
C++ Language Tutorial

Second Class
First Semester

Lecturers:
Dr. Husam Al-Behadili
Dr. Hasan Al-Mgotir

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

2

Table of contents

Table of contents .. 2

Control Structures 3

Control Structures ... 3

Functions (I) .. 10

Functions (II) ... 16

Compound data types .. 23

Pointers ... 63

Data structures... 34

Other Data Types ... 39

Object Oriented Programming .. 50

Classes (I).. 50

Classes (II) .. 59

C++ Standard Library .. 43

Input/Output with files .. 43

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

3

Control Structures

Control Structures
A program is usually not limited to a linear sequence of instructions. During its process it may bifurcate, repeat

code or take decisions. For that purpose, C++ provides control structures that serve to specify what has to be done

by our program, when and under which circumstances.

With the introduction of control structures we are going to have to introduce a new concept: the compound-

statement or block. A block is a group of statements which are separated by semicolons (;) like all C++
statements, but grouped together in a block enclosed in braces: { }:

{ statement1; statement2; statement3; }

Most of the control structures that we will see in this section require a generic statement as part of its syntax. A
statement can be either a simple statement (a simple instruction ending with a semicolon) or a compound
statement (several instructions grouped in a block), like the one just described. In the case that we want the

statement to be a simple statement, we do not need to enclose it in braces ({}). But in the case that we want the
statement to be a compound statement it must be enclosed between braces ({}), forming a block.

Conditional structure: if and else

The if keyword is used to execute a statement or block only if a condition is fulfilled. Its form is:

if (condition) statement

Where condition is the expression that is being evaluated. If this condition is true, statement is executed. If it is
false, statement is ignored (not executed) and the program continues right after this conditional structure.

For example, the following code fragment prints x is 100 only if the value stored in the x variable is indeed 100:

if (x == 100)
 cout << "x is 100";

If we want more than a single statement to be executed in case that the condition is true we can specify a block
using braces { }:

if (x == 100)
{
 cout << "x is ";
 cout << x;

}

We can additionally specify what we want to happen if the condition is not fulfilled by using the keyword else. Its
form used in conjunction with if is:

if (condition) statement1 else statement2

For example:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

4

if (x == 100)
 cout << "x is 100";
else
 cout << "x is not 100";

prints on the screen x is 100 if indeed x has a value of 100, but if it has not -and only if not- it prints out x is
not 100.

The if + else structures can be concatenated with the intention of verifying a range of values. The following
example shows its use telling if the value currently stored in x is positive, negative or none of them (i.e. zero):

if (x > 0)
 cout << "x is positive";
else if (x < 0)
 cout << "x is negative";
else
 cout << "x is 0";

Remember that in case that we want more than a single statement to be executed, we must group them in a block

by enclosing them in braces { }.

Iteration structures (loops)

Loops have as purpose to repeat a statement a certain number of times or while a condition is fulfilled.

The while loop
Its format is:

while (expression) statement

and its functionality is simply to repeat statement while the condition set in expression is true.
For example, we are going to make a program to countdown using a while-loop:

// custom countdown using while

#include <iostream>
using namespace std;

int main ()
{
 int n;
 cout << "Enter the starting number > ";
 cin >> n;

 while (n>0) {
 cout << n << ", ";
 --n;

 }

 cout << "FIRE!\n";
 return 0;
}

Enter the starting number > 8
8, 7, 6, 5, 4, 3, 2, 1, FIRE!

When the program starts the user is prompted to insert a starting number for the countdown. Then the while loop

begins, if the value entered by the user fulfills the condition n>0 (that n is greater than zero) the block that follows
the condition will be executed and repeated while the condition (n>0) remains being true.

The whole process of the previous program can be interpreted according to the following script (beginning in
main):

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

5

1. User assigns a value to n

2. The while condition is checked (n>0). At this point there are two posibilities:
* condition is true: statement is executed (to step 3)
* condition is false: ignore statement and continue after it (to step 5)

3. Execute statement:
cout << n << ", ";
--n;
(prints the value of n on the screen and decreases n by 1)

4. End of block. Return automatically to step 2

5. Continue the program right after the block: print FIRE! and end program.

When creating a while-loop, we must always consider that it has to end at some point, therefore we must provide
within the block some method to force the condition to become false at some point, otherwise the loop will

continue looping forever. In this case we have included --n; that decreases the value of the variable that is being
evaluated in the condition (n) by one - this will eventually make the condition (n>0) to become false after a certain

number of loop iterations: to be more specific, when n becomes 0, that is where our while-loop and our countdown
end.

Of course this is such a simple action for our computer that the whole countdown is performed instantly without
any practical delay between numbers.

The do-while loop

Its format is:

do statement while (condition);

Its functionality is exactly the same as the while loop, except that condition in the do-while loop is evaluated after
the execution of statement instead of before, granting at least one execution of statement even if condition is
never fulfilled. For example, the following example program echoes any number you enter until you enter 0.

// number echoer

#include <iostream>
using namespace std;

int main ()
{
 unsigned long n;
 do {
 cout << "Enter number (0 to end): ";
 cin >> n;
 cout << "You entered: " << n << "\n";

 } while (n != 0);
 return 0;
}

Enter number (0 to end): 12345
You entered: 12345
Enter number (0 to end): 160277
You entered: 160277
Enter number (0 to end): 0
You entered: 0

The do-while loop is usually used when the condition that has to determine the end of the loop is determined within

the loop statement itself, like in the previous case, where the user input within the block is what is used to

determine if the loop has to end. In fact if you never enter the value 0 in the previous example you can be

prompted for more numbers forever.

The for loop

Its format is:

for (initialization; condition; increase) statement;

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

6

and its main function is to repeat statement while condition remains true, like the while loop. But in addition, the

for loop provides specific locations to contain an initialization statement and an increase statement. So this

loop is specially designed to perform a repetitive action with a counter which is initialized and increased on each
iteration.

It works in the following way:

1. initialization is executed. Generally it is an initial value setting for a counter variable. This is executed
only once.

2. condition is checked. If it is true the loop continues, otherwise the loop ends and statement is skipped
(not executed).

3. statement is executed. As usual, it can be either a single statement or a block enclosed in braces { }.

4. finally, whatever is specified in the increase field is executed and the loop gets back to step 2.

Here is an example of countdown using a for loop:

// countdown using a for loop
#include <iostream>
using namespace std;
int main ()
{
 for (int n=10; n>0; n--) {
 cout << n << ", ";

 }
 cout << "FIRE!\n";
 return 0;
}

10, 9, 8, 7, 6, 5, 4, 3, 2, 1, FIRE!

The initialization and increase fields are optional. They can remain empty, but in all cases the semicolon signs

between them must be written. For example we could write: for (;n<10;) if we wanted to specify no initialization
and no increase; or for (;n<10;n++) if we wanted to include an increase field but no initialization (maybe because

the variable was already initialized before).

Optionally, using the comma operator (,) we can specify more than one expression in any of the fields included in

a for loop, like in initialization, for example. The comma operator (,) is an expression separator, it serves to
separate more than one expression where only one is generally expected. For example, suppose that we wanted to
initialize more than one variable in our loop:

for (n=0, i=100 ; n!=i ; n++, i--)
{
 // whatever here...

}

This loop will execute for 50 times if neither n or i are modified within the loop:

n starts with a value of 0, and i with 100, the condition is n!=i (that n is not equal to i). Because n is increased by
one and i decreased by one, the loop's condition will become false after the 50th loop, when both n and i will be
equal to 50.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

7

Jump statements.

The break statement

Using break we can leave a loop even if the condition for its end is not fulfilled. It can be used to end an infinite
loop, or to force it to end before its natural end. For example, we are going to stop the count down before its
natural end (maybe because of an engine check failure?):

// break loop example

#include <iostream>
using namespace std;

int main ()
{
 int n;
 for (n=10; n>0; n--)
 {
 cout << n << ", ";
 if (n==3)
 {
 cout << "countdown aborted!";
 break;

 }
 }
 return 0;
}

10, 9, 8, 7, 6, 5, 4, 3, countdown aborted!

The continue statement

The continue statement causes the program to skip the rest of the loop in the current iteration as if the end of the

statement block had been reached, causing it to jump to the start of the following iteration. For example, we are
going to skip the number 5 in our countdown:

// continue loop example
#include <iostream>
using namespace std;

int main ()
{
 for (int n=10; n>0; n--) {
 if (n==5) continue;
 cout << n << ", ";

 }
 cout << "FIRE!\n";
 return 0;
}

10, 9, 8, 7, 6, 4, 3, 2, 1, FIRE!

The goto statement
goto allows to make an absolute jump to another point in the program. You should use this feature with caution

since its execution causes an unconditional jump ignoring any type of nesting limitations.

The destination point is identified by a label, which is then used as an argument for the goto statement. A label is

made of a valid identifier followed by a colon (:).

Generally speaking, this instruction has no concrete use in structured or object oriented programming aside from
those that low-level programming fans may find for it. For example, here is our countdown loop using goto:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

8

// goto loop example

#include <iostream>
using namespace std;

int main ()
{
 int n=10;
 loop:
 cout << n << ", ";
 n--;
 if (n>0) goto loop;
 cout << "FIRE!\n";
 return 0;
}

10, 9, 8, 7, 6, 5, 4, 3, 2, 1, FIRE!

The exit function

exit is a function defined in the cstdlib library.

The purpose of exit is to terminate the current program with a specific exit code. Its prototype is:

void exit (int exitcode);

The exitcode is used by some operating systems and may be used by calling programs. By convention, an exit

code of 0 means that the program finished normally and any other value means that some error or unexpected

results happened.

The selective structure: switch.

The syntax of the switch statement is a bit peculiar. Its objective is to check several possible constant values for an

expression. Something similar to what we did at the beginning of this section with the concatenation of several if

and else if instructions. Its form is the following:

switch (expression)
{
 case constant1:

 group of statements 1;
 break;

 case constant2:
 group of statements 2;
 break;

 .
 .
 .
 default:

 default group of statements
}

It works in the following way: switch evaluates expression and checks if it is equivalent to constant1, if it is, it

executes group of statements 1 until it finds the break statement. When it finds this break statement the

program jumps to the end of the switch selective structure.

If expression was not equal to constant1 it will be checked against constant2. If it is equal to this, it will execute
group of statements 2 until a break keyword is found, and then will jump to the end of the switch selective
structure.

Finally, if the value of expression did not match any of the previously specified constants (you can include as

many case labels as values you want to check), the program will execute the statements included after the

default: label, if it exists (since it is optional).

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

9

Both of the following code fragments have the same behavior:

switch example if-else equivalent

switch (x) {
 case 1:
 cout << "x is 1";
 break;
 case 2:
 cout << "x is 2";
 break;

 default:
 cout << "value of x unknown";

 }

if (x == 1) {
 cout << "x is 1";
 }
else if (x == 2) {
 cout << "x is 2";
 }
else {
 cout << "value of x unknown";
 }

The switch statement is a bit peculiar within the C++ language because it uses labels instead of blocks. This

forces us to put break statements after the group of statements that we want to be executed for a specific

condition. Otherwise the remainder statements -including those corresponding to other labels- will also be
executed until the end of the switch selective block or a break statement is reached.

