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Thermodynamic Relations

7.1. GENERAL ASPECTS

In this chapter, some important thermodynamic relations are deduced ; principally those
which are useful when tables of properties are to be compiled from limited experimental data, those
which may be used when calculating the work and heat transfers associated with processes under-
gone by a liquid or solid. It should be noted that the relations only apply to a substance in the solid
phase when the stress, i.e. the pressure, is uniform in all directions ; if it is not, a single value for
the pressure cannot be alloted to the system as a whole.

Eight properties of a system, namely pressure (p), volume (v), temperature (T), internal
energy (u), enthalpy (h), entropy (s), Helmholtz function (f) and Gibbs function (g) have been
introduced in the previous chapters. h, f and g are sometimes referred to as thermodynamic
potentials. Both f and g are useful when considering chemical reactions, and the former is of
fundamental importance in statistical thermodynamics. The Gibbs function is also useful when
considering processes involving a change of phase.

Of the above eight properties only the first three, i.e., p, vand T are directly measurable.
We shall find it convenient to introduce other combination of properties which are relatively easily
measurable and which, together with measurements of p, v and T, enable the values of the
remaining properties to be determined. These combinations of properties might be called ‘thermo-
dynamic gradients’ ; they are all defined as the rate of change of one property with another while
a third is kept constant.

7.2. FUNDAMENTALS OF PARTIAL DIFFERENTIATION

Let three variables are represented by X, y and z. Their functional relationship may be
expressed in the following forms :

fix,y,z)=0 (i)
X = X(y, 2) ..(i)
y = y(X, 2) ...(iN)
z=2z(X,Y) ...(iv)
Let x is a function of two independent variables y and z
X = X(y, 2) ..(7.1)



Then the differential of the dependent variable x is given by

dx = {a—XJ dy+[%j dz ..(7.2)
9y /, oz v
where dx is called an exact differential.
b )
If ayz=M and azy=N
Then dx = Mdy + Ndz ..(7.3)
Partial differentiation of M and N with respect to z and y, respectively, gives
M %x g N _ °x
0z ayoz an ady  dzdy
oM 0N
or Tz W ..(7.4)
dx is a perfect differential when eqn. (7.4) is satisfied for any function x.
Similarly if y =YX, z) and z = z(X, y) ...(7.5)
then from these two relations, we have
(50), o+ (3)
dy = dx + dz 7.6
Y= 1ox ), 9z ), (7.6)
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In terms of p, v and T, the following relation holds good

) (aT) (v
v Lap ), \9T ), =-1 .(7.9)




7.3. SOME GENERAL THERMODYNAMIC RELATIONS

The first law applied to a closed system undergoing a reversible process states that
dQ = du + pdv
According to second law,

dQ
ds - T rev.

Combining these equations, we get
Tds = du + pdv
or du = Tds - pdv ...(7.10)
The properties h, f and g may also be put in terms of T, s, p and v as follows :
dh = du + pdv + vdp = Tds + vdp
Helmholtz free energy function,
df = du — Tds — sdT (7.11)
=— pdv — sdT ...(7.12)
Gibb’s free energy function,
dg = dh — Tds — sdT = vdp — sdT ...(7.13)
Each of these equations is a result of the two laws of thermodynamics.
Since du, dh, df and dg are the exact differentials, we can express them as

3s ), ds + v . dv,
() g (2

dh = s o ds + ap X dp,
) o (2)

df = v N dv + T g dT,

L8] . ()
dg— ap - dp+ oT o dT.

Comparing these equations with (7.10) to (7.13) we may equate the corresponding co-efficients.
For example, from the two equations for du, we have

() T ()
s 5 =T and B . =-p

The complete group of such relations may be summarised as follows :

du

dau oh

(as)\, =T= (a_s]p ..(7.14)
du of

(W)S =-p= (B‘JT .(7.15)

d

(ah) =v= [a—gJ ..(7.16)
PJs Pir

FY _ (99

(a | = (87],, (717)
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The equations (7.18) to (7.21) are known as Maxwell relations.

..(7.18)

..(7.19)

..(7.20)

.(7.21)

It must be emphasised that eqns. (7.14) to (7.21) do not refer to a process, but simply express
relations between properties which must be satisfied when any system is in a state of equilibrium.
Each partial differential co-efficient can itself be regarded as a property of state. The state may be
defined by a point on a three dimensional surface, the surface representing all possible states of

stable equilibrium.

