
6 TheFrequency-Response
DesignMethod

A Perspective on the Frequency-Response
Design Method

The design of feedback control systems in industry is probably accom-
plished using frequency-response methods more often than any other.
Frequency-response design is popular primarily because it provides good
designs in the face of uncertainty in the plant model. For example, for
systems with poorly known or changing high-frequency resonances, we
can temper their feedback compensation to alleviate the effects of those
uncertainties. Currently, this tempering is carried out more easily using
frequency-response design than with any other method.

Another advantage of using frequency response is the ease with which
experimental information can be used for design purposes. Raw measure-
ments of the output amplitude and phase of a plant undergoing a sinu-
soidal input excitation are sufficient to design a suitable feedback control.
No intermediate processing of the data (such as finding poles and zeros
or determining system matrices) is required to arrive at the system model.
The wide availability of computers has rendered this advantage less im-
portant now than it was years ago; however, for relatively simple systems,
frequency response is often still the most cost-effective design method.
The method is most effective for systems that are stable in open loop.

1 Photo courtesy of Cirrus Design Corporation.
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Yet another advantage is that it is the easiest method to use for de-
signing compensation. A simple rule can be used to provide reasonable
designs with a minimum of trial and error.

Although the underlying theory is somewhat challenging and requires
a rather broad knowledge of complex variables, the methodology of
frequency-response design is easy, and the insights gained by learning
the theory are well worth the struggle.

Chapter Overview

The chapter opens with a discussion of how to obtain the frequency re-
sponse of a system by analyzing its poles and zeros. An important exten-
sion of this discussion is how to use Bode plots to graphically display the
frequency response. In Sections 6.2 and 6.3 we discuss stability briefly,
and then in more depth the use of the Nyquist stability criterion. In Sec-
tions 6.4 through 6.6 we introduce the notion of stability margins, discuss
Bode’s gain–phase relationship, and study the closed-loop frequency re-
sponse of dynamic systems. The gain–phase relationship suggests a very
simple rule for compensation design: Shape the frequency response mag-
nitude so that it crosses magnitude 1 with a slope of −1. As with our
treatment of the root-locus method, we describe how adding dynamic
compensation can adjust the frequency response (Section 6.7) and im-
prove system stability and/or error characteristics. We also show how to
implement compensation digitally in an example.

Several alternate methods of displaying frequency-response data have
been developed over the years; we present two of them—the Nichols
chart and the inverse Nyquist plot—in optional Section 6.8. In optional
Section 6.9 we discuss issues of sensitivity that relate to the frequency
response, including optional material on sensitivity functions and stabil-
ity robustness. The final section on analyzing time delays in the system
represents additional, somewhat advanced material that may also be con-
sidered optional.
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316 Chapter 6 The Frequency-Response Design Method

6.1 Frequency Response

The basic concepts of frequency response were discussed in Section 3.1.2. In
this section we will review those ideas and extend the concepts for use in control
system design.

A linear system’s response to sinusoidal inputs—called the system’s
frequency response—can be obtained from knowledge of its pole and zeroFrequency response
locations.

To review the ideas, we consider a system described by

Y (s)

U(s)
= G(s),

where the input u(t) is a sine wave with an amplitude A:

u(t) = A sin(ωot)1(t).

This sine wave has a Laplace transform

U(s) = Aωo

s2 + ω2
o

.

With zero initial conditions, the Laplace transform of the output is

Y (s) = G(s)
Aωo

s2 + ω2
o

. (6.1)

A partial-fraction expansion of Eq. (6.1) [assuming that the poles of G(s) arePartial fraction expansion
distinct] will result in an equation of the form

Y (s) = α1

s − p1
+ α2

s − p2
+ · · · + αn

s − pn

+ αo

s + jωo

+ α∗
o

s − jωo

, (6.2)

where p1, p2, . . . , pn are the poles of G(s), αo would be found by performing
the partial-fraction expansion, and α∗

o is the complex conjugate of αo . The time
response that corresponds to Y (s) is

y(t) = α1e
p1t + α2e

p2t · · · + αne
pnt + 2|αo| sin(ωot + φ), t ≥ 0, (6.3)

where

φ = tan−1
[

Im(αo)

Re(αo)

]
.
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Section 6.1 Frequency Response 317

Figure 6.1
Response of
G(s) = 1/(s + 1) to
sin 10t

0.20

0.15

0.10

0.05

0

�0.05

�0.10

O
ut

pu
t, 

y

10 2 3 4 5 6 7 8 9 10

Time (sec)

If all the poles of the system represent stable behavior (the real parts of
p1, p2, . . . , pn < 0), the natural unforced response will die out eventually,
and therefore the steady-state response of the system will be due solely to
the sinusoidal term in Eq. (6.3), which is caused by the sinusoidal excitation.
Example 3.3 determined the response of the system G(s) = 1/(s + 1) to the
input u = sin 10t and showed that response in Fig. 3.2, which is repeated here
as Fig. 6.1. It shows that e−t , the natural part of the response associated with
G(s), disappears after several time constants, and the pure sinusoidal response
is essentially all that remains. Example 3.4 showed that the remaining sinusoidal
term in Eq. (6.3) can be expressed as

y(t) = AM sin(ωot + φ), (6.4)

where

M = |G(jωo)| = |G(s)|s=jωo =
√

{Re[G(jωo)]}2 + {Im[G(jωo)]}2, (6.5)

φ = tan−1
[

Im[G(jωo)]
Re[G(jωo)]

]
= � G(jωo). (6.6)

In polar form,
G(jωo) = Mejφ. (6.7)

Equation (6.4) shows that a stable system with transfer function G(s) excited
by a sinusoid with unit amplitude and frequency ωo will, after the response has
reached steady-state, exhibit a sinusoidal output with a magnitude M(ωo) and
a phase φ(ωo) at the frequency ωo . The facts that the output y is a sinusoidFrequency response plot
with the same frequency as the input u and that the magnitude ratio M and
phase φ of the output are independent of the amplitude A of the input are a
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318 Chapter 6 The Frequency-Response Design Method

consequence of G(s) being a linear constant system. If the system being excited
were a nonlinear or time-varying system, the output might contain frequencies
other than the input frequency, and the output–input ratio might be dependent
on the input magnitude.

More generally, the magnitude M is given by |G(jω)|, and the phase φ isMagnitude and phase
given by � [G(jω)]; that is, the magnitude and angle of the complex quantity
G(s) are evaluated with s taking on values along the imaginary axis (s = jω).
The frequency response of a system consists of these functions of frequency that
tell us how a system will respond to a sinusoidal input of any frequency. We
are interested in analyzing the frequency response not only because it will help
us understand how a system responds to a sinusoidal input, but also because
evaluating G(s) with s taking on values along the jω axis will prove to be
very useful in determining the stability of a closed-loop system. As we saw in
Chapter 3, the jω axis is the boundary between stability and instability; we will
see in Section 6.4 that evaluating G(jω) provides information that allows us to
determine closed-loop stability from the open-loop G(s).

EXAMPLE 6.1 Frequency-Response Characteristics of a Capacitor

Consider the capacitor described by the equation

i = C
dv

dt
,

where v is the input and i is the output. Determine the sinusoidal steady-state response
of the capacitor.

Solution. The transfer function of this circuit is

I (s)

V (s)
= G(s) = Cs,

so

G(jω) = Cjω.

Computing the magnitude and phase, we find that

M = |Cjω| = Cω and φ = � (Cjω) = 90◦.

For a unit-amplitude sinusoidal input v , the output i will be a sinusoid with magnitude
Cω , and the phase of the output will lead the input by 90◦ . Note that for this example
the magnitude is proportional to the input frequency while the phase is independent of
frequency.
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Section 6.1 Frequency Response 319

EXAMPLE 6.2 Frequency-Response Characteristics of a Lead Compensator

Recall from Chapter 5 [Eq. (5.88)] the transfer function of the lead compensation, which
is equivalent to

D(s) = K
T s + 1
αT s + 1

, α < 1. (6.8)

(a) Analytically determine its frequency-response characteristics and discuss what you
would expect from the result.

(b) Use MATLAB to plot D(jω) with K = 1, T = 1, and α = 0.1 for 0.1 ≤ ω ≤ 100,
and verify the features predicted from the analysis in (a).

Solution.

(a) Analytical evaluation: Substituting s = jω into Eq. (6.8), we get

D(jω) = K
Tjω + 1
αTjω + 1

.

From Eqs. (6.5) and (6.6) the amplitude is

M = |D| = |K|
√

1 + (ωT )2√
1 + (αωT )2

,

and the phase is given by

φ = � (1 + jωT ) − � (1 + jαωT )

= tan−1(ωT ) − tan−1(αωT ).

At very low frequencies the amplitude is just |K|, and at very high frequencies it
is |K/α|. Therefore, the amplitude increases as a function of frequency. The phase
is zero at very low frequencies and goes back to zero at very high frequencies. At
intermediate frequencies, evaluation of the tan−1(·) functions would reveal that φ

becomes positive. These are the general characteristics of lead compensation.

(b) Computer evaluation: A MATLAB script for frequency-response evaluation was
shown for Example 3.4. A similar script for the lead compensation is

num = [1 1];
den = [0.1 1];
sysD = tf(num,den);
[mag,phase,w] = bode(sysD); % computes magnitude, phase, and frequen-

cies over range of interest
loglog(w,mag)
semilogx(w,phase)

produces the frequency response magnitude and phase plots shown in Fig. 6.2.
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320 Chapter 6 The Frequency-Response Design Method

Figure 6.2
(a) Magnitude and (b) phase
for the lead compensation
in Example 6.2
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The analysis indicated that the low-frequency magnitude should be K(= 1)

and the high-frequency magnitude should be K/α(= 10), which are both verified
by the magnitude plot. The phase plot also verifies that the value approaches zero
at high and low frequencies and that the intermediate values are positive.

In the cases for which we do not have a good model of the system and wish
to determine the frequency-response magnitude and phase experimentally, we
can excite the system with a sinusoid varying in frequency. The magnitude M(ω)

is obtained by measuring the ratio of the output sinusoid to input sinusoid in
the steady-state at each frequency. The phase φ(ω) is the measured difference
in phase between input and output signals.2

A great deal can be learned about the dynamic response of a system from
knowledge of the magnitude M(ω) and the phase φ(ω) of its transfer function.
In the obvious case, if the signal is a sinusoid, then M and φ completely describe
the response. Furthermore, if the input is periodic, then a Fourier series can be
constructed to decompose the input into a sum of sinusoids, and again M(ω)

and φ(ω) can be used with each component to construct the total response. For
transient inputs, our best path to understanding the meaning of M and φ is to
relate the frequency response G(jω) to the transient responses calculated by
the Laplace transform. For example, in Fig. 3.16(b) we plotted the step response
of a system having the transfer function

G(s) = 1
(s/ωn)2 + 2ζ(s/ωn) + 1

, (6.9)

2 Agilent Technologies produces instruments called spectral analyzers that automate this exper-
imental procedure and greatly speed up the process.
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Section 6.1 Frequency Response 321

for various values of ζ . These transient curves were normalized with respect
to time as ωnt . In Fig. 6.3 we plot M(ω) and φ(ω) for these same values of
ζ to help us see what features of the frequency response correspond to the
transient-response characteristics. Specifically, Figs. 3.16(b) and 6.3 indicate
the effect of damping on system time response and the corresponding effect
on the frequency response. They show that the damping of the system can be
determined from the transient response overshoot or from the peak in the
magnitude of the frequency response (Fig. 6.3a). Furthermore, from the fre-
quency response, we see that ωn is approximately equal to the bandwidth—the
frequency where the magnitude starts to fall off from its low-frequency value.
(We will define bandwidth more formally in the next paragraph.) Therefore, the
rise time can be estimated from the bandwidth. We also see that the peak over-
shoot in frequency is approximately 1/2ζ for ζ < 0.5, so the peak overshoot in
the step response can be estimated from the peak overshoot in the frequency
response. Thus, we see that essentially the same information is contained in the
frequency-response curve as is found in the transient-response curve.

A natural specification for system performance in terms of frequency re-
sponse is the bandwidth, defined to be the maximum frequency at which theBandwidth
output of a system will track an input sinusoid in a satisfactory manner. By con-
vention, for the system shown in Fig. 6.4 with a sinusoidal input r , the bandwidth
is the frequency of r at which the output y is attenuated to a factor of 0.707 times
the input.3 Figure 6.5 depicts the idea graphically for the frequency response
of the closed-loop transfer function

Y (s)

R(s)

�= T(s) = KG(s)

1 + KG(s)
.

The plot is typical of most closed-loop systems in that (1) the output follows the
input [|T| ∼= 1] at the lower excitation frequencies, and (2) the output ceases
to follow the input [|T| < 1] at the higher excitation frequencies. The maxi-
mum value of the frequency-response magnitude is referred to as the resonant
peak Mr .

Bandwidth is a measure of speed of response and is therefore similar to
time-domain measures such as rise time and peak time or the s -plane measure
of dominant-root(s) natural frequency. In fact, if the KG(s) in Fig. 6.4 is such
that the closed-loop response is given by Fig. 6.3, we can see that the bandwidth
will equal the natural frequency of the closed-loop root (that is, ωBW = ωn for a
closed-loop damping ratio of ζ = 0.7). For other damping ratios, the bandwidth
is approximately equal to the natural frequency of the closed-loop roots, with
an error typically less than a factor of 2.

The definition of the bandwidth stated here is meaningful for systems that
have a low-pass filter behavior, as is the case for any physical control system. In
other applications the bandwidth may be defined differently. Also, if the ideal

3 If the output is a voltage across a 1� resistor, the power is v2 and when |v| = 0.707, the power
is reduced by a factor of 2. By convention, this is called the half-power point.
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322 Chapter 6 The Frequency-Response Design Method

Figure 6.3
(a) Magnitude and
(b) phase of Eq. (6.9)
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Figure 6.4
Simplified system definition Y�
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model of the system does not have a high-frequency roll-off (e.g., if it has an
equal number of poles and zeros), the bandwidth is infinite; however, this does
not occur in nature as nothing responds well at infinite frequencies.

In order to use the frequency response for control systems design, we need
to consider an efficient and meaningful form in which to make frequency-
response plots as well as find methods to relate the open-loop characteristics
of KG to the closed-loop characteristics of T(s). These are the concerns of
Section 6.1.1.