For example, if we did not include a break statement after the first group for case one, the program will not

automatically jump to the end of the switch selective block and it would continue executing the rest of statements

until it reaches either a break instruction or the end of the switch selective block. This makes unnecessary to

include braces { } surrounding the statements for each of the cases, and it can also be useful to execute the same

block of instructions for different possible values for the expression being evaluated. For example:

switch (x) {
 case 1:
 case 2:
 case 3:
 cout << "x is 1, 2 or 3";
 break;

 default:
 cout << "x is not 1, 2 nor 3";

 }

Notice that switch can only be used to compare an expression against constants. Therefore we cannot put variables

as labels (for example case n: where n is a variable) or ranges (case (1..3):) because they are not valid C++
constants.

If you need to check ranges or values that are not constants, use a concatenation of if and else if statements.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

10

Functions (I)
Using functions we can structure our programs in a more modular way, accessing all the potential that structured

programming can offer to us in C++.

A function is a group of statements that is executed when it is called from some point of the program. The
following is its format:

type name (parameter1, parameter2, ...) { statements }

where:

• type is the data type specifier of the data returned by the function.

• name is the identifier by which it will be possible to call the function.

• parameters (as many as needed): Each parameter consists of a data type specifier followed by an

identifier, like any regular variable declaration (for example: int x) and which acts within the function as
a regular local variable. They allow to pass arguments to the function when it is called. The different
parameters are separated by commas.

• statements is the function's body. It is a block of statements surrounded by braces { }.

Here you have the first function example:

// function example
#include <iostream>
using namespace std;

int addition (int a, int b)
{
 int r;
 r=a+b;
 return (r);
}

int main ()
{
 int z;
 z = addition (5,3);
 cout << "The result is " << z;
 return 0;
}

The result is 8

In order to examine this code, first of all remember something said at the beginning of this tutorial: a C++
program always begins its execution by the main function. So we will begin there.

We can see how the main function begins by declaring the variable z of type int. Right after that, we see a call to
a function called addition. Paying attention we will be able to see the similarity between the structure of the call

to the function and the declaration of the function itself some code lines above:

The parameters and arguments have a clear correspondence. Within the main function we called to addition
passing two values: 5 and 3, that correspond to the int a and int b parameters declared for function addition.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

11

At the point at which the function is called from within main, the control is lost by main and passed to function
addition. The value of both arguments passed in the call (5 and 3) are copied to the local variables int a and int
b within the function.

Function addition declares another local variable (int r), and by means of the expression r=a+b, it assigns to r
the result of a plus b. Because the actual parameters passed for a and b are 5 and 3 respectively, the result is 8.

The following line of code:

return (r);

finalizes function addition, and returns the control back to the function that called it in the first place (in this case,

main). At this moment the program follows it regular course from the same point at which it was interrupted by the

call to addition. But additionally, because the return statement in function addition specified a value: the
content of variable r (return (r);), which at that moment had a value of 8. This value becomes the value of

evaluating the function call.

So being the value returned by a function the value given to the function call itself when it is evaluated, the

variable z will be set to the value returned by addition (5, 3), that is 8. To explain it another way, you can
imagine that the call to a function (addition (5,3)) is literally replaced by the value it returns (8).

The following line of code in main is:

cout << "The result is " << z;

That, as you may already expect, produces the printing of the result on the screen.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

12

Scope of variables

The scope of variables declared within a function or any other inner block is only their own function or their own

block and cannot be used outside of them. For example, in the previous example it would have been impossible to

use the variables a, b or r directly in function main since they were variables local to function addition. Also, it
would have been impossible to use the variable z directly within function addition, since this was a variable local
to the function main.

Therefore, the scope of local variables is limited to the same block level in which they are declared. Nevertheless,
we also have the possibility to declare global variables; These are visible from any point of the code, inside and
outside all functions. In order to declare global variables you simply have to declare the variable outside any
function or block; that means, directly in the body of the program.

And here is another example about functions:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

13

// function example
#include <iostream>
using namespace std;

int subtraction (int a, int b)
{
 int r;
 r=a-b;
 return (r);
}

int main ()
{
 int x=5, y=3, z;
 z = subtraction (7,2);
 cout << "The first result is " << z << '\n';
 cout << "The second result is " << subtraction (7,2) << '\n';
 cout << "The third result is " << subtraction (x,y) << '\n';
 z= 4 + subtraction (x,y);
 cout << "The fourth result is " << z << '\n';
 return 0;
}

The first result is 5
The second result is 5
The third result is 2
The fourth result is 6

In this case we have created a function called subtraction. The only thing that this function does is to subtract
both passed parameters and to return the result.

Nevertheless, if we examine function main we will see that we have made several calls to function subtraction.
We have used some different calling methods so that you see other ways or moments when a function can be
called.

In order to fully understand these examples you must consider once again that a call to a function could be
replaced by the value that the function call itself is going to return. For example, the first case (that you should
already know because it is the same pattern that we have used in previous examples):

z = subtraction (7,2);
cout << "The first result is " << z;

If we replace the function call by the value it returns (i.e., 5), we would have:

z = 5;
cout << "The first result is " << z;

As well as

cout << "The second result is " << subtraction (7,2);

has the same result as the previous call, but in this case we made the call to subtraction directly as an insertion
parameter for cout. Simply consider that the result is the same as if we had written:

cout << "The second result is " << 5;

since 5 is the value returned by subtraction (7,2).

In the case of:

cout << "The third result is " << subtraction (x,y);

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

14

The only new thing that we introduced is that the parameters of subtraction are variables instead of constants.
That is perfectly valid. In this case the values passed to function subtraction are the values of x and y, that are 5
and 3 respectively, giving 2 as result.

The fourth case is more of the same. Simply note that instead of:

z = 4 + subtraction (x,y);

we could have written:

z = subtraction (x,y) + 4;

with exactly the same result. I have switched places so you can see that the semicolon sign (;) goes at the end of
the whole statement. It does not necessarily have to go right after the function call. The explanation might be once
again that you imagine that a function can be replaced by its returned value:

z = 4 + 2;
z = 2 + 4;

Functions with no type. The use of void.

If you remember the syntax of a function declaration:

type name (argument1, argument2 ...) statement

you will see that the declaration begins with a type, that is the type of the function itself (i.e., the type of the
datum that will be returned by the function with the return statement). But what if we want to return no value?

Imagine that we want to make a function just to show a message on the screen. We do not need it to return any

value. In this case we should use the void type specifier for the function. This is a special specifier that indicates
absence of type.

// void function example
#include <iostream>
using namespace std;

void printmessage ()
{
 cout << "I'm a function!";
}

int main ()
{
 printmessage ();
 return 0;
}

I'm a function!

void can also be used in the function's parameter list to explicitly specify that we want the function to take no

actual parameters when it is called. For example, function printmessage could have been declared as:

void printmessage (void)
{
 cout << "I'm a function!";
}

Although it is optional to specify void in the parameter list. In C++, a parameter list can simply be left blank if we

want a function with no parameters.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

15

What you must always remember is that the format for calling a function includes specifying its name and
enclosing its parameters between parentheses. The non-existence of parameters does not exempt us from the
obligation to write the parentheses. For that reason the call to printmessage is:

printmessage ();

The parentheses clearly indicate that this is a call to a function and not the name of a variable or some other C++
statement. The following call would have been incorrect:

printmessage;

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

16

Functions (II)

Arguments passed by value and by reference.

Until now, in all the functions we have seen, the arguments passed to the functions have been passed by value.
This means that when calling a function with parameters, what we have passed to the function were copies of their

values but never the variables themselves. For example, suppose that we called our first function addition using
the following code:

int x=5, y=3, z;
z = addition (x , y);

What we did in this case was to call to function addition passing the values of x and y, i.e. 5 and 3 respectively, but
not the variables x and y themselves.

This way, when the function addition is called, the value of its local variables a and b become 5 and 3 respectively,
but any modification to either a or b within the function addition will not have any effect in the values of x and y
outside it, because variables x and y were not themselves passed to the function, but only copies of their values at

the moment the function was called.

But there might be some cases where you need to manipulate from inside a function the value of an external
variable. For that purpose we can use arguments passed by reference, as in the function duplicate of the following
example:

// passing parameters by reference
#include <iostream>
using namespace std;

void duplicate (int& a, int& b, int& c)
{
 a*=2;
 b*=2;
 c*=2;
}

int main ()
{
 int x=1, y=3, z=7;
 duplicate (x, y, z);
 cout << "x=" << x << ", y=" << y << ", z=" << z;
 return 0;
}

x=2, y=6, z=14

The first thing that should call your attention is that in the declaration of duplicate the type of each parameter

was followed by an ampersand sign (&). This ampersand is what specifies that their corresponding arguments are

to be passed by reference instead of by value.

When a variable is passed by reference we are not passing a copy of its value, but we are somehow passing the
variable itself to the function and any modification that we do to the local variables will have an effect in their
counterpart variables passed as arguments in the call to the function.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

17

To explain it in another way, we associate a, b and c with the arguments passed on the function call (x, y and z)
and any change that we do on a within the function will affect the value of x outside it. Any change that we do on b
will affect y, and the same with c and z.

That is why our program's output, that shows the values stored in x, y and z after the call to duplicate, shows the
values of all the three variables of main doubled.

If when declaring the following function:

void duplicate (int& a, int& b, int& c)

we had declared it this way:

void duplicate (int a, int b, int c)

i.e., without the ampersand signs (&), we would have not passed the variables by reference, but a copy of their

values instead, and therefore, the output on screen of our program would have been the values of x, y and z
without having been modified.

Passing by reference is also an effective way to allow a function to return more than one value. For example, here
is a function that returns the previous and next numbers of the first parameter passed.

// more than one returning value
#include <iostream>
using namespace std;

void prevnext (int x, int& prev, int& next)
{
 prev = x-1;
 next = x+1;
}

int main ()
{
 int x=100, y, z;
 prevnext (x, y, z);
 cout << "Previous=" << y << ", Next=" << z;
 return 0;
}

Previous=99, Next=101

Default values in parameters.

When declaring a function we can specify a default value for each of the last parameters. This value will be used if
the corresponding argument is left blank when calling to the function. To do that, we simply have to use the
assignment operator and a value for the arguments in the function declaration. If a value for that parameter is not
passed when the function is called, the default value is used, but if a value is specified this default value is ignored
and the passed value is used instead. For example:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

18

// default values in functions
#include <iostream>
using namespace std;

int divide (int a, int b=2)
{
 int r;
 r=a/b;
 return (r);
}

int main ()
{
 cout << divide (12);
 cout << endl;
 cout << divide (20,4);
 return 0;
}

6
5

As we can see in the body of the program there are two calls to function divide. In the first one:

divide (12)

we have only specified one argument, but the function divide allows up to two. So the function divide has
assumed that the second parameter is 2 since that is what we have specified to happen if this parameter was not

passed (notice the function declaration, which finishes with int b=2, not just int b). Therefore the result of this
function call is 6 (12/2).

In the second call:

divide (20,4)

there are two parameters, so the default value for b (int b=2) is ignored and b takes the value passed as
argument, that is 4, making the result returned equal to 5 (20/4).

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

19

Overloaded functions.

