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* |n this chapter, we discuss graphical techniques for
modeling control systems and their underlying

mathematics.

 We also utilize the block diagram reduction
techniques and the Mason’s gain formula to find the
transfer function of the overall control system.

e Later onin Chapters 4 and 5, we use the material
presented in this chapter and Chapter 2 to fully
model and study the performance of various control
systems.
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To study block diagrams, their components, and their
underlying mathematics.

To obtain transfer function of systems through block diagram
manipulation and reduction.

To introduce the signal-flow graphs.

To establish a parallel between block diagrams and signal-
flow graphs.

To use Mason’s gain formula
systems.
To introduce state diagrams.

To demonstrate the MATLAB tools using case studies.

"‘ Control & Systems Lab., Dong—A Univ.



3-1 BLOCK DIAGRAMS

Block diagrams provide a better understanding of the composition and interconnection
of the components of a system. It can be used, together with transfer functions, to
describe the cause-and-effect relationships throughout the system.

Heat Loss
Desired Room Actual Room
Temperature Error + AN Temperature
—» Thermostat W Gas Valve —» Furnace Room >
I Feedback

Figure 3-1 A simplified block diagram representation of a heating system.
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3-1-1 Typical Elements of Block Diagrams in Control Systems

The common elements in block diagrams of most control systems include:

o Comparators

* Blocks representing individual component transfer functions, including:
 Reference sensor (or input sensor)
 Qutput sensor

 Actuator

« Controller

e Plant (the component whose variables are to be controlled)

* Input or reference signals

 Output signals

* Disturbance signal

 Feedback loops Disturbance
Input + AN Output
__EL’Ihkmmm Controller —» Actuator Plant upu>
Sensor
Output

Sensor

Figure 3-3 Block diagram representation of a general control system.




r(t) e(t) = r(t) — y(1)
—
R(s) + E(s) = R(s) - Y(s)

y(@) | X(s)

(a)

rz(t) RQ(S)

ry(1)
Rl(S) +

e(t) = ry(1) + ry(1) — y(0)
E(s) = R (s) + Ry(s) — Y(5)

y(1) | Y(s)

(c)

r(1) e(t) = r(t) + y(1)
R(s) + ( > E(s) = R(s) + Y(s)
+

y(#) | Y(s)

(b)

A comparator
performs addition
and subtraction

Figure 3-4 Block-diagram elements of typical sensing devices of control systems. (a) Subtraction. (b) Addition. (c) Addition and subtraction.
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X(s) = Gs)U(s) (3-4)

If signal X(s) is the output and signal U(s) denotes the input, the transfer function of the
block in Fig. 3-5 1s

G (s) = (3-5)

Typical block elements that appear in the block diagram representation of most control
systems include plant, controller, actuator, and sensor.

u (1) x (1) Time
> glnu) g domain
U X
) G s, I&apla?e
omain

Figure 3-5 Time and Laplace domain block diagrams.

%2 Control & Systems Lab., Dong—A Univ.




EXAMPLE 3-1-1

X(s) = A(s)Ga(s)
Als) = U(s)G1(s)
X(s) = G1{s)Ga{s)U{s)
G(s) = G1(s)Ga(s) (3-6)
YO0 6 FEY N G

Figure 3-6 Block diagrams Gai(s) and Gz(s) connected in series

“  Control & Systems Lab., Dong—A Univ.
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EXAMPLE 3-1-2
A1(s) = Ufs)

Az(s) = A1(s)Gi(s)
As(s) = A1(s)Gals)
X(s) = Az(s) + As(s)

X(s) = U(s)(G1(s) + G (s))

X(s)

76 =)

G(s) = Gi(s) + Ga(s)

A (s) o G () Ay (5)
A0, o P
> G, (5)
Aj (s) Az (s)

Figure 3-7 Block diagrams Gai(s) and Gz(s) connected in parallel.

(3-7)
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Basic block diagram of a feedback control system

R(s)

Figure 3-8 Basic block diagram of a feedback control system.
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U(s)

Y(s)

G(s)
u(r)
b(1) Hes)
B(s)

y(1)

Y{s)

= G{s)R{(s) — G(s)H{s)

negative feedback loop

Y(s) Gs)
M) =25 =TT GGaD)
positive feedback
vy 16 6)

(3-8

(3-9.

