SFG and Mason's Rule: A revision

Andersen Ang 2016-Nov-29

Review

- SFG: <u>Signal-Flow Graph</u>
- SFG is a directed graph
- SFG is used to model signal flow in a system
- SFG can be used to derive the transfer function of the system by Mason's Rule / Mason's Gain Formula.

- Node
- Edge
- Gain
- Input / Sources
- Output / Sinks
- Path
- Path gain
- Forward path
- Forward path gain

- Loop
- Self loop
- Loop Gain
- Non-touching loop

- Node: variables. e. g. X_1 , X_2 , X_3 , X_4
- Edge: directed branches. e.g. X_1X_2
- Gain: transmission of that branch. e.g. A_{21}
- Input/Sources: nodes with out-going branches only e.g. X_1
- Output/Sinks: nodes with incoming branches only e.g. X_4

- Path: successive branches without repeated nodes,
 e. g. X₁X₂X₄
- Path gain: the gain of the path
- Forward path: path from input to output, e.g. $X_1X_2X_3X_4$ or $X_1X_2X_4$
- Forward path gain: gain of forward path

- Loop / Feedback path: a closed path which originates and terminates on the same node, e.g. $X_2X_3X_2$
- Self loop: loop with only one branch, e.g. X_3X_3
- Loop gain: gain along the loop
- Non-touching loop: two loops are non-touching if they do not share any nodes nor branches

Some SFG simplifications

- Branch in parallel: \xrightarrow{x} \xrightarrow{x} \xrightarrow{x} \xrightarrow{y} \xrightarrow{x} \xrightarrow{y}
- Branch in series: $\rightarrow Q \xrightarrow{a} Q \xrightarrow{b} Q \rightarrow \qquad \rightarrow Q \xrightarrow{ab} Q \rightarrow$

SFG Example 1

- Two forward path: $G_1G_2G_3G_4G_5G_7$ & $G_1G_2G_3G_4G_6G_7$
- Four loops: G₂H₁, G₄H₂, G₄G₅H₃, G₄G₆H₃
- Non-touching loops: $G_2H_1 \& G_4H_2$, $G_2H_1 \& G_4G_5H_3$, $G_2H_1 \& G_4G_6H_3$

SFG Example 2

• Three forward path:

 $A_{32}A_{43}A_{54}A_{65}A_{76}$

 A_{72}

 $A_{42}A_{54}A_{65}A_{74}$

SFG Example 2

- $A_{32}A_{33}$, $A_{43}A_{34}$, $A_{54}A_{45}$, $A_{65}A_{56}$, $A_{76}A_{67}$, A_{77}
- $\bullet A_{42}A_{34}A_{23}, A_{65}A_{76}A_{57}$
- * $A_{65}A_{76}A_{67}A_{56}$ is not a loop since X_6 is repeated on the path!
- \bullet $A_{72}A_{57}A_{45}A_{34}A_{23}$
- \bullet $A_{72}A_{67}A_{56}A_{45}A_{34}A_{23}$

Mason's Rule

- How to derive transfer function: block diagram (BD) reduction or signal flow graph reduction.
- BD approach requires successive application of fundamental relationships in order to derive transfer function.
- SFG just applies one formula Mason's Rule

Mason's Rule

• Equation
$$TF(s) = \frac{1}{\Delta} \left(\sum_{i=1}^{\text{#forward path}} P_i \Delta_i \right)$$

- P_i = the i^{th} forward-path gain.
- Δ = Determinant of the system
- Δ_i = Determinant of the i^{th} forward path
- $\Delta = 1$ (sum of all individual loop gains)
- + (sum of products of gains of all 2 loops that do not touch each other)
- (sum of products of gains of all possible three loops that do not touch each other) + ...
- $\Delta_i = \Delta$ for part of SFG that does not touch i-th forward path
- Δ_i = 1 if no non-touching loops to the i-th path, or if taking out i-th path breaks all the loops