6.1.1 Bode Plot Techniques

Display of frequency response is a problem that has been studied for a long time.
Before computers, this was accomplished by hand; therefore, it was useful to
be able to accomplish this quickly. The most useful technique for hand plotting
was developed by H. W. Bode at Bell Laboratories between 1932 and 1942. This
technique allows plotting that is quick and yet sufficiently accurate for control
systems design. Most control systems designers now have access to computer
programs that diminish the need for hand plotting; however, it is still important
to develop good intuition so that you can quickly identify erroneous computer
results, and for this you need the ability to check results by hand.

The idea in Bode’s method is to plot magnitude curves using a logarithmic
scale and phase curves using a linear scale. This strategy allows us to plot a high-
order G(jω) by simply adding the separate terms graphically, as discussed in
Appendix B. This addition is possible because a complex expression with zero
and pole factors can be written in polar (or phasor) form as

G(jω) = �s1�s2

�s3�s4�s5
= r1e

jθ1r2e
jθ2

r3e
jθ3r4ejθ4r5e

jθ5
=

(
r1r2

r3r4r5

)
ej (θ1+θ2−θ3−θ4−θ5). (6.10)
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324 Chapter 6 The Frequency-Response Design Method

(The overhead arrow indicates a phasor.) Note from Eq. (6.10) that the phases
of the individual terms are added directly to obtain the phase of the compositeComposite plot from individual

terms expression, G(jω). Furthermore, because

|G(jω)| = r1r2

r3r4r5
,

it follows that

log10 |G(jω)| = log10 r1 + log10 r2 − log10 r3 − log10 r4 − log10 r5. (6.11)

We see that addition of the logarithms of the individual terms provides the log-
arithm of the magnitude of the composite expression. The frequency response
is typically presented as two curves; the logarithm of magnitude versus log ω ,
and the phase versus log ω . Together these two curves constitute a Bode plotBode plot
of the system. Because

log10 Mejφ = log10 M + jφ log10 e, (6.12)

we see that the Bode plot shows the real and imaginary parts of the logarithm
of G(jω). In communications it is standard to measure the power gain in deci-Decibel
bels (db):4

|G|db = 10 log10
P2

P1
. (6.13)

Here P1 and P2 are the input and output powers. Because power is proportional
to the square of the voltage, the power gain is also given by

|G|db = 20 log10
V2

V1
. (6.14)

Hence we can present a Bode plot as the magnitude in decibels versus log ω and
the phase in degrees versus log ω .5 In this book we give Bode plots in the form
log |G| versus log ω ; also, we mark an axis in decibels on the right-hand side of
the magnitude plot to give you the choice of working with the representation
you prefer. However, for frequency response plots, we are not actually plotting
power and use of Eq. (6.14) can be somewhat misleading. If the magnitude data
are derived in terms of log |G|, it is conventional to plot them on a log scale but
identify the scale in terms of |G| only (without “log”). If the magnitude data
are given in decibels, the vertical scale is linear such that each decade of |G|
represents 20 db.

4 Researchers at Bell Laboratories first defined the unit of power gain as a bel (named for Alexan-
der Graham Bell, the founder of the company). However, this unit proved to be too large, and
hence a decibel or db (1/10 of a bel) was selected as a more useful unit. The abbreviation dB is
also sometimes used; however, Bode used db and we choose to follow his lead.

5 Henceforth we will drop the base of the logarithm; it is understood to be 10.
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Section 6.1 Frequency Response 325

Advantages of Working with Frequency Response in Terms
of Bode Plots

1. Dynamic compensator design can be based entirely on Bode plots.Advantages of Bode plots

2. Bode plots can be determined experimentally.

3. Bode plots of systems in series (or tandem) simply add, which is quite
convenient.

4. The use of a log scale permits a much wider range of frequencies to be
displayed on a single plot than is possible with linear scales.

It is important for the control systems engineer to be able to hand-plot fre-
quency responses for several reasons: This skill not only allows the engineer to
deal with simple problems, but also to perform a sanity check on computer re-
sults for more complicated cases. Often approximations can be used to quickly
sketch the frequency response and deduce stability, as well as to determine the
form of the needed dynamic compensations. Finally, hand plotting is useful in
interpreting frequency-response data that have been generated experimentally.

In Chapter 5 we wrote the open-loop transfer function in the form

KG(s) = K
(s − z1)(s − z2) · · ·
(s − p1)(s − p2) · · · (6.15)

because it was the most convenient form for determining the degree of stability
from the root locus with respect to the gain K . In working with frequency
response, it is more convenient to replace s with jω and to write the transfer
functions in the Bode formBode form of the transfer

function

KG(jω) = Ko

(jωτ1 + 1)(jωτ2 + 1) · · ·
(jωτa + 1)(jωτb + 1) · · · (6.16)

because the gain Ko in this form is directly related to the transfer-function
magnitude at very low frequencies. In fact, for type 0 systems, Ko is the gain at
ω = 0 in Eq. (6.16) and is also equal to the DC gain of the system. Although
a straightforward calculation will convert a transfer function in the form of
Eq. (6.15) to an equivalent transfer function in the form of Eq. (6.16), note that
K and Ko will not usually have the same value in the two expressions.

Transfer functions can also be rewritten according to Eqs. (6.10) and (6.11).
As an example, suppose that

KG(jω) = Ko

jωτ1 + 1
(jω)2(jωτa + 1)

. (6.17)

Then

� KG(jω) = � Ko + � (jωτ1 + 1) − � (jω)2 − � (jωτa + 1) (6.18)
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326 Chapter 6 The Frequency-Response Design Method

and

log |KG(jω)| = log |Ko| + log |jωτ1 + 1| − log |(jω)2| − log |jωτa + 1|. (6.19)

In decibels, Eq. (6.19) becomes

|KG(jω)|db = 20 log |Ko| + 20 log |jωτ1 + 1| − 20 log |(jω)2|
− 20 log |jωτa + 1|. (6.20)

All transfer functions for the kinds of systems we have talked about so far
are composed of three classes of terms:Classes of terms of transfer

functions
1. Ko(jω)n

2. (jωτ + 1)±1

3.
[(

jω

ωn

)2 + 2ζ
jω

ωn
+ 1

]±1

First we will discuss the plotting of each individual term and how the terms
affect the composite plot including all the terms; then we will discuss how to
draw the composite curve.

1. Ko(jω)n BecauseClass 1: singularities at the
origin

log Ko|(jω)n| = log Ko + n log |jω|,

the magnitude plot of this term is a straight line with a slope
n× (20 db/decade). Examples for different values of n are shown in Fig. 6.6.
Ko(jω)n is the only class of term that affects the slope at the lowest fre-
quencies, because all other terms are constant in that region. The easiest
way to draw the curve is to locate ω = 1 and plot log Ko at that frequency.
Then draw the line with slope n through that point.6 The phase of (jω)n is
φ = n × 90◦ ; it is independent of frequency and is thus a horizontal line:
−90◦ for n = −1, −180◦ for n = −2, +90◦ for n = +1, and so forth.

2. jωτ + 1 The magnitude of this term approaches one asymptote at veryClass 2: first-order term
low frequencies and another asymptote at very high frequencies:

(a) For ωτ 	 1, jωτ + 1 ∼= 1.

(b) For ωτ 
 1, jωτ + 1 ∼= jωτ .

6 In decibels the slopes are n × 20 db per decade or n × 6 db per octave (an octave is a change
in frequency by a factor of 2).
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Figure 6.6
Magnitude of (jω)n
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If we call ω = 1/τ the break point, then we see that below the breakBreak point
point the magnitude curve is approximately constant (= 1), while above
the break point the magnitude curve behaves approximately like the class 1
term Ko(jω). The example plotted in Fig. 6.7, G(s) = 10s + 1, shows how
the two asymptotes cross at the break point and how the actual magnitude
curve lies above that point by a factor of 1.4 (or +3 db). (If the term were in
the denominator, it would be below the break point by a factor of 0.707 or
−3 db.) Note that this term will have only a small effect on the composite
magnitude curve below the break point, because its value is equal to 1 (=
0 db) in this region. The slope at high frequencies is +1 (or +20 db/decade).
The phase curve can also be easily drawn by using the following low- and
high-frequency asymptotes:

(a) For ωτ 	 1, � 1 = 0◦ .

(b) For ωτ 
 1, � jωτ = 90◦ .

(c) For ωτ ∼= 1, � (jωτ + 1) ∼= 45◦ .

Figure 6.7
Magnitude plot for
jωτ + 1; τ = 10
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Figure 6.8
Phase plot for jωτ + 1;
τ = 10
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For ωτ ∼= 1, the � (jω+1) curve is tangent to an asymptote going from 0◦ at
ωτ = 0.2 to 90◦ at ωτ = 5, as shown in Fig. 6.8. The figure also illustrates the
three asymptotes (dashed lines) used for the phase plot and how the actual
curve deviates from the asymptotes by 11◦ at their intersections. Both the
composite phase and magnitude curves are unaffected by this class of term
at frequencies below the break point by more than a factor of 10 because
the term’s magnitude is 1 (or 0 db) and its phase is 0◦ .

3. [(jω/ωn)
2 + 2ζ(jω/ωn) + 1]±1 This term behaves in a manner similar toClass 3: second-order term

the class 2 term, with differences in detail: The break point is now ω = ωn .
The magnitude changes slope by a factor of +2 (or +40 db per decade) at
the break point (and −2, or −40 db per decade, when the term is in the
denominator). The phase changes by ±180◦ , and the transition through the
break point region varies with the damping ratio ζ . Figure 6.3 shows the
magnitude and phase for several different damping ratios when the term
is in the denominator. Note that the magnitude asymptote for frequencies
above the break point has a slope of −2 (or −40 db per decade), and that
the transition through the break-point region has a large dependence on the
damping ratio. A rough sketch of this transition can be made by noting that

Peak amplitude

|G(jω)| = 1
2ζ

at ω = ωn (6.21)

for this class of second-order term in the denominator. If the term was in
the numerator, the magnitude would be the reciprocal of the curve plotted
in Fig. 6.3(a).

No such handy rule as Eq. (6.21) exists for sketching in the transition
for the phase curve; therefore, we would have to resort to Fig. 6.3(b) for
an accurate plot of the phase. However, a very rough idea of the transition
can be gained by noting that it is a step function for ζ = 0, while it obeys
the rule for two first-order (class 2) terms when ζ = 1 with simultaneous
break-point frequencies. All intermediate values of ζ fall between these two
extremes. The phase of a second-order term is always ±90◦ at ωn .
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Section 6.1 Frequency Response 329

When the system has several poles and several zeros, plotting the frequency
response requires that the components be combined into a composite curve.Composite curve
To plot the composite magnitude curve, it is useful to note that the slope of the
asymptotes is equal to the sum of the slopes of the individual curves. Therefore,
the composite asymptote curve has integer slope changes at each break point
frequency: +1 for a first-order term in the numerator, −1 for a first-order term
in the denominator, and ±2 for second-order terms. Furthermore, the lowest-
frequency portion of the asymptote has a slope determined by the value of n in
the (jω)n term and is located by plotting the point Koω

n at ω = 1. Therefore,
the complete procedure consists of plotting the lowest-frequency portion of
the asymptote, then sequentially changing the asymptote’s slope at each break
point in order of ascending frequency, and finally drawing the actual curve by
using the transition rules discussed earlier for classes 2 and 3.

The composite phase curve is the sum of the individual curves. Adding
of the individual phase curves graphically is made possible by locating the
curves so that the composite phase approaches the individual curve as closely
as possible. A quick but crude sketch of the composite phase can be found by
starting the phase curve below the lowest break point and setting it equal to
n × 90◦ . The phase is then stepped at each break point in order of ascending
frequency. The amount of the phase step is ±90◦ for a first-order term and ±180◦
for a second-order term. Break points in the numerator indicate a positive step
in phase, while break points in the denominator indicate a negative phase step.7

The plotting rules so far have only considered poles and zeros in the LHP.
Changes for singularities in the RHP will be discussed at the end of the section.

Summary of Bode Plot Rules

1. Manipulate the transfer function into the Bode form given by Eq. (6.16).

2. Determine the value of n for the Ko(jω)n term (class 1). Plot the low-
frequency magnitude asymptote through the point Ko at ω = 1 with a slope
of n (or n × 20 db per decade).

3. Complete the composite magnitude asymptotes: Extend the low-frequency
asymptote until the first frequency break point. Then step the slope by ±1
or ±2, depending on whether the break point is from a first- or second-order
term in the numerator or denominator. Continue through all break points
in ascending order.

4. Sketch in the approximate magnitude curve: Increase the asymptote value
by a factor of 1.4 (+3 db) at first-order numerator break points, and decrease
it by a factor of 0.707 (−3 db) at first-order denominator break points. At
second-order break points, sketch in the resonant peak (or valley) accord-
ing to Fig. 6.3(a) using the relation |G(jω)| = 1/2ζ at denominator (or
|G(jω)| = 2ζ at numerator) break points.

7 This approximate method was pointed out to us by our Parisian colleagues.
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330 Chapter 6 The Frequency-Response Design Method

5. Plot the low-frequency asymptote of the phase curve, φ = n × 90◦ .

6. As a guide, sketch in the approximate phase curve by changing the phase by
±90◦ or ±180◦ at each break point in ascending order. For first-order terms
in the numerator, the change of phase is +90◦ ; for those in the denominator
the change is −90◦ . For second-order terms, the change is ±180◦ .

7. Locate the asymptotes for each individual phase curve so that their phase
change corresponds to the steps in the phase toward or away from the ap-
proximate curve indicated by Step 6. Sketch in each individual phase curve
as indicated by Fig. 6.8 or Fig. 6.3(b).

8. Graphically add each phase curve. Use grids if an accuracy of about ±5◦ is
desired. If less accuracy is acceptable, the composite curve can be done by
eye. Keep in mind that the curve will start at the lowest-frequency asymptote
and end on the highest-frequency asymptote and will approach the inter-
mediate asymptotes to an extent that is determined by how close the break
points are to each other.

EXAMPLE 6.3 Bode Plot for Real Poles and Zeros

Plot the Bode magnitude and phase for the system with the transfer function

KG(s) = 2000(s + 0.5)

s(s + 10)(s + 50)
.

Solution.

STEP 1. We convert the function to the Bode form of Eq. (6.16):

KG(jω) = 2[(jω/0.5) + 1]
jω[(jω/10) + 1][(jω/50) + 1]

.

STEP 2. We note that the term in jω is first-order and in the denominator, so n = −1.
Therefore, the low-frequency asymptote is defined by the first term:

KG(jω) = 2
jω

.

