Chapter 3

Block Diagrams and Signal-Flow Graphs

Automatic Control Systems, 9th Edition

Farid Golnaraghi, Simon Fraser University Benjamin C. Kuo, University of Illinois

Introduction

- In this chapter, we discuss graphical techniques for modeling control systems and their underlying mathematics.
- We also utilize the block diagram reduction techniques and the Mason's gain formula to find the transfer function of the overall control system.
- Later on in Chapters 4 and 5, we use the material presented in this chapter and Chapter 2 to fully model and study the performance of various control systems.

Objectives of this Chapter

- To study block diagrams, their components, and their underlying mathematics.
- 2. To obtain transfer function of systems through block diagram manipulation and reduction.
- To introduce the signal-flow graphs.
- 4. To establish a parallel between block diagrams and signalflow graphs.
- 5. To use Mason's gain formula for finding transfer function of systems.
- 6. To introduce state diagrams.
- 7. To demonstrate the MATLAB tools using case studies.

3-1 BLOCK DIAGRAMS

Block diagrams provide a better understanding of the composition and interconnection of the components of a system. It can be used, together with transfer functions, to describe the cause-and-effect relationships throughout the system.

Figure 3-1 A simplified block diagram representation of a heating system.

3-1-1 Typical Elements of Block Diagrams in Control Systems

The common elements in block diagrams of most control systems include:

- Comparators
- Blocks representing individual component transfer functions, including:
 - Reference sensor (or input sensor)
 - Output sensor
- Actuator
- Controller
- Plant (the component whose variables are to be controlled)
- Input or reference signals
- Output signals
- Disturbance signal

Figure 3-3 Block diagram representation of a general control system.

A **comparator** performs addition and subtraction

Figure 3-4 Block-diagram elements of typical sensing devices of control systems. (a) Subtraction. (b) Addition. (c) Addition and subtraction.

$$X(s) = G(s) U(s)$$
(3-4)

If signal X(s) is the output and signal U(s) denotes the input, the transfer function of the block in Fig. 3-5 is

$$G(s) = \frac{X(s)}{U(s)} \tag{3-5}$$

Typical block elements that appear in the block diagram representation of most control systems include **plant**, **controller**, **actuator**, and **sensor**.

Figure 3-5 Time and Laplace domain block diagrams.

EXAMPLE 3-1-1

$$X(s) = A(s)G_2(s)$$

 $A(s) = U(s)G_1(s)$
 $X(s) = G_1(s)G_2(s)U(s)$
 $G(s) = \frac{X(s)}{U(s)}$

$$G(s) = G_1(s)G_2(s)$$
 (3-6)

Figure 3-6 Block diagrams G₁(s) and G₂(s) connected in series.

EXAMPLE 3-1-2

$$A_1(s) = U(s)$$
 $A_2(s) = A_1(s)G_1(s)$
 $A_3(s) = A_1(s)G_2(s)$
 $X(s) = A_2(s) + A_3(s)$
 $X(s) = U(s)(G_1(s) + G_2(s))$
 $G(s) = \frac{X(s)}{U(s)}$

Figure 3-7 Block diagrams G₁(s) and G₂(s) connected in parallel.

Basic block diagram of a feedback control system

$$Y(s) = G(s)U(s) (3-8)$$

$$B(s) = H(s)Y(s) \tag{3-9}$$

$$U(s) = R(s) - B(s)$$
 (3-10)

$$Y(s) = G(s)R(s) - G(s)H(s)$$
(3-11)

Figure 3-8 Basic block diagram of a feedback control system.