- Input: X₁
- Output: X₆
- Two Forward paths: paths along X₁X₂X₃X₄X₅X₆
- **Two** Forward path gains: $P_1 = G_1G_2G_4$ and $P_2 = G_1G_3G_4$
- Loops: X₂X₃X₂ and **two** loops along X₂X₃X₄X₅X₂
- Loops gains: $L_1 = G_1G_4H_1$, $L_2 = -G_1G_2G_4H_2$ and $L_3 = -G_1G_3G_4H_2$

- $\Delta = 1$ (sum of all individual loop gains) + (sum of products of gains of all 2 loops that do not touch each other) (sum of products of gains of all possible three loops that do not touch each other)
- Since no non-touching loop, thus
- $\Delta = 1$ (sum of all individual loop gains)
- $\Delta = 1 (L_1 + L_2 + L_3)$

- $\Delta_i = \Delta$ for part of SFG that does not touch i-th forward path ($\Delta_i = 1$ if no non-touching loops to the i-th path)
- Since no non-touching loop, thus $\Delta_1 = \Delta_2 = 1$

- Input X₁, Output X₈
- **Two** Forward paths:

$$X_1X_2X_3X_4X_8$$
 and $X_1X_5X_6X_7X_8$

Two Forward paths gain:

$$P_1 = G_1 G_6 G_7 G_8$$
 $P_2 = G_1 G_2 G_3 G_4$

• Loops: $X_2X_3X_2$, $X_3X_4X_3$, $X_5X_6X_5$, $X_6X_7X_6$

• Individual Loop gains:

$$L_{11} = G_6 H_6$$
 $L_{12} = G_7 H_7$,

$$L_{13} = G_2 H_2$$
 $L_{14} = G_3 H_3$

• Two non-touching loops:

•
$$L_{21} = L_{11}L_{13}$$
 $L_{22} = L_{11}L_{14}$ $L_{23} = L_{12}L_{13}$ $L_{24} = L_{12}L_{14}$

Three non-touching loops: no

•
$$\Delta = 1 - (L_{11} + L_{12} + L_{13} + L_{14}) + (L_{21} + L_{22} + L_{23} + L_{24})$$

• $\Delta_i = \Delta$ for part of SFG that does not touch i-th forward path ($\Delta_i = 1$ if no non- \mathbf{x}_{10} touching loops to the i-th path.)

 $\Delta_2 = \Delta$ for part of SFG that does not touch 2nd forward path

 $\Delta_1 = \Delta$ for part of SFG that does not touch 1st forward path

SFGs without the i-th forward path: $X_1 \xrightarrow{G_s} X_8$ $X_1 \xrightarrow{G_s} X_8$ $X_1 \xrightarrow{G_s} X_8$

For these SFGs, compute their Δ as:

 $\Delta=1$ - (sum of all individual loop gains) + (sum of products of gains of all 2 loops that do not touch each other) – (sum of products of gains of all possible three loops that do not touch each other)

Both SFGs do not have two/more non-touching loops

$$\Delta_2 = 1 - (L_{11} + L_{12})$$
$$= 1 - G_6 H_6 - G_7 H_7$$

$$\Delta_1 = 1 - (L_{13} + L_{14})$$
$$= 1 - G_2 H_2 - G_3 H_3$$

$$\begin{aligned} \text{TF} &= \frac{1}{\Delta} \left(\sum_{i=1}^{\text{#forward path}} P_i \Delta_i \right) & \mathbf{X_1} & \mathbf{X_2} & \mathbf{X_3} & \mathbf{X_7} \\ & \mathbf{X_2} & \mathbf{X_3} & \mathbf{X_7} & \mathbf{X_4} \\ & &= \frac{P_1 \Delta_1 + P_2 \Delta_2}{1 - (L_{11} + L_{12} + L_{13} + L_{14}) + (L_{21} + L_{22} + L_{23} + L_{24})} \\ & &= \frac{G_1 G_6 G_7 G_8 (1 - G_2 H_2 - G_3 H_3) + G_1 G_2 G_3 G_4 (1 - G_6 H_6 - G_7 H_7)}{1 - (G_2 H_2 + G_3 H_3 + G_6 H_6 + G_7 H_7) + (G_2 H_2 G_6 H_6 + G_2 H_2 G_7 H_7 + G_3 H_3 G_6 H_6 + G_3 H_3 G_7 H_7)} \end{aligned}$$

END