This asymptote is valid for ω < 0.1, because the lowest break point is at ω = 0.5. The
magnitude plot of this term has the slope of −1 (or −20 db per decade). We locate the
magnitude by passing through the value 2 at ω = 1 even though the composite curve
will not go through this point because of the break point at ω = 0.5. This is shown in
Fig. 6.9(a).

STEP 3. We obtain the remainder of the asymptotes, also shown in Fig. 6.9(a): The first
breakpoint is at ω = 0.5 and is a first-order term in the numerator, which thus calls for a
change in slope of +1. We therefore draw a line with 0 slope that intersects the original
−1 slope. Then we draw a −1 slope line that intersects the previous one at ω = 10.
Finally, we draw a −2 slope line that intersects the previous −1 slope at ω = 50.
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Figure 6.9
Composite plots:
(a) magnitude; (b) phase;
(c) approximate phase
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STEP 4. We sketch in the actual curve so that it is approximately tangent to the asymp-
totes when far away from the break points, a factor of 1.4 (+3 db) above the asymptote
at the ω = 0.5 break point, and a factor of 0.7 (−3 db) below the asymptote at the
ω = 10 and ω = 50 break points.

STEP 5. Because the phase of 2
jω

is −90◦ , the phase curve in Fig. 6.9(b) starts at −90◦

at the lowest frequencies.

STEP 6. The result is shown in Fig. 6.9(c).

STEP 7. The individual phase curves, shown dashed in Fig. 6.9(b), have the correct phase
change for each term and are aligned vertically so that their phase change corresponds to
the steps in the phase from the approximate curve in Fig. 6.9(c). Note that the composite
curve approaches each individual term.

STEP 8. The graphical addition of each dashed curve results in the solid composite
curve in Fig. 6.9(b). As can be seen from the figure, the vertical placement of each
individual phase curve makes the required graphical addition particularly easy because
the composite curve approaches each individual phase curve in turn.

EXAMPLE 6.4 Bode Plot with Complex Poles

As a second example, draw the frequency response for the system

KG(s) = 10
s(s2 + 0.4s + 4)

. (6.22)

Solution. A system like this is more difficult to plot than the one in the previous
example because the transition between asymptotes is dependent on the damping ratio;
however, the same basic ideas illustrated in Example 6.3 apply.

This system contains a second-order term in the denominator. Proceeding through
the steps, we convert Eq. (6.22) to the Bode form of Eq. (6.16):

KG(s) = 10
4

1
s(s2/4 + 2(0.1)s/2 + 1)

.

Starting with the low-frequency asymptote, we have n = −1 and |G(jω)| ∼= 2.5/ω . The
magnitude plot of this term has a slope of −1 (−20 db per decade) and passes through
the value of 2.5 at ω = 1 as shown in Fig. 6.10(a). For the second order pole, note
that ωn = 2 and ζ = 0.1. At the break-point frequency of the poles, ω = 2, the slope
shifts to −3 (−60 db per decade). At the pole break point the magnitude ratio above
the asymptote is 1/2ζ = 1/0.2 = 5. The phase curve for this case starts at φ = −90◦ ,
corresponding to the 1/s term, falls to φ = −180◦ at ω = 2 due to the pole as shown
in Fig. 6.10(b), and then approaches φ = −270◦ for higher frequencies. Because the
damping is small, the stepwise approximation is a very good one. The true composite
phase curve is shown in Fig. 6.10(b).
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Figure 6.10
Bode plot for a transfer
function with complex
poles: (a) magnitude;
(b) phase
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EXAMPLE 6.5
Bode Plot for Complex Poles and Zeros: Satellite with Flexible
Appendages

As a third example, draw the Bode plots for a system with second-order terms. The
transfer function represents a mechanical system with two equal masses coupled with
a lightly damped spring. The applied force and position measurement are collocated
on the same mass. For the transfer function, the time scale has been chosen so that the
resonant frequency of the complex zeros is equal to 1. The transfer function is

KG(s) = 0.01(s2 + 0.01s + 1)

s2[(s2/4) + 0.02(s/2) + 1]
.

Solution. Proceeding through the steps, we start with the low-frequency asymptote,
0.01/ω2 . It has a slope of −2 (−40 db per decade) and passes through magnitude = 0.01
at ω = 1, as shown in Fig. 6.11(a). At the break-point frequency of the zero, ω = 1, the
slope shifts to zero until the break point of the pole, which is located at ω = 2, when
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Figure 6.11
Bode plot for a transfer
function with complex poles
and zeros: (a) magnitude;
(b) phase
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the slope returns to a slope of −2. To interpolate the true curve, we plot the point at the
zero break point, ω = 1, with a magnitude ratio below the asymptote of 2ζ = 0.01. At
the pole break point, the magnitude ratio above the asymptote is 1/2ζ = 1/0.02 = 50.
The magnitude curve is a “doublet” of a negative pulse followed by a positive pulse.
Figure 6.11(b) shows that the phase curve for this system starts at −180◦ (corresponding
to the 1/s2 term), jumps 180◦ to φ = 0 at ω = 1, due to the zeros, and then falls 180◦
back to φ = −180◦ at ω = 2, due to the pole. With such small damping ratios the
stepwise approximation is quite good. (We haven’t drawn this on Fig. 6.11(b), because it
would not be easily distinguishable from the true phase curve.) Thus, the true composite
phase curve is a nearly square pulse between ω = 1 and ω = 2.

In actual designs, most Bode plots are made with the aid of a computer. How-
ever, acquiring the ability to quickly sketch Bode plots by hand is a useful skill,
because it gives the designer insight into how changes in the compensation pa-
rameters will affect the frequency response. This allows the designer to iterate
to the best designs more quickly.
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EXAMPLE 6.6 Computer-Aided Bode Plot for Complex Poles and Zeros

Repeat Example 6.5 using MATLAB.

Solution. To obtain Bode plots using MATLAB, we call the function bode as follows:

numG = 0.01*[1 0.01 1];
denG = [0.25 0.01 1 0 0];
sysG = tf(numG,denG);
[mag, phase, w] = bode(sysG);
loglog(w,mag)
semilogx(w,phase)

These commands will result in a Bode plot that matches that in Fig. 6.11 very closely.
To obtain the magnitude plot in decibels, the last three lines can be replaced with

bode(sysG)

Nonminimum-Phase Systems

A system with a zero in the right half-plane (RHP) undergoes a net change in
phase when evaluated for frequency inputs between zero and infinity, which,
for an associated magnitude plot, is greater than if all poles and zeros were in
the left half-plane (LHP). Such a system is called nonminimum phase. As can
be seen from the construction in Fig. B.3 in Appendix B, if the zero is in the
RHP, then the phase decreases at the zero break point instead of exhibiting
the usual phase increase that occurs for an LHP zero. Consider the transfer
functions

G1(s) = 10
s + 1
s + 10

,

G2(s) = 10
s − 1
s + 10

.

Both transfer functions have the same magnitude for all frequencies; that is,

|G1(jω)| = |G2(jω)|,

as shown in Fig. 6.12(a). But the phases of the two transfer functions are dras-
tically different [Fig. 6.12(b)]. A minimum-phase system (all zeros in the LHP)
with a given magnitude curve will produce the smallest net change in the as-
sociated phase, as shown in G1 , compared with what the nonminimum-phase
system will produce, as shown by the phase of G2 . Hence, G2 is nonminimum
phase. The discrepancy between G1 and G2 with regard to the phase change
would be greater if two or more zeros of the plant were in the RHP.

PreTEX, Inc., Technical Typesetters Tel. (902)454-8111 FAX (902)454-2894 Franklin, Feedback Control of Dynamic Systems, 5e

Feedback Control of Dynamic Systems, Fifth Edition, 
by Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. 

ISBN 0-13-149930-0. © 2006 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.



336 Chapter 6 The Frequency-Response Design Method

Figure 6.12
Bode plot for minimum-
and nonminimum-phase
systems: (a) magnitude;
(b) phase
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6.1.2 Steady-State Errors

We saw in Section 4.2 that the steady-state error of a feedback system decreases
as the gain of the open-loop transfer function increases. In plotting a composite
magnitude curve, we saw in Section 6.1.1 that the open-loop transfer function,
at very low frequencies, is approximated by

KG(jω) ∼= Ko(jω)n. (6.23)

Therefore, we can conclude that the larger the value of the magnitude on
the low-frequency asymptote, the lower the steady-state errors will be for the
closed-loop system. This relationship is very useful in the design of compensa-
tion: Often we want to evaluate several alternate ways to improve stability and
to do so we want to be able to see quickly how changes in the compensation
will affect the steady-state errors.

For a system of the form given by Eq. (6.16)—that is, where n = 0 inPosition error constant
Eq. (6.23) (a type 0 system)—the low-frequency asymptote is a constant and
the gain Ko of the open-loop system is equal to the position-error constant Kp .
For a unity feedback system with a unit-step input, the Final Value Theorem
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(Section 3.1.6) was used in Section 4.2.1 to show that the steady-state error is
given by

ess = 1
1 + Kp

.

For a unity-feedback system in which n = −1 in Eq. (6.23), defined to be aVelocity error coefficient
type 1 system in Section 4.2.1, the low-frequency asymptote has a slope of −1.
The magnitude of the low-frequency asymptote is related to the gain according
to Eq. (6.23); therefore, we can again read the gain, Ko/ω , directly from the
Bode magnitude plot. Equation (4.43) tells us that the velocity-error constant

Kν = Ko,

where, for a unity-feedback system with a unit-ramp input, the steady-state
error is

ess = 1
Kν

.

The easiest way of determining the value of Kν in a type 1 system is to
read the magnitude of the low-frequency asymptote at ω = 1 rad/sec, because
this asymptote is A(ω) = Kν/ω . In some cases the lowest-frequency break
point will be below ω = 1 rad/sec; therefore, the asymptote needs to extend
to ω = 1 rad/sec in order to read Kν directly. Alternately, we could read the
magnitude at any frequency on the low-frequency asymptote and compute it
from Kν = ωA(ω).

EXAMPLE 6.7 Computation of Kν

As an example of the determination of steady-state errors, a Bode magnitude plot of
an open-loop system is shown in Fig. 6.13. Assuming that there is unity feedback as in
Fig. 6.4, find the velocity-error constant, Kν .

Figure 6.13
Determination of
Kν from the Bode
plot for the system
KG(s) = 10/[s(s + 1)]
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Solution. Because the slope at the low frequencies is −1, we know that the system
is type 1. The extension of the low-frequency asymptote crosses ω = 1 rad/sec at a
magnitude of 10. Therefore, Kν = 10 and the steady-state error to a unit ramp for a
unity feedback system would be 0.1. Alternatively, at ω = 0.01 we have |A(ω)| = 1000;
therefore, from Eq. (6.23) we have

Ko = Kν
∼= ω|A(ω)| = 0.01(1000) = 10.

6.2 Neutral Stability

In the early days of electronic communications, most instruments were judged in
terms of their frequency response. It is therefore natural that when the feedback
amplifier was introduced, techniques to determine stability in the presence of
feedback were based on this response.

Suppose the closed-loop transfer function of a system is known. We can
determine the stability of a system by simply inspecting the denominator in
factored form (because the factors give the system roots directly) to observe
whether the real parts are positive or negative. However, the closed-loop trans-
fer function is usually not known; in fact, the whole purpose behind understand-
ing the root-locus technique is to be able to find the factors of the denominator
in the closed-loop transfer function, given only the open-loop transfer function.
Another way to determine closed-loop stability is to evaluate the frequency re-
sponse of the open-loop transfer function KG(jω) and then perform a test on
that response. Note that this method does not require factoring the denomi-
nator of the closed-loop transfer function. In this section we will explain the
principles of this method.

Suppose we have a system defined by Fig. 6.14(a) and whose root locus
behaves as shown in Fig. 6.14(b); that is, instability results if K is larger than 2.
The neutrally stable points lie on the imaginary axis—that is, where K = 2 and
s = j1.0. Furthermore, we saw in Section 5.1 that all points on the locus have
the property that

|KG(s)| = 1 and � G(s) = 180◦.

Figure 6.14
Stability example:
(a) system definition;
(b) root locus
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Figure 6.15
Frequency response
magnitude and phase for
the system in Fig. 6.14
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At the point of neutral stability we see that these root-locus conditions hold
for s = jω , so

|KG(jω)| = 1 and � G(jω) = 180◦. (6.24)

Thus a Bode plot of a system that is neutrally stable (that is, with K defined such
that a closed-loop root falls on the imaginary axis) will satisfy the conditions of
Eq. (6.24). Figure 6.15 shows the frequency response for the system whose root
locus is plotted in Fig. 6.14 for various values of K . The magnitude response
corresponding to K = 2 passes through 1 at the same frequency (ω = 1 rad/sec)
at which the phase passes through 180◦ , as predicted by Eq. (6.24).

Having determined the point of neutral stability, we turn to a key question:
Does increasing the gain increase or decrease the system’s stability? We can see
from the root locus in Fig. 6.14(b) that any value of K less than the value at the
neutrally stable point will result in a stable system. At the frequency ω where
the phase � G(jω) = −180◦ (ω = 1 rad/sec), the magnitude |KG(jω)| < 1.0
for stable values of K and > 1 for unstable values of K . Therefore, we have
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340 Chapter 6 The Frequency-Response Design Method

the following trial stability condition, based on the character of the open-loop
frequency response:Stability condition

|KG(jω)| < 1 at � G(jω) = −180◦. (6.25)

This stability criterion holds for all systems for which increasing gain leads to
instability and |KG(jω)| crosses the magnitude = 1 once, the most common
situation. However, there are systems for which an increasing gain can lead
from instability to stability; in this case, the stability condition is

|KG(jω)| > 1 at � G(jω) = −180◦. (6.26)

There are also cases when |KG(jω)| crosses magnitude = 1 more than once.
One way to resolve the ambiguity that is usually sufficient is to perform a rough
sketch of the root locus. Another, more rigorous, way to resolve the ambiguity
is to use the Nyquist stability criterion, the subject of the next section. However,
because the Nyquist criterion is fairly complex, it is important while studying it
to bear in mind the theme of this section, namely, that for most systems a simple
relationship exists between closed-loop stability and the open-loop frequency
response.

