Section 8.7 Sequential Binary Multiplier 373

the multiplier is stored in register @, and the partial product is formed in register A and stored
in A and Q. A parallel adder adds the contents of register B to register A. The C flip-flop stores
the carry after the addition. The counter P is initially set to hold a binary number equal to the
number of bits in the multiplier. This counter is decremented after the formation of each par-
tial product. When the content of the counter reaches zero, the product is formed in the dou-
ble register A and Q, and the process stops. The control logic stays in an initial state until Starz
becomes 1. The system then performs the multiplication. The sum of A and B forms the n most
significant bits of the partial product, which is transferred to A. The output carry from the ad-
dition, whether 0 or 1, is transferred to C. Both the partial product in A and the multiplier in
Q are shifted to the right. The least significant bit of A is shifted into the most significant po-
sition of Q, the carry from C is shifted into the most significant position of A, and 0 is shift-
ed into C. After the shift-right operation, one bit of the partial product is transferred into Q
while the multiplier bits in Q are shifted one position to the right. In this manner, the least
significant bit of register Q, designated by Qf0], holds the bit of the multiplier that must be
inspected next. The control logic determines whether to add or not on the basis of this input
bit. The control logic also receives a signal, Zero, from a circuit that checks counter P for zero.
Q/[0] and Zero are status inputs for the control unit. The input signal Start is an external con-
trol input. The outputs of the control logic launch the required operations in the registers of
the datapath unit.

The interface between the controller and the datapath consists of the status signals and the
output signals of the controller. The control signals govern the synchronous register operations
of the datapath. Signal Load_regs loads the internal registers of the datapath, Shift_regs causes
the shift register to shift, Add_regs forms the sum of the multiplicand and register A, and
Decr_P decrements the counter. The controller also forms output Ready to signal to the host
environment that the machine is ready to multiply. The contents of the register holding the
product vary during execution, so it is useful to have a signal indicating that its contents are
valid. Note, again, that the state of the control is not an interface signal between the control unit
and the datapath. Only the signals needed to control the datapath are included in the interface.
Putting the state in the interface would require a decoder in the datapath, and require a wider
and more active bus than the control signals alone. Not good.

ASMD Chart

The ASMD chart for the binary multiplier is shown in Fig. 8.15. The intermediate form in
Fig. 8.15(a) annotates the ASM chart of the controller with the register operations, and the
completed chart in Fig. 8.15(b) identifies the Moore and Mealy outputs of the controller.
Initially, the multiplicand is in B and the multiplier in Q. As long as the circuit is in the ini-
tial state and Start = 0, no action occurs and the system remains in state S_idle with Ready
asserted. The multiplication process is launched when Srart = 1. Then, (1) control goes to
state S_add, (2) register A and carry flip-flop C are cleared to 0, (3) registers B and Q are
loaded with the multiplicand and the multiplier, respectively, and (4) the sequence counter
P is set to a binary number »n, equal to the number of bits in the multiplier. In state §_add,
the multiplier bit in Q[0] is checked, and if it is equal to 1, the multiplicand in B is added to
the partial product in A. The carry from the addition is transferred to C. The partial product



374

Chapter 8 Design at the Register Transfer Level

reset_b

A<=0

C<=0

B <= Multiplicand
Q <= Multiplier
P <= m_size

P <= P-1 Decrement counter

[CA)<=A+B

Add multiplicand
to shifted sum

[Cl A, Q} <= {C, A, Q} >>1

17-bit register shifts to the
right by one bit

(a)

FIGURE 8.15
ASMD chart for binary multiplier

reset_b

A<=0

cC<=0

B <= Muliiplicand
Q <= Multplier

P <= m_size

P<=P-1

[CAQl<=[|CAQ>>1

in A and C is left unchanged if Q/0] = 0. The counter P is decremented by 1 regardless of
the value of Q/0], so Decr_P is formed in state S_add as a Moore output of the controller.
In both cases, the next state is S_shift. Registers C, A, and Q are combined into one composite
register CAQ, denoted by the concatenation {C, A, 0}, and its contents are shifted once to
the right to obtain a new partial product. This shift operation is symbolized in the flowchart
with the Verilog logical right-shift operator, >>. It is equivalent to the following statement

in register transfer notation:

Shift right CAQ, C <0



376 Chapter 8 Design at the Register Transfer Level

to parallel load a binary constant. The C flip-flop must be designed to accept the input carry
and have a synchronous clear. Registers B and Q need a parallel load capability in order to re-
ceive the multiplicand and multiplier prior to the start of the multiplication process.

