k) using the decimation-in-time FFT method.

Solution:
x(0)=1+— —— o X(0)
o e 2 T~ 242
X(2) =3 o= e <> X(1)
1) Wy =1 1 6 -2 o)
o = 2 W1 T —2-j"
03 =4 tﬁﬁ' = by . - P S X(3)
4=1 -1 Wi=—j -1
4
Bit reversal bit indexed

H.W Find DFT of the following sequence [ 1 -1 -1 -1 1 1 1 -1], using:

a) Reduced DIT FFT

b) Reduced DIF FFT

Ans:[0 —2+j(W2+2) 2-j2 V2+jW2-2) 4 2-jW2-2)
2+j2  -2-j(2+2) ]

7.4 Properties of DFT for real x(n):

X(K)=X"(N=K)

Re{X(K)}=Re{X(N-K)}

Im { X(K)}=—Im{ X(N -K)}

X(n) = ﬁFFT [ X (KT

K— W, =K.27z/N—> Q, =K.27z/NT
frequency digital frequency analog frequency
index (rad) (rad /sec)

(7.26)
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* means complex conjugate

For N even:
x(n) =20 +(N/ZZ):1 21X (K) cosZEnK) — X, (K) sin(ZZnK)} +XON72)
N & N N N
(7.27a)
For N odd:
=205 2 i 1) cosZEnK) - X, (0sinEEnK)} a7
o N N N
x(n) X(K)
Real Real part is even, imaginary part is odd
Real and even Real and even
Real and odd Imaginary and odd

Example (4): Find x(n) for Xg(K) and X;(K) , then find x,(t) if T = 0.1 sec.

Xr(K) Xi(K

A 4
2
1.54

0.5

123456 7 K

N=8 , then using eq.(7.27a):
x(n) :1'?5 + %{ ~() sin(%zln) +(2) cos(%z2 n) - (—1.75)sin(%”2 n) }+%5 cosz N

forK=12,..... ——1=3

Q =W, /T=27K/NT, t=nT, n=—
1.5 2 . 2t 27 .t . 2t 0.5
X.t)=—+ —{—-)sm(——)+2)cos(—2—) - (-1.75sm(—2—) }+——cosz n

(D) 2 8{() (80_1) (2) (8 0.1)( ) (8 0_1)} 2

for T =0.1sec.
X,(t) =0.1875-0.25sin2.57t+ 0.5 cos57zt+ 0.4375sin57t+ 0.0625cos10 7t
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7.5 DFT and Fourier transform relations:

The Fourier transform X(eJW) of an x(n) is given for all W:

N-1

X@E")=3xme™" = xme™" ,n=012.N-1 (7.28)

n=0
From eq. (7.28), X(¢'V) is a continuous function of W.

The DFT (N-point) of an x(n) is given by:
N-I .

X(K) = ZX(”) g l2rkn/N K =0,1,2...N -1 (7.29)
n=0

Comparing eq.(7.28) and eq.(7.29), the DFT of x(n) is the sampled version of the Fourier

transform sequence as shown below

X(K):X(ejw) ‘\N:(27rK/ N K=012.N-1 (7.30)

X(e™) X(K)

A

v

T 2n W K
2nt/N 4n/N 2n(N-1) /N
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