6.3 The Nyquist Stability Criterion

For most systems, as we saw in the previous section, an increasing gain even-
tually causes instability. In the very early days of feedback control design, this
relationship between gain and stability margins was assumed to be universal.
However, designers found occasionally that in the laboratory the relationship
reversed itself; that is, the amplifier would become unstable when the gain was
decreased. The confusion caused by these conflicting observations motivated
Harry Nyquist of the Bell Telephone Laboratories to study the problem in
1932. His study explained the occasional reversals and resulted in a more so-
phisticated analysis with no loopholes. Not surprisingly, his test has come to
be called the Nyquist stability criterion. It is based on a result from complex
variable theory known as the argument principle,8 as we briefly explain in this
section and in more detail in Appendix B.

The Nyquist stability criterion relates the open-loop frequency response to
the number of closed-loop poles of the system in the RHP. Study of the Nyquist
criterion will allow you to determine stability from the frequency response of
a complex system, perhaps with one or more resonances, where the magnitude
curve crosses 1 several times and/or the phase crosses 180◦ several times. It
is also very useful in dealing with open-loop, unstable systems, nonminimum-
phase systems, and systems with pure delays (transportation lags).

8 Sometimes referred to as “Cauchy’s Principle of the Argument.”
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Section 6.3 The Nyquist Stability Criterion 341

6.3.1 The Argument Principle

Consider the transfer function H1(s) whose poles and zeros are indicated in
the s -plane in Fig. 6.16(a). We wish to evaluate H1 for values of s on the
clockwise contour C1 . (Hence this is called a contour evaluation.) We choose
the test point so for evaluation. The resulting complex quantity has the form
H1(so) = �v = |�v|ejα . The value of the argument of H1(so) is

α = θ1 + θ2 − (φ1 + φ2).

As s traverses C1 in the clockwise direction starting at so , the angle α of H1(s)

in Fig. 6.16(b) will change (decrease or increase), but it will not undergo a net
change of 360◦ as long as there are no poles or zeros within C1 . This is because
none of the angles that make up α go through a net revolution. The angles θ1 ,
θ2 , φ1 , and φ2 increase or decrease as s traverses around C1 , but they return
to their original values as s returns to so without rotating through 360◦ . This
means that the plot of H1(s) [Fig. 6.16(b)] will not encircle the origin. This

Figure 6.16
Contour evaluations:
(a) s-plane plot of poles
and zeros of H1(s) and
the contour C1 ; (b) H1(s)

for s on C1 ; (c) s-plane
plot of poles and zeros of
H2(s) and the contour
C1 ; (d) H2(s) for s on
C1
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342 Chapter 6 The Frequency-Response Design Method

conclusion follows from the fact that α is the sum of the angles indicated in
Fig. 6.16(a), so the only way that α can be changed by 360◦ after s executes
one full traverse of C1 is for C1 to contain a pole or zero.

Now consider the function H2(s), whose pole-zero pattern is shown in
Fig. 6.16(c). Note that it has a singularity (pole) within C1 . Again, we start
at the test point so . As s traverses in the clockwise direction around C1 , the
contributions from the angles θ1 , θ2 , and φ1 change, but they return to their
original values as soon as s returns to so . In contrast, φ2 , the angle from the
pole within C1 , undergoes a net change of −360◦ after one full traverse of C1 .
Therefore, the argument of H2(s) undergoes the same change, causing H2 to
encircle the origin in the counterclockwise direction, as shown in Fig. 6.16(d).
The behavior would be similar if the contour C1 had enclosed a zero instead of a
pole. The mapping of C1 would again enclose the origin once in the H2(s)-plane,
except it would do so in the clockwise direction.

Thus we have the essence of the argument principle:

Argument principle A contour map of a complex function will encircle the origin Z − P times,
where Z is the number of zeros and P is the number of poles of the function
inside the contour.

For example, if the number of poles and zeros within C1 is the same, the net
angles cancel and there will be no net encirclement of the origin.

6.3.2 Application to Control Design

To apply the principle to control design, we let the C1 contour in the s -plane
encircle the entire RHP, the region in the s -plane where a pole would cause an
unstable system (Fig. 6.17). The resulting evaluation of H(s) will encircle the
origin only if H(s) has a RHP pole or zero.

Figure 6.17
An s -plane plot of a
contour C1 that encircles
the entire RHP

Contour at
infinity

C1

C1

Im(s)

Re(s)
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Section 6.3 The Nyquist Stability Criterion 343

Figure 6.18
Block diagram for
Y (s)/R(s) =
KG(s)/[1 + KG(s)]

Y�
�

�
R KG(s)

As stated earlier, what makes all this contour behavior useful is that a
contour evaluation of an open-loop KG(s) can be used to determine stability
of the closed-loop system. Specifically, for the system in Fig. 6.18, the closed-
loop transfer function is

Y (s)

R(s)
= T(s) = KG(s)

1 + KG(s)
.

Therefore, the closed-loop roots are the solutions of

1 + KG(s) = 0,

and we apply the principle of the argument to the function 1 + KG(s). If the
evaluation contour of this function of s enclosing the entire RHP contains a
zero or pole of 1+KG(s), then the evaluated contour of 1+KG(s) will encircle
the origin. Notice that 1 + KG(s) is simply KG(s) shifted to the right 1 unit,
as shown in Fig. 6.19. Therefore, if the plot of 1 + KG(s) encircles the origin,
the plot of KG(s) will encircle −1 on the real axis. Therefore, we can plot
the contour evaluation of the open-loop KG(s), examine its encirclements of
−1, and draw conclusions about the origin encirclements of the closed-loop
function 1 + KG(s). Presentation of the evaluation of KG(s) in this manner is
often referred to as a Nyquist plot, or polar plot, because we plot the magnitudeNyquist plot; polar plot
of KG(s) versus the angle of KG(s).

Re Re

Im Im
[KG(s)]s�C1 [1 � KG(s)]s�C1

�1 0 0

Figure 6.19 Evaluations of KG(s) and 1 + KG(s): Nyquist plots
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344 Chapter 6 The Frequency-Response Design Method

To determine whether an encirclement is due to a pole or zero, we write
1 + KG(s) in terms of poles and zeros of KG(s):

1 + KG(s) = 1 + K
b(s)

a(s)
= a(s) + Kb(s)

a(s)
. (6.27)

Equation (6.27) shows that the poles of 1 + KG(s) are also the poles of G(s).
Because it is safe to assume that the poles of G(s) [or factors of a(s)] are known,
the (rare) existence of any of these poles in the RHP can be accounted for.
Assuming for now that there are no poles of G(s) in the RHP, an encirclement
of −1 by KG(s) indicates a zero of 1+KG(s) in the RHP, and thus an unstable
root of the closed-loop system.

We can generalize this basic idea by noting that a clockwise contour C1
enclosing a zero of 1+KG(s)—that is, a closed-loop system root—will result in
KG(s) encircling the −1 point in a clockwise direction. Likewise, if C1 encloses
a pole of 1 + KG(s)—that is, if there is an unstable open-loop pole—there will
be a counterclockwise KG(s) encirclement of −1. Furthermore, if two poles
or two zeros are in the RHP, KG(s) will encircle −1 twice, and so on. The net
number of clockwise encirclements, N , equals the number of zeros (closed-
loop system roots) in the RHP, Z , minus the number of open-loop poles in the
RHP, P :

N = Z − P.

This is the key concept of the Nyquist Stability Criterion.
A simplification in the plotting of KG(s) results from the fact that any

KG(s) that represents a physical system will have zero response at infinite
frequency (i.e., has more poles than zeros). This means that the big arc of C1
corresponding to s at infinity (Fig. 6.17) results in KG(s) being a point of in-
finitesimally small value near the origin for that portion of C1 . Therefore, we
accomplish a complete evaluation of a physical system KG(s) by letting s tra-
verse the imaginary axis from −j∞ to +j∞ (actually, from −jωh to +jωh ,
where ωh is large enough that |KG(jω)| is much less than 1 for all ω > ωh).
The evaluation of KG(s) from s = 0 to s = j∞ has already been discussed
in Section 6.1 under the context of finding the frequency response of KG(s).
Because G(−jω) is the complex conjugate of G(jω), we can easily obtain the
entire plot of KG(s) by reflecting the 0 ≤ s ≤ +j∞ portion about the real
axis, to get the (−j∞ ≤ s < 0) portion. Hence we see that closed-loop sta-
bility can be determined in all cases by examination of the frequency response
of the open-loop transfer function on a polar plot. In some applications, mod-
els of physical systems are simplified so as to eliminate some high-frequency
dynamics. The resulting reduced-order transfer function might have an equal
number of poles and zeros. In that case the big arc of C1 at infinity needs to be
considered.

In practice, many systems behave like those discussed in Section 6.2, so you
need not carry out a complete evaluation of KG(s) with subsequent inspection
of the −1 encirclements; a simple look at the frequency response may suffice to
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Section 6.3 The Nyquist Stability Criterion 345

determine stability based on the gain and phase margins. However, in the case
of a complex system for which the simplistic rules given in Section 6.2 become
ambiguous, you will want to perform the complete analysis, summarized as
follows:

Procedure for Plotting the
Nyquist Plot 1. Plot KG(s) for −j∞ ≤ s ≤ +j∞. Do this by first evaluating KG(jω)

for ω = 0 to ωh , where ωh is so large that the magnitude of KG(jω) is
negligibly small for ω > ωh , then reflecting the image about the real axis
and adding it to the preceding image. The magnitude of KG(jω) will be
small at high frequencies for any physical system. The Nyquist plot will
always be symmetric with respect to the real axis.

2. Evaluate the number of clockwise encirclements of −1, and call that num-
ber N . Do this by drawing a straight line in any direction from −1 to ∞.
Then count the net number of left-to-right crossings of the straight line
by KG(s). If encirclements are in the counterclockwise direction, N is
negative.

3. Determine the number of unstable (RHP) poles of G(s), and call that
number P .

4. Calculate the number of unstable closed-loop roots Z :

Z = N + P. (6.28)

For stability we wish to have Z = 0; that is, no characteristic equation roots in
the RHP.

Let us now examine a rigorous application of the procedure for drawing
Nyquist plots for some examples.

EXAMPLE 6.8 Nyquist Plot for a Second-Order System

Determine the stability properties of the system defined in Fig. 6.20.

Solution. The root locus of the system in Fig. 6.20 is shown in Fig. 6.21. It shows that
the system is stable for all values of K . The magnitude of the frequency response of
KG(s) is plotted in Fig. 6.22(a) for K = 1, and the phase is plotted in Fig. 6.22(b);
this is the typical Bode method of presenting frequency response and represents the
evaluation of G(s) over the interesting range of frequencies. The same information is
replotted in Fig. 6.23 in the Nyquist (polar) plot form. Note how the points A, B , C ,
D , and E are mapped from the Bode plot to the Nyquist plot in Fig. 6.23. The arc from
G(s) = +1 (ω = 0) to G(s) = 0 (ω = ∞) that lies below the real axis is derived from
Fig. 6.22. The portion of the C1 arc at infinity from Fig. 6.17 transforms into G(s) = 0 in
Fig. 6.23; therefore, a continuous evaluation of G(s) with s traversing C1 is completed

Figure 6.20
Control system for
Example 6.8

�
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�
R YK (s � 1)2

1
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Figure 6.21
Root locus of
G(s) = 1/(s + 1)2 with
respect to K
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by simply reflecting the lower arc about the real axis. This creates the portion of the
contour above the real axis and completes the Nyquist (polar) plot. Because the plot
does not encircle −1, N = 0. Also, there are no poles of G(s) in the RHP, so P = 0.
From Eq. (6.28), we conclude that Z = 0, which indicates there are no unstable roots
of the closed-loop system for K = 1. Furthermore, different values of K would simply
change the magnitude of the polar plot, but no positive value of K would cause the

Figure 6.22
Open-loop Bode plot for
G(s) = 1/(s + 1)2
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Figure 6.23
Nyquist plot of the
evaluation of KG(s) for
s = C1 and K = 1
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plot to encircle −1, because the polar plot will always cross the negative real axis when
KG(s) = 0. Thus the Nyquist stability criterion confirms what the root locus indicated:
the closed-loop system is stable for all K > 0.

The MATLAB statements that will produce this Nyquist plot are

numG = 1;
denG = [1 2 1];
sysG = tf(numG,denG);
nyquist(sysG);

Often the control systems engineer is more interested in determining a
range of gains K for which the system is stable than in testing for stability at
a specific value of K . To accommodate this requirement, but to avoid drawing
multiple Nyquist plots for various values of the gain, the test can be slightly
modified. To do so, we scale KG(s) by K and examine G(s) to determine
stability for a range of gains K . This is possible because an encirclement of
−1 by KG(s) is equivalent to an encirclement of −1/K by G(s). Therefore,
instead of having to deal with KG(s), we need only consider G(s), and count
the number of the encirclements of the −1/K point.

Applying this idea to Example 6.8, we see that the Nyquist plot cannot
encircle the −1/K point. For positive K , the −1/K point will move along the
negative real axis, so there will not be an encirclement of G(s) for any value of
K > 0.

(There are also values of K < 0 for which the Nyquist plot shows the
system to be stable; specifically, −1 < K < 0. This result may be verified by
drawing the 0◦ locus.)

EXAMPLE 6.9 Nyquist Plot for a Third-Order System

As a second example, consider the system G(s) = 1/s(s + 1)2 for which the closed-
loop system is defined in Fig. 6.24. Determine its stability properties using the Nyquist
criterion.
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Figure 6.24
Control system for
Example 6.9

�
�

�
R YK s(s � 1)2

1

Solution. This is the same system discussed in Section 6.2. The root locus in Fig. 6.14(b)
shows that this system is stable for small values of K but unstable for large values of
K . The magnitude and phase of G(s) in Fig. 6.25 are transformed into the Nyquist plot
shown in Fig. 6.26. Note how the points A, B , C , D , and E on the Bode plot of Fig. 6.25
map into those on the Nyquist plot of Fig. 6.26. Also note the large arc at infinity that
arises from the open-loop pole at s = 0. This pole creates an infinite magnitude of G(s)

at ω = 0; in fact, a pole anywhere on the imaginary axis will create an arc at infinity. To
correctly determine the number of −1/K point encirclements, we must draw this arc in
the proper half-plane: Should it cross the positive real axis, as shown in Fig. 6.26, or the
negative one? It is also necessary to assess whether the arc should sweep out 180◦ (as
in Fig. 6.26), 360◦ , or 540◦ .