negative feedback loop

$$M(s) = \frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)}$$
(3-12)

positive feedback

 $M(s) = \frac{Y(s)}{R(s)} = \frac{G(s)}{1 - G(s)H(s)}$

$$r(t)$$
, $R(s)$ = reference input(command)

$$y(t)$$
, $Y(s) =$ output (controlled variable)

b(t), B(s) = feedback signal

u(t), U(s) = actuating signal = error signal e(t), E(s), when H(s) = 1

H(s) =feedback transfer function

G(s)H(s) = L(s) =loop transfer function

G(s) =forward-path transfer function

M(s) = Y(s)/R(s) = closed-loop transfer function or system transfer function

(3-13)

Feedback Control System

R(s): 기준입력(reference input), 입력(input), 또는 command

Y(s): 출력(output, controlled variable), 또는 응답(response)

B(s): 궤환 신호(feedback signal)

E(s): 오차신호(error signal) 또는 actuating signal

G(**s**): 순방향경로 전달함수(forward-path transfer function)

H(s): 궤환 전달함수(feedback transfer function, feedback gain)

G(s)H(s): 루프전달함수(loop transfer function), 개루프전달함수(open-loop transfer function)

M(s) = Y(s)/R(s): 폐루프전달함수(closed-loop transfer function, system transfer function)

$$B(s) = H(s)Y(s)$$

$$E(s) = R(s) - B(s)$$

$$Y(s) = G(s)E(s) = G(s)R(s) - G(s)B(s)$$

$$M(s) = Y(s) / R(s) = G(s) / (1 + G(s)H(s))$$

3-1-2 Relation between Mathematical Equations and Block Diagrams

Figure 3-9 Graphical representation of Eq. (3-16) using a comparator.

$$\frac{V(s)}{U(s)} = \frac{s \,\omega_n^2}{s^2 + 2 \,\zeta \,\omega_n \,s + \omega_2^n}$$

Figure 3-10 Addition of blocks $\frac{1}{s^2}$, $2\zeta \omega_n s$, and ω_n^2 to the graphical representation of Eq. (3-17).

Figure 3-11 Block diagram representation of Eq. (3-17) in Laplace domain.

Figure 3-12 (a) Factorization of 1/s term in the internal feedback loop of Fig.3-11. (b) Final block diagram representation of Eq.(3-17) in Laplace domain .

the output.

Figure 3-14 (a) Factorization of ω_n^2 (b) Alternative diagram representation of Eq.(3-17) in Laplace domain.

Figure 3-15 A block diagram representation of Eq.(3-19) in Laplace domain.

3-1-3 Block Diagram Reduction: Branch point relocation

Figure 3-16 (a) Branch point relocation from point P to (b) point Q.

3-1-3 Block Diagram Reduction: Comparator relocation

Figure 3-17 (a) Comparator relocation from the right-hand side of block G₂(s) to (b) the left-hand side of block G₂(s).

18

EXAMPLE 3-1-5 Find the input—output transfer function of the system

Figure 3-18 (a) Original block diagram.

- (b) Moving the branch point at Y₁ to the left of block G₂.
- (c) Combining the blocks G_1 , G_2 , and G_3 .
- (d) Eliminating the inner feedback loop.

Figure 3-18 (Continued)

3-1-4 Block Diagram of Multi-Input Systems—Special Case: Systems with a Disturbance

Super Position: For linear systems, the overall response of the system under multi-inputs is the summation of the responses due to the individual inputs, i.e., in this case,

$$Y_{total} = Y_R|_{D=0} + Y_D|_{R=0} (3-28)$$

Figure 3-19 Block diagram of a system undergoing disturbance.

When D(s) = 0, the block diagram is simplified (Fig. 3-20) to give the transfer function

$$\frac{Y(s)}{R(s)} = \frac{G_1(s) G_2(s)}{1 + G_1(s) G_2 H_1(s)}$$
(3-29)

Figure 3-20 Block diagram of the system in Fig. 3-19 when D(s) = 0.