In C++ two different functions can have the same name if their parameter types or number are different. That
means that you can give the same name to more than one function if they have either a different number of
parameters or different types in their parameters. For example:

// overloaded function
#include <iostream>
using namespace std;

int operate (int a, int b)
{
 return (a*b);
}

float operate (float a, float b)
{
 return (a/b);
}

int main ()
{
 int x=5,y=2;
 float n=5.0,m=2.0;
 cout << operate (x,y);
 cout << "\n";
 cout << operate (n,m);
 cout << "\n";
 return 0;
}

10
2.5

In this case we have defined two functions with the same name, operate, but one of them accepts two parameters

of type int and the other one accepts them of type float. The compiler knows which one to call in each case by

examining the types passed as arguments when the function is called. If it is called with two ints as its arguments

it calls to the function that has two int parameters in its prototype and if it is called with two floats it will call to

the one which has two float parameters in its prototype.

In the first call to operate the two arguments passed are of type int, therefore, the function with the first
prototype is called; This function returns the result of multiplying both parameters. While the second call passes

two arguments of type float, so the function with the second prototype is called. This one has a different
behavior: it divides one parameter by the other. So the behavior of a call to operate depends on the type of the
arguments passed because the function has been overloaded.

Notice that a function cannot be overloaded only by its return type. At least one of its parameters must have a
different type.

inline functions.

The inline specifier indicates the compiler that inline substitution is preferred to the usual function call mechanism

for a specific function. This does not change the behavior of a function itself, but is used to suggest to the compiler
that the code generated by the function body is inserted at each point the function is called, instead of being
inserted only once and perform a regular call to it, which generally involves some additional overhead in running
time.

The format for its declaration is:

inline type name (arguments ...) { instructions ... }

and the call is just like the call to any other function. You do not have to include the inline keyword when calling
the function, only in its declaration.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

20

Most compilers already optimize code to generate inline functions when it is more convenient. This specifier only
indicates the compiler that inline is preferred for this function.

Recursivity.

Recursivity is the property that functions have to be called by themselves. It is useful for many tasks, like sorting
or calculate the factorial of numbers. For example, to obtain the factorial of a number (n!) the mathematical
formula would be:
n! = n * (n-1) * (n-2) * (n-3) ... * 1

more concretely, 5! (factorial of 5) would be:

5! = 5 * 4 * 3 * 2 * 1 = 120

and a recursive function to calculate this in C++ could be:

// factorial calculator
#include <iostream>
using namespace std;

long factorial (long a)
{
 if (a > 1)
 return (a * factorial (a-1));
 else
 return (1);

}

int main ()
{
 long number;
 cout << "Please type a number: ";
 cin >> number;
 cout << number << "! = " << factorial (number);
 return 0;
}

Please type a number: 9
9! = 362880

Notice how in function factorial we included a call to itself, but only if the argument passed was greater than 1,

since otherwise the function would perform an infinite recursive loop in which once it arrived to 0 it would continue
multiplying by all the negative numbers (probably provoking a stack overflow error on runtime).

This function has a limitation because of the data type we used in its design (long) for more simplicity. The results

given will not be valid for values much greater than 10! or 15!, depending on the system you compile it.

Declaring functions.

Until now, we have defined all of the functions before the first appearance of calls to them in the source code.

These calls were generally in function main which we have always left at the end of the source code. If you try to

repeat some of the examples of functions described so far, but placing the function main before any of the other
functions that were called from within it, you will most likely obtain compiling errors. The reason is that to be able
to call a function it must have been declared in some earlier point of the code, like we have done in all our
examples.

But there is an alternative way to avoid writing the whole code of a function before it can be used in main or in
some other function. This can be achieved by declaring just a prototype of the function before it is used, instead of
the entire definition. This declaration is shorter than the entire definition, but significant enough for the compiler to
determine its return type and the types of its parameters.

Its form is:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

21

type name (argument_type1, argument_type2, ...);

It is identical to a function definition, except that it does not include the body of the function itself (i.e., the

function statements that in normal definitions are enclosed in braces { }) and instead of that we end the prototype
declaration with a mandatory semicolon (;).

The parameter enumeration does not need to include the identifiers, but only the type specifiers. The inclusion of a
name for each parameter as in the function definition is optional in the prototype declaration. For example, we can
declare a function called protofunction with two int parameters with any of the following declarations:

int protofunction (int first, int second);
int protofunction (int, int);

Anyway, including a name for each variable makes the prototype more legible.

// declaring functions prototypes
#include <iostream>
using namespace std;

void odd (int a);
void even (int a);

int main ()
{
 int i;
 do {
 cout << "Type a number (0 to exit): ";
 cin >> i;
 odd (i);

 } while (i!=0);
 return 0;
}

void odd (int a)
{
 if ((a%2)!=0) cout << "Number is odd.\n";
 else even (a);
}

void even (int a)
{
 if ((a%2)==0) cout << "Number is even.\n";
 else odd (a);
}

Type a number (0 to exit): 9
Number is odd.
Type a number (0 to exit): 6
Number is even.
Type a number (0 to exit): 1030
Number is even.
Type a number (0 to exit): 0
Number is even.

This example is indeed not an example of efficiency. I am sure that at this point you can already make a program
with the same result, but using only half of the code lines that have been used in this example. Anyway this
example illustrates how prototyping works. Moreover, in this concrete example the prototyping of at least one of
the two functions is necessary in order to compile the code without errors.

The first things that we see are the declaration of functions odd and even:

void odd (int a);
void even (int a);

This allows these functions to be used before they are defined, for example, in main, which now is located where
some people find it to be a more logical place for the start of a program: the beginning of the source code.

Anyway, the reason why this program needs at least one of the functions to be declared before it is defined is

because in odd there is a call to even and in even there is a call to odd. If none of the two functions had been

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

22

previously declared, a compilation error would happen, since either odd would not not be visible from even
(because it has still not been declared), or even would not be visible from odd (for the same reason).

Having the prototype of all functions together in the same place within the source code is found practical by some
programmers, and this can be easily achieved by declaring all functions prototypes at the beginning of a program.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

23

Pointers
We have already seen how variables are seen as memory cells that can be accessed using their identifiers. This
way we did not have to care about the physical location of our data within memory, we simply used its identifier
whenever we wanted to refer to our variable.

The memory of your computer can be imagined as a succession of memory cells, each one of the minimal size that
computers manage (one byte). These single-byte memory cells are numbered in a consecutive way, so as, within
any block of memory, every cell has the same number as the previous one plus one.

This way, each cell can be easily located in the memory because it has a unique address and all the memory cells
follow a successive pattern. For example, if we are looking for cell 1776 we know that it is going to be right
between cells 1775 and 1777, exactly one thousand cells after 776 and exactly one thousand cells before cell 2776.

Reference operator (&)

As soon as we declare a variable, the amount of memory needed is assigned for it at a specific location in memory
(its memory address). We generally do not actively decide the exact location of the variable within the panel of
cells that we have imagined the memory to be - Fortunately, that is a task automatically performed by the
operating system during runtime. However, in some cases we may be interested in knowing the address where our
variable is being stored during runtime in order to operate with relative positions to it.

The address that locates a variable within memory is what we call a reference to that variable. This reference to a

variable can be obtained by preceding the identifier of a variable with an ampersand sign (&), known as reference
operator, and which can be literally translated as "address of". For example:

ted = &andy;

This would assign to ted the address of variable andy, since when preceding the name of the variable andy with

the reference operator (&) we are no longer talking about the content of the variable itself, but about its reference
(i.e., its address in memory).

From now on we are going to assume that andy is placed during runtime in the memory address 1776. This number

(1776) is just an arbitrary assumption we are inventing right now in order to help clarify some concepts in this

tutorial, but in reality, we cannot know before runtime the real value the address of a variable will have in memory.

Consider the following code fragment:

andy = 25;
fred = andy;
ted = &andy;

The values contained in each variable after the execution of this, are shown in the following diagram:

First, we have assigned the value 25 to andy (a variable whose address in memory we have assumed to be 1776).

Compound data types

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

24

The second statement copied to fred the content of variable andy (which is 25). This is a standard assignment

operation, as we have done so many times before.

Finally, the third statement copies to ted not the value contained in andy but a reference to it (i.e., its address,
which we have assumed to be 1776). The reason is that in this third assignment operation we have preceded the

identifier andy with the reference operator (&), so we were no longer referring to the value of andy but to its
reference (its address in memory).

The variable that stores the reference to another variable (like ted in the previous example) is what we call a

pointer. Pointers are a very powerful feature of the C++ language that has many uses in advanced programming.
Farther ahead, we will see how this type of variable is used and declared.

Dereference operator (*)

We have just seen that a variable which stores a reference to another variable is called a pointer. Pointers are said
to "point to" the variable whose reference they store.

Using a pointer we can directly access the value stored in the variable which it points to. To do this, we simply
have to precede the pointer's identifier with an asterisk (*), which acts as dereference operator and that can be
literally translated to "value pointed by".

Therefore, following with the values of the previous example, if we write:

beth = *ted;

(that we could read as: "beth equal to value pointed by ted") beth would take the value 25, since ted is 1776, and
the value pointed by 1776 is 25.

You must clearly differentiate that the expression ted refers to the value 1776, while *ted (with an asterisk *
preceding the identifier) refers to the value stored at address 1776, which in this case is 25. Notice the difference of
including or not including the dereference operator (I have included an explanatory commentary of how each of
these two expressions could be read):

beth = ted; // beth equal to ted (1776)
beth = *ted; // beth equal to value pointed by ted (25)

Notice the difference between the reference and dereference operators:

• & is the reference operator and can be read as "address of"

• * is the dereference operator and can be read as "value pointed by"

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

25

Thus, they have complementary (or opposite) meanings. A variable referenced with & can be dereferenced with *.

Earlier we performed the following two assignment operations:

andy = 25;
ted = &andy;

Right after these two statements, all of the following expressions would give true as result:

andy == 25
&andy == 1776
ted == 1776
*ted == 25

The first expression is quite clear considering that the assignment operation performed on andy was andy=25. The
second one uses the reference operator (&), which returns the address of variable andy, which we assumed it to

have a value of 1776. The third one is somewhat obvious since the second expression was true and the assignment

operation performed on ted was ted=&andy. The fourth expression uses the dereference operator (*) that, as we
have just seen, can be read as "value pointed by", and the value pointed by ted is indeed 25.

So, after all that, you may also infer that for as long as the address pointed by ted remains unchanged the

following expression will also be true:

*ted == andy

Declaring variables of pointer types

Due to the ability of a pointer to directly refer to the value that it points to, it becomes necessary to specify in its

declaration which data type a pointer is going to point to. It is not the same thing to point to a char as to point to

an int or a float.

The declaration of pointers follows this format:

type * name;

where type is the data type of the value that the pointer is intended to point to. This type is not the type of the
pointer itself! but the type of the data the pointer points to. For example:

int * number;
char * character;
float * greatnumber;

These are three declarations of pointers. Each one is intended to point to a different data type, but in fact all of

them are pointers and all of them will occupy the same amount of space in memory (the size in memory of a
pointer depends on the platform where the code is going to run). Nevertheless, the data to which they point to do

not occupy the same amount of space nor are of the same type: the first one points to an int, the second one to a
char and the last one to a float. Therefore, although these three example variables are all of them pointers which

occupy the same size in memory, they are said to have different types: int*, char* and float* respectively,
depending on the type they point to.