(3-10

(3-11

(3-12

B3
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Feedback Control System

Ri(5) (5]} ¥(s)

T GG
L 2y |-

R(s) : 7|& & & (reference input), & = (input), EE = command

Y(s) : = & (output, controlled variable), EE = & £ (response)

B(s) : #|2F Al = (feedback signal)

E(s) : @ X}4AI S (error signal) EE+= actuating signal

G(s) : =HtakAd 2 T &gk~ (forward-path transfer function)

H(s) : Hl =t M =het4=(feedback transfer function, feedback gain)

G(s)H(s) : &= ™ EFstz~(loop transfer function), 7l| & = ™ Etst4=(open-loop transfer function)
M(s) = Y(s)/R(s) : Ij| & = ™ =rak==(closed-loop transfer function, system transfer function)

\

_,>i

(=1 %
=

B(s) = H(s)Y(s)

E(s) = R(s) — B(s)

Y(s) = G(s)E(s) = G(s)R(s) — G(s)B(s)

M(s) =Y (s) / R(s) = G(s) / (1 + G(s)H(s))

i ‘A_\ Control & Systems Lab., Dong—A Univ.



3-1-2 Relation between Mathematical Equations and Block Diagrams

mZ 5) — wy, 5 5—(3’21 5) = 5 52 '
20 (5) — 2¢ 0, X (5) X{s) =X{s) (3-16) a)an(s) + 52 X(s) 1 /\X(s)’
)
S
w, U(s) + 52 X(s) . X(s)
' 2¢w,s
B ‘ 28w, sX(s)
20w,2X(s) ., <)
w,*X(s i
w,>X(s) v

Figure 3-10  Addition of blocks SLB, 2wy,s,

Figure 3-9 Graphical representation of Eq. (3-16) using a comparator. and ), to the graphical representation of

Eq. (-17).
U(s) + 1 X(s)
— > a)n2 S_z >
14 z T
5 _____so, (3-20)
Uls) 52 +2¢w,s5+ ] o
w,’

Figure 3-11 Block diagram
representation of Eq. (3-17) in Laplace
domain.
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U(s)

X(s)

+ X(s)
o, L > 1 X(s)
h, s —» - ¥
: 200, 4— <«
wn
(a)
U(s) V(s)
—> 0’ =
<+

2

wﬂ

Figure 3-12 (a) Factorization of 1/s term in the internal feedback loop of Fig.3-11. (b)

(b) Final block diagram representation of Eq.(3-17) in Laplace domain .
13
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" X(s)

14

+

A(s)

V(s)

20w

Figure 3-13 Block diagram of Eq.(3-17) in Laplace domain with V(s) represented as
the output.
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U(s)

V(s) " X(s)
b

a),,t2 <
Uis) + ) A(s)

a)n

X(s)

(a)
U(s) + , | AG) + 1 V(s) 1 X(s)
— > o, 5 » "

_ A _
2{w, le—

, (b)

Figure 3-14 (a) Factorization of @),

15 (b) Alternative diagram representation of Eq.(3-17) in Laplace domain.
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U(s) + i : > A(s) +
a)ﬂ

V(s)
B

X(s)
>

Us) + 3
s+2 ¢ w,

Figure 3-15 A block diagram representation of Eq.(3-19) in Laplace domain.
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3-1-3 Block Diagram Reduction: Branch point relocation

(a) P
A(s) > Go(s) > Y(s)
Y(s) = A(s)Ga(s)
B(s) = Y(s)Hy(s)
B(s) «—— H(s) <
<
b
{b) A(s) Q » Gy(s) —» Y(s)
Y{s) = A{s)G;(s)
B(5) = A(5) o =) Galo) = 703
H,(s) B(s) = Y(s)H;(s)
B(s) < G(5) <

Figure 3-16 (a) Branch point relocation from point P to (b) point Q.
17
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3-1-3 Block Diagram Reduction: Comparator relocation

(a) N
A(s) p Gy(s) —»Q—» Y(s)
_.I_
Yi(s) = A(s) + B(s) ‘2 8
B(s) «— H(s) [« Y(s) = Y1(s)Ga(s)
(b) ¥ ¥y(s)
A(s) —O—b G(s) > ¥(s)
_.I_
¥(s) = A(5)Ga(s) + B(s) 28 Ga(s)
Bs) +— Gy (4 Y(s) = AW)Ga(s) + B (5

(b) the left-hand side of block Ga(s).
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EXAMPLE 3-1-5 Find the input—output transfer function of the system

(@)

Figure 3-18 (a) Original block diagram.
(b) Moving the branch point at Y1 to the left of block Go.
(c) Combining the blocks Gi1, G2, and Gs.
(d) Eliminating the inner feedback loop.

