- Open Channel Hydraulics

The subject of open channel hydraulics is extensive
enough to require a complete text. Obviously, an ex-
haustive coverage cannot be given in one short chapter.
The treatment given here is intended only to cover
certain basic principles and to give the details neces-
sary to design stable, open channels; to do simple
channel routings; and to compute simple backwater
profiles. The interested reader can consult several ex-
cellent texts for additional details (Chow, 1959; Hen-
derson, 1966).

BASIC RELATIONSHIPS

Continuity Equation

When dealing with the hydraulics of open channel
flow, there are three basic relationships that must be
kept in mind. These relationships are the continuity
equation, the energy equation, and the momentum
equation. If we consider a stream with a cross section
as shown in Fig. 4.1, the continuity equation may be
written as

inflow — outflow = change in storage, (4.1)

where inflow represents the volume of flow across
section 1 during a time interval, outflow represents the
volume of flow across section 2 during this time inter-
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val, and change in storage represents the change in the
volume of water stored within the section from 1 to 2

The continuity equation may also be written in terms
of flow rates as

inflow rate — outflow rate = rate of change in storage,
(4.2)

where inflow rate and outflow rate represent the rate
of flow across sections 1 and 2, respectively, and the
rate of change in storage is the rate at which the
volume of water is accumulating or diminishing withir
the section.

The flow rate, Q, is generally expressed in cubic feef
per second (cfs) or cubic meters per second (cms) and
may be written

0 =1uvA, (4.3)

where v is the average velocity of flow at a cross-sec-
tion and A is the area of the cross section. v i
generally given in feet per second (fps) or meters per
second (m/sec) and A4 in square feet (ft?) or square
meters (m?). Throughout this chapter, units on symbols
appearing in equations will not be given unless needed
for clarity. Standard units are feet and seconds or
meters and seconds.

It should be kept in mind that v is the average
velocity of the flow perpendicular to the cross section.
The actual pattern of flow velocity can be quite com-
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Figure 4.3 Typical velocity profile.

Theoretically, with a solid boundary, the flow velocity
at the boundary is zero. Actually for natural channels it
is difficult to determine precisely where the channel
boundary is. The important point is that particles along
the channel boundary are subjected to an actual veloc-
ity that is considerably lower than the average flow
velocity of the cross-section.

Energy

In basic fluid mechanics, the energy equation is
generally written in the form of Eq. (4.4). This relation-
ship is known as Bernoulli’s equation or Bernoulli’s
theorem:

2
Jo +hL,|~2-

(4.4)

The terms in this equation are shown in Fig. 4.4. The
Bernoulli equation represents an energy balance be-
tween two points along the channel. Again, v is the
average flow velocity, g is the gravitational constant, y
is the depth of flow, z is the elevation of the channel
bottom, p is a pressure, y is the unit weight of water,
and h; | , represents the energy loss between sections
1 and 2.

Each complete term of Eq. (4.4) has the units of a
length. Since the equation is an energy equation, one
should consider that the terms represent energy per
unit of flowing fluid. Since the units are a length, the
terms are commonly associated with a “head” because

Figure 4.4 Terms in Bernoulli equation.
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of the engineer’s familiarity with pressure and pressure
heads.

Thus, v2/2g is termed the velocity head, y + z is
termed the elevation head, and p/y is known as the
pressure head. Since the terms represent energy per
unit of fluid, we can in a loose sense think of v%/2g as
representing kinetic energy, y + z as representing po-
tential energy, and p/y as representing stored energy.

The sum of the velocity head, elevation head, and
pressure head represents the total energy. The line
labeled EGL in Fig. 4.4 represents this sum and is
known as the energy grade line. The sum of the eleva-
tion head and pressure head is known as the hydraulic
grade line (HGL). The factor that distinguishes open
channel flow from pipe flow is that in open channel
flow, the free water surface is exposed to the atmo-
sphere so that p/y is zero. Thus, the pressure head
term can generally be ignored for open channel prob-
lems, and hence, the HGL coincides with the water
surface. A rather obvious fact is that the EGL must be
sloping downward in the direction of flow. The EGL
can only go up if external energy (through a pump for
example) is supplied to the flow.

If we consider a channel section in which there is no
energy loss, we can write

v%/2g +y + z = constant. (4.5)

If we take the datum elevation to be the channel
bottom, we have

v?/2g +y = constant = E, (4.6)

where the constant E is known as the specific energy.

Consider now a wide rectangular channel so that the
depth all across the channel cross section is y. We can
then relate the flow rate on a per unit of width basis
and the average flow velocity by

q=uy, (4.7)

where g is the flow rate per unit of width.
Equation (4.6) can now be written as

a’/2gy* +y=E (4.8)

and a plot of y versus E constructed for a constant q.
Figure 4.5 is such a plot and is known as a specific
energy diagram. Some characteristics of the specific
energy are that for a given E there are two possible
depths of flow, y, and y,, known as alternate depths,
and there is a definite minimum E for a given g. The
depth of flow corresponding to the minimum E is
known as the critical depth and is denoted by y.. The
relationship between the flow rate and y. can be
determined by differentiating Eq. (4.8) and setting the

Figure 4.5 Specific energy diagrams.

differential to zero:
dE/dy = —2q*/2gy> +1=0

or

Ve = 3vq2/g. (4.9)

Since g = vy,, we can write Eq. (4.9) as

L.‘/‘/a= it

The term U/\/gTC is known as the Froude number F.
Equation (4.10) shows that when y =y, or when the
flow is at the critical depth, the Froude number is one.
The Froude number can be used to classify the flow
into subcritical, critical, and supercritical flow. When
F < 1, the flow is subcritical and y > y.. This corre-
sponds to zone 1 in Fig. 4.5. When F > 1, the flow is
supercritical and y < y,. Supercritical flow is zone 2 in
Fig. 45. F =1 is known as critical flow and corre-
sponds to the line y = y. = 2E /3 in Fig. 4.5. Equation
(4.10) shows that for critical flow, v, = \/gy.. This
velocity corresponds to the celerity of small gravity
waves in shallow water.