7.4. ENTROPY EQUATIONS (Tds Equations)

Since entropy may be expressed as a function of any other two properties, e.g. temperature

T and specific volume v,

s=f(T, v)
| 7)o+ (3)
i.e., ds = aT s dT + v N dv
) &
or Tds =T a-|-VdT+T aVTdv

But for a reversible constant volume change
dg = ¢, (dT), = T(ds),

os
or c,=T ﬁv

(v} = (%)
But, vk = \aT),

Hence, substituting in eqgn. (7.22), we get

Tds=caT+ T [ 2] d
s =g¢, BTVV

..(7.22)

..(7.23)

[Maxwell’s eqn. (7.20)]

..(7.24)

This is known as the first form of entropy equation or the first Tds equation.

Similarly, writing
s =f(T, p)

(asJ {asj
Tds=T |37+ | dT+T |3~ d
aT ), op s P

..(7.25)



ds
where C, = Ti3T . ...(7.26)

as ov
Also % a =-\37 . [Maxwell’s eqn. (7.21)]

whence, substituting in egn. (7.25)

ov
Tds = cpdT -T (a'l']p dp ...(7.27)

This is known as the second form of entropy equation or the second Tds equation.

7.5. EQUATIONS FOR INTERNAL ENERGY AND ENTHALPY

(i) Let u = (T, v)
au au ou
du = aT dT + W™ . dv =c, dT + Y . dv ...(7.28)
du
To evaluate N let u="f(s,v)
ou au
Then 25 ds + EY dv
\ S
(a*”) @) (5o} ()
or v ~\os ) \avr  Lav),
ag) 2 () ()
But s ), = T lavk =\aT ), lav) =P

IR
Hence v L oT ...(7.29)

This is sometimes called the energy equation.
From equation (7.28), we get

P
= T = | -
du = ¢ dT + { (BT )V p} dv ...(7.30)
(ii) To evaluate dh we can follow similar steps as under
h= 1T, p)
dh = Bh dT + B_h dp
aT P Jr
h
= cdT + {Bj dp ..(7.31)
P J7
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To find ap L let h = f(s, p)

(2] o

Js o ds + ap 2 dp
o) 5

“\os o lap s T Lap )

But (8_] =T,[§J =_ @—V) (g—h] =v

), P )t P/p LoPJg

ov
Hence osh) -y T (ﬁj .(7.32)
p 7 p

From eqgn. (7.31), we get

Then,

o
=
I}

dh

ov
c, dT + v—T[—j }dp ...(7.33)
ore =13,

7.6. MEASURABLE QUANTITIES

Out of eight thermodynamic properties, as earlier stated, only p, v and T are directly
measurable. Let us now examine the information that can be obtained from measurements of
these primary properties, and then see what other easily measurable quantities can be introduced.

The following will be discussed :

(i) Equation of state

(ii) Co-efficient of expansion and compressibility

(iii) Specific heats

(iv) Joule-Thomson co-efficient.

7.6.1. Equation of State

Let us imagine a series of experiments in which the volume of a substance is measured over
a range of temperatures while the pressure is maintained constant, this being repeated for various
pressures. The results might be represented graphically by a three-dimensional surface, or by a
family of constant pressure lines on a v-T diagram. It is useful if an equation can be found to
express the relation between p, v and T, and this can always be done over a limited range of states.
No single equation will hold for all phases of a substance, and usually more than one equation is
required even in one phase if the accuracy of the equation is to match that of the experimental
results. Equations relating p, v and T are called equations of state or characteristic equations.
Accurate equations of state are usually complicated, a typical form being

where A, B, C, ..... are functions of temperature which differ for different substances.

An equation of state of a particular substance is an empirical result, and it cannot be
deduced from the laws of thermodynamics. Nevertheless the general form of the equation may be



predicted from hypotheses about the microscopic structure of matter. This type of prediction has
been developed to a high degree of precision for gases, and to a lesser extent for liquids and solids.
The simplest postulates about the molecular structure of gases lead to the concept of the perfect
gas which has the equation of state pv = RT. Experiments have shown that the behaviour of real
gases at low pressure with high temperature agrees well with this equation.