19
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+
Y Y +
r—> G, —¥ G RN
(b)
Y.
2y G,6,+G, Y,
(©
R G, Y, - Yy
- I+G,G:H] G,G3+Gy >
Y(S) B G1GaGs +G1Ga
E(S) 1+ GG + GGGy + G Ga
(d)
20 Figure 3-18 (Continued)
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3-1-4 Block Diagram of Multi-Input Systems—Special Case: Systems with a Disturbance

Super Position: For linear systems, the overall response of the system under
multi-inputs 1s the summation of the responses due to the individual inputs, i.e., in this case,

Yromz’ = YR‘DZD i YD|R:0 (3'28)
D(s)
Controller _ Plant
R(s) E(s) G G Yl (s)>
1 2
+ +
Output Sensor

H, <

Figure 3-19 Block diagram of a system undergoing disturbance.

21 29
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R(s) Y(s)
When D(s) = 0, the block diagram is simplified (Fig. 3-20) to give the transfer function G, Gy >

Y(S) _ Gy (S) G2 (.S‘)
R(s) 1+ Gis) G Hi(s)

(3-29)

H,

Figure 3-20 Block diagram of the system in Fig. 3-19 when D(s) = 0.

D(s)

When R{s) = 0, the block diagram is rearranged to give (Fig. 3-21): % ¥(s)
G, G, >
+
Y -G =
D(s) 1+ Gi(s) Ga(s) Hi(s)
()
D(s) — G, ¥(s)
GlHl d
As a result, from Eq. (3-28) to Eq. (3-32), we ultimately get
(b)
Yis Yis
Yiotat = R_( ) R(s) +D( ) Dis)
(s)p—o (s)|r—o (3.31) Figure 3-21 Block diagram of the system in Fig. 3-19 when R(s) = 0.
G162 -G
Y(5§) =——R —D
W= 1reem Y T Traem DY

22 &*é
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() ——p —— 1)
) ———» e U
. MULTIVARIABLE .
. SYSTEM :
r(f) ——» — 0 G(s) Y(s) >
(a)
r() — | MULTIVARIABLE | 5 y(» H(s) +—
SYSTEM
(b)
Figure 3-22 Block diagram representations of a multivariable system. Figure 3-22 Block diagram representations of a multivariable feedback

control system.

M(s) = [I+ G(s)H(s)| ' G(s) (3-37)

Y(s) = M(s)R(s) (3-38)

23 s
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EXAMPLE 3-1-6 Consider that the forward-path transfer function matrix and the feedback-path transfer function
matrix of the system shown in Fig. 3-23 are

Gs)=|stL 5 H(s):[l 0} (3-39)
s+ 2

respectively. The closed-loop transfer function matrix of the system is given by Eq. (3-15), and
is evaluated as follows:

[+ 1 L L L
1+Gs)H(s)=| ST1 Bol= P (3-40)
2 L 2
+S 2 s+2
The closed-loop transfer function matrix is
54 3 L L 1
i It o T e
M(s) = [+ GHE)| "Gl =5 |72 (2, |*F (3-41)
— 2
s+1 s+ 2
where
25+3 2 s2+55+2
_Fresta 2 & TiTA (3-42)
s+1s+2 s s{s+1)
Thus,
352+ 9544 L
sts+1) |sGs+1(s+2) s
M(s) = 343
(S) 52+55+2 5 35+ 2 ( )
s{s+ 1)

24
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3'2 SlGNAL'FLOW GRAPHS (SFGS) Output Node (Sink): An output node is a node that has only incoming branches.

dia
O O
Y1 Y2

Input Node (Source): Ap input node is @ node that has only ouigoing branches

TABLE 3-1 Block diagrams and their SFG equivalent representations

Block Diagram Signal Flow Diagram
Simple Transfer Function U Ys) B
—» G —> o - o}
% (5 ) | Y2
T(s) = ¢
» G ()
+ G ()
Parallel Feedback
Us)y —» Y(s) U(s) Y(s)
+ >
G, (5) Y Y2
GQ{A‘;)

¥(s)
G(s) B
Y(s) G(s) ¥ 1 G(s) !
= R(x) ¥(s)
R(s) 1+G(s)H(s) T o~ e
H(s) —H(s)
$) e
B(s)
1. SFG applies only to linear systems. 4. iigna}lls travel along branches only in the direction described by the arrows of the
ranches.