For nonrectangular channels, the Froude number is
defined as

(4.10)

F=U/‘/57,

where d,, is the hydraulic depth. The hydraulic depth is
defined as the area divided by the top width

d,=A/t.

(4.11)

(4.12)

Since F is independent of slope, y. depends only on
the discharge for a given channel. For a rectangular
channel, this is apparent from Eq. (4.9). In general, the
relationship between O and y. can be determined
from Eq. (4.11) for any channel by setting F = 1 and
noting from Eq. (4.3) that v = Q /A.



Sasic Relationships

107

£rample Problem 4.1 Critical depth

A triangular channel with side slopes of 3 :1 is carrying 20
~« What is the critical depth for this channel and flow rate?

Solution: Critical depth occurs when F = 1. Equations
& 11) and (4.12) must be used. Note that a triangular channel
= 2 special case of a trapezoidal channel with b = 0. The
w2 and top width are given by (see Fig. 4.9)

A= zd2=3d°
fh=2dz"— 6d.
Therefore

d, = A/t =3d%/6d = 0.5d.

Fsom Eq. (4.11),

1 v Q/A
~ Jed, 05gd
y 20/3d*>  1.66
o derd A2
d, = 1231t

As shown in subsequent sections of this chapter,
~wannel roughness, velocity, discharge, and slope are
wwerrelated. For a given discharge and roughness, the
wwocity can be increased and consequently, the depth
~« fow decreased by increasing the channel slope.
% hen the channel slope is such that the flow depth
~osulting in uniform flow equals critical depth, the
e is called the critical slope, S.. Thus for subcritical
“w. the slope is less than S, and for supercritical flow,
¢ slope is greater than S.. It should be pointed out
~wat critical depth, slope, and velocity for a given
wtion change with the discharge.

In designing channels for controlling and conveying
~wnoff, it is generally desirable to design so that the
“w is subcritical. Supercritical flow presents special
sroblems that are not treated here.

Momentum

The momentum principle in open channel flow can
“« wisualized by considering Fig. 4.6 and the basic
= stionship from mechanics

SF, = A(muy), (4.13)

woch states that the sum of the forces in the s-direc-
~wn equals the change in momentum in that direction.
" Eq. (4.13), F, represents forces in the s-direction
W m represents the mass. For a constant mass and a

R \I
LY %l
T = G
Rf

Wcos8 W

Figure 4.6 Sketch for momentum relationship.

per unit width consideration
A(mv,) = pa(vs = vy).
The forces in the s-direction are
B esiPy A st = Py 4 Ry

where P, and P, are pressure forces per unit width
given by

P =yy?*/2,
R; is a frictional resistance, and W sin 6 is the s-direc-

tion component of the weight. Combining terms, we
have
2 2

) VY :

Tl = 72 + Wsin@ — R; = pg(v, — v,). (4.14)

If a short section is considered so that R; is negligi-
ble and the channel slope is small so that sin # is near
zero, Eq. (4.14) can be written as

yyi Y3
TG RAULT g P
or
2 2
i oav  y; @
i (4.15)

2 g 2

where M is the specific force plus momentum and is a
constant. Again it is possible to plot y versus M for a
constant g in the form of a specific force plus momen-
tum curve. Figure 4.7 is such a plot again showing two
possible depths for a given M and a definite minimum

Figure 4.7 Typical specific force plus momentum curve.
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M. The two possible depths for a given M are known
as sequent depths. It can be shown that y correspond-
ing to the minimum M is y.. Again zone 1 represents
subcritical flow and zone 2 supercritical flow.

UNIFORM FLOW

Open channel flow is generally classified with respect
to changes in flow properties with time and with loca-
tion along the channel. If the flow characteristics at a
point are unchanging with time, the flow is said to be
steady flow; otherwise the flow is unsteady. Similarly, if
the flow properties are the same at every location
along the channel, the flow is uniform. Flow with
properties that change with channel location is nonuni-
form flow. In natural flow situations, the flow is gener-
ally nonsteady and nonuniform. However, in the design
of most channels, steady, uniform flow is assumed with
the channel design being based on some peak or maxi-
mum discharge.

When we speak of uniform flow, steady, uniform
flow is generally what is considered. For uniform flow,
y, and y, and v, and v, in Fig. 4.6 are equal. Thus,
Eq. (4.14) reduces 1o

R;= Wsin 6 (4.16)
or the frictional forces are just equal to the down-
stream component of the weight. That is, the frictional
resistance and gravitational forces are in equilibrium.

The frictional resistance to flow may be expressed as
a shear, 7, per unit area times the resisting area.
Neglecting the resistance generated at the surface of
the flow between the water and air, the resisting area
over which 7 operates is the length, L, of a section
times the wetted perimeter, P, of the channel. The
wetted perimeter is simply the length of the boundary
between the water and the channel sides and bottom at
any cross section or the distance around the flow cross
section starting at one edge of the channel and travel-
ing along the sides and bottom of the channel to the
other channel edge.

Thus R; in Eq. (4.16) can be written as

R —PL! (4.17)

The weight of water in a section of the channel is
simply

W =ALy. (4.18)

For small angles 6, sin 6 is about equal to the slope
of the channel in feet per foot. Thus, Eq. (4.16) may be
written as

TPL = ALyS, (4.19)

v
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Figure 4.8 Tractive force distribution for trapezoidal channels

(Lane and Carlson, 1953).

which upon rearrangement is
T=1v(A/P)S.