A simple artifice suffices to answer these questions. We modify the C1 contour to
take a small detour around the pole either to the right (Fig. 6.27) or to the left. It makes
no difference to the final stability question which way, but it is more convenient to go
to the right because then no poles are introduced within the C1 contour, keeping the
value of P equal to 0. Because the phase of G(s) is the negative of the sum of the angles
from all of the poles, we see that the evaluation results in a Nyquist plot moving from
+90◦ for s just below the pole at s = 0, across the positive real axis to −90◦ for s just
above the pole. Had there been two poles at s = 0, the Nyquist plot at infinity would

Figure 6.25
Bode plot for
G(s) = 1/[s(s + 1)2]
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Figure 6.26
Nyquist plot for
G(s) = 1/[s(s + 1)2]
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have executed a full 360◦ arc, and so on for three or more poles. Furthermore, for a pole
elsewhere on the imaginary axis, a 180◦ clockwise arc would also result but would be
oriented differently than the example shown in Fig. 6.26.

The Nyquist plot crosses the real axis at ω = 1 with |G| = 0.5, as indicated by
the Bode plot. For K > 0, there are two possibilities for the location of −1/K : inside
the two loops of the Nyquist plot, or outside the Nyquist contour completely. For large
values of K (Kl in Fig. 6.26), −0.5 < −1/Kl < 0 will lie inside the two loops; hence
N = 2, and therefore, Z = 2, indicating that there are two unstable roots. This happens
for K > 2. For small values of K (Ks in Fig. 6.26), −1/K lies outside the loops; thus
N = 0, and all roots are stable. All this information is in agreement with the root locus
in Figure 6.14(b). (When K < 0, −1/K lies on the positive real axis, then N = 1, which
means Z = 1 and the system has one unstable root. The 0◦ root locus will verify this
result.)

For this and many similar systems, we can see that the encirclement criterion re-
duces to a very simple test for stability based on the open-loop frequency response:
The system is stable if |KG(jω)| < 1 when the phase of G(jω) is 180◦ . Note that this
relation is identical to the stability criterion given in Eq. (6.25); however, by using the
Nyquist criterion, we don’t require the root locus to determine whether |KG(jω)| < 1
or |KG(jω)| > 1.

We draw the Nyquist plot using MATLAB withNyquist plot via MATLAB

numG = 1;
denG = [1 2 1 0];
sysG = tf(numG,denG);
axis([-5 5 −5 5])
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350 Chapter 6 The Frequency-Response Design Method

Figure 6.27
C1 contour enclosing the
RHP for the system in
Example 6.9
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nyquist(sysG);

The axis command scaled the plot so that only points between +5 and −5 on the
real and imaginary axes were included. Without manual scaling, the plot would be scaled
between ±∞ and the essential features in the vicinity of the −1 region would be lost.

For systems that are open-loop unstable, care must be taken because now P �= 0
in Eq. (6.28). We shall see that the simple rules from Section 6.2 will need to
be revised in this case.

EXAMPLE 6.10 Nyquist Plot for an Open-Loop Unstable System

The third example is defined in Fig. 6.28. Determine its stability properties using the
Nyquist criterion.

Solution. The root locus for this system is sketched in Fig. 6.29. The open-loop system
is unstable because it has a pole in the RHP. The open-loop Bode plot is shown in

Figure 6.28
Control system for
Example 6.10

�
�

�

10
s( � 1)
s � 1

sR YK

PreTEX, Inc., Technical Typesetters Tel. (902)454-8111 FAX (902)454-2894 Franklin, Feedback Control of Dynamic Systems, 5e

Feedback Control of Dynamic Systems, Fifth Edition, 
by Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. 

ISBN 0-13-149930-0. © 2006 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.



Section 6.3 The Nyquist Stability Criterion 351

Figure 6.29
Root locus for G(s) =
(s + 1)/[s(s/10 − 1)]
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Fig. 6.30. Note in the Bode that |KG(jω)| behaves exactly the same as if the pole had
been in the LHP. However, � G(jω) increases by 90◦ instead of the usual decrease at
a pole. Any system with a pole in the RHP is unstable; hence it would be impossible
to determine its frequency response experimentally because the system would never
reach a steady-state sinusoidal response for a sinusoidal input. It is, however, possible
to compute the magnitude and phase of the transfer function according to the rules in
Section 6.1. The pole in the RHP affects the Nyquist encirclement criterion, because the
value of P in Eq. (6.28) is +1.

We convert the frequency-response information of Fig. 6.30 into the Nyquist plot
(Fig. 6.31) as in the previous examples. As before, the C1 detour around the pole at
s = 0 in Fig. 6.32 creates a large arc at infinity in Fig. 6.31. This arc crosses the negative
real axis because of the 180◦ phase contribution of the pole in the RHP.

Figure 6.30
Bode plot for G(s) =
(s + 1)/[s(s/10 − 1)]
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352 Chapter 6 The Frequency-Response Design Method

Figure 6.31
Nyquist plot for G(s) =
(s + 1)/[s(s/10 − 1)]
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The real-axis crossing occurs at |G(s)| = 1 because in the Bode plot |G(s)| = 1
when � G(s) = 180◦ , which happens to be at ω ∼= 3 rad/sec.

The contour shows two different behaviors, depending on the values of K (> 0).
For large values of K (K1 in Fig. 6.31), there is one counterclockwise encirclement;
hence N = −1. However, because P = 1 from the RHP pole, Z = N +P = 0, so there
are no unstable system roots and the system is stable for K > 1. For small values of K

(Ks in Fig. 6.31), N = +1, because of the clockwise encirclement and Z = 2, indicating
two unstable roots. This happens if K > 1. These results can be verified qualitatively by
the root locus in Fig. 6.29. (If K < 0, −1/K is on the positive real axis so that N = 0
and Z = 1, indicating the system will have one unstable closed-loop pole which can be
verified by a 0◦ root locus.)

Figure 6.32
C1 contour for
Example 6.10

Im(s)

�180�

C1

Re(s)
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Section 6.4 Stability Margins 353

As with all systems, the stability boundary occurs at |KG(jω)| = 1 for the phase
of � G(jω) = 180◦ . However, in this case, |KG(jω)| must be greater than 1 to yield the
correct number of −1 point encirclements to achieve stability.

To draw the Nyquist plot using MATLAB, use the following commands:

numG = [1 1];
denG = [0.1 −1 0];
sysG = tf(numG,denG);
axis([-5 5 −5 5]);
nyquist(sysG)

The existence of the RHP pole in Example 6.10 affected the Bode plotting
rules of the phase curve and affected the relationship between encirclements
and unstable closed-loop roots because P = 1 in Eq. (6.28). But we apply
the Nyquist stability criterion without any modifications. The same is true for
systems with a RHP zero; that is, a nonminimum-phase zero has no effect on
the Nyquist stability criterion, but the Bode plotting rules are affected.

6.4 Stability Margins

A large fraction of control system designs behave in a pattern roughly similar to
that of the system in Section 6.2 and Example 6.9 in Section 6.3; that is, the sys-
tem is stable for all small gain values and becomes unstable if the gain increases
past a certain critical point. Two commonly used quantities that measure the
stability margin for such systems are directly related to the stability criterion
of Eq. (6.25): gain margin and phase margin. In this section we will define and
use these two concepts to study system design. Another measure of stability,
originally defined by O. J. M. Smith (1958), combines these two margins into
one and gives a better indication of stability for complicated cases.

The gain margin (GM) is the factor by which the gain can be raised beforeGain margin
instability results. For the typical case, it can be read directly from the Bode
plot (for example, see Fig. 6.15) by measuring the vertical distance between the
|KG(jω)| curve and the |KG(jω)| = 1 line at the frequency where � G(jω) =
180◦ . We see from the figure that when K = 0.1, the system is stable and
GM = 20 (or 26 db). When K = 2, the system is neutrally stable with GM = 1
(0 db), while K = 10 results in an unstable system with GM = 0.2 (−14 db).
Note that GM is the factor by which the gain K can be raised before instability
results; therefore, |GM| < 1 (or |GM| < 0 db) indicates an unstable system.
The GM can also be determined from a root locus with respect to K by noting
two values of K : (1) at the point where the locus crosses the jω-axis, and (2) at
the nominal closed-loop poles. The GM is the ratio of these two values.

Another measure that is used to indicate the stability margin in a system is
the phase margin (PM). It is the amount by which the phase of G(jω) exceedsPhase margin
−180◦ when |KG(jω)| = 1, which is an alternative way of measuring the degree
to which the stability conditions of Eq. (6.25) are met. For the case in Fig. 6.15,
we see that PM ∼= 80◦ for K = 0.1, PM = 0◦ for K = 2, and PM = −35◦ for
K = 10. A positive PM is required for stability.
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354 Chapter 6 The Frequency-Response Design Method

Figure 6.33
Nyquist plot for defining GM
and PM
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Note that the two stability measures, PM and GM, together determine how
far the complex quantity G(jω) passes from the −1 point, which is another way
of stating the neutral-stability point specified by Eq. (6.24).

The stability margins may also be defined in terms of the Nyquist plot.
Figure 6.33 shows that GM and PM are measures of how close the Nyquist
plot comes to encircling the −1 point. Again we can see that the GM indicates
how much the gain can be raised before instability results in a system like the
one in Example 6.9. The PM is the difference between the phase of G(jω) and
180◦ when KG(jω) crosses the circle |KG(s)| = 1; the positive value of PM is
assigned to the stable case (i.e., with no Nyquist encirclements).

It is easier to determine these margins directly from the Bode plot than
from the Nyquist plot. The term crossover frequency, ωc , is often used to referCrossover frequency
to the frequency at which the gain is unity, or 0 db. Figure 6.34 shows the same
data plotted in Fig. 6.25, but for the case with K = 1. The same values of
PM (= 22◦) and GM(= 2) may be obtained from the Nyquist plot shown in
Fig. 6.26. The real-axis crossing at −0.5 corresponds to a GM of 1/0.5 or 2 and
the PM could be computed graphically by measuring the angle of G(jω) as it
crosses |G(jω)| = 1 circle.

One of the useful aspects of frequency-response design is the ease with
which we can evaluate the effects of gain changes. In fact, we can determine
the PM from Fig. 6.34 for any value of K without redrawing the magnitude or
phase information. We need only indicate on the figure where |KG(jω)| = 1
for selected trial values of K , as has been done with dashed lines in Fig. 6.35.
Now we can see that K = 5 yields an unstable PM of −22◦ , while a gain of
K = 0.5 yields a PM of +45◦ . Furthermore, if we wish a certain PM (say 70◦),
we simply read the value of |G(jω)| corresponding to the frequency that would
create the desired PM (here ω = 0.2 rad/sec yields 70◦ , where |G(jω)| = 5),
and note that the magnitude at this frequency is 1/K . Therefore, a PM of 70◦
will be achieved with K = 0.2.

The PM is more commonly used to specify control system performance
because it is most closely related to the damping ratio of the system. This can
be seen easily for the open-loop second-order system

G(s) = ω2
n

s(s + 2ζωn)
, (6.29)
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Figure 6.34
GM and PM from the
magnitude and phase plots
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which, with unity feedback, produces the closed-loop system

T (s) = ω2
n

s2 + 2ζωns + ω2
n

. (6.30)

It can be shown that the relationship between the PM and ζ in this system is

PM = tan−1


 2ζ√√

1 + 4ζ 4 − 2ζ 2


 , (6.31)

and this function is plotted in Fig. 6.36. Note that the function is approximately
a straight line up to about PM = 60◦ . The dashed line shows a straight-line
approximation to the function, where

ζ ∼= PM
100

. (6.32)
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356 Chapter 6 The Frequency-Response Design Method

Figure 6.35
PM vs. K from the
frequency-response data
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Figure 6.36
Damping ratio vs. phase
margin (PM)
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It is clear that the approximation holds only for phase margins below about
70◦ . Furthermore, Eq. (6.31) is only accurate for the second-order system of
Eq. (6.30). In spite of these limitations, Eq. (6.32) is often used as a rule of thumb
for relating the closed-loop damping ratio to PM. It is useful as a starting point;
however, it is important always to check the actual damping of a design, as well
as other aspects of the performance, before calling the design complete.
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Section 6.4 Stability Margins 357

The gain margin for the second-order system [given by Eq. (6.29)] is infinite
(GM = ∞), because the phase curve does not cross −180◦ as the frequency
increases. This would also be true for any first- or second-order system.

Additional data to aid in evaluating a control system based on its PM can
be derived from the relationship between the resonant peak Mr and ζ seen
in Fig. 6.3. Note that this figure was derived for the same system [Eq. (6.9)] as
Eq. (6.30). We can convert the information in Fig. 6.36 into a form relating Mr

to the PM. This is depicted in Fig. 6.37, along with the step-response overshoot
Mp . Therefore, we see that, given the PM, one can infer information about what
the overshoot of the closed-loop step response would be.

Many engineers think directly in terms of the PM when judging whether
a control system is adequately stabilized. In these terms, a PM = 30◦ is often
judged to be the lowest adequate value. In addition to testing the stability of a
system design using the PM, a designer would typically also be concerned with
meeting a speed-of-response specification such as bandwidth, as discussed in
Section 6.1. In terms of the frequency-response parameters discussed so far,
the crossover frequency would best describe a system’s speed of response. This
idea will be discussed further in Sections 6.6 and 6.7.

In some cases the PM and GM are not helpful indicators of stability. For
first- and second-order systems, the phase never crosses the 180◦ line; hence, the
GM is always ∞ and not a useful design parameter. For higher-order systems
it is possible to have more than one frequency where |KG(jω)| = 1 or where
� KG(jω) = 180◦ , and the margins as previously defined need clarification. An
example of this can be seen in Fig. 10.12, where the magnitude crosses 1 three
times. A decision was made to define PM by the first crossing, because the PM at
this crossing was the smallest of the three values and thus the most conservative
assessment of stability. A Nyquist plot based on the data in Fig. 10.12 would
show that the portion of the Nyquist curve closest to the −1 point was the critical
indicator of stability, and therefore use of the crossover frequency yielding the
minimum value of PM was the logical choice. At best, a designer needs to be
judicious when applying the margin definitions described in Fig. 6.33. In fact, the

Figure 6.37
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358 Chapter 6 The Frequency-Response Design Method

Figure 6.38
Definition of the vector
margin on the Nyquist plot
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actual stability margin of a system can be rigorously assessed only by examining
the Nyquist plot to determine its closest approach to the −1 point.

To aid in this analysis, O. J. M. Smith (1958) introduced the vector margin,Vector margin
which he defined to be the distance to the −1 point from the closest approach
of the Nyquist plot.9 Figure 6.38 illustrates the idea graphically. Because the
vector margin is a single margin parameter, it removes all the ambiguities in
assessing stability that come with using GM and PM in combination. In the past
it has not been used extensively due to difficulties in computing it. However,
with the widespread availability of computer aids, the idea of using the vector
margin to describe the degree of stability is much more feasible.