7.6.2. Co-efficient of Expansion and Compressibility

From p-v-T measurements, we find that an equation of state is not the only useful informa-
tion which can be obtained. When the experimental results are plotted as a series of constant

pressure lines on a v-T diagrams, as in Fig. 7.1 (a), the slope of a constant pressure line at any
ov

given state is 9T ) - If the gradient is divided by the volume at that state, we have a value of a

property of the substance called its co-efficient of cubical expansion 3. That is,
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Fig. 7.1. Determination of co-efficient of expansion from p-v-T data.
11 ov
= —| == ...(7.34
=32 oy

Value of B can be tabulated for a range of pressures and temperatures, or plotted graphically
as in Fig. 7.2 (b). For solids and liquids over the normal working range of pressure and tempera-
ture, the variation of Pis small and can often be neglected. In tables of physical properties f is
usually quoted as an average value over a small range of temperature, the pressure being atmos-
pheric. This average co-efficient may be symbolised by 3 and it is defined by

_VamV1 735
B= vy (T2 =Ty) -(7:39)
Fig. 7.2 (a) can be replotted to show the variation of volume with pressure for various

ov
constant values of temperature. In this case, the gradient of a curve at any state is % . When
T

this gradient is divided by the volume at that state, we have a property known as the compressibility
K of the substance. Since this gradient is always negative, i.e., the volume of a substance always
decreases with increase of pressure when the temperature is constant, the compressibility is
usually made a positive quantity by defining it as
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Fig. 7.2. Determination of compressibility from p-T data.

Koo 1 {a_") ...(7.36)
viap ;

K can be regarded as a constant for many purposes for solids and liquids. In tables of
properties it is often quoted as an average a value over a small range of pressure at atmospheric
temperature, i.e.,

K=_ Y27\
vy (P2 — P1)
When 3 and K are known, we have

SIGER

v ov
Since (—J = pv and {—J =— Ky,
oT p P )
op B
—| = £ ..(7.37
(BT)V K (7:30

When the equation of state is known, the co-efficient of cubical expansion and compressibility
can be found by differentiation. For a perfect gas, for example, we have

(ﬂj =B and (a_v] :R—I
aT), P dpJr P

1( 9v R 1
Hence B= V(BT)p ov =
RT
and K=_1[8_vj = =l_
vidp 4 pvVoop

7.6.3. Specific Heats

Following are the three differential co-efficients which can be relatively easily determined
experimentally.



du
Consider the first quantity (ﬁ) . During a process at constant volume, the first law
\'2

informs us that an increase of internal energy is equal to heat supplied. If a calorimetric experi-
ment is conducted with a known mass of substance at constant volume, the quantity of heat Q
required to raise the temperature of unit mass by AT may be measured. We can then write :

Au Q
— | =|-=| . The quantity obtained this way is known as the mean specific heat at constant
AT ), AT ),

volume over the temperature range AT. It is found to vary with the conditions of the experiment,
i.e., with the temperature range and the specific volume of the substance. As the temperature

aT

ou
range is reduced the value approaches that of () , and the true specific heat at constant
v
ou
volume is defined by ¢, = (ﬁ) . This is a property of the substance and in general its value
i

varies with the state of the substance, e.g., with temperature and pressure.
According to first law of thermodynamics the heat supplied is equal to the increase of enthalpy
during a reversible constant pressure process. Therefore, a calorimetric experiment carried out

Ah Q
with a substance at constant pressure gives us, (A_T] = (Ej which is the mean specific heat
p p

at constant pressure. As the range of temperature is made infinitesimally small, this becomes the
rate of change of enthalpy with temperature at a particular state defined by T and p, and this is

true specific heat at constant pressure defined by =131, "% also varies with the state, e.g.,
P

with pressure and temperature.

The description of experimental methods of determining Cp and c, can be found in texts on
physics. When solids and liquids are considered, it is not easy to measure ¢, owing to the stresses
set up when such a substance is prevented from expanding. However, a relation between Cor Cy B
and K can be found as follows, from which ¢, may be obtained if the remaining three properties
have been measured.