The term A /P represents the hydraulic radius, R,
defined as the flow area divided by the wetted perime-
ter. Thus, we have

T = yRS. (4.20)
In this equation, 7 represents the average shear around
the periphery of the flow. At some points the actua
shear will exceed 7 and at other points it will be less
than 7. Lane and Carlson (1953) found the shear or
the periphery of a trapezoidal channel varied as showr
in Fig. 4.8. The maximum shear is near ydS rathe
than yRS. In designing channels for stability using ¢
critical tractive force approach as shown later, the
maximum shear can be calculated as ydS.

Experimental studies on water flow in pipes ha
shown that 7 is proportional to the Darcy—Weisbacl
friction factor, f, and the square of the flow velocity

That is
(4.21

T = fpv?/8

or combining Eqs. (4.20) and (4.21),

v=y8y/fp VRS .

By letting /8y /fp = C, Chezy’s equation for oper
channel flow is obtained as

D =1LyYRS = CR725Y2 (4.22

where C is a factor related to the roughness of the

channel.
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An Irish enginecer named Manning found that the

sguation
b = KR 8%/

~ cxperimental data quite nicely. This equation is
“=own as Manning’s equation and differs from Chezy’s
~uation only in the exponent on R. So that the factor
~+ated to the channel roughness would increase as
~wezhness increased, Manning’s equation is generally
wmitten as

v =(1l/n)R*/*$'/2
= the metric system with v in meters per second and

+ n meters. The coefficient n is known as Manning’s
+ In the English system of units, Manning’s equation is

where v is in fps, R is in feet, and S is in feet per foot.
Tables of Manning’s n are widely available. Table 4.1
is such a table taken from several sources, drawing
heavily on Schwab et al. (1966, 1971). Manning’s n is
influenced by many factors, including the physical
roughness of the channel surface, the irregularity of
the channel cross section, channel alignment and bends,
vegetation, silting and scouring, and obstruction within
the channel. Chow (1959) displays some photographs
of typical channels and the associated values for
Manning’s n.

Figure 4.9 contains some useful relationships for
calculating the hydraulic properties of A, P, R, and
top width, T, for three common channels. For natural
channels, these properties are best determined from

v = _1_42 R2/381/2 (4.23) measurements based on the actual cross sections of the
7 channel.
“able 4.1 Typical Values for Manning’s n
Type and description n Values? Type and description n Values”
of conduits Min. Design Max. of conduits Min. Design Max.
Channels, lined Natural Streams
“whalue concrete, machine placed 0.014 (a) Clean, straight bank, full stage,
il exposed prefabricated 0.015 no rifts or deep pools 0.025 0.033
Cancrete 0.012 0.015 0.018 (b) Same as (a) but some weeds and
Smcrete, rubble 0.016 0.029 bt Pt i
B oot (flumes) 0.011 0,015 (c) Winding, some pools and shoals,
clean 0.035 0.050
Wemal. corrugated 0.021 0.024 0.026 (d) Same as (c), lower stages, more
Py 0.012 0.014 ineffective slopes and sections 0.040 0.055
Weacrete 0.016 0.017 (e) Same as (c¢), some weeds and
W . planed (flumes) 0.009 0.012 0.016 stones 0.033 0.045
% wut_unplaned (flumes) 0.011 0.013 0.015 (f) Same as (d), stony sections 0.045 0.060
(g) Sluggish river reaches, rather
Channels, earth weedy or with very deep pools 0.050 0.080
S bottom, rubble sides 0.028 0.032 0.035 (h) Very weedy reaches 0.075 0.150
~wumage ditches, large, no vegetation
+ < 2.5 hydraulic radius 0.040 0.045 Elige
2.5 4.0 hydraulic radius 0.035 0.040 Ao G oot i
B94.0-5.0 hydraulic radius 0.030 0.035 Cast iron, coated 0.011 0.013 0.014
£ > 5.0 hydraulic radius 0.025 0.030 Sy orcodisd Dake we
Bl drainage ditches 0.035 0.040 0.040 Clay or concrete drain tile (4—12 in.) 0.010 0.0108 0.020
S bed, weeds on bank 0.025 0.035 0.040 Eongtc ol B, 0
Seseht and uniform 0.017 0.0225 0.025 Metal, corrugated 0.021 0.025 0.0255
— 0.0225 0.025 0.030 Steel, riveted and spiral 0.013 0.016 0.017
Vitrified sewer pipe 0.010 0.014 0.017
Channels, vegetated Wood stave 0.010 0.013
~ ¢ subsequent discussion) Wrought iron, black 0.012 0.015
Wrought iron, galvanized 0.013 0.016 0.017

“Selected from numerous sources.
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Note: Freeboard = D—d for all selection

Cross-sectional Waetted Hydraulic .
e a
E = Iy ; j‘ perimeter, p radius R = — Top width
s e T S
2
D 9 —— | —9+20° |} y_p,2dz
2 2
s z== bd+2d? |b+2dVZ2+1 | 24v/72,1 | T-b+202
b —bk— o —»
Trapezoidal cross section
e T |
[ 1 j Zd
R R, AT v % T G T . —_— 2 t=2dZ
x 20V/Z%+ 1 2VZ 41 D
D d or Tay
=2 Gl d
3 =i PProx.
o —l
Triangular cross section
I‘u ol ud e ol
I: € t :L] - 8d2 1.5t% + 4¢2 ti= 0674
T, \TT Y. el v el AT or D \12
+ T omit (==
) 3 2—; approx. (d )

Parabolic cross section

Figure 4.9 Properties of typical channels.