2. The equations for which an SFG is drawn must be algebraic equations in the form o
of cause-and-effect. 5. The branch directing from node yy to vy represents the dependence of y; upon vy

3. Nodes are used to represent variables. Normally, the nodes are arranged from left but not the reverse.

to right, from the input to the output, following a succession of cause-and-effect ~ 6- /A signaly traveling along a branch between yy and y; is multiplied by the gain of
relatigns through the system. the branch ay;, 8o a signal ai;v;. is delivered at y;.

8L
% Control & Systems Lab., Dong—A Univ.
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Signal-Flow Graphs(SFG, Al S S EAMI)

[ B

O &= A E cause-and-effect R 2[0f| [} 2} LMo 2 LIEIH S EE
Z AN ™ (node)t 7}X|(branch)2 T+ |, Of2 2 2l 1F 20| Zt node= B Z=(variable)E L}
= E| = BH=0| 0| 5(gain) 1} Bi2FZ LIELHLCE.

node

branch node
° g i = L{EFU node®} branch]
a . [x=a.x.= th node2f branc
x:’ ij l.j i Citi=

output =2 gain x input =, j th output =2 (gain from k to j) x (kth cause)
Yj(s) =2 ij(s) Y,(s)

& &3z
SFG Terms2| 74 9|

[
e Q& L = (Input node, Source) X r) 2
L} 7p= HE3EO| branchTt ¢ Z £ 0f Q1= node
Ol] ?12] D=0 x,

e £ It = (Output node, Sink)
=0 2= k9| branchTh HZ L[0] Y= node
O[] ?2] =AM x,




e 0| £(Gain)
branch2 C’47='E|0'| Q= HZto| H| =

o) x, 1t x,& H&AS P'— branch?| 0|52 a,,0|,
X, = a, X, +(CFHE 0| oot & =)2| 2tA|E LIE}H.
T : X/x =a,, O|2t= A2 Ot )

o ZA 2 (Path)

A HE YO 2 AT brancho] TFOE 0T 8 W40| A SO, X HE Of T B
0 0|2 HEZ O|RC T B2TH /7| SIo ZUO =, A2 2 nfet S It HEE 1 O

[ A0 = Z2 nodeE F H X|LtA| = OtEICY.
= =712

off) x101IA1 Xy = 7Pt path= Ct&1f 20| & 7io| Z=7F UL}
o A 5y
xl 21 % -3—'3
) a1 A5y I:I:I:I
Il x2 gl % - X

o Mutsk 7 2 (Forward path)
2 & node0f| A] £ nodelf MEtSFO 2 H &HEl= path
o) x, > x,2| forward path= Of2f{QF Z 0| 27§ 2| Z =7} QUC}.

. g . S & 4

iy X A3 " A ™ X,
@ 21  q

iy X > > X

a Control & Systems Lab., Dong—A Univ.



o Y2t A & (Feedback path)
2 =E node?tE AT = & F 0t T HSt= path.

e Loop, Self loop
BESHM S LEA A LEII Yot B2 E FX(loop)2tl 5t11, 1 FELF O CHE
nodeZ} §1© ™ (EE= 57| 2| branch2 T4 =l loop) self-loop 2f11 EF.

Gil) & 33 & o3
i) loop: Ay A "2

33
ii ) self-loop: X X
¢ Nontouching loops
LoopZ 0| Al &5 QI node?f §l = loop

o 42 0| = (Path gain)
ol Rl pathS O| F+= Zt branch gain®| &.

cf 43 <= .
Of) path: x —2 =~ x0l Tt path gain a,,a,,

(2| : O] o0 M path gainO| a,,a,, 2t XS A] x,/x,=a,,3,,2t= == Ot )

e Loop gain
K| ™HEl loop= @A SH= 2t branch gain@| & (loop2| path gain)

e 3y

& a3
X " X5loop gain a,,a,,

Off) loop: *;




3-2-4 SFG Algebra oY

ap dys
O > O > O O
V1 Y2 ¥3 Y4

\ A
2093034
G— T dia dy3
Vi Y4 O > Q >
1 8 )
a2 a3
o > » aszp
i Y2 y3
a3
(a) Original signal-flow graph
Y2
1

d|n [25%) 1

»- > > O a
! )’V‘_; . \/’\/

a3 > =h <

(b) Modified signal-flow graph

Y3
(0]

29

!E a+b+c¢
»

i

Figure 3-29~31 Signal-flow graph.