The First Law of Thermodynamics, for a reversible process states that
dQ =du + p dv
Since we may write u = ¢(T, v), we have

du ou
du = (ﬁ)v dT + (BT)T dv

dQ = BTVdT+ p aVT dV=CvdT+ p aVT dv

This is true for any reversible process, and so, for a reversible constant pressure process,

¢ (dT), = ¢ (dT), + {p{_au) } (dv)

P P v P ov Jr P
ou ov

rence BT P T,

Al (B_p) = -1 p+(8_u] d theref
so aT ), i =T v b , and therefore

dQ

I
T/
1k



Now, from eqns. (7.34) and (7.37), we have

_ BTV
¢, — ¢ = ra

..(7.38)

Thus at any state defined by T and v, ¢, can be found if ¢, B and K are known for the
substance at that state. The values of T, v and K are always positive and, although  may some-
times be negative (e.g., between 0° and 4°C water contracts on heating at constant pressure), 2 is

always positive. It follows that Cp is always greater than c,.

The other expressions for Cp and ¢, can be obtained by using the equation (7.14) as follows :

Since c=a—u=a—u ﬁ
v BTV BSVBTV

We have c,=T (aa—_ls_)

\"
. oh oh ds
Similarly, =|—] =2 o
imilarly % (BT]p (as]p(aT]p
Hence, Cp = T (aa—_ls_]

P

Alternative Expressions for Internal Energy and Enthalpy

..(7.39)

..(7.40)

(i) Alternative expressions for equations (7.29) and (7.32) can be obtained as follows :

)7 (2) -
o BE@E -

: )~ @)@, &2

Substituting in eqn. (7.29), we get

ouy  _ B
5Tk

Thus, du = ¢ dT + [%— pj dv
Similarly, {B_hj =v-T (B—VJ

P jr aT p

Jdu
But by definition, T ) = Bv

P

Hence {B_hj = v(1 - BT)

P jr

dharm
\M-therm\Th7-1.pm5

10

..(7.29)

..(7.41)

.[7.28 (@)]

..(7.32)

..(7.42)



Thus dh =c, dT + v(1 - BT) dp .[7.31 (@)

(ii) Since u=h- pv

. ), )
P jr P Jr b 9P

=v - VAT + pKv — v
ou
Hence —— | = pKv - VBT ...(7.43)
P f

7.6.4. Joule-Thomson Co-efficient

Let us consider the partial differential co-efficient B_T . We know that if a fluid is flowing

through a pipe, and the pressure is reduced by a throttling procréss, the enthalpies on either side of
the restriction may be equal.

The throttling process is illustrated in Fig. 7.3 (a). The velocity increases at the restriction,
with a consequent decrease of enthalpy, but this increase of kinetic energy is dissipated by friction,
as the eddies die down after restriction. The steady-flow energy equation implies that the enthalpy
of the fluid is restored to its initial value if the flow is adiabatic and if the velocity before restriction
is equal to that downstream of it. These conditions are very nearly satisfied in the following experi-
ment which is usually referred to as the Joule-Thomson experiment.

T
4 Constant h
lines
P, T, P2, T
/1111111111111 /1177171117
NN T——
R B — ) 9_,3";; +— P2, T2
Fluid _./; JANT—
1 1 p1’ T1
Slope =
» P

(a) (b)
Fig. 7.3. Determination of Joule-Thomson co-efficient.

Through a porous plug (inserted in a pipe) a fluid is allowed to flow steadily from a high
pressure to a low pressure. The pipe is well lagged so that any heat flow to or from the fluid is
negligible when steady conditions have been reached. Furthermore, the velocity of the flow is kept
low, and any difference between the kinetic energy upstream and downstream of the plug is negligible.
A porous plug is used because the local increase of directional kinetic energy, caused by the
restriction, is rapidly converted to random molecular energy by viscous friction in fine passages
of the plug. Irregularities in the flow die out in a very short distance downstream of the plug, and

11



temperature and pressure measurements taken there will be values for the fluid in a state of
thermodynamic equilibrium.