The expression for the hydraulic radius for wide
shallow channels can be simplified from that shown in
Fig. 4.9. Consider the trapezoidal channel shown in
Fig. 4.10. If the trapezoid is approximated by a rectan-
gle, one can write

5 A bd
i/ T
If b > d, then the 2d in the denominator can be
ignored leaving

R=bd/b=d.
For a parabolic channel, if ¢ > d, then 4d? in the

denominator of the expression for R can be ignored
leaving
t%d 2d

e A

These approximations can serve as initial estimates
for d in trial and error solutions that often arise in
open channel hydraulics.

The hydraulic elements of a circular conduit of di-
ameter D can be calculated from

DZ

A= ?(0 — sin @) (4.24)
D sin 6
R = I(l_ 7 ) (4.25)

N A
- 4
——b—— ¥

Figure 4.10 Approximation of trapezoidal channel with rectangu-
lar channel.

The angle 6 is defined in Fig. 4.11 and measured in
radians. Example Problems 4.2, 4.3, and 4.4 illustrate
the use of Egs. (4.24) and (4.25) to solve open channel
flow problems dealing with circular conduits.

The maximum flow capacity of a circular conduit
actually occurs at a depth equal to 0.938 D. Figure 4.12
shows how the hydraulic elements of a circular conduit
change with depth. The subscript 0 refers to a depth

CASE I o<v<2
2 2
2 6= 2 TAN" (g) —(E-Y)
5 -
N bt oy
=% 7
L
D
7 Y 8 = =
e
CASE II L<v<o
e el N z :

T o7 e LR (3)2—_(:'%)
JJ :

Figure 4.11 Definition of 6.
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Figure 4.12 Hydraulic properties of a circular conduit.

s 10 D. The line labeled Q/Q, assumes that 7 is
~ want with depth. Even though the maximum flow
s at 0.938D, it is common to design circular
~wuits to carry maximum flows when flowing full.
% ¢ action and irregularities make it difficult to
seemtain flow at 0.938D.

Ssample Problem 4.2 Flow in circular pipe 1

* oircular corrugated metal pipe (CMP) that is 3 ft in
~wneter is flowing 1 ft deep. What is the discharge if the
e of the pipe is 4%?

Swdution: Refer to Fig. 4.11 with the pipe radius, r, equal
82 Since y < D/2,

5 [r2 4 (r _y)Z]l/Z

FEay

8 — 2tan"

(1 stlbersn o] 4
15-1.0

1

= 2tan"

= 2tan_'(2.828) = 2.46.
e Egs. (4.24) and (4.25),

”

D? 9
A= (8~ sinf) = (246 ~ sin2.46) = 2.06

= D(1 sin 6 3 sin 2.46 LT

B L5 g )_Z( BT )_ '
1.49

L) = —R2/3S]/2A.

n
Swum Table 4.1, n = 0.024,

1.49

= m(0.56)2/3(0.04)1/2(2.06) = 17.4 cfs.

Q

Example Problem 4.3 Flow in circular pipe 2

A circular corrugated metal pipe that is 3 ft in diameter is
flowing 2 ft deep. What is the discharge if the slope of the
pipe is 4%?

Solution: Refer to Fig. 4.11. Since y > D /2,
1/2
[ - -n]

=

0 =27+ 2tan !

dili5% =120 T

= 6.28 + 2tan— el = 3.81.
From Egs. (4.24) and (4.25),
DZ
A= ?(6 —sin @) = 5.00
D sin 6
R=T(1_ 9 )=0.87
G 1'49R2/3S‘/2A.
n
From Table 4.1, n = 0.024,
1.49 23 12
0= m(0.87) °(0.04) 77(5.00) = 56.6 cfs.

Example Problem 4.4 Flow in circular pipe 3

A circular corrugated metal pipe that is 3 ft in diameter is
carrying 30 cfs. How deep is the water flowing if the slope of
the pipe is 4%?

Solution:
5 1'49R2/3s1/2A
n
0 1.49 D1 sin 0 2/351/21)2 TR
A N TR

After substituting D =3, n = 0.024, and S = 0.04, this
equation can be rearranged as

sin 6

2/3
2.604 = (l - ) (6 —sin9).

This relationship can be solved by trial by assuming values
for 6, comparing the right-hand side of the equation to the
left-hand side and continuing until a match is achieved.

Trial 6 Right-hand side
3.14 3.14
2.50 1.58
2.90 2.51

294 2.61 OK




112

4. Open Channel Hydraulics

6 = 2.94 is a solution. Since 6 < 7, y must be less than r

and can be obtained from

1/2

| 5590

ey

0 ="2tan >

]1/2

il

r—¥

(5] - =

: (r=y)’
294\ {225 =157y
tanz(T) = (1.5 _y)z ]

When this equation is solved for y, the result is y = 1.35 ft.

Example Problem 4.5 Flow in circular pipe 4

Use Fig. 4.12 to solve Example Problems 4.2, 4.3, and 4.4.

Solution:

1.49
Q= _n R(Z)/3SI/ZA0-

R, = D/4and A, = wD?/4; therefore

149 (3
Qo = 0.024(

e 12 3?2
- 0.04 —"="72.4 cfs.
4) (0.04) 2 cfs

When y =1, y/D = 0.33. From Fig. 4.12, Q/0, = 0.23.
Therefore Q = 0.23(72.4) = 16.7 cfs. When y =2, y/D =
0.67. From Fig. 4.12, Q/Q, = 0.78. Therefore Q =
0.78(72.4) = 56.5 cfs. When Q =30, Q/Q, = 0.41. From
Fig. 4.12, y/D = 0.44. Therefore y = 0.44(3) = 1.32 ft.