8.8 CONTROL LOGIC

The design of a digital system can be divided into two parts: the design of the register trans-
fers in the datapath unit and the design of the control logic of the control unit. The control

logic is a finite state machine; its Mealy- and Moore-type outputs control the operations of the
datapath. The inputs to the control unit are the primary (external) inputs and the internal sta-
tus signals fed back from the datapath to the controller. The design of the system can be syn-
thesized from an RTL description derived from the ASMD chart. Alternatively, a manual design
must derive the logic governing the inputs to the flip-flops holding the state of the controller.
The information needed to form the state diagram of the controller is already contained in the
ASMD chart, since the rectangular blocks that designate state boxes are the states of the sequen-
tial circuit. The diamond-shaped blocks that designate decision boxes determine the logical con-
ditions for the next state transition in the state diagram.

As an example, the control state diagram for the binary multiplier developed in the previ-
ous section is shown in Fig. 8.16(a). The information for the diagram is taken directly from the

Zero = |

Start = 0

Zero =10
(a)
State Transition Register Operations
From To
S_idle Initial state
S_idle S_add A<=0,C<=0,P<=dp_width
S_add S_shift P<=pP-1
if (Q[0])then(A<=A + B,C<=C,,)
S_shift shift right [CAQ), C <=0
(b)
FIGURE 8.16

Control specifications for binary multiplier



380

Chapter 8 Design at the Register Transfer Level

number of states and inputs is much larger. In general, the application of the classical method

requires an excessive amount of work to obtain the simplified input equations for the flip-flops
and is prone to error. The design can be simplified if we take into consideration the fact that

the decoder outputs are available for use in the design. Instead of using flip-flop outputs as the
present-state conditions, we use the outputs of the decoder to indicate the preseni-state condi-
tion of the sequential circuit. Moreover, instead of using maps to simplify the flip-flop equa-
tions, we can obtain them directly by inspection of the state table. For example, from the
next-state conditions in the state table, we find that the next state of G, is equal to 1 when the
present state is S_add and is equal to 0 when the present state is S_idle or S_shift. These con-

ditions can be specified by the equation
DG, =T,

where Dg; is the D input of flip-flop G,. Similarly, the D input of Gy is
Dgo = Ty Start + T Zero'

When deriving input equations by inspection from the state table, we cannot be sure that the
Boolean functions have been simplified in the best possible way. (Synthesis tools take care of
this detail automatically.) In general, it is advisable to analyze the circuit to ensure that the
equations derived do indeed produce the required state transitions.

The logic diagram of the control circuit is drawn in Fig. 8.17(b). It consists of a register with
two flip-flops G, and G and a 2 X 4 decoder. The outputs of the decoder are used to gener-
ate the inputs to the next-state logic as well as the control outputs. The outputs of the controller
should be connected to the datapath to activate the required register operations.

One-Hot Design (One Flip-Flop per State)

Another method of control logic design is the one-hot assignment, which results in a sequen-
tial circuit with one flip-flop per state. Only one of the flip-flops contains a 1 at any time; all
others are reset to 0. The single 1 propagates from one flip-flop to another under the control of
decision logic. In such a configuration, each flip-flop represents a state that is present only
when the control bit is transferred to it.

This method uses the maximum number of flip-flops for the sequential circuit. For exam-
ple, a sequential circuit with 12 states requires a minimum of four flip-flops. By contrast, with
the method of one flip-flop per state, the circuit requires 12 flip-flops, one for each state. At
first glance, it may seem that this method would increase system cost, since more flip-flops are
used. But the method offers some advantages that may not be apparent. One advantage is the
simplicity with which the logic can be designed by inspection of the ASMD chart or the state
diagram. No state or excitation tables are needed if D-type flip-flops are employed. The one-
hot method offers a savings in design effort, an increase in operational simplicity, and a pos-
sible decrease in the total number of gates, since a decoder is not needed.