By keeping the upstream pressure and temperature constant at p, and T,, the downstream
pressure p, is reduced in steps and the corresponding temperature T, is measured. The fluid in the
successive states defined by the values of p, and T, must always have the same value of the
enthalpy, namely the value of the enthalpy corresponding to the state defined by p, and T,. From
these results, points representing equilibrium states of the same enthalpy can be plotted on a T-s
diagram, and joined up to form a curve of constant enthalpy. The curve does not represent the
throttling process itself, which is irreversible. During the actual process, the fluid undergoes first
a decrease and then an increase of enthalpy, and no single value of the specific enthalpy can be
ascribed to all elements of the fluid. If the experiment is repeated with different values of p, and T,
a family of curves may be obtained (covering a range of values of enthalpy) as shown in Fig. 7.3 (b).

The slope of a curve [Fig. 7.3 (b)] at any point in the field is a function only of the state of the

T
fluid, it is the Joule-Thomson co-efficient u, defined by p = [?ij . The change of temperature due
h

to a throttling process is small and, if the fluid is a gas, it may be an increase or decrease. At any
particular pressure there is a temperature, the temperature of inversion, above which a gas can
never be cooled by a throttling process.

Both ¢, and u, as it may be seen, are defined in terms of p, T and h. The third partial
differential co-efficient based on these three properties is given as follows :

2)(2)(%).-

oh
Hence % N =— uc, ...(7.44)

1 may be expressed in terms of Cor P,V and T as follows :
The property relation for dh is dh =T ds + v dp
From second T ds equation, we have

Tds

v
deT—T oT o dp

T av
o dT—|T5r), ~Y| o ..(7.45)

For a constant enthalpy process dh = 0. Therefore,

ov
0=(c, dT), + HV—T [ﬁjp} dpl
or (cp dT), = HT (%) - v} dp}
p h

JT 1 oV
0= {$)h - %{T (N]p —v} ..(7.46)

For an ideal gas, pv=RT; v= E

p

dh

12



( ov ] R Y,
or T =, 5 =
JaT p P T

1 v
= —|Tx—-v|=0.
H cp( T ] 0

Therefore, if an ideal gas is throttled, there will not be any change in temperature.

Let h=f(p, T)
) o )
Then dh=|5"| dp+ |37 | dT ..(7.47
ap . AT . (7.47)
&)
But T ] =¢
oT p P
dh [BhJ d dT
= |5z +
p P
For throttling process, dh = 0
0= oh) (o + 7.48
= apT aT ), C, ...(7.48)
o 6, = 1[1“} (7.49)
wiaopjr

ch
[apl is known as the constant temperature co-efficient.
7.7. CLAUSIUS-CLAPERYON EQUATION
Clausius-Claperyon equation is a relationship between the saturation pressure, tempera-

ture, the enthalpy of evaporation, and the specific volume of the two phases involved. This equa-

tion provides a basis for calculations of properties in a two-phase region. It gives the slope of a
curve separating the two phases in the p-T diagram.

pA

Critical point

Sublimation
curve

Fig. 7.4. p-T diagram.
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The Clausius-Claperyon equation can be derived in different ways. The method given below
involves the use of the Maxwell relation [egn. (7.20)]

&), -G

Let us consider the change of state from saturated liquid to saturated vapour of a pure
substance which takes place at constant temperature. During the evaporation, the pressure and
temperature are independent of volume.

)
dT Vg — Vs
where, Sq = Specific entropy of saturated vapour,

s = Specific entropy of saturated liquid,

Vg = Specific volume of saturated vapour, and

V; = Specific volume of saturated liquid.

h
Also, s —s=s§ = _19
] T ii¢} T
and Vg — Vg = Vg
where Sig = Increase in specific entropy,
Vig = Increase in specific volume, and
h. = Latent heat added during evaporation at saturation temperature T.

dp _Sg-§ s _ h ...(7.50)
dT Vg

—-Vi  V T Vig
This is known as Clausius-Claperyon or Claperyon equation for evaporation of liquids.

9

d
The derivative % is the slope of vapour pressure versus temperature curve. Knowing this slope

and the specific volume Vg and v; from experimental data, we can determine the enthalpy of
evaporation, (hg — hy) which is relatively difficult to measure accurately.
Eqgn. (7.50) is also valid for the change from a solid to liquid, and from solid to a vapour.
At very low pressures, if we assume Vg = Vg and the equation of the vapour is taken as
pv = RT, then eqn. (7.50) becomes

dp _h _ hgp

oT = E = RTZ ...(7.51)
2
or h, = J1_dP (7.52)
9 p dT

Eqn. (7.52) may be used to obtain the enthalpy of vapourisation. This equation can be
rearranged as follows :

dp _ by dT
P~ R T2

Integrating the above equation, we get
J'd£ _ by dT

P R JT?
P Pt 1
In o R {ﬂ T, ..(7.53)
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Knowing the vapour pressure p, at temperature T, we can find the vapour pressure p,
corresponding to temperature T, from eqn. (7.53).