When R(s) = 0, the block diagram is rearranged to give (Fig. 3-21):

$$\frac{Y(s)}{D(s)} = \frac{-G_2(s)}{1 + G_1(s) G_2(s) H_1(s)}$$
(3-30)

As a result, from Eq. (3-28) to Eq. (3-32), we ultimately get

$$Y_{total} = \frac{Y(s)}{R(s)} \Big|_{D=0} R(s) + \frac{Y(s)}{D(s)} \Big|_{R=0} D(s)$$

$$Y(s) = \frac{G_1 G_2}{1 + G_1 G_2 H_1} R(s) + \frac{-G_2}{1 + G_1 G_2 H_1} D(s)$$
(3-31)

Figure 3-21 Block diagram of the system in Fig. 3-19 when R(s) = 0.

Figure 3-22 Block diagram representations of a multivariable system.

$$\mathbf{R}(s)$$
 $\mathbf{G}(s)$
 $\mathbf{G}(s)$
 $\mathbf{H}(s)$

Figure 3-22 Block diagram representations of a multivariable feedback control system.

$$\mathbf{M}(s) = \left[\mathbf{I} + \mathbf{G}(s)\mathbf{H}(s)\right]^{-1}\mathbf{G}(s) \tag{3-37}$$

$$\mathbf{Y}(s) = \mathbf{M}(s)\mathbf{R}(s) \tag{3-38}$$

EXAMPLE 3-1-6 Consider that the forward-path transfer function matrix and the feedback-path transfer function matrix of the system shown in Fig. 3-23 are

$$\mathbf{G}(s) = \begin{bmatrix} \frac{1}{s+1} & -\frac{1}{s} \\ 2 & \frac{1}{s+2} \end{bmatrix} \quad \mathbf{H}(s) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
(3-39)

respectively. The closed-loop transfer function matrix of the system is given by Eq. (3-15), and is evaluated as follows:

$$\mathbf{I} + \mathbf{G}(s)\mathbf{H}(s) = \begin{bmatrix} 1 + \frac{1}{s+1} & -\frac{1}{s} \\ 2 & 1 + \frac{1}{s+2} \end{bmatrix} = \begin{bmatrix} \frac{s+2}{s+1} & -\frac{1}{s} \\ 2 & \frac{s+3}{s+2} \end{bmatrix}$$
(3-40)

The closed-loop transfer function matrix is

$$\mathbf{M}(s) = [\mathbf{I} + \mathbf{G}(s)\mathbf{H}(s)]^{-1}\mathbf{G}(s) = \frac{1}{\Delta} \begin{bmatrix} \frac{s+3}{s+2} & \frac{1}{s} \\ -2 & \frac{s+2}{s+1} \end{bmatrix} \begin{bmatrix} \frac{1}{s+1} & -\frac{1}{s} \\ 2 & \frac{1}{s+2} \end{bmatrix}$$
(3-41)

where

$$\Delta = \frac{s+2}{s+1} \frac{s+3}{s+2} + \frac{2}{s} = \frac{s^2 + 5s + 2}{s(s+1)}$$
 (3-42)

Thus,

$$\mathbf{M}(s) = \frac{s(s+1)}{s^2 + 5s + 2} \begin{bmatrix} \frac{3s^2 + 9s + 4}{s(s+1)(s+2)} & -\frac{1}{s} \\ 2 & \frac{3s + 2}{s(s+1)} \end{bmatrix}$$
(3-43)

3-2 SIGNAL-FLOW GRAPHS (SFGs)

Output Node (Sink): An output node is a node that has only incoming branches:

Input Node (Source): An input node is a node that has only outgoing branches

TABLE 3-1 Block diagrams and their SFG equivalent representations

	Block Diagram	Signal Flow Diagram
Simple Transfer Function	U(s) $G(s)$ $Y(s)$	G(s)
$\frac{Y(s)}{U(s)} = G(s)$		y_1 y_2

Parallel Feedback

- 1. SFG applies only to linear systems.
- 2. The equations for which an SFG is drawn must be algebraic equations in the form of cause-and-effect.
- 3. Nodes are used to represent variables. Normally, the nodes are arranged from left to right, from the input to the output, following a succession of cause-and-effect relations through the system.
- **4.** Signals travel along branches only in the direction described by the arrows of the branches.
- 5. The branch directing from node y_k to y_j represents the dependence of y_j upon y_k but not the reverse.
- **6.** A signal y_k traveling along a branch between y_k and y_j is multiplied by the gain of the branch a_{kj} , so a signal $a_{ki}y_k$ is delivered at y_i .

