Q1: Implement the following Boolean functions using 8x4 ROM

$$W(a,b,c)=\sum(0, 1, 3, 5, 7), X(a,b,c)=\sum(0, 2, 4, 5), Y(a,b,c)=\sum(1, 2, 4, 7),$$

$$Z(a,b,c)=\sum (0, 3, 5, 6, 7).$$
 (4 Marks)

Q2: Implement a Full Adder, using **two** 4x1 Multiplexers (connect **x** and **y** as Selection lines). (6 Marks)

Q3: For the following state diagram use this state assignments, design a system using D flip flops. (10 Marks)

q	q_1	q_2
\boldsymbol{A}	0	0
В	1	1
\overline{C}	1	0
D	0	1

Q1: Implement the following Boolean functions using 8x4 ROM

$$W(a,b,c)=\sum(0, 1, 3, 5, 7), X(a,b,c)=\sum(0, 2, 4, 5), Y(a,b,c)=\sum(1, 2, 4, 7),$$

$$Z(a,b,c)=\sum (0, 3, 5, 6, 7).$$
 (4 Marks)

Q2: Implement a Full Adder, using **two** 4x1 Multiplexers (connect **x** and **y** as Selection lines). (6 Marks)

Q3: For the following state diagram use this state assignments, design a system using **D** flip flops. (10 Marks)

q	q_1	q_2
\overline{A}	0	0
\overline{B}	1	1
\overline{C}	1	0
\overline{D}	0	1

The Data at address 2 is 0110

For S (Sum) =
$$\sum (1.2, 4.7)$$

 $I_0 = \overline{X} \overline{Y}$, $I_1 = \overline{X} \overline{Y}$
 $I_2 = \overline{X} \overline{Y}$, $I_3 = \overline{X} \overline{Y}$
 $\overline{Z} = \overline{X} \overline{Y}$, $\overline{Z} = \overline{X} \overline{Y}$
 $\overline{Z} = \overline{X} \overline{Y}$, $\overline{Z} = \overline{X} \overline{Y}$
 $\overline{Z} = \overline{Z} = \overline{Z}$