Natural channels often have a main channel section
and an overbank section. Most flow occurs in the main
channel; however, during flood events overbank flows
may occur. The usual procedure for calculating such
flows is to break the channel into cross-sectional parts
and sum the flow calculated for the various parts. In
determining the hydraulic radius for the various parts,
only that part of the wetted perimeter in contact with
an actual channel boundary is used. Thus

(4.26)

and

N

80’ , ;
4 g 100

50’

Figure 4.13 Channel section for Example Problem 4.6.

Example Problem 4.6 Compound channel

For the channel shown in Fig. 4.13, estimate the total flow
for a depth of 8 ft. The channel has a slope of 0.5%.
Manning’s n is 0.06 for the overbank area and 0.03 for the
main channel.

Solution: Use Eq. (4.26).

A, =80x4=320, A,=50x8=400,

A3=100X5=500
Fum Sl s = s o Lam U =T
P; =100 + 5 = 105
0 = 1.49(0 005)1/2 (320/84)2/3320 (400/57)2/3400
SEE 0.06 o
(500,/105)**500
0.06

9010 cfs.

DESIGN OF OPEN CHANNELS

Nonerodible Channels

The design of nonerodible open channels can be
done by using Manning’s equation [Eq. (4.23)].
Manning’s n should be chosen carefully. Adequate
consideration should be given to adding a freeboard or
extra depth to the channel as a safety measure to
protect against underestimates of flow or roughness
and wave action. Generally a freeboard of around 20%
of the depth or 0.3 to 0.5 ft, whichever is greater,
should be added to the channel depth. Thus, the major
consideration in the design of channels in nonerodible
material is to ensure adequate capacity.

Example Problem 4.7 Flow rate concrete channel 1

Consider a concrete channel that is trapezoidal with 3:1
side slopes and a 6-ft bottom width. The channel is on a 0.5%
slope and is flowing at a depth of 5 ft. What is the flow rate?
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Selstion: S = 0.005 and Table 4.1 gives n = 0.015. From
e 49,

bd + zd? 6 USEE 816 54

N R B

= 2.79 ft

]

49 1.49
— R¥3§1/2 = —(2.79)*%(0.005)"/% = 13.9 f;
. d o015 (27 (0.005) o

=bd + zd> = 6 X 5 + 3 x 52 =105 ft>
A = 13.9 X 105 = 1459.5 cfs.

-

L

Ssample Problem 4.8 Flow depth concrete
saanel 2

“he channel of Example Problem 4.7 is carrying 75 cfs.
o deep is the water flowing?

Sedution:

1.49
0 = vA = —RY?§5'/24
n
2/3

e e

b+ 2dvz? + 1

2/3
(0.005)'/*(6d + 3d?)

1.49 bd + zd?
n

1.49 | 6d + 3d?
0.015 | 6 + 6.32d

6d + 3d?
10 gl | e el L
6 + 6.32d

278
} (6d + 3d?).

T s last relationship must be solved by trial for a d such
. the right-hand side of the equation is equal to 10.68.

Trial d Right-hand side

1 7.30

1S 15.93

1.2 10.32

1222 10.65 OK

"% channel is flowing 1.22 ft deep.

£xample Problem 4.9 Froude number
Calculate the Froude number of the flow in example
geoblem 4.7.
Solution:
LY

(I SR
(gdh)l/h

Example Problem 4.7 gives A = 105 ft?; therefore

A A 105
dy=— = - =292
B bR e R 2K S X3

13.9

i et g e o
(322 x 2.92)'/?

Thus the flow is supercritical. The high flow velocity is an
early indicator of the possibility of supercritical flow.

Erodible Channels

In designing channels to be constructed in erodible
materials there are two major considerations. The
channel must have adequate capacity to carry the flow
and it must have adequate stability to resist the erosive
action of the flowing water. Erodible channels may be
either vegetated or nonvegetated. Vegetation tends to
protect the channel from erosion, thus permitting
higher flow velocities. On the other hand, vegetation
increases the roughness of the channel. The design of
nonvegetated channels is considered next followed by
the design of vegetated channels. Flexible linings and
riprap linings are discussed in subsequent sections.

Nonvegetated Channels

Two main design procedures are used for ensuring
the stability of erodible channels. One procedure is
based on a limiting velocity concept and the other on a
limiting tractive force (boundary shear) concept. Table
4.2 shows allowable velocities and tractive force values
for several kinds of channels. This table is taken from
Lane (1955) based on the work by Fortier and Scobey
(1926). The values are for aged, stable channels. For
newly constructed channels, the values shown in Table
4.6 should be used.

When using the limiting velocity concept, one simply
sizes the channel so that it has adequate capacity and
so that the average velocity does not exceed the per-
missible velocity.

When using the limiting tractive force concept, a
channel with adequate capacity and having an average
shear stress given by Eq. (4.20) that is less than the
values tabulated in Table 4.2 is sought. For channels in
noncohesive materials, the particles on the channel
sides may move due to the combined force exerted by
the flowing water and the weight component of the
particles down the side of the channel. Chow (1959)
should be referred to for a treatment of tractive force
considerations in noncohesive materials. In cohesive
materials, the cohesion generally is much greater than
the gravity component so that average shear based on
Eq. (4.20) can be used in design.
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An alternative approach to designing stable, unlined
channels is to use regime relationships. These relation-
ships define equilibrium conditions between flow and
the channel boundaries. Chapter 10 discusses this ap-
proach.

Example Problem 4.10 Erodible channel design

Design a channel to carry 20 cfs down a 0.5% slope. The
channel material is to be an ordinary firm loan. The water
will be transporting colloidal silts. The channel is to be
trapezoidal with 3 : 1 side slopes. Use (a) the limiting velocity
approach and (b) the limiting tractive force approach.