I want to emphasize that the asterisk sign (*) that we use when declaring a pointer only means that it is a pointer

(it is part of its type compound specifier), and should not be confused with the dereference operator that we have

seen a bit earlier, but which is also written with an asterisk (*). They are simply two different things represented

with the same sign.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

26

Now have a look at this code:

// my first pointer
#include <iostream>
using namespace std;

int main ()
{
 int firstvalue, secondvalue;
 int * mypointer;

 mypointer = &firstvalue;
*mypointer = 10;
mypointer = &secondvalue;
*mypointer = 20;
cout << "firstvalue is " << firstvalue << endl;
cout << "secondvalue is " << secondvalue << endl;
return 0;

}

firstvalue is 10
secondvalue is 20

Notice that even though we have never directly set a value to either firstvalue or secondvalue, both end up with
a value set indirectly through the use of mypointer. This is the procedure:

First, we have assigned as value of mypointer a reference to firstvalue using the reference operator (&). And

then we have assigned the value 10 to the memory location pointed by mypointer, that because at this moment is

pointing to the memory location of firstvalue, this in fact modifies the value of firstvalue.

In order to demonstrate that a pointer may take several different values during the same program I have repeated
the process with secondvalue and that same pointer, mypointer.

Here is an example a little bit more elaborated:

// more pointers
#include <iostream>
using namespace std;

int main ()
{
 int firstvalue = 5, secondvalue = 15;
 int * p1, * p2;

 p1 = &firstvalue; // p1 = address of firstvalue
 p2 = &secondvalue; // p2 = address of secondvalue
*p1 = 10; // value pointed by p1 = 10
*p2 = *p1; // value pointed by p2 = value pointed by

p1
 p1 = p2; // p1 = p2 (value of pointer is copied)
*p1 = 20; // value pointed by p1 = 20

 cout << "firstvalue is " << firstvalue << endl;
 cout << "secondvalue is " << secondvalue << endl;
 return 0;
}

firstvalue is 10
secondvalue is 20

I have included as a comment on each line how the code can be read: ampersand (&) as "address of" and asterisk
(*) as "value pointed by".

Notice that there are expressions with pointers p1 and p2, both with and without dereference operator (*). The
meaning of an expression using the dereference operator (*) is very different from one that does not: When this

operator precedes the pointer name, the expression refers to the value being pointed, while when a pointer name

appears without this operator, it refers to the value of the pointer itself (i.e. the address of what the pointer is
pointing to).

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

27

Another thing that may call your attention is the line:

int * p1, * p2;

This declares the two pointers used in the previous example. But notice that there is an asterisk (*) for each

pointer, in order for both to have type int* (pointer to int).

Otherwise, the type for the second variable declared in that line would have been int (and not int*) because of
precedence relationships. If we had written:

int * p1, p2;

p1 would indeed have int* type, but p2 would have type int (spaces do not matter at all for this purpose). This is

due to operator precedence rules. But anyway, simply remembering that you have to put one asterisk per pointer
is enough for most pointer users.

Pointers and arrays

The concept of array is very much bound to the one of pointer. In fact, the identifier of an array is equivalent to the
address of its first element, as a pointer is equivalent to the address of the first element that it points to, so in fact
they are the same concept. For example, supposing these two declarations:

int numbers [20];
int * p;

The following assignment operation would be valid:

p = numbers;

After that, p and numbers would be equivalent and would have the same properties. The only difference is that we

could change the value of pointer p by another one, whereas numbers will always point to the first of the 20
elements of type int with which it was defined. Therefore, unlike p, which is an ordinary pointer, numbers is an
array, and an array can be considered a constant pointer. Therefore, the following allocation would not be valid:

numbers = p;

Because numbers is an array, so it operates as a constant pointer, and we cannot assign values to constants.

Due to the characteristics of variables, all expressions that include pointers in the following example are perfectly
valid:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

28

// more pointers
#include <iostream>
using namespace std;

int main ()
{
 int numbers[5];
 int * p;
 p = numbers; *p = 10;
 p++; *p = 20;
 p = &numbers[2]; *p = 30;
 p = numbers + 3; *p = 40;
 p = numbers; *(p+4) = 50;
 for (int n=0; n<5; n++)
 cout << numbers[n] << ", ";

 return 0;
}

10, 20, 30, 40, 50,

In the chapter about arrays we used brackets ([]) several times in order to specify the index of an element of the

array to which we wanted to refer. Well, these bracket sign operators [] are also a dereference operator known as
offset operator. They dereference the variable they follow just as * does, but they also add the number between

brackets to the address being dereferenced. For example:

a[5] = 0; // a [offset of 5] = 0
*(a+5) = 0; // pointed by (a+5) = 0

These two expressions are equivalent and valid both if a is a pointer or if a is an array.

Pointer initialization

When declaring pointers we may want to explicitly specify which variable we want them to point to:

int number;
int *tommy = &number;

The behavior of this code is equivalent to:

int number;
int *tommy;
tommy = &number;

When a pointer initialization takes place we are always assigning the reference value to where the pointer points

(tommy), never the value being pointed (*tommy). You must consider that at the moment of declaring a pointer, the

asterisk (*) indicates only that it is a pointer, it is not the dereference operator (although both use the same sign:

*). Remember, they are two different functions of one sign. Thus, we must take care not to confuse the previous
code with:

int number;
int *tommy;
*tommy = &number;

that is incorrect, and anyway would not have much sense in this case if you think about it.

As in the case of arrays, the compiler allows the special case that we want to initialize the content at which the
pointer points with constants at the same moment the pointer is declared:

char * terry = "hello";

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

29

In this case, memory space is reserved to contain "hello" and then a pointer to the first character of this memory

block is assigned to terry. If we imagine that "hello" is stored at the memory locations that start at addresses

1702, we can represent the previous declaration as:

It is important to indicate that terry contains the value 1702, and not 'h' nor "hello", although 1702 indeed is
the address of both of these.

The pointer terry points to a sequence of characters and can be read as if it was an array (remember that an

array is just like a constant pointer). For example, we can access the fifth element of the array with any of these
two expression:

*(terry+4)
terry[4]

Both expressions have a value of 'o' (the fifth element of the array).

Pointer arithmetics

To conduct arithmetical operations on pointers is a little different than to conduct them on regular integer data
types. To begin with, only addition and subtraction operations are allowed to be conducted with them, the others
make no sense in the world of pointers. But both addition and subtraction have a different behavior with pointers
according to the size of the data type to which they point.

When we saw the different fundamental data types, we saw that some occupy more or less space than others in

the memory. For example, let's assume that in a given compiler for a specific machine, char takes 1 byte, short
takes 2 bytes and long takes 4.

Suppose that we define three pointers in this compiler:

char *mychar;
short *myshort;
long *mylong;

and that we know that they point to memory locations 1000, 2000 and 3000 respectively.

So if we write:

mychar++;
myshort++;
mylong++;

mychar, as you may expect, would contain the value 1001. But not so obviously, myshort would contain the value

2002, and mylong would contain 3004, even though they have each been increased only once. The reason is that
when adding one to a pointer we are making it to point to the following element of the same type with which it has
been defined, and therefore the size in bytes of the type pointed is added to the pointer.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

30

This is applicable both when adding and subtracting any number to a pointer. It would happen exactly the same if
we write:

mychar = mychar + 1;
myshort = myshort + 1;
mylong = mylong + 1;

Both the increase (++) and decrease (--) operators have greater operator precedence than the dereference

operator (*), but both have a special behavior when used as suffix (the expression is evaluated with the value it
had before being increased). Therefore, the following expression may lead to confusion:

*p++

Because ++ has greater precedence than *, this expression is equivalent to *(p++). Therefore, what it does is to
increase the value of p (so it now points to the next element), but because ++ is used as postfix the whole
expression is evaluated as the value pointed by the original reference (the address the pointer pointed to before
being increased).

Notice the difference with:

(*p)++

Here, the expression would have been evaluated as the value pointed by p increased by one. The value of p (the
pointer itself) would not be modified (what is being modified is what it is being pointed to by this pointer).

If we write:

*p++ = *q++;

Because ++ has a higher precedence than *, both p and q are increased, but because both increase operators (++)

are used as postfix and not prefix, the value assigned to *p is *q before both p and q are increased. And then both
are increased. It would be roughly equivalent to:

*p = *q;
++p;
++q;

Like always, I recommend you to use parentheses () in order to avoid unexpected results and to give more

legibility to the code.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

31

Pointers to pointers

C++ allows the use of pointers that point to pointers, that these, in its turn, point to data (or even to other

pointers). In order to do that, we only need to add an asterisk (*) for each level of reference in their declarations:

char a;
char * b;
char ** c;
a = 'z';
b = &a;
c = &b;

This, supposing the randomly chosen memory locations for each variable of 7230, 8092 and 10502, could be
represented as:

The value of each variable is written inside each cell; under the cells are their respective addresses in memory.

The new thing in this example is variable c, which can be used in three different levels of indirection, each one of
them would correspond to a different value:

• c has type char** and a value of 8092

• *c has type char* and a value of 7230

• **c has type char and a value of 'z'

void pointers

The void type of pointer is a special type of pointer. In C++, void represents the absence of type, so void pointers
are pointers that point to a value that has no type (and thus also an undetermined length and undetermined
dereference properties).

This allows void pointers to point to any data type, from an integer value or a float to a string of characters. But in

exchange they have a great limitation: the data pointed by them cannot be directly dereferenced (which is logical,
since we have no type to dereference to), and for that reason we will always have to cast the address in the void
pointer to some other pointer type that points to a concrete data type before dereferencing it.

One of its uses may be to pass generic parameters to a function:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

32

// increaser
#include <iostream>
using namespace std;

void increase (void* data, int psize)
{
 if (psize == sizeof(char))
 { char* pchar; pchar=(char*)data; ++(*pchar); }
 else if (psize == sizeof(int))
 { int* pint; pint=(int*)data; ++(*pint); }
}

int main ()
{
 char a = 'x';
 int b = 1602;
 increase (&a,sizeof(a));
 increase (&b,sizeof(b));
 cout << a << ", " << b << endl;
 return 0;
}

y, 1603

sizeof is an operator integrated in the C++ language that returns the size in bytes of its parameter. For non-

dynamic data types this value is a constant. Therefore, for example, sizeof(char) is 1, because char type is one
byte long.

Null pointer

A null pointer is a regular pointer of any pointer type which has a special value that indicates that it is not pointing
to any valid reference or memory address. This value is the result of type-casting the integer value zero to any
pointer type.

int * p;
p = 0; // p has a null pointer value

Do not confuse null pointers with void pointers. A null pointer is a value that any pointer may take to represent

that it is pointing to "nowhere", while a void pointer is a special type of pointer that can point to somewhere
without a specific type. One refers to the value stored in the pointer itself and the other to the type of data it points
to.