From eqn. (7.50), we see that the slope of the vapour pressure curve is always +ve,
since v, > v, and hfg is always +ve. Consequently, the vapour pressure of any simple compressible
substance increases with temperature.

— It can be shown that the slope of the sublimation curve is also +ve for any pure substance.

— However, the slope of the melting curve could be +ve or —ve.

— For a substance that contracts on freezing, such as water, the slope of the melting

curve will be negative.

iz’ Example 7.1. For a perfect gas, show that

o (3] [3), oeeel2)
P v aVT oT p aVT

where f is the co-efficient of cubical/volume expansion.
Solution. The first law of thermodynamics applied to a closed system undergoing a reversible
process states as follows :

dQ = du + pdv (i)
As per second law of thermodynamics,
7)
ds= | (i
T rev. ( )

Combining these equations (i) and (ii), we have
Tds = du + pdv
Also, since h=u+pv
dh = du + pdv + vdp = Tds + vdp
Thus, Tds = du + pdv = dh — vdp
Now, writing relation for u taking T and v as independent, we have

ou ou
(ﬁ]v oT + (E)T dv

u
¢, dT + 173y . dv
Similarly, writing relation for h taking T and p as independent, we have

() g, (2
aT o dT + ap N dp

@
Cp dT + op N dp
In the equation for Tds, substituting the value of du and dh, we have

c, dT + (%‘I) dv + pdv = Cp dT + (%L dp — vdp
T

)
or c, dT + {FH(B—QJ dv=c, dT - {v—@gl} dp

du

dh

15



Since the above equation is true for any process, therefore, it will also be true for the case
when dp = 0 and hence

?
(c, - c,) (dT), = [p + (a—sn (dv),
v
or (Cp N Cp) = [p * (?9_31& [B_T)p

By definition, B= %(aa%)
P

The above equation becomes,

C,—C = {p+(3—tl} vp

du
or =pvp+ v (B_V)T Proved.

izExample 7.2. Find the value of co-efficient of volume expansion B and isothermal
compressibility K for a Van der Waals’ gas obeying

[p+%)(v—b) = RT.
Solution. Van der Waals equation is
a —
(p+v—2)(v—b) = RT

Rearranging this equation, we can write

RT _a
v-b

p
Now for 3 we require [a—_llfj . This can be found by writing the cyclic relation,
P

Hence

From the Van der Waals equation,
dgp) _ R
oT g “v-b

ZLP) __ _RT 2
Also (BVT_ (v—b)2+ %

Hence pB=

16



R
v-b Rv2 (v - b)

1
or = \-—)—5|. ———— — . (Ans.
B=y| =Rt L 28| RTV? - 2a(v-by (Ans.)
v-b?
_ o 1(avy _ 1 1 _ V2 (v-by
Also, K=- V(ﬁl == Vv|za_RT = RTV — 2a(v b} " (Ans.)
v (v-by

Example 7.3. Prove that the intemal energy of an ideal gas is a function of temperature alone.
Solution. The equation of state for an ideal gas is given by

RT
v

But (g_l\jl =T (%Tp)v_ b [Eqn. (7.29)]

R
=T ~-p=p-p=0

Thus, if the temperature remains constant, there is no change in internal energy with
volume (and therefore also with pressure). Hence internal energy (u) is a function of temperature
(T) alone. ...Proved.

Example 7.4. Prove that specific heat at constant volume (c,) of a Van der Waals’ gas is a
function of temperature alone.