Solution:
(a) Limiting velocity approach. From Table 4.2, (Br = OS]

fps, n = 0.020,

g L8 e
n
vn 132 3.5(0.020) 72
R= [ﬁ =|————5| =054
1.495/ 1.49(0.005)"/
20.00
P i T
U, )
o bd + zd> bd + 3d> o o
= = = 0. a
b+2dVz2+1 b+632d
A =bd + zd* = bd + 3d*> = 5.71. (b)
Substituting Eq. (b) into Eq. (a) yields
e e
b+632d
or
b =10.58 — 6.32d. (c)

Substituting this into Eq. (b) yields
(10.58 — 6.32d)d + 3d* = 5.71
— 3.32d? + 10.58d — 5.71 = 0.00.
This is a quadratic equation of the form
ax?+bx +c¢c =0,

which has as a solution

—b + Vb? — dac

s 2a
Therefore
S5 0 5e 7 I (8 TS 1)
i Tk
~10.58 + 6.00

Table 4.2 Limiting Velocities and Tractive Forces for Open
Channels (Straight after Aging)?

Water transporting

For Clear Water  colloidal silts
Tractive Tractive
Velocity force  Velocity force
Material n (fps) (pst) (fps)  (psf)
Fine sand colloidal 0.020 1.50 0I027% 250 0.075

Sandy loam noncolloidal ~ 0.020  1.75 0.037  2.50 0.075

Silt loam noncolloidal 0.020  2.00 0.048  3.00 0.110
Alluvial silts noncol-

loidal 0.020 2.00 0.048 3.50 0.150
Ordinary firm loam 0.020 2.50 0.075  3.50 0.150
Volcanic ash 0.020  2.50 0.075  3.50 0.150
Stiff clay very colloidal 0:0258%%3.75 0.260  5.00 0.460
Alluvial silts colloidal 0.025 %375 0:260 ¥ 500 0.460
Shales and hardpans 0.025  6.00 0.670  6.00 0.670
Fine gravel 0.020 2.50 0:0751 55100 0.320
Graded loam to cobbles

when noncolloidal 0.030 3.75 0.380  5.00 0.660
Graded silts to cobbles

when collodial 0.030  4.00 0.430 5.50 0.800
Coarse gravel

noncolloidal 0.025  4.00 0.300  6.00 0.670
Cobbles and shingles 0.035 5.00 0910 5.50 1.100

9From Lane (1955).

If d = 2.50, then from Eq. (c) we get
b =10.58 — 6.32(2.50) = —5.22,
which is clearly not possible. If d = 0.69, we get
b =10.58 — 6.32(0.69) = 6.22.

Therefore the channel dimensions must be
bi="6 221t d ="0.69'ft, z— 30"

Check:

¥ bd + zd? 6.22(0.69) + 3(0.69)
T bt2avi+1 622+ 2(0.69)V10

1.49 1.49
—— RS S s sias)

n

= 0.54

1

The velocity is OK.

A =bd +zd* = 6.22(0.69) + 3(0.69)° = 5.72
0 = vA = 3.50(5.72) = 20.00.

The capacity is OK.
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.04 0.3 ft of freeboard to get the final design of b = 6.2 ft
i d = 1.0 ft.

! Critical tractive force approach. From Table 4.2, 7, =
~ ° »n = 0.020. Figure 4.8 shows that for shallow and wide
. > 8) trapezoidal channels, the maximum bottom shear
® »dS. Therefore

7. = ydS
7o 0.15 i
" yS  62.4(0.005)
Q=Lway@4
n
s bd + zd? 0.48b + 0.69
b+2dVz>+1 b +3.03

A =bd + zd* = 0.48b + 0.69
1.49 ( 0.48b + 0.69

0.667
002\ "5 +3.03 ) (0.005)'/%(0.48b + 0.69)

0.486 + 0.69

0.667
0.48b + 0.69).
b+ 3.03 ) (sl

3.797 = (

“olving by trial and error, b is found to be 12.4 ft. The b/d
“ww is 12.4/0.48 = 26. Thus the assumption that the maxi-
W bottom shear is ydS is verified. If b/d had been less
8. 7. would have been KydS, where K would be
weroximated from Fig. 4.8.

" pon verifying that a channel with a bottom width of 12.4
© & depth of 0.48 ft, and 3:1 side slopes will have an
s able velocity and adequate capacity, a freeboard of 0.3
© =« added giving a final design of b = 12.4 ft, d = 0.8 ft, and

> = 5

vegetated Channels

From the previous section it can be seen that the
+ owable velocities and tractive forces for nonvege-
“wied. erodible channels are quite small, thus requiring
w ¢ shallow channels. Regime theory relationships in
~ mapter 10 also predict wide shallow channels for
~»ose conditions. If the channel can be protected from
~=osion, the allowable velocities can be increased, re-
“.ting in deeper and more narrow channels. An inex-
swnsive and permanent form of protection is vegeta-
~wn—specifically grasses. Vegetation protects the
~~annel material from the erosive action of the flow
w~d binds the channel material together.

\ cgetated waterways generally can be used to carry
~rermittent flows such as storm water runoff. They are
= recommended for channels having sustained base
“ws as most vegetation cannot survive continual sub-
w=wreence or continual saturation in the root zone. This
wcans that vegetated waterways would not be used as
~»¢ channel carrying the discharge from a pipe spillway

in a detention basin, as this flow is likely to be a
sustained one. A compound channel with a small, lined
channel in the center to carry base flows and a vege-
tated portion to carry storm flows may be used in these
situations.

Vegetated waterways are somewhat more complex to
design and require more care in their establishment
than nonvegetated waterways. They carry high flows at
high velocities and require a minimum of maintenance
if properly constructed.