Pointers to functions

C++ allows operations with pointers to functions. The typical use of this is for passing a function as an argument to
another function, since these cannot be passed dereferenced. In order to declare a pointer to a function we have to
declare it like the prototype of the function except that the name of the function is enclosed between parentheses

() and an asterisk (*) is inserted before the name:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

33

// pointer to functions
#include <iostream>
using namespace std;

int addition (int a, int b)
{ return (a+b); }

int subtraction (int a, int b)
{ return (a-b); }

int operation (int x, int y, int
(*functocall)(int,int))
{
 int g;
 g = (*functocall)(x,y);
 return (g);
}

int main ()
{
 int m,n;
 int (*minus)(int,int) = subtraction;

 m = operation (7, 5, addition);
 n = operation (20, m, minus);
 cout <<n;
 return 0;
}

8

In the example, minus is a pointer to a function that has two parameters of type int. It is immediately assigned to

point to the function subtraction, all in a single line:

int (* minus)(int,int) = subtraction;

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

34

Data structures
We have already learned how groups of sequential data can be used in C++. But this is somewhat restrictive, since
in many occasions what we want to store are not mere sequences of elements all of the same data type, but sets
of different elements with different data types.

Data structures

A data structure is a group of data elements grouped together under one name. These data elements, known as
members, can have different types and different lengths. Data structures are declared in C++ using the following
syntax:

struct structure_name {

member_type1 member_name1;
member_type2 member_name2;
member_type3 member_name3;
.
.
} object_names;

where structure_name is a name for the structure type, object_name can be a set of valid identifiers for objects
that have the type of this structure. Within braces { } there is a list with the data members, each one is specified

with a type and a valid identifier as its name.

The first thing we have to know is that a data structure creates a new type: Once a data structure is declared, a

new type with the identifier specified as structure_name is created and can be used in the rest of the program as

if it was any other type. For example:

struct product {
 int weight;
 float price;
} ;

product apple;
product banana, melon;

We have first declared a structure type called product with two members: weight and price, each of a different

fundamental type. We have then used this name of the structure type (product) to declare three objects of that
type: apple, banana and melon as we would have done with any fundamental data type.

Once declared, product has become a new valid type name like the fundamental ones int, char or short and
from that point on we are able to declare objects (variables) of this compound new type, like we have done with
apple, banana and melon.

Right at the end of the struct declaration, and before the ending semicolon, we can use the optional field

object_name to directly declare objects of the structure type. For example, we can also declare the structure

objects apple, banana and melon at the moment we define the data structure type this way:

struct product {
 int weight;
 float price;
} apple, banana, melon;

It is important to clearly differentiate between what is the structure type name, and what is an object (variable)

that has this structure type. We can instantiate many objects (i.e. variables, like apple, banana and melon) from a

single structure type (product).

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

35

Once we have declared our three objects of a determined structure type (apple, banana and melon) we can
operate directly with their members. To do that we use a dot (.) inserted between the object name and the

member name. For example, we could operate with any of these elements as if they were standard variables of
their respective types:

apple.weight
apple.price
banana.weight
banana.price
melon.weight
melon.price

Each one of these has the data type corresponding to the member they refer to: apple.weight, banana.weight
and melon.weight are of type int, while apple.price, banana.price and melon.price are of type float.

Let's see a real example where you can see how a structure type can be used in the same way as fundamental
types:

// example about structures
#include <iostream>
#include <string>
#include <sstream>
using namespace std;

struct movies_t {
 string title;
 int year;
} mine, yours;

void printmovie (movies_t movie);

int main ()
{
 string mystr;

 mine.title = "2001 A Space Odyssey";
 mine.year = 1968;

 cout << "Enter title: ";
 getline (cin,yours.title);
 cout << "Enter year: ";
 getline (cin,mystr);
 stringstream(mystr) >> yours.year;

 cout << "My favorite movie is:\n ";
 printmovie (mine);
 cout << "And yours is:\n ";
 printmovie (yours);
 return 0;
}

void printmovie (movies_t movie)
{
 cout << movie.title;
 cout << " (" << movie.year << ")\n";
}

Enter title: Alien
Enter year: 1979

My favorite movie is:
 2001 A Space Odyssey (1968)
And yours is:
 Alien (1979)

The example shows how we can use the members of an object as regular variables. For example, the member

yours.year is a valid variable of type int, and mine.title is a valid variable of type string.

The objects mine and yours can also be treated as valid variables of type movies_t, for example we have passed

them to the function printmovie as we would have done with regular variables. Therefore, one of the most

important advantages of data structures is that we can either refer to their members individually or to the entire
structure as a block with only one identifier.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

36

Data structures are a feature that can be used to represent databases, especially if we consider the possibility of
building arrays of them:

// array of structures
#include <iostream>
#include <string>
#include <sstream>
using namespace std;

#define N_MOVIES 3

struct movies_t {
 string title;
 int year;
} films [N_MOVIES];

void printmovie (movies_t movie);

int main ()
{
 string mystr;
 int n;

 for (n=0; n<N_MOVIES; n++)
 {
 cout << "Enter title: ";
 getline (cin,films[n].title);
 cout << "Enter year: ";
 getline (cin,mystr);
 stringstream(mystr) >> films[n].year;

 }

 cout << "\nYou have entered these movies:\n";
 for (n=0; n<N_MOVIES; n++)
 printmovie (films[n]);

 return 0;
}

void printmovie (movies_t movie)
{
 cout << movie.title;
 cout << " (" << movie.year << ")\n";
}

Enter title: Blade Runner
Enter year: 1982
Enter title: Matrix
Enter year: 1999
Enter title: Taxi Driver
Enter year: 1976

You have entered these movies:
Blade Runner (1982)
Matrix (1999)
Taxi Driver (1976)

Pointers to structures

Like any other type, structures can be pointed by its own type of pointers:

struct movies_t {
 string title;
 int year;
};

movies_t amovie;
movies_t * pmovie;

Here amovie is an object of structure type movies_t, and pmovie is a pointer to point to objects of structure type
movies_t. So, the following code would also be valid:

pmovie = &amovie;

The value of the pointer pmovie would be assigned to a reference to the object amovie (its memory address).

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

37

We will now go with another example that includes pointers, which will serve to introduce a new operator: the
arrow operator (->):

// pointers to structures
#include <iostream>
#include <string>
#include <sstream>
using namespace std;

struct movies_t {
 string title;
 int year;
};

int main ()
{
 string mystr;

 movies_t amovie;
 movies_t * pmovie;
 pmovie = &amovie;

 cout << "Enter title: ";
 getline (cin, pmovie->title);
 cout << "Enter year: ";
 getline (cin, mystr);
 (stringstream) mystr >> pmovie->year;

 cout << "\nYou have entered:\n";
 cout << pmovie->title;
 cout << " (" << pmovie->year << ")\n";

 return 0;
}

Enter title: Invasion of the body snatchers
Enter year: 1978

You have entered:
Invasion of the body snatchers (1978)

The previous code includes an important introduction: the arrow operator (->). This is a dereference operator that
is used exclusively with pointers to objects with members. This operator serves to access a member of an object to
which we have a reference. In the example we used:

pmovie->title

Which is for all purposes equivalent to:

(*pmovie).title

Both expressions pmovie->title and (*pmovie).title are valid and both mean that we are evaluating the

member title of the data structure pointed by a pointer called pmovie. It must be clearly differentiated from:

*pmovie.title

which is equivalent to:

*(pmovie.title)

And that would access the value pointed by a hypothetical pointer member called title of the structure object

pmovie (which in this case would not be a pointer). The following panel summarizes possible combinations of

pointers and structure members:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

38

Expression What is evaluated Equivalent

a.b Member b of object a

a->b Member b of object pointed by a (*a).b

*a.b Value pointed by member b of object a *(a.b)

Nesting structures

Structures can also be nested so that a valid element of a structure can also be in its turn another structure.

struct movies_t {
 string title;
 int year;
};

struct friends_t {
 string name;
 string email;
 movies_t favorite_movie;
 } charlie, maria;

friends_t * pfriends = &charlie;

After the previous declaration we could use any of the following expressions:

charlie.name
maria.favorite_movie.title
charlie.favorite_movie.year
pfriends->favorite_movie.year

(where, by the way, the last two expressions refer to the same member).

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

39

Other Data Types

Defined data types (typedef)

C++ allows the definition of our own types based on other existing data types. We can do this using the keyword

typedef, whose format is:

typedef existing_type new_type_name ;

where existing_type is a C++ fundamental or compound type and new_type_name is the name for the new type

we are defining. For example:

typedef char C;
typedef unsigned int WORD;
typedef char * pChar;
typedef char field [50];

In this case we have defined four data types: C, WORD, pChar and field as char, unsigned int, char* and
char[50] respectively, that we could perfectly use in declarations later as any other valid type:

C mychar, anotherchar, *ptc1;
WORD myword;
pChar ptc2;
field name;

typedef does not create different types. It only creates synonyms of existing types. That means that the type of

myword can be considered to be either WORD or unsigned int, since both are in fact the same type.

typedef can be useful to define an alias for a type that is frequently used within a program. It is also useful to

define types when it is possible that we will need to change the type in later versions of our program, or if a type
you want to use has a name that is too long or confusing.

Unions

Unions allow one same portion of memory to be accessed as different data types, since all of them are in fact the
same location in memory. Its declaration and use is similar to the one of structures but its functionality is totally
different:

union union_name {
 member_type1 member_name1;
 member_type2 member_name2;
 member_type3 member_name3;
 .
 .
} object_names;

All the elements of the union declaration occupy the same physical space in memory. Its size is the one of the

greatest element of the declaration. For example:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

40

union mytypes_t {
 char c;
 int i;
 float f;
 } mytypes;

defines three elements:

mytypes.c
mytypes.i
mytypes.f

each one with a different data type. Since all of them are referring to the same location in memory, the

modification of one of the elements will affect the value of all of them. We cannot store different values in them
independent of each other.

One of the uses a union may have is to unite an elementary type with an array or structures of smaller elements.
For example:

union mix_t {
 long l;
 struct {
 short hi;
 short lo;
 } s;

 char c[4];
} mix;

defines three names that allow us to access the same group of 4 bytes: mix.l, mix.s and mix.c and which we can

use according to how we want to access these bytes, as if they were a single long-type data, as if they were two
short elements or as an array of char elements, respectively. I have mixed types, arrays and structures in the

union so that you can see the different ways that we can access the data. For a little-endian system (most PC
platforms), this union could be represented as:

The exact alignment and order of the members of a union in memory is platform dependant. Therefore be aware of
possible portability issues with this type of use.

Anonymous unions

In C++ we have the option to declare anonymous unions. If we declare a union without any name, the union will
be anonymous and we will be able to access its members directly by their member names. For example, look at the
difference between these two structure declarations:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

41

structure with regular union structure with anonymous union

struct {
 char title[50];
 char author[50];
 union {
 float dollars;
 int yens;

 } price;
} book;

struct {
 char title[50];
 char author[50];
 union {
 float dollars;
 int yens;

 };
} book;

The only difference between the two pieces of code is that in the first one we have given a name to the union

(price) and in the second one we have not. The difference is seen when we access the members dollars and
yens of an object of this type. For an object of the first type, it would be:

book.price.dollars
book.price.yens

whereas for an object of the second type, it would be:

book.dollars
book.yens

Once again I remind you that because it is a union and not a struct, the members dollars and yens occupy the
same physical space in the memory so they cannot be used to store two different values simultaneously. You can
set a value for price in dollars or in yens, but not in both.