Control & Systems Lab., Dong-A Univ.

Signal-Flow Graphs(SFG, 신호흐름선도)

신호흐름도는 신호의 입·출력관계를 cause-and-effect 원리에 따라 대수적으로 나타낸 흐름도로서 절점(node)과 가지(branch)로 구성되며, 아래그림과 같이 각 node는 변수(variable)를 나타내고 branch는 전달되는 변수의 이득(gain)과 방향을 나타낸다.

output = \sum gain x input $\stackrel{\triangle}{\Rightarrow}$, j th output = \sum (gain from k to j) x (kth cause)

$$Y_j(s) = \sum G_{kj}(s) Y_k(s)$$

SFG Terms의 정의

- **입력 노드(Input node, Source)** 나가는 방향의 branch만 연결되어 있는 node 예] 위의 그림에서 x₁
- **출력 노드(Output node, Sink)** 들어오는 방향의 branch만 연결되어 있는 node 예] 위의 그림에서 x₄

• 이득(Gain)

branch로 연결되어 있는 변수간의 비율 예) x_1 과 x_2 를 연결하는 branch의 이득은 a_{21} 이며, $x_2 = a_{21}x_1+$ (다른 입력에 의한 항들)의 관계를 나타냄. (주의 : $x_2/x_1 = a_{21}$ 이라는 것은 아님)

● 경로(Path)

지정된 방향으로 연결된 branch의 집합으로 어떤 한 변수에서 출발하여, 지정된 어떤 변수에 이르는 경로를 이룬다. 단, 경로가 되기 위한 조건으로, 경로를 따라 신호가 전달될 때 어떤 경우에도 같은 node를 두 번 지나서는 안된다. 예) x_1 에서 x_3 로 가는 path는 다음과 같이 두 개의 경로가 있다.

$$x_{1} \xrightarrow{a_{21}} x_{2} \xrightarrow{a_{31}} x_{3}$$

$$x_{1} \xrightarrow{a_{21}} x_{2} \xrightarrow{a_{31}} x_{3} \xrightarrow{a_{32}} x_{3}$$

● 전방향 경로(Forward path)

입력 node에서 출력 node에 전방향으로 전달하는 path 예) $x_1 \rightarrow x_4$ 의 forward path는 아래와 같이 2개의 경로가 있다.

$$x_1 \xrightarrow{a_{21}} x_2 \xrightarrow{a_{32}} x_3 \xrightarrow{a_{43}} x_4$$

ii)
$$x_1 \xrightarrow{a_{21}} x_2 \xrightarrow{a_{42}} x_4$$

• 궤환 경로(Feedback path)

입출력 node간을 역방향으로 되돌아 진행하는 path.

Loop, Self loop

경로 중에서 출발 노드와 도착 노드가 동일한 경로를 루프(loop)라고 하고, 그 경로내부에 다른 node가 없으면 (또는 한개의 branch로 구성된 loop) self-loop 라고 함.

$$0|) \quad x_2 \xrightarrow{a_{32}} x_3 \xrightarrow{a_{23}} x_2$$

ii) self-loop:
$$x_3 \xrightarrow{a_{33}} x_3$$

Nontouching loops

Loop중에서 공통인 node가 없는 loop

● 경로 이득(Path gain)

정해진 path를 이루는 각 branch gain의 곱.