The additional design consideration for vegetated
waterways is the variation in roughness (Manning’s n)
with the height of the vegetation and with the type of
vegetation. Typically a tall grass presents a great deal
of flow resistance to shallow flow. As the flow depth
increases, the resistance may decrease. Often the grass
will lay over in the direction of flow when the flow
reaches sufficient depth. With the grass in this condi-
tion, the resistance is considerably reduced as com-
pared to the shallow flow situation.

Experimental work has shown that Manning’s n can
be related to the product of the flow velocity and the
hydraulic radius, vR. This experimental work has also
shown that different grasses have different n—vR rela-
tionships. As a matter of fact, the same grass may have
a different n—vR relationship depending on the height
of the grass.

Grasses have been divided into five retardance
classes, designated by A, B, C, D, and E. Table 4.3 lists
the retardance class for a number of grasses that are
commonly used. If the grass will be mowed part of the
time and long part of the time, both conditions and
retardance classes must be considered. If a particular
vegetation is not listed in Table 4.3, a similar vegeta-
tion might be used as a guide in selecting the retar-
dance. In comparing vegetation, density, stem diame-
ter, stiffness, and other physical characteristics should
be considered. Information in Table 4.4 may be used to
estimate the vegetal retardance if specific information
on the type of vegetation is not known.

The maximum permissible velocities shown in Table
4.5 should be used for established sod in good condi-
tion. The soil erodibility factor discussed in Chapter 8
can be used to classify soils as erosion resistant or
easily eroded (see pp. 126). Flow at these maximum
velocities may require channel maintenance opera-
tions. If poor vegetation exists due to shade, climate,
soils, or other factors, the design velocity should be
about 50% of the values of Table 4.5. Data in Table 4.6
may be used to select permissible velocities when spe-
cific vegetation and erosion characteristics of soils are
not known.

Figure 4.14 shows the n—vR relationship for the five
retardance classes. The design procedure is to select
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Table 4.3 Vegetal Retardance Classes (Soil Conservation Service, 1969)

Retardance Cover

Condition

A
Reed canary grass

Yellow bluestem Ischaemum

Excellent stand, tall (average 36 in.)

Excellent stand, tall (average 36 in.)

B
Smooth bromegrass Good stand, mowed (average 12 to 15 in.)
Bermuda grass Good stand, tall (average 12 in.)
Native grass mixture (little bluestem, blue grams, and other long and
short midwest grasses) Good stand, unmowed
Tall fescue Good stand, unmowed (average 18 in.)
Lespedeza sericea Good stand, not woody, tall (average 19 in.)
Grass—legume mixture — Timothy, smooth bromegrass, or orchard
grass Good stand, uncut (average 20 in.)
Reed canary grass Good stand, mowed (average 12 to 15 in.)
Tall fescue, with bird’s foot trefoil or lodino Good stand, uncut (average 18 in.)
Blue grama Good stand, uncut (average 13 in.)
@
Bahia Good stand, uncut (6 to 8 in.)
Bermuda grass Good stand, mowed (average 6 in.)
Redtop Good stand, headed (15 to 20 in.)
Grass—legume mixture — surnmer (Orchard grass, redtop, Italian
ryegrass, and common lespedeza) Good stand, uncut (6 to 8 in.)
Centipedegrass Very dense cover (average 6 in.)
Kentucky bluegrass Good stand, headed (6 to 12 in.)
D
Bermuda grass Good stand, cut to 2.5 in. height
Red fescue Good stand, headed (12 to 18 in.)
Buffalograss Good stand, uncut (3 to 6 in.)
Grass—legume mixture — fall, spring (Orchard grass, 1edtop, Italian
ryegrass, and common lespedeza) Good stand, uncut (4 to 5 in.)
Lespedeza sericea After cutting to 2 in. height, very good stand before cutting
E
Bermuda grass Good stand, cut to 1.5 in. height
Bermuda grass Burned stubble
the vegetation, determine its retardance class and per- ensures a stable channel with adequate capacity re-
missible velocity, and then design the channel based on gardless of the condition of the vegetation.
the curves of Fig. 4.14. For situations where two retar- Temple et al. (1987) have developed the following
dance classes are applicable (for example mowed and approximation for the n—vR curves of Fig. 4.14,

unmowed grass), the channel should first be designed

for stability based on the lower retardance and then n = exp[ 1(0.01329 In( vR)?

additional depth added to the channel to accommodate
the flow when the retardance increases. This procedure

—0.09543 In(vR) + 0.2971) — 4.16], (4.27)
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woere the value of [ is

Retardance 1
A 10.000
B 7.643
@ 5.601
D 4.436
E 2.876

" relationship can be used in computer programs to
ke hydraulic computations for vegetated waterways.
"% relationships should not be used outside the range
. tne curves shown in Fig. 4.14.

The graphs of Fig. 4.15 are solutions to Manning’s
sasation using the curves in Fig. 4.14. They can be
Lo as a design aid for solving Manning’s equation for
@ retardance classes.

Ssample Probiem 4.41 Vegetated channel 1

Uwesign a channel to carry 25 cfs on a 4% slope. Use a
. ~olic channel. The soil is easily eroded, and the grass
s be mowed to 2.5 in. or it may be uncut.

Solution: Select Bermuda grass. Bermuda grass is in retar-
dance B if unmowed and retardance D if mowed. The
permissible velocity is selected from Table 4.5 as 6 fps. First
design for the mowed condition

A=0Q/v=725/6=417ft>

Table 4.4 Guide to Selection of Vegetal Retardance”

Stand Length of Retardance
vegetation (in.) class

Good >30
11-24
6-10

2-6

=0
Fair >30
11-24
6-10

2-6

<2

= g0 oW iE g ol >

aSoil Conservation Service (1979) engineering field manual.