Enumerations (enum)

Enumerations create new data types to contain something different that is not limited to the values fundamental
data types may take. Its form is the following:

enum enumeration_name {
 value1,
 value2,
 value3,
 .
 .
} object_names;

For example, we could create a new type of variable called color to store colors with the following declaration:

enum colors_t {black, blue, green, cyan, red, purple, yellow, white};

Notice that we do not include any fundamental data type in the declaration. To say it somehow, we have created a

whole new data type from scratch without basing it on any other existing type. The possible values that variables

of this new type color_t may take are the new constant values included within braces. For example, once the

colors_t enumeration is declared the following expressions will be valid:

colors_t mycolor;

mycolor = blue;
if (mycolor == green) mycolor = red;

Enumerations are type compatible with numeric variables, so their constants are always assigned an integer
numerical value internally. If it is not specified, the integer value equivalent to the first possible value is equivalent

to 0 and the following ones follow a +1 progression. Thus, in our data type colors_t that we have defined above,
black would be equivalent to 0, blue would be equivalent to 1, green to 2, and so on.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

42

We can explicitly specify an integer value for any of the constant values that our enumerated type can take. If the
constant value that follows it is not given an integer value, it is automatically assumed the same value as the
previous one plus one. For example:

enum months_t { january=1, february, march, april,
 may, june, july, august,
 september, october, november, december} y2k;

In this case, variable y2k of enumerated type months_t can contain any of the 12 possible values that go from

january to december and that are equivalent to values between 1 and 12 (not between 0 and 11, since we have
made january equal to 1).

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

43

C++ Standard Library

Input/Output with files
C++ provides the following classes to perform output and input of characters to/from files:

• ofstream: Stream class to write on files

• ifstream: Stream class to read from files

• fstream: Stream class to both read and write from/to files.

These classes are derived directly or indirectly from the classes istream, and ostream. We have already used

objects whose types were these classes: cin is an object of class istream and cout is an object of class ostream.
Therfore, we have already been using classes that are related to our file streams. And in fact, we can use our file

streams the same way we are already used to use cin and cout, with the only difference that we have to associate
these streams with physical files. Let's see an example:

// basic file operations
#include <iostream>
#include <fstream>
using namespace std;

int main () {
 ofstream myfile;
 myfile.open ("example.txt");
 myfile << "Writing this to a file.\n";
 myfile.close();
 return 0;
}

[file example.txt]
Writing this to a file

This code creates a file called example.txt and inserts a sentence into it in the same way we are used to do with

cout, but using the file stream myfile instead.

But let's go step by step:

Open a file

The first operation generally performed on an object of one of these classes is to associate it to a real file. This
procedure is known as to open a file. An open file is represented within a program by a stream object (an

instantiation of one of these classes, in the previous example this was myfile) and any input or output operation
performed on this stream object will be applied to the physical file associated to it.

In order to open a file with a stream object we use its member function open():

open (filename, mode);

Where filename is a null-terminated character sequence of type const char * (the same type that string literals

have) representing the name of the file to be opened, and mode is an optional parameter with a combination of the

following flags:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

44

ios::in Open for input operations.

ios::out Open for output operations.

ios::binary Open in binary mode.

ios::ate
Set the initial position at the end of the file.

If this flag is not set to any value, the initial position is the beginning of the file.

ios::app
All output operations are performed at the end of the file, appending the content to the current content

of the file. This flag can only be used in streams open for output-only operations.

ios::trunc
If the file opened for output operations already existed before, its previous content is deleted and

replaced by the new one.

All these flags can be combined using the bitwise operator OR (|). For example, if we want to open the file

example.bin in binary mode to add data we could do it by the following call to member function open():

ofstream myfile;
myfile.open ("example.bin", ios::out | ios::app | ios::binary);

Each one of the open() member functions of the classes ofstream, ifstream and fstream has a default mode that

is used if the file is opened without a second argument:

class default mode parameter

ofstream ios::out

ifstream ios::in

fstream ios::in | ios::out

For ifstream and ofstream classes, ios::in and ios::out are automatically and respectively assumed, even if a

mode that does not include them is passed as second argument to the open() member function.

The default value is only applied if the function is called without specifying any value for the mode parameter. If
the function is called with any value in that parameter the default mode is overridden, not combined.

File streams opened in binary mode perform input and output operations independently of any format
considerations. Non-binary files are known as text files, and some translations may occur due to formatting of
some special characters (like newline and carriage return characters).

Since the first task that is performed on a file stream object is generally to open a file, these three classes include

a constructor that automatically calls the open() member function and has the exact same parameters as this

member. Therefore, we could also have declared the previous myfile object and conducted the same opening

operation in our previous example by writing:

ofstream myfile ("example.bin", ios::out | ios::app | ios::binary);

Combining object construction and stream opening in a single statement. Both forms to open a file are valid and
equivalent.

To check if a file stream was successful opening a file, you can do it by calling to member is_open() with no
arguments. This member function returns a bool value of true in the case that indeed the stream object is
associated with an open file, or false otherwise:

if (myfile.is_open()) { /* ok, proceed with output */ }

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

45

Closing a file

When we are finished with our input and output operations on a file we shall close it so that its resources become

available again. In order to do that we have to call the stream's member function close(). This member function

takes no parameters, and what it does is to flush the associated buffers and close the file:

myfile.close();

Once this member function is called, the stream object can be used to open another file, and the file is available
again to be opened by other processes.

In case that an object is destructed while still associated with an open file, the destructor automatically calls the
member function close().

Text files

Text file streams are those where we do not include the ios::binary flag in their opening mode. These files are

designed to store text and thus all values that we input or output from/to them can suffer some formatting

transformations, which do not necessarily correspond to their literal binary value.

Data output operations on text files are performed in the same way we operated with cout:

// writing on a text file
#include <iostream>
#include <fstream>
using namespace std;

int main () {
 ofstream myfile ("example.txt");
 if (myfile.is_open())
 {
 myfile << "This is a line.\n";
 myfile << "This is another line.\n";
 myfile.close();

 }
 else cout << "Unable to open file";
 return 0;
}

[file example.txt]
This is a line.
This is another line.

Data input from a file can also be performed in the same way that we did with cin:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

46

// reading a text file
#include <iostream>
#include <fstream>
#include <string>
using namespace std;

int main () {
 string line;
 ifstream myfile ("example.txt");
 if (myfile.is_open())
 {
 while (! myfile.eof())
 {
 getline (myfile,line);
 cout << line << endl;

 }
 myfile.close();

 }

 else cout << "Unable to open file";

 return 0;
}

This is a line.
This is another line.

This last example reads a text file and prints out its content on the screen. Notice how we have used a new

member function, called eof() that returns true in the case that the end of the file has been reached. We have

created a while loop that finishes when indeed myfile.eof() becomes true (i.e., the end of the file has been

reached).

Checking state flags

In addition to eof(), which checks if the end of file has been reached, other member functions exist to check the

state of a stream (all of them return a bool value):

bad()

Returns true if a reading or writing operation fails. For example in the case that we try to write to a file

that is not open for writing or if the device where we try to write has no space left.

fail()

Returns true in the same cases as bad(), but also in the case that a format error happens, like when an

alphabetical character is extracted when we are trying to read an integer number.

eof()

Returns true if a file open for reading has reached the end.

good()

It is the most generic state flag: it returns false in the same cases in which calling any of the previous

functions would return true.

In order to reset the state flags checked by any of these member functions we have just seen we can use the
member function clear(), which takes no parameters.

get and put stream pointers

All i/o streams objects have, at least, one internal stream pointer:

ifstream, like istream, has a pointer known as the get pointer that points to the element to be read in the next

input operation.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

47

ofstream, like ostream, has a pointer known as the put pointer that points to the location where the next element

has to be written.

Finally, fstream, inherits both, the get and the put pointers, from iostream (which is itself derived from both

istream and ostream).

These internal stream pointers that point to the reading or writing locations within a stream can be manipulated
using the following member functions:

tellg() and tellp()
These two member functions have no parameters and return a value of the member type pos_type, which is an

integer data type representing the current position of the get stream pointer (in the case of tellg) or the put

stream pointer (in the case of tellp).

seekg() and seekp()
These functions allow us to change the position of the get and put stream pointers. Both functions are overloaded

with two different prototypes. The first prototype is:

seekg (position);
seekp (position);

Using this prototype the stream pointer is changed to the absolute position position (counting from the beginning

of the file). The type for this parameter is the same as the one returned by functions tellg and tellp: the
member type pos_type, which is an integer value.

The other prototype for these functions is:

seekg (offset, direction);
seekp (offset, direction);

Using this prototype, the position of the get or put pointer is set to an offset value relative to some specific point

determined by the parameter direction. offset is of the member type off_type, which is also an integer type.
And direction is of type seekdir, which is an enumerated type (enum) that determines the point from where

offset is counted from, and that can take any of the following values:

ios::beg offset counted from the beginning of the stream

ios::cur offset counted from the current position of the stream pointer

ios::end offset counted from the end of the stream

The following example uses the member functions we have just seen to obtain the size of a file:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

48

// obtaining file size
#include <iostream>
#include <fstream>
using namespace std;

int main () {
 long begin,end;
 ifstream myfile ("example.txt");
 begin = myfile.tellg();
 myfile.seekg (0, ios::end);
 end = myfile.tellg();
 myfile.close();
 cout << "size is: " << (end-begin) << " bytes.\n";
 return 0;
}

size is: 40 bytes.

Binary files

In binary files, to input and output data with the extraction and insertion operators (<< and >>) and functions like

getline is not efficient, since we do not need to format any data, and data may not use the separation codes used

by text files to separate elements (like space, newline, etc...).

File streams include two member functions specifically designed to input and output binary data sequentially:

write and read. The first one (write) is a member function of ostream inherited by ofstream. And read is a
member function of istream that is inherited by ifstream. Objects of class fstream have both members. Their

prototypes are:

write (memory_block, size);
read (memory_block, size);

Where memory_block is of type "pointer to char" (char*), and represents the address of an array of bytes where
the read data elements are stored or from where the data elements to be written are taken. The size parameter is

an integer value that specifies the number of characters to be read or written from/to the memory block.

// reading a complete binary file
#include <iostream>
#include <fstream>
using namespace std;

ifstream::pos_type size;
char * memblock;

int main () {
 ifstream file ("example.bin",
ios::in|ios::binary|ios::ate);
 if (file.is_open())
 {
 size = file.tellg();
 memblock = new char [size];
 file.seekg (0, ios::beg);
 file.read (memblock, size);
 file.close();

 cout << "the complete file content is in memory";

 delete[] memblock;
 }
 else cout << "Unable to open file";
 return 0;
}

the complete file content is in memory

In this example the entire file is read and stored in a memory block. Let's examine how this is done:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

49

First, the file is open with the ios::ate flag, which means that the get pointer will be positioned at the end of the

file. This way, when we call to member tellg(), we will directly obtain the size of the file. Notice the type we have
used to declare variable size:

ifstream::pos_type size;

ifstream::pos_type is a specific type used for buffer and file positioning and is the type returned by

file.tellg(). This type is defined as an integer type, therefore we can conduct on it the same operations we

conduct on any other integer value, and can safely be converted to another integer type large enough to contain
the size of the file. For a file with a size under 2GB we could use int:

int size;
size = (int) file.tellg();

Once we have obtained the size of the file, we request the allocation of a memory block large enough to hold the
entire file:

memblock = new char[size];

Right after that, we proceed to set the get pointer at the beginning of the file (remember that we opened the file
with this pointer at the end), then read the entire file, and finally close it:

file.seekg (0, ios::beg);
file.read (memblock, size);
file.close();

At this point we could operate with the data obtained from the file. Our program simply announces that the content
of the file is in memory and then terminates.