예) path : $x_1 \xrightarrow{a_{21}} x_2 \xrightarrow{a_{42}} x_4$ 에 대한 path gain은 $a_{21}a_{42}$ (주의 : 이 예에서 path gain이 $a_{21}a_{42}$ 라고해서 $x_4/x_1=a_{21}a_{42}$ 라는 뜻은 아님)

• Loop gain

지정된 loop을 형성하는 각 branch gain의 곱 (loop의 path gain)

예) loop: $x_2 \xrightarrow{a_{32}} x_3 \xrightarrow{a_{23}} x_2$ loop gain은 $a_{23}a_{32}$

3-2-4 SFG Algebra

Figure 3-29~31 Signal-flow graph.

3-2-7 Gain Formula for SFG

Given an SFG with N forward paths and K loops, the gain between the input node y_{in} and output node y_{out} is [3]

$$M = \frac{y_{\text{out}}}{y_{\text{in}}} = \sum_{k=1}^{N} \frac{M_k \Delta_k}{\Delta}$$
 (3-54)

where

 $y_{in} = \text{input-node variable}$

 y_{out} = output-node variable

 $M = \text{gain between } y_{in} \text{ and } y_{out}$

 $N = \text{total number of forward paths between } y_{in} \text{ and } y_{out}$

 $M_k = \text{gain of the } k \text{th forward paths between } y_{in} \text{ and } y_{out}$

$$\Delta = 1 - \sum_{i} L_{i1} + \sum_{j} L_{j2} - \sum_{k} L_{k3} + \dots$$
 (3-55)

 $L_{mr} = \text{gain product of the } m\text{th } (m = i, j, k, ...) \text{ possible combination of } r \text{ nontouching loops } (1 \le r \le K).$

or

 $\Delta = 1$ – (sum of the gains of **all individual** loops) + (sum of products of gains of all possible combinations of **two** nontouching loops) – (sum of products of gains of all possible combinations of **three** nontouching loops) + · · ·

 Δ_k = the Δ for that part of the SFG that is nontouching with the kth forward path.

The gain formula in Eq. (3-54) may seem formidable to use at first glance. However, Δ and Δ_k are the only terms in the formula that could be complicated if the SFG has a large number of loops and nontouching loops.

Care must be taken when applying the gain formula to ensure that it is applied between an **input node** and an **output node**.

Gain Formula for SFG (Mason's gain rule)

M : The gain between input node \boldsymbol{y}_{in} and output node \boldsymbol{y}_{out}

$$M = y_{out} / y_{in} = \sum M_k \Delta_k / \Delta$$
, $k = 1, ..., N$

여기서,

N: Total number of forward path

M_k: k번째 forward path의 gain

 Δ : signal flow graph determinant 또는 characteristic function

$$\Delta = 1 - \sum L_{i1} + L_{i2} - L_{k3} + \dots$$

 $L_{mr} = r \text{ nontouching loops } \supseteq | m^{th} \text{ possible combination } \supseteq | \text{ gain product } (1 \le r \le L)$

 $\Delta = 1 - (모든 각각의 loop 이득의 합)$

- + (2개의 비접 loop의 가능한 모든 조합의 이득곱의 합)
- (3개의 비접 loop의 가능한 모든 조합의 이득곱의 합)

+

L = loops의 수

 Δ_{k} : k^{th} forward path와 nontouching하는 Δ part

 Δ_k = k번째의 전향경로와 접하지 않는 graph의 부분에 대한 Δ 의 값

k번째 경로의 모든 branch를 제거한 신호흐름도에서 구한 Δ

 $A_i = A - \sum_i loop gain touching the i-th forward path$

Figure 3-32 Signal-flow graph of the feedback control system shown in Fig. 3-8.