AiEn
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3-2-7 Gain Formula for SFG

Given an SFG with N forward paths and K loops, the gain between the input node y;,
and output node yoy 1s [3]

N
M. A
M:youtzzj L Ye (3-54)
Vin A
pa

where
Vi = Input-node variable
Vo = Output-node variable
M = gain between y;, and y,,,
N = total number of forward paths between y;, and y,,,,

M, = gain of the kth forward paths between y,, and v,,,
A=1->La+)» Lp=)> Lag+... (3-55)
i i k

Ly = gain product of the mth (m =1, j,k,...) possible combination of r non-
touching loops (1 < r < K).

or

A = 1— (sum of the gains of all individual loops) 4 (sum of products of gains of all
possible combinations of two nontouching loops) — (sum of products of gains of
all possible combinations of three nontouching loops) + - - -

A, = the A for that part of the SFG that is nontouching with the kth forward path.

The gain formula in Eq. (3-34) may seem formidable to use at first glance. However, A
and Ay are the only terms in the formula that could be complicated if the SFG has a large
number of loops and nontouching loops.

Care must be taken when applying the gain formula to ensure that it is applied between
an input node and an output node.

30
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Gain Formula for SFG (Mason's gain rule)

M : The gain between input node y,, and output node y_,

M=y ./V,=2MA, /A, k=1,...,N

O 7| M,

N : Total number of forward path

M, : kY forward path?2| gain

A :signal flow graph determinant EE= characteristic function

A=1-2 L +L,-Lg+.....
L. = r nontouching loops 2| mt possible combination2| gain product (1< r<L)
A=1-(2E Z}Zl9] loop 0| 52| &)
+(2712] H|H loop2| 7t5¢t B E =89 0|5 52| &)
-(37H2] H|7H loop2| 7ts¢t R E =82 0|5 &2 &)
+ ...
L = loops2| &=
A, : k* forward path2} nontouchingSt= A part
A= kKEH R o] T ekA = 2F T SFX| Q= graph2| £ 20i CHTH A o] Zk
kHHR| A 29| B = branchE Mot M S E L O0f|A] F13HA
4; = 4 — 2 loop gain touching the i-th forwaerd path

AiEn

AP
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| G(s) |

O b Q > O > O
R(s) EON ¥s)

—H(s)

Figure 3-32 Signal-flow graph of the feedback control system shown in Fig. 3-8.

EXAMPLE 3-2-2 Consider that the closed-loop transfer function ¥(s}/R(s) of the SFG in Fig. 3-32 is to be determined
by use of the gain formula, Eq. (3-54). The following results are obtained by inspection of the SFG:

1. There is only one forward path between R(s) and ¥Y{s), and the forward-path gain is
My = G(s) (3-56)
2. There is only one loop; the loop gain is
Lyy = —G{s)H(s) (3-37)

3. There are no nontouching loops since there is only one loop. Furthermore, the forward path
is in touch with the only loop. Thus, Ay = 1, and

A=1-Ly =1+ G(s)H(s) (3-58)

Using Eq. (3-54), the closed-loop transfer function is written

Y(s) _MiA _ Gls)

R{s) A L+ Gls)H(s)
which agrees with Eq. (3-12).

(3-39)

32

AiEn



EXAMPLE 3-2-3

Consider the SFG shown in Fig. 3-25(d). Let us first determine the gain between y; and ys using the
gain formula.