Buffers and Synchronization

When we operate with file streams, these are associated to an internal buffer of type streambuf. This buffer is a
memory block that acts as an intermediary between the stream and the physical file. For example, with an

ofstream, each time the member function put (which writes a single character) is called, the character is not
written directly to the physical file with which the stream is associated. Instead of that, the character is inserted in
that stream's intermediate buffer.

When the buffer is flushed, all the data contained in it is written to the physical medium (if it is an output stream)
or simply freed (if it is an input stream). This process is called synchronization and takes place under any of the
following circumstances:

• When the file is closed: before closing a file all buffers that have not yet been flushed are synchronized
and all pending data is written or read to the physical medium.

• When the buffer is full: Buffers have a certain size. When the buffer is full it is automatically
synchronized.

• Explicitly, with manipulators: When certain manipulators are used on streams, an explicit

synchronization takes place. These manipulators are: flush and endl.

• Explicitly, with member function sync(): Calling stream's member function sync(), which takes no

parameters, causes an immediate synchronization. This function returns an int value equal to -1 if the
stream has no associated buffer or in case of failure. Otherwise (if the stream buffer was successfully
synchronized) it returns 0.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

50

Object Oriented Programming

Classes (I)
A class is an expanded concept of a data structure: instead of holding only data, it can hold both data and

functions.

An object is an instantiation of a class. In terms of variables, a class would be the type, and an object would be the
variable.

Classes are generally declared using the keyword class, with the following format:

class class_name {
 access_specifier_1:
 member1;
 access_specifier_2:
 member2;
 ...
 } object_names;

Where class_name is a valid identifier for the class, object_names is an optional list of names for objects of this

class. The body of the declaration can contain members, that can be either data or function declarations, and
optionally access specifiers.

All is very similar to the declaration on data structures, except that we can now include also functions and
members, but also this new thing called access specifier. An access specifier is one of the following three

keywords: private, public or protected. These specifiers modify the access rights that the members following

them acquire:

• private members of a class are accessible only from within other members of the same class or from

their friends.

• protected members are accessible from members of their same class and from their friends, but also

from members of their derived classes.

• Finally, public members are accessible from anywhere where the object is visible.

By default, all members of a class declared with the class keyword have private access for all its members.

Therefore, any member that is declared before one other class specifier automatically has private access. For
example:

class CRectangle {
 int x, y;

 public:
 void set_values (int,int);
 int area (void);

 } rect;

Declares a class (i.e., a type) called CRectangle and an object (i.e., a variable) of this class called rect. This class
contains four members: two data members of type int (member x and member y) with private access (because
private is the default access level) and two member functions with public access: set_values() and area(), of
which for now we have only included their declaration, not their definition.

Notice the difference between the class name and the object name: In the previous example, CRectangle was the
class name (i.e., the type), whereas rect was an object of type CRectangle. It is the same relationship int and a
have in the following declaration:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

51

int a;

where int is the type name (the class) and a is the variable name (the object).

After the previous declarations of CRectangle and rect, we can refer within the body of the program to any of the

public members of the object rect as if they were normal functions or normal variables, just by putting the object's

name followed by a dot (.) and then the name of the member. All very similar to what we did with plain data

structures before. For example:

rect.set_values (3,4);
myarea = rect.area();

The only members of rect that we cannot access from the body of our program outside the class are x and y, since
they have private access and they can only be referred from within other members of that same class.

Here is the complete example of class CRectangle:

// classes example
#include <iostream>
using namespace std;

class CRectangle {
 int x, y;

 public:
 void set_values (int,int);
 int area () {return (x*y);}

};

void CRectangle::set_values (int a, int b) {
 x = a;
 y = b;
}

int main () {
 CRectangle rect;
 rect.set_values (3,4);
 cout << "area: " << rect.area();
 return 0;
}

area: 12

The most important new thing in this code is the operator of scope (::, two colons) included in the definition of
set_values(). It is used to define a member of a class from outside the class definition itself.

You may notice that the definition of the member function area() has been included directly within the definition of
the CRectangle class given its extreme simplicity, whereas set_values() has only its prototype declared within
the class, but its definition is outside it. In this outside declaration, we must use the operator of scope (::) to
specify that we are defining a function that is a member of the class CRectangle and not a regular global function.

The scope operator (::) specifies the class to which the member being declared belongs, granting exactly the same

scope properties as if this function definition was directly included within the class definition. For example, in the

function set_values() of the previous code, we have been able to use the variables x and y, which are private
members of class CRectangle, which means they are only accessible from other members of their class.

The only difference between defining a class member function completely within its class or to include only the
prototype and later its definition, is that in the first case the function will automatically be considered an inline
member function by the compiler, while in the second it will be a normal (not-inline) class member function, which
in fact supposes no difference in behavior.

Members x and y have private access (remember that if nothing else is said, all members of a class defined with

keyword class have private access). By declaring them private we deny access to them from anywhere outside the

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

52

class. This makes sense, since we have already defined a member function to set values for those members within

the object: the member function set_values(). Therefore, the rest of the program does not need to have direct

access to them. Perhaps in a so simple example as this, it is difficult to see an utility in protecting those two
variables, but in greater projects it may be very important that values cannot be modified in an unexpected way
(unexpected from the point of view of the object).

One of the greater advantages of a class is that, as any other type, we can declare several objects of it. For

example, following with the previous example of class CRectangle, we could have declared the object rectb in
addition to the object rect:

// example: one class, two objects
#include <iostream>
using namespace std;

class CRectangle {
 int x, y;

 public:
 void set_values (int,int);
 int area () {return (x*y);}

};

void CRectangle::set_values (int a, int b) {
 x = a;
 y = b;
}

int main () {
 CRectangle rect, rectb;
 rect.set_values (3,4);
 rectb.set_values (5,6);
 cout << "rect area: " << rect.area() << endl;
 cout << "rectb area: " << rectb.area() << endl;
 return 0;
}

rect area: 12
rectb area: 30

In this concrete case, the class (type of the objects) to which we are talking about is CRectangle, of which there
are two instances or objects: rect and rectb. Each one of them has its own member variables and member

functions.

Notice that the call to rect.area() does not give the same result as the call to rectb.area(). This is because
each object of class CRectangle has its own variables x and y, as they, in some way, have also their own function

members set_value() and area() that each uses its object's own variables to operate.

That is the basic concept of object-oriented programming: Data and functions are both members of the object. We
no longer use sets of global variables that we pass from one function to another as parameters, but instead we
handle objects that have their own data and functions embedded as members. Notice that we have not had to give

any parameters in any of the calls to rect.area or rectb.area. Those member functions directly used the data

members of their respective objects rect and rectb.

Constructors and destructors

Objects generally need to initialize variables or assign dynamic memory during their process of creation to become
operative and to avoid returning unexpected values during their execution. For example, what would happen if in

the previous example we called the member function area() before having called function set_values()? Probably
we would have gotten an undetermined result since the members x and y would have never been assigned a value.

In order to avoid that, a class can include a special function called constructor, which is automatically called

whenever a new object of this class is created. This constructor function must have the same name as the class,
and cannot have any return type; not even void.

We are going to implement CRectangle including a constructor:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

53

// example: class constructor
#include <iostream>
using namespace std;

class CRectangle {
 int width, height;

 public:
 CRectangle (int,int);
 int area () {return (width*height);}

};

CRectangle::CRectangle (int a, int b) {
 width = a;
 height = b;
}

int main () {
 CRectangle rect (3,4);
 CRectangle rectb (5,6);
 cout << "rect area: " << rect.area() << endl;
 cout << "rectb area: " << rectb.area() << endl;
 return 0;
}

rect area: 12
rectb area: 30

As you can see, the result of this example is identical to the previous one. But now we have removed the member

function set_values(), and have included instead a constructor that performs a similar action: it initializes the

values of x and y with the parameters that are passed to it.

Notice how these arguments are passed to the constructor at the moment at which the objects of this class are
created:

CRectangle rect (3,4);
CRectangle rectb (5,6);

Constructors cannot be called explicitly as if they were regular member functions. They are only executed when a
new object of that class is created.

You can also see how neither the constructor prototype declaration (within the class) nor the latter constructor
definition include a return value; not even void.

The destructor fulfills the opposite functionality. It is automatically called when an object is destroyed, either
because its scope of existence has finished (for example, if it was defined as a local object within a function and the
function ends) or because it is an object dynamically assigned and it is released using the operator delete.

The destructor must have the same name as the class, but preceded with a tilde sign (~) and it must also return no

value.

The use of destructors is especially suitable when an object assigns dynamic memory during its lifetime and at the
moment of being destroyed we want to release the memory that the object was allocated.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

54

// example on constructors and destructors
#include <iostream>
using namespace std;

class CRectangle {
 int *width, *height;

 public:
 CRectangle (int,int);
 ~CRectangle ();
 int area () {return (*width * *height);}

};

CRectangle::CRectangle (int a, int b) {
 width = new int;
 height = new int;
*width = a;
*height = b;

}

CRectangle::~CRectangle () {
 delete width;
 delete height;
}

int main () {
 CRectangle rect (3,4), rectb (5,6);
 cout << "rect area: " << rect.area() << endl;
 cout << "rectb area: " << rectb.area() << endl;
 return 0;
}

rect area: 12
rectb area: 30

Overloading Constructors

Like any other function, a constructor can also be overloaded with more than one function that have the same
name but different types or number of parameters. Remember that for overloaded functions the compiler will call
the one whose parameters match the arguments used in the function call. In the case of constructors, which are
automatically called when an object is created, the one executed is the one that matches the arguments passed on
the object declaration:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

55

// overloading class constructors
#include <iostream>
using namespace std;

class CRectangle {
 int width, height;

 public:
 CRectangle ();
 CRectangle (int,int);
 int area (void) {return (width*height);}

};

CRectangle::CRectangle () {
 width = 5;
 height = 5;
}

CRectangle::CRectangle (int a, int b) {
 width = a;
 height = b;
}

int main () {
 CRectangle rect (3,4);
 CRectangle rectb;
 cout << "rect area: " << rect.area() << endl;
 cout << "rectb area: " << rectb.area() << endl;
 return 0;
}

rect area: 12
rectb area: 25

In this case, rectb was declared without any arguments, so it has been initialized with the constructor that has no

parameters, which initializes both width and height with a value of 5.

Important: Notice how if we declare a new object and we want to use its default constructor (the one without
parameters), we do not include parentheses ():

CRectangle rectb; // right
CRectangle rectb(); // wrong!