Table 4.5 Permissible velocities for Vegetated Channels (Ree, 1949)

Permissible velocity (fps)

Erosion-resistant soils
(% slope)

Easily eroded soils
(% slope)

Cover 0-5

5-10 Over10 0-5

5-10 Over 10

Bermuda grass 8

Buffalo grass

Kentucky bluegrass

Smooth brome 7/
Blue grama

Tall fescue

Lespedeza sericea

Weeping lovegrass

Kudzu 313
Alfalfa

Crabgrass

Grass mixture o)

Annuals for temporary
protection 3.5

6 6 5 4

NR 2.5 NR NR

NR - 3 NR

NR NR

(]
wn

NR

9Not recommended.
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Table 4.6 Permissible Velocities (fps)®
Channel vegetation
Soil Bare
texture channel Retardance Poor Fair Good
Sand, silt 1.5 B 1.5 3 4
Sandy loam 1.5 € J5 2.5 35
Silty loam 155 D 15 2 3
Silty clay loam 2 B 2:5 4 3}
Sandy clay loam 2 (€ 2.5 35 4.5
2 D 255 3 4
Clay 2.5 B 3 5 6
25 € 3 4.5 5.5
2.5 D 3 4 S
“Soil Conservation (1979) engineering field manual.
5
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Figure 4.15a Solution to Manning’s equation retardance class A.

This is too small. Increase d to 1.25 feet, then

S wum Fig. 4.15d for retardance class D, R = 0.7 ft.
t=3A4/2d = 5.00 and R = 0.714.

t%d
Sl S i _Tré;t: 1.17 ft. Now ¢ = 34/2d = 5.35 and R = 0.70, which
- is :
= 4.9) The design for the short grass condition is
A=417= 2¢d.
e =135t =1L A7 £t R = 0.7 ft.
~ .« parabolic channels, d = 1.5R. Using this approx- Now we must add depth using the same basic shape to get
- adequate capacity when the grass is long. When grass is long
d=1.05ft the retardance class is B. Try D = 1.40 ft. New top width
34 _ 341D o 12
=— = = 51964t :
2d 2(1.05) T= 5.35(-17) —9.85
Check o] %
(5.96)°(1.05) t%d
= - 5 = 0.646, R=—5—— =08l
1.5(5.96)° + 4(1.05) 1.5t + 4d
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From Fig. 4.15b and retardance B with R = 0.81 and S =
0.04, find v = 2.9 fps, therefore:
A =2td/3 = 5.46 ft?

O=0vA4A=29 X546 =158 cfs too small.

Try D ="1.751t:

75\ 4
T= 5.35(—) =654 with R =0098

117
v=4.5ft
A= 7.63 ft2
0O =vA = 35 cfs too big.
Try D = 1.6 ft:

16 \e72
T=5.35(—) =626 with R =091

11117
v =3.9 fps
A = 6.68 ft?

Q = 26 cfs OK.

Add 0.3 freeboard to get a final design of D = 1.9 ft and

gyt
T'=535|—= | =~ =684
(7]

Example Problem 4.12 Vegetated channel 2

Work Example Problem 4.11 based on Eq. (4.27). Assume
the grass is always mowed.

Solution:

o= 22 pensgise £R2/3(0.04)1/2 =08 g
n n n

Assume R, compute vR, compute n, compute v, and if
v # 6, repeat. For retardance D, I = 4.436. Assume R = 0.8,
then vR = 6(0.8) = 4.8:

n = exp[4.436(0.013291n(4.8)°

—0.09543In(4.8) + 0.2971) — 4.16] = 0.036

0.298
v=——(08)">=1713

t igh.
0.036 B,

Assume R = 0.7, vR = 4.2:

n = exp[4.436(0.01329In(4.2)*

—0.095431n(4.2) + 0.2971) — 4.16] = 0.038

0.298
v= — 0P —i6.18

" 0.038 slightly too high.

Assume R = 0.67, vR = 4.02:

n = exp[4.436(0.013291n(4.02)°
—0.09543In(4.02) + 0.2971) — 4.16] = 0.038

0.298 23
v=—+(0.67)"" =6.00 OK.

0.038
From this point, the solution follows the procedure of Exam-
ple Problem 4.11. Note the sensitivity of velocity to hydraulic
radius in these calculations.

Flexible Liners

Normann (1975) presents a uniform procedure for
the design of open channels using flexible liners. Liners
considered are vegetation, temporary liners, and riprap.
The procedure for vegetated liners is based on the
procedures presented in the previous section of this
book. The results for temporary liners are based on
work of McWhorter et al. (1968), and the riprap results
are largely based on Anderson et al. (undated) and
Anderson (1973). Results are presented in the form of
equations describing the maximum permissible depth
of flow for a stable design

d,. =mS", (4.28)

max
where d is in feet and § is in feet per foot and a
velocity equation of the form

v = aR"S®. (4.29)

Vegetated Channels

Table 4.7 contains values for m and n for Eq. (4.28)
for vegetated channels. Analysis of Normann’s results
and the results presented in the previous section of this
book indicate that better agreement is obtained if d,,,
of Eq. (4.28) is replaced by the hydraulic radius, R. For
example, for a grass mixture maintained at 6 to 8 in. on
an erosion-resistant soil, the maximum hydraulic radius
is given by

R =0.12570%, (4.30)

For vegetation, the velocity is determined from Figs.
4.15a-4.15¢.

Example Problem 4.13 Flexible liner
Work Example Problem 4.11 using the Normann proce-
dure.

Solution: For Bermuda grass in retardance D with an
erodible soil, values of m and n are determined as m = 0.08