- **EXAMPLE 3-2-2** Consider that the closed-loop transfer function Y(s)/R(s) of the SFG in Fig. 3-32 is to be determined by use of the gain formula, Eq. (3-54). The following results are obtained by inspection of the SFG:
 - 1. There is only one forward path between R(s) and Y(s), and the forward-path gain is

$$M_1 = G(s) \tag{3-56}$$

2. There is only one loop; the loop gain is

$$L_{11} = -G(s)H(s) (3-57)$$

3. There are no nontouching loops since there is only one loop. Furthermore, the forward path is in touch with the only loop. Thus, $\Delta_1 = 1$, and

$$\Delta = 1 - L_{11} = 1 + G(s)H(s) \tag{3-58}$$

Using Eq. (3-54), the closed-loop transfer function is written

$$\frac{Y(s)}{R(s)} = \frac{M_1 \Delta_1}{\Delta} = \frac{G(s)}{1 + G(s)H(s)}$$
(3-59)

which agrees with Eq. (3-12).

Consider the SFG shown in Fig. 3-25(d). Let us first determine the gain between y_1 and y_5 using the gain formula.

The three forward paths between y_1 and y_5 and the forward-path gains are

$$M_1 = a_{12}a_{23}a_{34}a_{45}$$
 Forward path: $y_1 - y_2 - y_3 - y_4 - y_5$
 $M_2 = a_{12}a_{25}$ Forward path: $y_1 - y_2 - y_5$
 $M_3 = a_{12}a_{24}a_{45}$ Forward path: $y_1 - y_2 - y_4 - y_5$

The four loops of the SFG are shown in Fig. 3-28. The loop gains are

$$L_{11} = a_{23}a_{32}$$
 $L_{21} = a_{34}a_{43}$ $L_{31} = a_{24}a_{43}a_{32}$ $L_{41} = a_{44}$

There is only one pair of nontouching loops; that is, the two loops are

$$y_2 - y_3 - y_2$$
 and $y_4 - y_4$

Thus, the product of the gains of the two nontouching loops is

$$L_{12} = a_{23}a_{32}a_{44} (3-60)$$

All the loops are in touch with forward paths M_1 and M_3 . Thus, $\Delta_1 = \Delta_3 = 1$. Two of the loops are not in touch with forward path M_2 . These loops are $y_3 - y_4 - y_3$ and $y_4 - y_4$. Thus,

$$\Delta_2 = 1 - a_{34}a_{43} - a_{44} \tag{3-61}$$

Substituting these quantities into Eq. (3-54), we have

$$\frac{y_5}{y_1} = \frac{M_1\Delta_1 + M_2\Delta_2 + M_3\Delta_3}{\Delta}
= \frac{(a_{12}a_{23}a_{34}a_{45}) + (a_{12}a_{25})(1 - a_{34}a_{43} - a_{44}) + a_{12}a_{24}a_{45}}{1 - (a_{23}a_{32} + a_{34}a_{43} + a_{24}a_{32}a_{43} + a_{44}) + a_{23}a_{32}a_{44}}$$
(3-62)

where

$$\Delta = 1 - (L_{11} + L_{21} + L_{31} + L_{41}) + L_{12}
= 1 - (a_{23}a_{32} + a_{34}a_{43} + a_{24}a_{32}a_{43} + a_{44}) + a_{23}a_{32}a_{44}$$
(3-63)

The reader should verify that choosing y_2 as the output,

$$\frac{y_2}{y_1} = \frac{a_{12}(1 - a_{34}a_{43} - a_{44})}{\Delta} \tag{3-64}$$

where Δ is given in Eq. (3-63).

(c)
$$y_2 = a_{12}y_1 + a_{32}y_3$$
 $y_3 = a_{23}y_2 + a_{43}y_4$ $y_4 = a_{24}y_2 + a_{34}y_3 + a_{44}y_4$

(d) Complete signal-flow graph

Figure 3-33 Signal-flow graph for Example 3-2-3.