Solution. The Van der Waals equation of state is given by,

_RT _a
v—b A
) _ R
or ar), =v-b
P
or (a?g) =0
d o?
Now (%L =T (a'r—g)
\"
o
Hence (a—%’l =0

Thus c, of a Van der Waals gas is independent of volume (and therefore of pressure also).
Hence it is a function of temperature alone.

i=Example 7.5. Determine the following when a gas obeys Van der Waals’ equation,

[p+;) (v—b)= RT
(i) Change in internal energy ; (ii) Change in enthalpy ;
(iii) Change in entropy.
Solution. (i) Change in internal energy :
The change in internal energy is given by

- op
du = cdT + {T [ﬁl - p} dv

17



P 9 JRT _a R
But, ar ), = 9T \Wv=b " [| = v-p

1
£
=
o
|
+
5
_|
<
|‘m
(o
——
|
<
|‘13|
|
<l\>‘m
N —
[
o
<

2 RT RT a
= dT —_———+—d
& 1 +L[v—b V- vz} Y
2 2 a
= dT —.d
oS an
u-u,=c(T,-T,)+a i—i (Ans.)
2 1 v l2 1 vi vy ) :

(ii) Change in enthalpy :
The change in enthalpy is given by

v-T W
dh = ¢ dT + o1 . dp

oh N
%) =orv-Tl5T) ()
Let us consider p = f(v, T)
) 9P
dp = (av)T dv + (BT ]V dt
(dp)r = (g_p) dv+0 asdT=0 (2)
VT

From equation (1),

(dh), = [v-T G’—”J (dp);-

Substituting the value of (dp); from eqn. (2), we get

(dh); = |vV-T (aa”J (%)T dv

@), @3]

Using the cyclic relation for p, v, T which is
#),5)3)
aT p P ), v ip
&), @) )
aT p v aT ),

18



Substituting this value in egn. (3), we get

(dh); = {V [g—sz +T @Tp) } dv (4)

For Van der Waals equation

&) - 2[(&%)-2]

RT 2a
= — W—’—W ...(5)
(ap) _of(RT al)|_. R )
), T aT|v=b7)] T Vb

Substituting the values of eqns. (5) and (6) in equation (1), we get

[ RT 2al (R
(dh)T_{v{ (V—b)2+v3}+T(v—bﬂ dv

2 dv
j(dhh— RT Ji b)zdv ZaL?+RT

2 dv
1 (v—Db)

_ v, —by 1. 1
(hy —hy)r=—RT |09e(1_b) b{vz—b V1—b}}
- 2a (1—1—}+RT |oge("2_bJ
V2 Vi V1—b

[ 1 1 1
= bRT - -2a|—-—|. (Ans.
| (v2-b) (V1—b)} @ {Vz VJ (Ans.)
(iii) Change in entropy :

The change in entropy is given by

=c dT . (9p
ds Cp T +(8T) dv

For Van der Waals equation,

dgp) _ R
=T ’ =V=b ...as per eqn. (6)
_ dT R
ds=c, T *tv-b dv

J'ds = ¢, _[ {O'T]JFRLZ (Vd_"b)

s,-s, = ¢, log, H_-ﬂ + R log, {:’/2 — E] (Ans.)
|-

Example 7.6. The equation of state in the given range of pressure and temperature is
given by

where C is constant.

Derive an expression for change of enthalpy and entropy for this substance during an
isothermal process.

19



Solution. The general equation for finding dh is given by

av
dh =c, dT + {V—T (WM dp

fdh =0+ va—T G—”F)HT

as dT = O for isothermal change.
From the given equation of state, we have

ov)y - R 3C .
[B_T)p 0 + = ()
_f*lI/(RT C RT 3C
51Tl
2(  4C 4C
= |:.L (_T:&)dplr :_T73[(p2_ PO

The general equation for finding ds is given by

_ dT ov
ds=c, T‘[ﬁ)p dp

o |13, )]

as dT = 0O for isothermal change.
Substituting the value from eqgn. (i), we get

2 (R 3C
(SZ‘S“:U‘(NT—J“"L

72) 3C
=—Rlog, )~ [T5) - P (Ans)

Example 7.7. For a perfect gas obeying pv = RT, show that ¢, and c, are independent of
pressure.