The design procedure will be demonstrated by obtaining the control circuit specified by the state
diagram of Fig. 8.16(a). Since there are three states in the state diagram, we choose three D flip-
flops and label their outputs Gy, Gy, and G», corresponding to S_idle, S_add, and S_shift, respec-
tively. The input equations for setting each flip-flop to | are determined from the present state and



Section 8.8 Control Logic 381

the input conditions along the corresponding directed lines going into the state. For example, Dgg,
the input to flip-flop Gy, is set to 1 if the machine is in state G, and Start is not asserted, or if the
machine is in state G, and Zero is asserted. These conditions are specified by the input equation:

Dgo = Gq Start’ + G, Zero

In fact, the condition for setting a flip-flop to 1 is obtained directly from the state diagram,
from the condition specified in the directed lines going into the corresponding flip-flop state
ANDed with the previous flip-flop state. If there is more than one directed line going into a state,
all conditions must be ORed. Using this procedure for the other three flip-flops, we obtain the
remaining input equations:

Dg, = Gy Start + G, Zero'
Dg, = G,

The logic diagram of the one-hot controller (with one flip-flop per state) is shown in Fig. 8.18.
The circuit consists of three D flip-flops labeled Gy, through G, together with the associated gates

Ready
Start 7 Load_regs
Qo] —
Zero
Shifi_regs
clock
reset_b
FIGURE 8.18

Logic diagram for one-hot state controller



382

Chapter 8 Design at the Register Transfer Level

specified by the input equations. Initially, flip-flop G must be set to 1 and all other flip-flops
must be reset to 0, so that the flip-flop representing the initial state is enabled. This can be done
by using an asynchronous preset on flip-flop G and an asynchronous clear for the other flip-
flops. Once started, the controller with one flip-flop per state will propagate from one state to
the other in the proper manner. Only one flip-flop will be set to 1 with each clock edge: all
others are reset to 0, because their D inputs are equal to 0.

8.9 HDL DESCRIPTION OF BINARY MULTIPLIER

A second example of an HDL description of an RTL design is given in HDL Example 8.5. The
example is of the binary multiplier designed in Section 8.7. For simplicity, the entire descrip-
tion is “flattened” and encapsulated in one module, Comments will identify the controller and
the datapath. The first part of the description declares all of the inputs and outputs as specified
in the block diagram of Fig. 8.14(a). The machine will be parameterized for a five-bit datapath
to enable a comparison between its simulation data and the result of the multiplication with the
numerical example listed in Table 8.5. The same model can be used for a datapath having a
different size merely by changing the value of the parameters. The second part of the descrip-
tion declares all registers in the controller and the datapath, as well as the one-hot encoding of
the states. The third part specifies implicit combinational logic (continuous assignment state-
ments) for the concatenated register CAQ, the Zero status signal, and the Ready output signal.
The continuous assignments for Zero and Ready are accomplished by assigning a Boolean ex-
pression to their wire declarations. The next section describes the control unit. using a single
edge-sensitive cyclic behavior to describe the state transitions, and a level-sensitive cyclic be-
havior to describe the combinational logic for the next state and the outputs. Again, note that
default assignments are made to next_state, Load_regs, Decr_P, Add_regs, and Shift_regs.
The subsequent logic of the case statement assigns their value by exception. The state transi-
tions and the output logic are written directly from the ASMD chart of Fig. 8.15(b).

The datapath unit describes the register operations within a separate edge-sensitive cyclic
behavior. (For clarity, separate cyclic behaviors are used: we do not mix the description of the
datapath with the description of the controller.) Each control input is decoded and is used to
specify the associated operations. The addition and subtraction operations will be implement-
ed in hardware by combinational logic. Signal Load_regs causes the counter and the other reg-
isters to be loaded with their initial values, etc. Because the controller and datapath have been
partitioned into separate units, the control signals completely specify the behavior of the data-
path; explicit information about the state of the controller is not needed and is not made avail-
able to the datapath unit.

The next-state logic of the controller includes a default case item to direct a synthesis tool
to map any of the unused codes to S_idle. The default case item and the default assignments
preceding the case statement ensure that the machine will recover if it somehow enters an un-
used state. They also prevent unintentional synthesis of latches. (Remember. a synthesis tool
will synthesize latches when what was intended to be combinational logic in fact fails to com-
pletely specify the input—output function of the logic.)