There are certain practical examples in which an increase in the gain can
make the system stable. As we saw in Chapter 5, these systems are called con-
ditionally stable. A representative root-locus plot for such systems is shown inConditionally stable systems
Fig. 6.39. For a point on the root locus, such as A, an increase in the gain would
make the system stable by bringing the unstable roots into the LHP. For point
B , either a gain increase or decrease could make the system become unstable.
Therefore, several gain margins exist that correspond to either gain reduction
or gain increase, and the definition of the GM in Fig. 6.33 is not valid.

Figure 6.39
Root locus for a
conditionally stable system
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9 This value is closely related to the use of the sensitivity function for design and the concept of
stability robustness, to be discussed in optional Section 6.9.
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Section 6.4 Stability Margins 359

EXAMPLE 6.11 Stability Properties for a Conditionally Stable System

Determine the stability properties as a function of the gain K for the system with the
open-loop transfer function

KG(s) = K(s + 10)2

s3
.

Solution. This is a system for which increasing gain causes a transition from instability
to stability. The root locus in Fig. 6.40(a) shows that the system is unstable for K < 5
and stable for K > 5. The Nyquist plot in Fig. 6.40(b) was drawn for the stable value
K = 7. Determination of the margins according to Fig. 6.33 yields PM = +10◦ (stable)
and GM = 0.7 (unstable). According to the rules for stability discussed earlier, these
two margins yield conflicting signals on the system’s stability.

We resolve the conflict by counting the Nyquist encirclements in Fig. 6.40(b). There
is one clockwise encirclement and one counterclockwise encirclement of the −1 point.
Hence there are no net encirclements, which confirms that the system is stable for K = 7.
For systems like this it is best to resort to the root locus and/or Nyquist plot (rather than
the Bode plot) to determine stability.

Figure 6.40
System in which increasing
gain leads from instability
to stability: (a) root locus;
(b) Nyquist plot
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EXAMPLE 6.12 Nyquist Plot for a System with Multiple Crossover Frequencies

Draw the Nyquist plot for the system

G(s) = 85(s + 1)(s2 + 2s + 43.25)

s2(s2 + 2s + 82)(s2 + 2s + 101)

= 85(s + 1)(s + 1 ± 6.5j)

s2(s + 1 ± 9j)(s + 1 ± 10j)
,

and determine the stability margins.
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Figure 6.41
Nyquist plot of the complex
system in Example 6.12
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Solution. The Nyquist plot (Fig. 6.41) shows that there are three crossover frequencies
(ω = 0.7, 8.5, and 9.8 rad/sec) with three corresponding PM values of 37◦ , 80◦ , and 40◦ ,
respectively. However, the key indicator of stability is the proximity of the Nyquist plot as
it approaches the −1 point while crossing the real axis. In this case, only the GM indicates
the poor stability margins of this system. The Bode plot for this system (Fig. 6.42) shows
the same three crossings of magnitude = 1 at 0.7, 8.5, and 9.8 rad/sec. The GM value

Figure 6.42
Bode plot of the system in
Example 6.12
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of 1.26 from the Bode plot corresponding to ω = 10.4 rad/sec qualitatively agrees with
the GM from the Nyquist plot and would be the most useful and unambiguous margin
for this example.

In summary, many systems behave roughly like Example 6.9, and for them,
the GM and PM are well defined and useful. There are also frequent instances
of more complicated systems with multiple magnitude 1 crossovers or unsta-
ble open-loop systems for which the stability criteria defined by Fig. 6.33 are
ambiguous or incorrect; therefore, we need to verify the GM and PM as pre-
viously defined, and/or modify them by reverting back to the Nyquist stability
criterion.

6.5 Bode’s Gain–Phase Relationship

One of Bode’s important contributions is the following theorem:

For any stable minimum-phase system (that is, one with no RHP zeros or
poles), the phase of G(jω) is uniquely related to the magnitude of G(jω).

When the slope of |G(jω)| versus ω on a log–log scale persists at a constantBode’s gain–phase
relationship value for approximately a decade of frequency, the relationship is particularly

simple and is given by
� G(jω) ∼= n × 90◦, (6.33)

where n is the slope of |G(jω)| in units of decade of amplitude per decade of
frequency. For example, in considering the magnitude curve alone in Fig. 6.43,
we see that Eq. (6.33) can be applied to the two frequencies ω1 = 0.1 (where
n = −2) and ω2 = 10 (where n = −1), which are a decade removed from the
change in slope, to yield the approximate values of phase, −180◦ and −90◦ . The
exact phase curve shown in the figure verifies that indeed the approximation is
quite good. It also shows that the approximation will degrade if the evaluation
is performed at frequencies closer to the change in slope.

An exact statement of the Bode gain–phase theorem is

� G(jωo) = 1
π

∫ +∞

−∞

(
dM

du

)
W(u) du (in radians), (6.34)

where
M = log magnitude = ln |G(jω)|,
u = normalized frequency = ln(ω/ωo),

dM/du ∼= slope n, as defined in Eq. (6.33),

W(u) = weighting function = ln(coth|u|/2).
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Figure 6.43
An approximate gain–phase
relationship demonstration
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Figure 6.44 is a plot of the weighting function W(u) and shows how the
phase is most dependent on the slope at ωo ; it is also dependent, though to
a lesser degree, on slopes at neighboring frequencies. The figure also suggests
that the weighting could be approximated by an impulse function centered at
ωo . We may approximate the weighting function as

W(u) ∼= π2

2
δ(u),

Figure 6.44
Weighting function in
Bode’s gain–phase theorem
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Section 6.5 Bode’s Gain–Phase Relationship 363

which is precisely the approximation made to arrive at Eq. (6.33) using the
“sifting” property of the impulse function (and conversion from radians to
degrees).

In practice, Eq. (6.34) is never used, but Eq. (6.33) is used as a guide to
infer stability from |G(ω)| alone. When |KG(jω)| = 1,

� G(jω) ∼= −90◦ if n = −1,

� G(jω) ∼= −180◦ if n = −2.

For stability we want � G(jω) > −180◦ for PM > 0. Therefore, we adjust the
|KG(jω)| curve so that it has a slope of −1 at the “crossover” frequency, ωc ,
(that is, where |KG(jω)| = 1). If the slope is −1 for a decade above and belowCrossover frequency
the crossover frequency, then PM ∼= 90◦ ; however, to ensure a reasonable
PM, it is usually necessary only to insist that a −1 slope (−20 db per decade)
persist for a decade in frequency that is centered at the crossover frequency.
We therefore see that there is a very simple design criterion:

Adjust the slope of the magnitude curve |KG(jω)| so that it crosses over
magnitude 1 with a slope of −1 for a decade around ωc .

This criterion will usually be sufficient to provide an acceptable PM, and hence
provide adequate system damping. To achieve the desired speed of response,
the system gain is adjusted so that the crossover point is at a frequency that will
yield the desired bandwidth or speed of response as determined by Eq. (3.49).
Recall that the natural frequency ωn , bandwidth, and crossover frequency are
all approximately equal, as will be discussed further in Section 6.6.

EXAMPLE 6.13 Use of Simple Design Criterion for Spacecraft Attitude Control

For the spacecraft attitude-control problem defined in Fig. 6.45, find a suitable expression
for KD(s) that will provide good damping and a bandwidth of approximately 0.2 rad/sec.

Solution. The magnitude of the frequency response of the spacecraft (Fig. 6.46) clearly
requires some reshaping, because it has a slope of −2 (or −40 db per decade) every-
where. The simplest compensation to do the job consists of using proportional and
derivative terms (a PD compensator), which produces the relation

KD(s) = K(TDs + 1). (6.35)

We will adjust the gain K to produce the desired bandwidth, and adjust break point
ω1 = 1/TD to provide the −1 slope at the crossover frequency. The actual design

Figure 6.45
Spacecraft attitude-control
system 
com s2

1
G (s) ��

�

�

Compensation Spacecraft

KD (s) 
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Figure 6.46
Magnitude of the
spacecraft’s frequency
response
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process to achieve the desired specifications is now very simple: We pick a value of K to
provide a crossover at 0.2 rad/sec and choose a value of ω1 that is about 4 times lower
than the crossover frequency, so that the slope will be −1 in the vicinity of the crossover.
Figure 6.47 shows the steps we take to arrive at the final compensation:

STEP 1. Plot |G(jω)|.
STEP 2. Modify the plot to include |D(jω)|, with ω1 = 0.05 rad/sec (TD = 20), so that
the slope will be ∼= −1 at ω = 0.2 rad/sec.

STEP 3. Determine that |DG| = 100 where the |DG| curve crosses the line ω =
0.2 rad/sec, which is where we want magnitude 1 crossover to be.

STEP 4. In order for crossover to be at ω = 0.2 rad/sec, compute

K = 1
[|DG|]ω=0.2

= 1
100

= 0.01.

Therefore,
KD(s) = 0.01(20s + 1)

will meet the specifications, thus completing the design.

Figure 6.47
Compensated open-loop
transfer function
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Figure 6.48
Closed-loop frequency
response
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Figure 6.49
Step response for PD
compensation
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If we were to draw the phase curve of KDG, we would find that PM = 75◦ , which
is certainly quite adequate. A plot of the closed-loop frequency-response magnitude
(Fig. 6.48) shows that, indeed, the crossover frequency and the bandwidth are almost
identical in this case. The step response of the closed-loop system is shown in Fig. 6.49
and its 14% overshoot confirms the adequate damping.

6.6 Closed-Loop Frequency Response

The closed-loop bandwidth was defined in Section 6.1 and in Fig. 6.5. Figure 6.3
showed that the natural frequency is always within a factor of two of the band-
width for a second-order system. In Example 6.13, we designed the compensa-
tion so that the crossover frequency was at the desired bandwidth and verified
by computation that the bandwidth was identical to the crossover frequency.
Generally, the match between the crossover frequency and the bandwidth is not
as good as in Example 6.13. We can help establish a more exact correspondence
by making a few observations. Consider a system in which |KG(jω)| shows the
typical behavior

|KG(jω)| 
 1 for ω 	 ωc,

|KG(jω)| 	 1 for ω 
 ωc,
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Figure 6.50
Closed-loop bandwidth with
respect to PM

�T ( jv)�

�KG ( jv)�

PM � 90�

2vc 5vc 10vc

�T ( jv)� � �KG ( jv)�

v (rad/sec)

PM � 22�

PM � 45�

Bandwidth

M
ag

ni
tu

de
, �

T
(j

v
)�

 a
nd

 �G
(j

v
)�

2.0

1.0

0.7

0.2

0.1

�3

�20

db

0

vc

where ωc is the crossover frequency. The closed-loop
frequency-response magnitude is approximated by

|T(jω)| =
∣∣∣∣ KG(jω)

1 + KG(jω)

∣∣∣∣ ∼=
{

1, ω 	 ωc,

|KG|, ω 
 ωc.
(6.36)

In the vicinity of crossover, where |KG(jω)| = 1, |T(jω)| depends heavily
on the PM. A PM of 90◦ means that � G(jωc) = −90◦ , and therefore |T(jωc)| =
0.707. On the other hand, PM = 45◦ yields |T(jωc)| = 1.31.

The approximations in Eq. (6.36) were used to generate the curves of
|T(jω)| in Fig. 6.50. It shows that the bandwidth for smaller values of PM is
typically somewhat greater than ωc , though usually it is less than 2ωc ; thus

ωc ≤ ωBW ≤ 2ωc.

Another specification related to the closed-loop frequency response is the
resonant-peak magnitude Mr , defined in Fig. 6.5. Figures 6.3 and 6.37 show
that, for linear systems, Mr is generally related to the damping of the system.
In practice, Mr is rarely used; most designers prefer to use the PM to specify the
damping of a system, because the imperfections that make systems nonlinear
or cause delays usually erode the phase more significantly than the magnitude.

6.7 Compensation

As we discussed in Chapters 4 and 5, dynamic elements (or compensation)
are typically added to feedback controllers to improve the system’s stability
and error characteristics because the process itself cannot be made to have
acceptable characteristics with proportional feedback alone.

Section 4.3 discussed the basic types of feedback: proportional, deriva-
tive, and integral. Section 5.5 discussed three kinds of dynamic compensation:
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Section 6.7 Compensation 367

lead compensation, which approximates proportional-derivative (PD) feed-
back, lag compensation, which approximates proportional-integral (PI) con-
trol, and notch compensation, which has special characteristics for dealing with
resonances. In this section we discuss these and other kinds of compensation in
terms of their frequency-response characteristics. In most cases, the compen-
sation will be implemented in a microprocessor. Techniques for converting the
continuous compensation D(s) into a form that can be coded in the computer
was briefly discussed in Section 4.4.1. It will be illustrated further in this section
and will be discussed in more detail in Chapter 8.

The frequency response stability analysis to this point has considered the
closed-loop system to have the characteristic equation 1+KG(s) = 0. With the
introduction of compensation, the closed-loop characteristic equation becomes
1 + KD(s)G(s) = 0, and all the previous discussion in this chapter pertaining
to the frequency response of KG(s) applies directly to the compensated case
if we apply it to the frequency response of KD(s)G(s). We call this quantity
L(s), the “loop gain,” or open-loop transfer function of the system, where
L(s) = KD(s)G(s).

6.7.1 PD Compensation
We will start the discussion of compensation design by using the frequency
response with PD control. The compensator transfer function, given byPD compensation

D(s) = (TDs + 1), (6.37)

was shown in Fig. 5.22 to have a stabilizing effect on the root locus of a second-
order system. The frequency-response characteristics of Eq. (6.37) are shown
in Fig. 6.51. A stabilizing influence is apparent by the increase in phase and
the corresponding +1 slope at frequencies above the break point 1/TD . We
use this compensation by locating 1/TD so that the increased phase occurs in
the vicinity of crossover (that is, where |KD(s)G(s)| = 1), thus increasing the
phase margin.

Note that the magnitude of the compensation continues to grow with in-
creasing frequency. This feature is undesirable because it amplifies the high-
frequency noise that is typically present in any real system and, as a continuous
transfer function, cannot be realized with physical elements. It is also the reason
we stated in Section 5.5 that pure derivative compensation gives trouble.