Default constructor

If you do not declare any constructors in a class definition, the compiler assumes the class to have a default
constructor with no arguments. Therefore, after declaring a class like this one:

class CExample {
 public:
 int a,b,c;
 void multiply (int n, int m) { a=n; b=m; c=a*b; };

 };

The compiler assumes that CExample has a default constructor, so you can declare objects of this class by simply

declaring them without any arguments:

CExample ex;

But as soon as you declare your own constructor for a class, the compiler no longer provides an implicit default

constructor. So you have to declare all objects of that class according to the constructor prototypes you defined for
the class:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

56

class CExample {
 public:
 int a,b,c;
 CExample (int n, int m) { a=n; b=m; };
 void multiply () { c=a*b; };

 };

Here we have declared a constructor that takes two parameters of type int. Therefore the following object
declaration would be correct:

CExample ex (2,3);

But,

CExample ex;

Would not be correct, since we have declared the class to have an explicit constructor, thus replacing the default
constructor.

But the compiler not only creates a default constructor for you if you do not specify your own. It provides three
special member functions in total that are implicitly declared if you do not declare your own. These are the copy
constructor, the copy assignment operator, and the default destructor.

The copy constructor and the copy assignment operator copy all the data contained in another object to the data

members of the current object. For CExample, the copy constructor implicitly declared by the compiler would be

something similar to:

CExample::CExample (const CExample& rv) {
 a=rv.a; b=rv.b; c=rv.c;
 }

Therefore, the two following object declarations would be correct:

CExample ex (2,3);
CExample ex2 (ex); // copy constructor (data copied from ex)

Pointers to classes

It is perfectly valid to create pointers that point to classes. We simply have to consider that once declared, a class
becomes a valid type, so we can use the class name as the type for the pointer. For example:

CRectangle * prect;

is a pointer to an object of class CRectangle.

As it happened with data structures, in order to refer directly to a member of an object pointed by a pointer we can
use the arrow operator (->) of indirection. Here is an example with some possible combinations:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

57

// pointer to classes example
#include <iostream>
using namespace std;

class CRectangle {
 int width, height;

 public:
 void set_values (int, int);
 int area (void) {return (width * height);}

};

void CRectangle::set_values (int a, int b) {
 width = a;
 height = b;
}

int main () {
 CRectangle a, *b, *c;
 CRectangle * d = new CRectangle[2];
 b= new CRectangle;
 c= &a;
a.set_values (1,2);
b->set_values (3,4);
d->set_values (5,6);
d[1].set_values (7,8);
cout << "a area: " << a.area() << endl;
cout << "*b area: " << b->area() << endl;
cout << "*c area: " << c->area() << endl;
cout << "d[0] area: " << d[0].area() << endl;
cout << "d[1] area: " << d[1].area() << endl;
delete[] d;
delete b;
return 0;

}

a area: 2
*b area: 12
*c area: 2
d[0] area: 30
d[1] area: 56

Next you have a summary on how can you read some pointer and class operators (*, &, ., ->, []) that appear in
the previous example:

expression can be read as

*x pointed by x

&x address of x

x.y member y of object x

x->y member y of object pointed by x

(*x).y member y of object pointed by x (equivalent to the previous one)

x[0] first object pointed by x

x[1] second object pointed by x

x[n] (n+1)th object pointed by x

Be sure that you understand the logic under all of these expressions before proceeding with the next sections. If
you have doubts, read again this section and/or consult the previous sections about pointers and data structures.

Classes defined with struct and union

Classes can be defined not only with keyword class, but also with keywords struct and union.

The concepts of class and data structure are so similar that both keywords (struct and class) can be used in C++

to declare classes (i.e. structs can also have function members in C++, not only data members). The only

difference between both is that members of classes declared with the keyword struct have public access by
default, while members of classes declared with the keyword class have private access. For all other purposes
both keywords are equivalent.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

58

The concept of unions is different from that of classes declared with struct and class, since unions only store one
data member at a time, but nevertheless they are also classes and can thus also hold function members. The
default access in union classes is public.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

59

Classes (II)

Overloading operators

C++ incorporates the option to use standard operators to perform operations with classes in addition to with
fundamental types. For example:

int a, b, c;
a = b + c;

This is obviously valid code in C++, since the different variables of the addition are all fundamental types.
Nevertheless, it is not so obvious that we could perform an operation similar to the following one:

struct {
 string product;
 float price;
} a, b, c;
a = b + c;

In fact, this will cause a compilation error, since we have not defined the behavior our class should have with
addition operations. However, thanks to the C++ feature to overload operators, we can design classes able to
perform operations using standard operators. Here is a list of all the operators that can be overloaded:

Overloadable operators

+ - * / = < > += -= *= /= << >>
<<= >>= == != <= >= ++ -- % & ^ ! |
~ &= ^= |= && || %= [] () , ->* -> new
delete new[] delete[]

To overload an operator in order to use it with classes we declare operator functions, which are regular functions
whose names are the operator keyword followed by the operator sign that we want to overload. The format is:

type operator sign (parameters) { /*...*/ }

Here you have an example that overloads the addition operator (+). We are going to create a class to store

bidimensional vectors and then we are going to add two of them: a(3,1) and b(1,2). The addition of two
bidimensional vectors is an operation as simple as adding the two x coordinates to obtain the resulting x coordinate
and adding the two y coordinates to obtain the resulting y. In this case the result will be (3+1,1+2) = (4,3).

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

60

// vectors: overloading operators example
#include <iostream>
using namespace std;

class CVector {
 public:
 int x,y;
 CVector () {};
 CVector (int,int);
 CVector operator + (CVector);

};

CVector::CVector (int a, int b) {
 x = a;
 y = b;
}

CVector CVector::operator+ (CVector param) {
 CVector temp;
 temp.x = x + param.x;
 temp.y = y + param.y;
 return (temp);
}

int main () {
 CVector a (3,1);
 CVector b (1,2);
 CVector c;
 c = a + b;
 cout << c.x << "," << c.y;
 return 0;
}

4,3

It may be a little confusing to see so many times the CVector identifier. But, consider that some of them refer to

the class name (type) CVector and some others are functions with that name (constructors must have the same

name as the class). Do not confuse them:

CVector (int, int); // function name CVector (constructor)
CVector operator+ (CVector); // function returns a CVector

The function operator+ of class CVector is the one that is in charge of overloading the addition operator (+). This
function can be called either implicitly using the operator, or explicitly using the function name:

c = a + b;
c = a.operator+ (b);

Both expressions are equivalent.

Notice also that we have included the empty constructor (without parameters) and we have defined it with an
empty block:

CVector () { };

This is necessary, since we have explicitly declared another constructor:

CVector (int, int);

And when we explicitly declare any constructor, with any number of parameters, the default constructor with no

parameters that the compiler can declare automatically is not declared, so we need to declare it ourselves in order
to be able to construct objects of this type without parameters. Otherwise, the declaration:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

61

CVector c;

included in main() would not have been valid.

Anyway, I have to warn you that an empty block is a bad implementation for a constructor, since it does not fulfill
the minimum functionality that is generally expected from a constructor, which is the initialization of all the

member variables in its class. In our case this constructor leaves the variables x and y undefined. Therefore, a
more advisable definition would have been something similar to this:

CVector () { x=0; y=0; };

which in order to simplify and show only the point of the code I have not included in the example.

As well as a class includes a default constructor and a copy constructor even if they are not declared, it also

includes a default definition for the assignment operator (=) with the class itself as parameter. The behavior which

is defined by default is to copy the whole content of the data members of the object passed as argument (the one
at the right side of the sign) to the one at the left side:

CVector d (2,3);
CVector e;
e = d; // copy assignment operator

The copy assignment operator function is the only operator member function implemented by default. Of course,
you can redefine it to any other functionality that you want, like for example, copy only certain class members or
perform additional initialization procedures.

The overload of operators does not force its operation to bear a relation to the mathematical or usual meaning of

the operator, although it is recommended. For example, the code may not be very intuitive if you use operator +
to subtract two classes or operator== to fill with zeros a class, although it is perfectly possible to do so.

Although the prototype of a function operator+ can seem obvious since it takes what is at the right side of the

operator as the parameter for the operator member function of the object at its left side, other operators may not
be so obvious. Here you have a table with a summary on how the different operator functions have to be declared
(replace @ by the operator in each case):

Expression Operator Member function Global function

@a + - * & ! ~ ++ -- A::operator@() operator@(A)

a@ ++ -- A::operator@(int) operator@(A,int)

a@b + - * / % ^ & | < > == != <= >= << >> && || , A::operator@ (B) operator@(A,B)

a@b = += -= *= /= %= ^= &= |= <<= >>= [] A::operator@ (B) -

a(b, c...) () A::operator() (B, C...) -

a->x -> A::operator->() -

Where a is an object of class A, b is an object of class B and c is an object of class C.

You can see in this panel that there are two ways to overload some class operators: as a member function and as a
global function. Its use is indistinct, nevertheless I remind you that functions that are not members of a class
cannot access the private or protected members of that class unless the global function is its friend (friendship is
explained later).

The keyword this

The keyword this represents a pointer to the object whose member function is being executed. It is a pointer to

the object itself.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

62

One of its uses can be to check if a parameter passed to a member function is the object itself. For example,

// this
#include <iostream>
using namespace std;

class CDummy {
 public:
 int isitme (CDummy& param);

};

int CDummy::isitme (CDummy& param)
{
 if (¶m == this) return true;
 else return false;
}

int main () {
 CDummy a;
 CDummy* b = &a;
 if (b->isitme(a))
 cout << "yes, &a is b";

 return 0;
}

yes, &a is b

It is also frequently used in operator= member functions that return objects by reference (avoiding the use of

temporary objects). Following with the vector's examples seen before we could have written an operator= function
similar to this one:

CVector& CVector::operator= (const CVector& param)
{
 x=param.x;
 y=param.y;
 return *this;
}

In fact this function is very similar to the code that the compiler generates implicitly for this class if we do not

include an operator= member function to copy objects of this class.

Static members

A class can contain static members, either data or functions.

Static data members of a class are also known as "class variables", because there is only one unique value for all
the objects of that same class. Their content is not different from one object of this class to another.

For example, it may be used for a variable within a class that can contain a counter with the number of objects of
that class that are currently allocated, as in the following example:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

63

// static members in classes
#include <iostream>
using namespace std;

class CDummy {
 public:
 static int n;
 CDummy () { n++; };
 ~CDummy () { n--; };

};

int CDummy::n=0;

int main () {
 CDummy a;
 CDummy b[5];
 CDummy * c = new CDummy;
 cout << a.n << endl;
 delete c;
 cout << CDummy::n << endl;
 return 0;
}

7
6

In fact, static members have the same properties as global variables but they enjoy class scope. For that reason,

and to avoid them to be declared several times, we can only include the prototype (its declaration) in the class
declaration but not its definition (its initialization). In order to initialize a static data-member we must include a
formal definition outside the class, in the global scope, as in the previous example:

int CDummy::n=0;

Because it is a unique variable value for all the objects of the same class, it can be referred to as a member of any
object of that class or even directly by the class name (of course this is only valid for static members):

cout << a.n;
cout << CDummy::n;

These two calls included in the previous example are referring to the same variable: the static variable n within
class CDummy shared by all objects of this class.

Once again, I remind you that in fact it is a global variable. The only difference is its name and possible access
restrictions outside its class.

Just as we may include static data within a class, we can also include static functions. They represent the same:
they are global functions that are called as if they were object members of a given class. They can only refer to
static data, in no case to non-static members of the class, as well as they do not allow the use of the keyword

this, since it makes reference to an object pointer and these functions in fact are not members of any object but

direct members of the class.