Solution. Let s = (T, v)

=
|
|

0s 0s
Then ds=\37 ) dT + ov ) dv
v
Also u=f(T, v
_(ou du _ ou
Then du = (BTJ dT + (B_V)T dv=c, dT+ (B—)T dv
Also, du = Tds — pdv

o
—

20



Equating the co-efficients of dT in the two equations of ds, we have
o (3
T aT J,
95
=T \ar ),

s
ov jr  dTov

From eqn. (7.20),

Ps _(&p
voT | oT? !
2
[a_cv) _T/9%®
v \0T? )

Also p= $ ...(Given)

?p) _ dc, ) _
(ﬁl” o (a—vl“’

This shows that c, is a function of T alone, or c, is independent of pressure.

)
Also, Cp = T [BT)p

sy _ (ov
From eqn. (7.21), [_pl - [WJ
P

Again, v = % ...(Given)
() R
aTJ, p
[BZVJ {BCPJ
d T2 =0 ) AN =0
an aT? ), ap )

This shows that Cp is a function of T alone or C, is independent of pressure.
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Example 7.8. Using the first Maxwell equation, derive the remaining three.

Solution. The first Maxwell relation is as follows :

(%),

(%) -

(1) Using the cyclic relation

(o) () (), =

Substituting the value of eqn. (iv) in eqn. (iii), we get

(k- (%)

Using the chain rule,

(&){

a

() - () (%)

Substituting the value from eqgn. (i) in egn. (ii), we get

6)

i)_
apv‘1

ERE)

This is Maxwell Third relation.
(2) Again using the cyclic relation

%)(2) &), -
¥, - (LG

Substituting the value from eqn. (i) into eqn. (v)

=), - ()

Again using the chain rule,

(50), (%), (38), -

Substituting the value of (vi) into (v), we get

(&),

&)%),

This is Maxwell second relation.

@)

&),

(),

Jp
) -1
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), - @), (),
- (%)) ()

Substituting the value from eqgn. (i), we get
(20) L(2T) () () (v
T~ (BV)S (aT)v (apl (asl
&L EHF)G
oV g\ 98 4 \IT 4| \9pjr
7, -- (%)
aT o - P Jr

This is Maxwell fourth relation.
Example 7.9. Derive the following relations :

(i)uza—T(g—.?)v (i) h=g- T(g.?.)

9%a . g
(iiiyc,=-T {BT—ZJ\I (iv) p_—T [aT L

where a = Helmholtz function (per unit mass), and

- (&),

g = Gibbs function (per unit mass).
Solution. (i) Let a = f(v, T)

_ (0a da
Then da= (a—vl dv + (aT)v dT
Also da =- pdv - sdT

Comparing the co-efficients of dT, we get

da
aT ) =-s
v

Also a=u-Ts
_ - Ja
or u—a+Ts—a—T(aT]V
Hence u=a-T Ec) (Ans.)
ol - ;
(i) Let g=f(p, T)
- (%9 99
Then dg = (apl dp + [BT)p dT
Also dg = vdp — sdT

Comparing the co-efficients of dT, we get

ag
#),--
p
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Also h=g+Ts=g—T[a—g)
p

oT
a9
Hence h=g-T 3T ) - (Ans.)
p
(iii) From eqgn. (7.23), we have
ds -
c, =T \3T s (i)
da
Also aT ), ==

s %a 3
ﬁv = _ a_r—zv ...(II)

From eqgns. (i) and (ii), we get

9%a
Cv =—T aTZ , . (AnS.)
(iv) From egn. (7.26), we have

as
¢, =T [B_T)p (i)
0
Also [a—?—)p =—3

aT b == 1aT2 . ..(i)

From eqgns. (i) and (ii), we get

9%g
Cp =-T T2 p. (Ans.)
Example 7.10. Find the expression for ds in terms of dT and dp.

Solution. Let s = (T, p)

ds ds
Then ds = (—) . dT + (—] dp
JaT b P )r

As per Maxwell relation (7.21)
3, -
pjr [ﬁ)p
Substituting this in the above equation, we get
ds = (g_?)p dT - (aa'}{)p' dp (i)
The enthalpy is given by

dh = cpdT = Tds + vdp
Dividing by dT at constant pressure

[g—.?) =c, = T [g—.ls.) +0 (as dp = 0 when pressure is constant)
p p
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Now substituting this in egn. (i), we get

dT ds .
ds = c ?—[ﬁ)p. dp ...(i)

1( ov
But B= V[_BT)
P

Substituting this in eqn. (ii), we get

dT
ds = ¢ T - Bvdp (Ans.)
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