EXAMPLE 3-2-4 Consider the SFG in Fig. 3-33. The following input—output relations are obtained by use of the gain formula:

$$\frac{y_2}{y_1} = \frac{1 + G_3 H_2 + H_4 + G_3 H_2 H_4}{\Delta} \tag{3-65}$$

$$\frac{y_4}{y_1} = \frac{G_1 G_2 (1 + H_4)}{\Delta} \tag{3-66}$$

$$\frac{y_6}{y_1} = \frac{y_7}{y_1} = \frac{G_1 G_2 G_3 G_4 + G_1 G_5 (1 + G_3 H_2)}{\Delta}$$
 (3-67)

where

$$\Delta = 1 + G_1 H_1 + G_3 H_2 + G_1 G_2 G_3 H_3 + H_4 + G_1 G_3 H_1 H_2 + G_1 H_1 H_4 + G_3 H_2 H_4 + G_1 G_2 G_3 H_3 H_4 + G_1 G_3 H_1 H_2 H_4$$
(3-68)

Figure 3-33 Signal-flow graph for Example 3-2-4.

• Ex. 3-2-2

$$M_1 = G(s)$$

$$L_{11} = -G(s)H(s)$$

$$\Delta_1 = 1$$

$$\Delta = 1 + G(s)H(s)$$

Closed -loop transfer function

$$M = Y(s) / R(s) = M_1 \Delta_1 / \Delta = G(s) / (1 + G(s)H(s))$$

• Ex. 3-2-4

$$y_2/y_1 =$$

$$y_4/y_1 =$$

* △는 chosen output에 관계없이 same

• Noninput node와 output node사이의 gain

$$y_{out} / y_2 = (y_{out} / y_{in}) / (y_2 / y_{in}) = (\sum M_k \Delta_k \mid \text{from } y_{in} \text{ to } y_{out} / \Delta) /$$

$$(\sum M_k \Delta_k \mid \text{from } y_{in} \text{ to } y_2 / \Delta)$$

$$= (\sum M_k \Delta_k \mid \text{from } y_{in} \text{ to } y_{out}) /$$

$$(\sum M_k \Delta_k \mid \text{from } y_{in} \text{ to } y_2)$$

• Ex. 3-2-5 & 3-2-6

3-2-9 Application of the Gain Formula to Block Diagrams

EXAMPLE 3-2-6

Forward Path Gains: 1.
$$G_1G_2G_3$$
; 2. G_1G_4
Loop Gains: 1. $-G_1G_2H_1$; 2. $-G_2G_3H_2$; 3. $-G_1G_2G_3$; 4. $-G_4H_2$; 5. $-G_1G_4$

$$\frac{Y(s)}{R(s)} = \frac{G_1 G_2 G_3 + G_1 G_4}{\Delta} \tag{3-72}$$

$$\Delta = 1 + G_1 G_2 H_1 + G_2 G_3 H_2 + G_1 G_2 G_3 + G_4 H_2 + G_1 G_4$$
(3-73)

$$\frac{E(s)}{R(s)} = \frac{1 + G_1 G_2 H_1 + G_2 G_3 H_2 + G_4 H_2}{\Delta}$$
 (3-74)

$$\frac{Y(s)}{E(s)} = \frac{G_1G_2G_3 + G_1G_4}{1 + G_1G_2H_1 + G_2G_3H_2 + G_4H_2}$$
(3-75)

(a)

3-2-10 Simplified Gain Formula

From Example 3-2-6, we can see that all loops and forward paths are touching in this case. As a general rule, if there are no nontouching loops and forward paths (e.g., $y_2 - y_3 - y_2$ and $y_4 - y_4$ in Example 3-2-3) in the block diagram or SFG of the system, then Eq. (3-54) takes a far simpler look, as shown next.

$$M = \frac{y_{\text{out}}}{y_{\text{in}}} = \sum \frac{Forward\ Path\ Gains}{1 - Loop\ Gains}$$
(3-76)

Redo Examples 3-2-2 through 3-2-6 to confirm the validity of Eq. (3-76).