6.7.2 Lead Compensation
In order to alleviate the high-frequency amplification of the PD compensation,
a first-order pole is added in the denominator at frequencies substantially higher
than the breakpoint of the PD compensator. Thus the phase increase (or lead)
still occurs, but the amplification at high frequencies is limited. The resulting
lead compensation has a transfer function ofLead compensation

D(s) = T s + 1
αT s + 1

, α < 1 (6.38)
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Figure 6.51
Frequency response of PD
control
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where 1/α is the ratio between the pole/zero breakpoint frequencies. Fig-
ure 6.52 shows the frequency response of this lead compensation. Note that
a significant amount of phase lead is still provided, but with much less ampli-
fication at high frequencies. A lead compensator is generally used whenever a
substantial improvement in damping of the system is required.

The phase contributed by the lead compensation in Eq. (6.38) is given by

φ = tan−1(T ω) − tan−1(αT ω).

It can be shown (see Problem 6.43) that the frequency at which the phase is
maximum is given by

ωmax = 1
T

√
α

. (6.39)

The maximum phase contribution—that is, the peak of the � D(s) curve in
Fig. 6.52—corresponds to

sin φmax = 1 − α

1 + α
, (6.40)

or

α = 1 − sin φmax

1 + sin φmax
.
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Figure 6.52
Lead-compensation
frequency response with
1/α = 10
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Another way to look at this is the following: The maximum phase occurs at a fre-
quency that lies midway between the two break-point frequencies (sometimes
called corner frequencies) on a logarithmic scale,

log ωmax = log
1/

√
T√

αT

= log
1√
T

+ log
1√
αT

= 1
2

[
log

(
1
T

)
+ log

(
1

αT

)]
, (6.41)

as shown in Fig. 6.52. Alternatively, we may state these results in terms of the
pole–zero locations. Rewriting D(s) in the form used for root locus analysis,
we have

D(s) = s + z

s + p
. (6.42)

Problem 6.43 shows that

ωmax =
√

|z| |p| (6.43)
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Figure 6.53
Maximum phase increase
for lead compensation
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and

log ωmax = 1
2
(log |z| + log |p|). (6.44)

These results agree with the previous ones if we let z = −1/T and p = −1/αT

in Eqs. (6.39) and (6.41).
For example, a lead compensator with a zero at s = −2 (T = 0.5) and a

pole at s = −10 (αT = 0.1) (and thus α = 1
5 ) would yield the maximum phase

lead at

ωmax =
√

2 · 10 = 4.47 rad/sec.

The amount of phase lead at the midpoint depends only on α in Eq. (6.40) and
is plotted in Fig. 6.53. For α = 1

5 , Fig. 6.53 shows that φmax = 40◦ . Note from
the figure that we could increase the phase lead up to 90◦ using higher values of
the lead ratio, 1/α ; however, Fig. 6.52 shows that increasing values of 1/α alsoLead ratio = 1

α

produces higher amplifications at higher frequencies. Thus our task is to select
a value of 1/α that is a good compromise between an acceptable phase margin
and an acceptable noise sensitivity at high frequencies. Usually the compromise
suggests that a lead compensation should contribute a maximum of 60◦ to the
phase. If a greater phase lead is needed, then a double lead compensation would
be suggested, where

D(s) =
(

T s + 1
αT s + 1

)2

.

Even if a system had negligible amounts of noise present and the pure
derivative compensation of Eq. (6.37) were acceptable, a continuous compen-
sation would look more like Eq. (6.38) than Eq. (6.37) because of the impos-
sibility of building a pure differentiator. No physical system—mechanical or
electrical—responds with infinite amplitude at infinite frequencies, so there
will be a limit in the frequency range (or bandwidth) for which derivative infor-
mation (or phase lead) can be provided. This is also true with a digital imple-
mentation. Here, the sample rate limits the high-frequency amplification and
essentially places a pole in the compensation transfer function.

PreTEX, Inc., Technical Typesetters Tel. (902)454-8111 FAX (902)454-2894 Franklin, Feedback Control of Dynamic Systems, 5e

Feedback Control of Dynamic Systems, Fifth Edition, 
by Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. 

ISBN 0-13-149930-0. © 2006 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.
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EXAMPLE 6.14 Lead Compensation for a DC Motor

As an example of designing a lead compensator, let us repeat the design of compensation
for the DC motor with the transfer function

G(s) = 1
s(s + 1)

that was carried out in Section 5.5.1. This also represents the model of a satellite tracking
antenna (see Fig. 3.52). This time we wish to obtain a steady-state error of less than 0.1
for a unit-ramp input. Furthermore, we desire an overshoot Mp < 25%.

(a) Determine the lead compensation satisfying the specifications,

(b) determine the digital version of the compensation with Ts = 0.05 sec, and

(c) compare the step and ramp responses of both implementations.

Solution.

(a) The steady-state error is given by

ess = lim
s→0

s

[
1

1 + KD(s)G(s)

]
R(s), (6.45)

where R(s) = 1/s2 for a unit ramp, so Eq. (6.45) reduces to

ess = lim
s→0

{
1

s + KD(s)[1/(s + 1)]

}
= 1

KD(0)
.

Therefore, we find that KD(0), the steady-state gain of the compensation, cannot
be less than 10 (Kv ≥ 10) if it is to meet the error criterion, so we pick K = 10.
To relate the overshoot requirement to phase margin, Fig. 6.37 shows that a PM
of 45◦ should suffice. The frequency response of KG(s) in Fig. 6.54 shows that the
PM = 20◦ if no phase lead is added by compensation. If it were possible to simply
add phase without affecting the magnitude, we would need an additional phase of
only 25◦ at the KG(s) crossover frequency of ω = 3 rad/sec. However, maintaining
the same low-frequency gain and adding a compensator zero would increase the
crossover frequency; hence more than a 25◦ phase contribution will be required
from the lead compensation. To be safe, we will design the lead compensator so
that it supplies a maximum phase lead of 40◦ . Fig. 6.53 shows that 1/α = 5 will
accomplish that goal. We will derive the greatest benefit from the compensation if
the maximum phase lead from the compensator occurs at the crossover frequency.
With some trial and error, we determine that placing the zero at ω = 2 rad/sec and
the pole at ω = 10 rad/sec causes the maximum phase lead to be at the crossover
frequency. The compensation, therefore, is

KD(s) = 10
s/2 + 1
s/10 + 1

.

The frequency-response characteristics of L(s) = KD(s)G(s) in Fig. 6.54 can be
seen to yield a phase margin of 45◦ , which satisfies the design goals.
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Figure 6.54
Frequency response for
lead-compensation design
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Figure 6.55
Root locus for lead
compensation design 2
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Section 6.7 Compensation 373

The root locus for this design, originally given as Fig. 5.23, is repeated here as
Fig. 6.55, with the root locations marked for K = 10. The locus is not needed for
the frequency response design procedure; it is presented here only for comparison
with the root locus design method presented in Chapter 5.

(b) To find the discrete equivalent of D(s), we use the trapezoidal rule given by
Eq. (4.93). That is,

Dd(z) =
2
Ts

z−1
z+1 /2 + 1

2
Ts

z−1
z+1 /10 + 1

, (6.46)

which, with Ts = 0.05 sec, reduces to

Dd(z) = 4.2z − 3.8
z − 0.6

. (6.47)

This same result can be obtained by the MATLAB statement

sysD = tf([0.5 1],[0.1 1]);
sysDd = c2d(sysD, 0.05, 'tustin').

Because
U(z)

E(z)
= KDd(z), (6.48)

the discrete control equations that result are

u(k + 1) = 0.6u(k) + 10(4.2e(k + 1) − 3.8e(k)). (6.49)

(c) The Simulink block diagram of the continuous and discrete versions of D(s) con-
trolling the DC motor is shown in Fig. 6.56. The step responses of the two controllers
are plotted together in Fig. 6.57(a) and are reasonably close to one another; how-
ever, the discrete controller does exhibit slightly increased overshoot, as is often the
case. Both overshoots are less than 25%, and thus meet the specifications. The ramp
responses of the two controllers, shown in Fig. 6.57(b), are essentially identical, and
both meet the 0.1 specified error.

Figure 6.56
Simulink block diagram
for transient response of
lead-compensation design
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Figure 6.57
Lead-compensation design:
(a) step response; (b) ramp
response
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The design procedure used in Example 6.14 can be summarized as follows:

1. Determine the low-frequency gain so that the steady-state errors are within
specification.

2. Select the combination of lead ratio 1/α and zero values (1/T ) that achieves
an acceptable phase margin at crossover.

3. The pole location is then at (1/αT ).

This design procedure will apply to many cases; however, keep in mind that the
specific procedure followed in any particular design may need to be tailored to
its particular set of specifications.

In Example 6.14 there were two specifications: peak overshoot and steady-
state error. We transformed the overshoot specification into a PM, but the
steady-state error specification we used directly. No speed-of-response type
of specification was given; however, it would have impacted the design in the
same way that the steady-state error specification did. The speed of response
or bandwidth of a system is directly related to the crossover frequency, as we
pointed out earlier in Section 6.6. Fig. 6.54 shows that the crossover frequency
was ∼ 5 rad/sec. We could have increased it by raising the gain K and increasing
the frequency of the lead compensator pole and zero in order to keep the slope
of −1 at the crossover frequency. Raising the gain would also have decreased
the steady-state error to be better than the specified limit. The gain margin
was never introduced into the problem because the stability was adequately
specified by the phase margin alone. Furthermore, the gain margin would not
have been useful for this system because the phase never crossed the 180◦ line
and the GM was always infinite.
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Section 6.7 Compensation 375

In lead-compensation designs there are three primary design parameters:

1. The crossover frequency ωc , which determines bandwidth ωBW , rise timeDesign parameters for
lead-networks tr , and settling time ts ;

2. The phase margin (PM), which determines the damping coefficient ζ and
the overshoot Mp ;

3. The low-frequency gain, which determines the steady-state error character-
istics.

The design problem is to find the best values for the parameters, given the
requirements. In essence, lead compensation increases the value of ωc

L(0)
(= ωc

Kv

for a type 1 system). That means that, if the low frequency gain is kept the same,
the crossover frequency will increase. Or if the crossover frequency is kept the
same, the low frequency gain will decrease. Keeping this interaction in mind,
the designer can assume a fixed value of one of these three design parameters
and then adjust the other two iteratively until the specifications are met. One
approach is to set the low-frequency gain to meet the error specifications and
add a lead compensator to increase the PM at the crossover frequency. An alter-
native is to pick the crossover frequency to meet a time response specification,
then adjust the gain and lead characteristics so that the PM specification is met.
A step-by-step procedure is outlined next for these two cases. They apply to a
sizable class of problems for which a single lead is sufficient. As with all such
design procedures, it provides only a starting point; the designer will typically
find it necessary to go through several design iterations in order to meet all the
specifications.

Design Procedure for Lead
Compensation 1. Determine open-loop gain K to satisfy error or bandwidth requirements:

(a) to meet error requirement, pick K to satisfy error constants (Kp , Kv ,
or Ka ) so that ess error specification is met, or alternatively,

(b) to meet bandwidth requirement, pick K so that the open-loop crossover
frequency is a factor of two below the desired closed-loop bandwidth.

2. Evaluate the phase margin (PM) of the uncompensated system using the
value of K obtained from Step 1.

3. Allow for extra margin (about 10◦ ), and determine the needed phase lead
φmax .

4. Determine α from Eq. (6.40) or Fig. 6.53.

5. Pick ωmax to be at the crossover frequency; thus the zero is at 1/T =
ωmax

√
α and the pole is at 1/αT = ωmax/

√
α .

6. Draw the compensated frequency response and check the PM.

7. Iterate on the design. Adjust compensator parameters (poles, zeros, and
gain) until all specifications are met. Add an additional lead compensator
(that is, a double lead compensation) if necessary.
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376 Chapter 6 The Frequency-Response Design Method

While these guidelines will not apply to all the systems you will encounter in
practice, they do suggest a systematic trial-and-error process to search for a
satisfactory compensator that will usually be successful.

EXAMPLE 6.15 Lead Compensator for a Temperature Control System

The third-order system

KG(s) = K

(s/0.5 + 1)(s + 1)(s/2 + 1)

is representative of a typical temperature control system. Design a lead compensator
such that Kp = 9 and the phase margin is at least 25◦ .

Solution. Let us follow the design procedure:

STEP 1. Given the specification for Kp , we solve for K :

Kp = lim
s→0

KG(s) = K = 9.

STEP 2. The Bode plot of the uncompensated system with K = 9 can be created by
the MATLAB statements below and is shown in Fig. 6.58.

numG = 9;
den2 = conv([1 0.5],[1 1]);
denG = conv(den2,[1 2]);
sysG = tf(numG,denG);
[mag,phas,w] = bode(sysG);

Figure 6.58
Bode plot for the
lead-compensation design
in Example 6.15
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Section 6.7 Compensation 377

It is difficult to read the PM and crossover frequencies accurately from the Bode
plots; therefore, the MATLAB command

[GM,PM,Wcg,Wcp] = margin(mag,phas,w)

can be invoked. The quantity PM is the phase margin and Wcp is the frequency at which
the gain crosses magnitude 1. (GM and Wcg are the open-loop gain margin and the
frequency at which the phase crosses 180.) For this example, the output is

GM =1.2500, PM = 7.1249, Wcg = 1.8708, Wcp = 1.6844,

which says that the PM of the uncompensated system is 7◦ and that this occurs at a
crossover frequency of 1.7 rad/sec.

STEP 3. Allowing for 10◦ of extra margin, we want the lead compensator to contribute
25◦ + 10◦ − 7◦ = 28◦ at the crossover frequency. The extra margin is typically required
because the lead will increase the crossover frequency from the open-loop case, at which
point more phase increase will be required.

STEP 4. From Fig. 6.53 we see that α = 1/3 will produce approximately 30◦ phase
increase midway between the zero and pole.

STEP 5. As a first cut, let’s place the zero at 1 rad/sec (T = 1) and the pole at 3 rad/sec
(αT = 1/3), thus bracketing the open-loop crossover frequency and preserving the
factor of 3 between pole and zero, as indicated by α = 1/3. The lead compensator is

D1(s) = s + 1
s/3 + 1

= 1
0.333

(
s + 1
s + 3

)
.

STEP 6. The Bode plot of the system with D1(s) (Fig. 6.58, middle curve) has a PM of
16◦ . We did not achieve the desired PM of 30◦ , because the lead shifted the crossover
frequency from 1.7 rad/sec to 2.3 rad/sec, thus increasing the required phase increase
from the lead. The step response of the system with D1(s) (Fig. 6.59) shows a very
oscillatory response, as we might expect from the low PM of 16◦ .