The three forward paths between y; and ys and the forward-path gains are

M1 = ay2a3amays  Forwardpath: y1 —va —v3 — v — s a3

Mo = ajaas Forward path:  y1 — 2 — ¥3
My = ayamaaas Forward path:  y1 —v2 —ya — ¥s &5 AL " &

The four loops of the SFG are shown in Fig. 3-28. The loop gains are

&
(=]

(@) ya = daay) +d3ys
L1 = aasasy Loy = asqoa3 Ls) = apapazy Ty = daa

There is only one pair of nontouching loops; that is, the two loops are

ayy a3
yo—ys—yr and y4—wy
Thus, the product of the gains of the two nontouching loops is ” ”;2 a _’:__‘w o
Fqs = axsunatay (3-60) R4 Y2 Y3 V4 Ys
All the loops are in touch with forward paths M, and M. Thus, Ay = Ay = 1. Two of the loops are not () yp = a1py1 +azy3 Y3 =dxyz+ dgaVy

in touch with forward path M. These loops are y3 — y4 — y3 and y4 — v4. Thus,

Ay =1 — asqauy — asq (3-61) 32 da3 daq
Substituting these quantities into Eq. {(3-54), we have ds
O * O
)ﬁiMlAl + MaAy + Mads B4 Ys
- A
N (3-62)
_ (ananasias) + (annays)(l — asaass — asa) + a1panays
I — (@330 + @34au3 + asqaznays + auy) + apzasnan
where
A=1— (L1 + Ly + L3 + Lay) +Lyp
36 o
=1 — (anaw + asiass + asaspans + aaa) + aazazaaqg v
The reader should verify that choosing y, as the output,
yo _ a1p(l — asaaus — am) 3-64)

b3 A .
(d) Complete signal-flow graph

where A is given in Eq. (3-63).
Figure 3-33 Signal-flow graph for Example 3-2-3.

33 &*é
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EXAMPLE 3-2-4 Consider the SFG in Fig. 3-33. The following input—output relations are obtained by use of the gain

formula:

Y2 1 +GsHa+ Hy+ Gy HyHy

(3-65)
V1 A
G1G-{l + H,
Yo _ Gr1Goll +He) (3-66)
1 A
G1GaGaG Gi1Gs(l + Gz H
Yo _y1_ G162G364 + Gy s(1 + G:H) (3-67)
Yo A
where
A=1+GiH +GziHs + G1G2GayHsy + Ha + G1G3H 1 H (3-68)

+ GyHyHy + GoHoHy + Gy Go Gy Hy + Gy Ga Hy HyHy

34
., Dong—A Univ.




e Ex. 3-2-2
R(5) E(s) T(s) M, = G(s)

Gt T

= c) c
J— L11 \J D’ll 9
‘ Bis) oS A =

A =1+ G(s)H(s)

Closed -loop transfer function

M=Y(s)/R(s)=M; A; /A =G(s) / (1 + G(s)H(s))

e Ex. 3-2-4
yz/ Y1 =
y4/ Y1 =

* A= chosen output0| 2t#| 21 0| same

e Noninput node?2} output nodeA}0| 2] gain
Your! Y2 = Wout / Vi) / V2 / Vi) = (ZMA, | fromy, toy,, /A)/
(XMA, | from y.toy, /A)

= (X MA, | from Yinto Yo )/
(XMA, | fromy, toy,)
e Ex. 3-2-5 & 3-2-6
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3-2-9 Application of the Gain Formula to Block Diagrams EXAMPLE 3-2-6

Forward Path Gains: 1. G] Gng; 2. G] G4 Y(S) G1G2G3 + G1G4 5 b
Loop Gains: 1. —G1GaHy; 2. —GaGsHy; 3. —G1GaGs; 4. —GaHy; 5. — G616y R(s) - A ©-72)
A =14+ G1G2H1 + G2G3Hz + G1G2Ga + GuHz + G164 (3-73)
E 1+ GG H GG H GaH-
(5) _ 1+ GiGoH1 + GaGsHy + Gully 3-74)
R{s) A
¥is) 616263+ G1Gy (3-75)
(s) 14+ Gi1GoH| +GoG3Hy + GaHy
» Gy
+
Y
—>
|
O | g O
R Y

(b)

Figure 3-34 (a) Block diagram of a control system. (b) Equivalent signal-flow graph.
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3-2-10 Simplified Gain Formula

From Example 3-2-6, we can see that all loops and forward paths are touching in this case.
As a general rule, if there are no nontouching loops and forward paths (e.g., yo — v3 — 2
and y4 — y4 In Example 3-2-3) in the block diagram or SFG of the system, then Eq. (3-54)
takes a far simpler look, as shown next.

M — -
Vin 1 — Loop Gains

Redo Examples 3-2-2 through 3-2-6 to confirm the validity of Eq. (3-76).

Yout Z Forward Path Gains (3-76)
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