STEP 7. We repeat the design with extra phase increase and move the zero location
slightly to the right so that the crossover frequency won’t be shifted so much. We choose
α = 1

10 with the zero at s = −1.5, so

D2(s) = s/1.5 + 1
s/15 + 1

= 1
0.1

(
s + 1.5
s + 15

)
.

This compensation produces a PM = 38◦ , and the crossover frequency lowered slightly
to 2.2 rad/sec. Figure 6.58 (upper curve) shows the frequency response of the revised
design. Figure 6.59 shows a substantial reduction in the oscillations, which you should
expect from the higher PM value.
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378 Chapter 6 The Frequency-Response Design Method

Figure 6.59
Step response for
lead-compensation design
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EXAMPLE 6.16
Lead-Compensator Design for a Type 1 Servomechanism
System

Consider the third-order system

KG(s) = K
10

s(s/2.5 + 1)(s/6 + 1)
.

This type of system would result for a DC motor with a lag in the shaft position sensor.
Design a lead compensator so that the PM = 45◦ and Kv = 10.

Solution. Again, we follow the design procedure given earlier:

STEP 1. As given, KG(s) will yield Kv = 10 if K = 1. Therefore, the Kv requirement
is met by K = 1 and the low-frequency gain of the compensation should be 1.

STEP 2. The Bode plot of the system is shown in Fig. 6.60. The phase margin of the
uncompensated system (lower curve) is approximately −4◦ , and the crossover frequency
is at ωc

∼= 4 rad/sec.

STEP 3. Allowing for 5◦ of extra phase margin, we need PM = 45◦ + 5◦ − (−4◦) = 54◦
to be contributed by the lead compensator.

STEP 4. From Fig. 6.53 we find that α must be 0.1 to achieve a maximum phase lead
of 54◦ .

STEP 5. The new gain crossover frequency will be higher than the open-loop value of
ωc = 4 rad/sec, so let’s select the pole and zero of the lead compensation to be at 20
and 2 rad/sec, respectively. So the candidate compensator is

D(s) = s/2 + 1
s/20 + 1

= 1
0.1

s + 2
s + 20

.
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Section 6.7 Compensation 379

Figure 6.60
Bode plot for the
lead-compensation design
in Example 6.16
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STEP 6. The Bode plot of the compensated system (Fig. 6.60, middle curve) shows a
PM of 23◦ . Further iteration will show that a single lead compensator cannot meet the
specification because of the high-frequency slope of −3.

STEP 7. We need a double lead compensator in this system. If we try a compensator
of the form

D2(s) = 1
(0.1)2

(s + 2)(s + 4)

(s + 20)(s + 40)
= (s/2 + 1)(s/4 + 1)

(s/20 + 1)(s/40 + 1)
,

we obtain PM = 46◦ . The Bode plot for this case is shown as the upper curve in Fig. 6.60.

Both Examples 6.15 and 6.16 are third order. Example 6.16 was more difficult
to design compensation for, because the error requirement, Kv , forced the
crossover frequency, ωc , to be so high that a single lead could not provide
enough PM.

6.7.3 PI Compensation

In many problems it is important to keep the bandwidth low and also to re-
duce the steady-state error. For this purpose, a proportional-integral (PI) or lag
compensator is useful. By letting kD = 0 in Eq. (4.74), we see that PI control
has the transfer functionPI compensation

D(s) = K

s

(
s + 1

TI

)
, (6.50)

which results in the frequency-response characteristics shown in Fig. 6.61. The
desirable aspect of this compensation is the infinite gain at zero frequency, which
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Figure 6.61
Frequency response of PI
control
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reduces the steady-state errors. This is accomplished, however, at the cost of a
phase decrease at frequencies lower than the break point at ω = 1/TI . There-
fore, 1/TI is usually located at a frequency substantially less than the crossover
frequency so that the system’s phase margin is not affected significantly.

6.7.4 Lag Compensation

As we discussed in Section 5.5, lag compensation approximates PI control.Lag compensation
Its transfer function was given by Eq. (5.91) for root-locus design, but for
frequency-response design, it is more convenient to write the transfer func-
tion of the lag compensation alone in the Bode form

D(s) = α
T s + 1
αT s + 1

, α > 1, (6.51)
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Section 6.7 Compensation 381

where α is the ratio between the zero/pole breakpoint frequencies. The com-
plete controller will almost always include an overall gain K and perhaps other
dynamics in addition to the lag compensation. Although Eq. (6.51) looks very
similar to the lead compensation in Eq. (6.38), the fact that α > 1 causes the
pole to have a lower break-point frequency than the zero. This relationship
produces the low-frequency increase in amplitude and phase decrease (lag)
apparent in the frequency-response plot in Fig. 6.62 and gives the compensa-
tion the essential feature of integral control—an increased low-frequency gain.
The typical objective of lag-compensation design is to provide additional gain
of α in the low-frequency range and to leave the system sufficient phase margin
(PM). Of course, phase lag is not the useful effect, and the pole and zero of the
lag compensator are selected to be at much lower frequencies than the uncom-
pensated system crossover frequency in order to keep the effect on the PM to a
minimum. Thus, the lag compensator increases the open-loop DC gain, thereby
improving the steady-state response characteristics, without changing the tran-
sient response characteristics significantly. If the pole and zero are relatively
close together and near the origin (that is, if the value of T is large), we can
increase the low-frequency gain (and thus Kp , Kv , or Ka ) by a factor α with-
out moving the closed-loop poles appreciably. Hence, the transient response
remains approximately the same while the steady-state response is improved.

We now summarize a step-by-step procedure for lag-compensator design.

Figure 6.62
Frequency response of lag
compensation with α = 10
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382 Chapter 6 The Frequency-Response Design Method

Design Procedure for Lag
Compensation 1. Determine the open-loop gain K that will meet the phase-margin require-

ment without compensation.

2. Draw the Bode plot of the uncompensated system with crossover frequency
from Step 1, and evaluate the low-frequency gain.

3. Determine α to meet the low-frequency gain error requirement.

4. Choose the corner frequency ω = 1/T (the zero of the lag compensator)
to be one octave to one decade below the new crossover frequency ωc .

5. The other corner frequency (the pole location of the lag compensator) is
then ω = 1/αT .

6. Iterate on the design. Adjust compensator parameters (poles, zeros, and
gain) to meet all the specifications.

EXAMPLE 6.17 Lag-Compensator Design for Temperature Control System

Again consider the third-order system of Example 6.15:

KG(s) = K( 1
0.5 s + 1

)
(s + 1)

( 1
2 s + 1

) .

Design a lag compensator so the phase margin is at least 40◦ and Kp = 9.

Solution. We follow the design procedure previously enumerated.

STEP 1. From the open-loop plot of KG(s), shown for K = 9 in Fig. 6.58, it can be
seen that a PM > 40◦ will be achieved if the crossover frequency ωc

<∼1 rad/sec. This
will be the case if K = 3. So we pick K = 3 in order to meet the PM specification.

STEP 2. The Bode plot of KG(s) in Fig. 6.63 with K = 3 shows that the PM is ≈ 50◦
and the low-frequency gain is now 3. Exact calculation of the PM using MATLAB’s
margin shows that PM = 53◦.

STEP 3. The low frequency gain should be raised by a factor of 3, which means the lag
compensation needs to have α = 3.

STEP 4. We choose the corner frequency for the zero to be approximately a factor of
5 slower than the expected crossover frequency—that is, at 0.2 rad/sec. So, 1/T = 0.2,
or T = 5.

STEP 5. We then have the value for the other corner frequency: ω = 1/αT = 1
(3)(5)

=
1
15 rad/sec. The compensator is thus

D(s) = 3
5s + 1

15s + 1
.

The compensated frequency response is also shown in Fig. 6.63. The low frequency gain
of L(0) = KD(0)G(0) = 3K = 9, thus Kp = 9 and the PM lowers slightly to 44◦ , which
satisfies the specifications. The step response of the system, shown in Fig. 6.64, illustrates
the reasonable damping that we would expect from PM = 44◦ .

STEP 6. No iteration is required in this case.
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Figure 6.63
Frequency response of
lag-compensation design in
Example 6.17
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Figure 6.64
Step response of
lag-compensation design in
Example 6.17
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Note that Examples 6.15 and 6.17 are both for the same plant, and both
had the same steady-state error requirement. One was compensated with lead
and one was compensated with lag. The result is that the bandwidth of the
lead-compensated design is approximately a factor of 3 higher than that for the
lag compensated design. This result can be seen by comparing the crossover
frequencies of the two designs.

A beneficial effect of lag compensation, an increase in the low-frequency
gain for better error characteristics, was just demonstrated in Example 6.17.
However, in essence, lag compensation reduces the value of ωc

L(0)
(= ωc

Kv
for a

type 1 system). That means that, if the crossover frequency is kept the same,
the low-frequency gain will increase. Likewise, if the low-frequency gain is kept
the same, the crossover frequency will decrease. Therefore, lag compensation
could also be interpreted to reduce the crossover frequency and thus obtain a
better phase margin. The procedure for design in this case is partially modified.
First, pick the low-frequency gain to meet error requirements, then locate the
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384 Chapter 6 The Frequency-Response Design Method

lag compensation pole and zero in order to provide a crossover frequency with
adequate PM. The next example illustrates this design procedure. The end result
of the design will be the same no matter what procedure is followed.

EXAMPLE 6.18 Lag Compensation of the DC Motor

Repeat the design of the DC motor control in Example 6.14, this time using lag compen-
sation. Fix the low-frequency gain in order to meet the error requirement of Kv = 10;
then use the lag compensation to meet the PM requirement of 45◦ .

Solution. The frequency response of the system KG(s), with the required gain of
K = 10, is shown in Fig. 6.65. The uncompensated system has a crossover frequency at
approximately 3 rad/sec where the PM = 20◦ . The designer’s task is to select the lag
compensation break points so that the crossover frequency is lowered and more favor-
able PM results. To prevent detrimental effects from the compensation phase lag, the
pole and zero position values of the compensation need to be substantially lower than
the new crossover frequency. One possible choice is shown in Fig. 6.65: The lag zero is at
0.1 rad/sec, and the lag pole is at 0.01 rad/sec. This selection of parameters produces a PM
of 50◦ , thus satisfying the specifications. Here the stabilization is achieved by keeping

Figure 6.65
Frequency response of
lag-compensation design in
Example 6.18
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Figure 6.66
Step response of
lag-compensation design in
Example 6.18
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the crossover frequency to a region where G(s) has favorable phase characteristics. The
criterion for selecting the pole and zero locations 1/T is to make them low enough to
minimize the effects of the phase lag from the compensation at the crossover frequency.
Generally, however, the pole and zero are located no lower than necessary, because
the additional system root [compare with the root locus of a similar system design in
Fig. 5.29(b)] introduced by the lag will be in the same frequency range as the compen-
sation zero and will have some effect on the output response, especially the response to
disturbance inputs.

The response of the system to a step reference input is shown in Fig. 6.66. It shows
no steady-state error to a step input, because this is a type 1 system. However, the
introduction of the slow root from the lag compensation has caused the response to
require about 25 sec to settle down to the zero steady-state value. The overshoot Mp is
somewhat larger than you would expect from the guidelines, based on a second-order
system shown in Fig. 6.37 for a PM = 50◦ ; however, the performance is adequate.

As we saw previously for a similar situation, Examples 6.14 and 6.18 meet
an identical set of specifications for the same plant in very different ways. In the
first case the specifications are met with a lead compensation, and a crossover
frequency ωc = 5 rad/sec (ωBW ∼= 6 rad/sec) results. In the second case the
same specifications are met with a lag compensation, and ωc

∼= 0.8 rad/sec
(ωBW ∼= 1 rad/sec) results. Clearly, had there been specifications for rise time
or bandwidth, they would have influenced the choice of compensation (lead or
lag). Likewise, if the slow settling to the steady-state value was a problem, it
might have suggested the use of lead compensation instead of lag.

In more realistic systems, dynamic elements usually represent the actuator
and sensor as well as the process itself, so it is typically impossible to raise the
crossover frequency much beyond the value representing the speed of response
of the components being used. Although linear analysis seems to suggest that
almost any system can be compensated, in fact, if we attempt to drive a set of
components much faster than their natural frequencies, the system will saturate,
the linearity assumptions will no longer be valid, and the linear design will
represent little more than wishful thinking. With this behavior in mind, we
see that simply increasing the gain of a system and adding lead compensators
to achieve an adequate PM may not always be possible. It may be preferable
to satisfy error requirements by adding a lag network so that the closed-loop
bandwidth is kept at a more reasonable frequency.
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Figure 6.67
Frequency response of
PID compensation with
TI /TD = 20
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6.7.5 PID Compensation

For problems that need phase-margin improvement at ωc and low-frequency
gain improvement, it is effective to use both derivative and integral control. By
combining Eqs. (6.37) and (6.50), we obtain PID control. Its transfer function isPID compensation

D(s) = K

s

[
(TDs + 1)

(
s + 1

TI

)]
, (6.52)

and its frequency-response characteristics are shown in Fig. 6.67. This form is
slightly different from that given by Eq. (4.75); however, the effect of the differ-
ence is inconsequential. This compensation is roughly equivalent to combining
lead and lag compensators in the same design, and so is sometimes referred to
as a lead–lag compensator. Hence, it can provide simultaneous improvement
in transient and steady-state responses.

EXAMPLE 6.19 PID Compensation Design for Spacecraft Attitude Control

A simplified design for spacecraft attitude control was presented in Section 6.5; however,
here we have a more realistic situation that includes a sensor lag and a disturbing torque.
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Figure 6.68
Block diagram of spacecraft
control using PID design,
Example 6.19
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Figure 6.68 defines the system. Design a PID controller to have zero steady-state error
to a constant-disturbance torque, a phase margin of 65◦ , and as high a bandwidth as is
reasonably possible.

Solution. First, let us take care of the steady-state error. For the spacecraft to be at a
steady final value, the total input torque, Td + Tc , must equal zero. Therefore, if Td �= 0,
then Tc = −Td . The only way this can be true with no error (e = 0) is for D(s) to contain
an integral term. Hence, including integral control in the compensation will meet the
steady-state requirement. This could also be verified mathematically by use of the Final
Value Theorem (see Problem 6.46).

The frequency response of the spacecraft and sensor,

G(s) = 0.9
s2

(
2

s + 2

)
, (6.53)

is shown in Fig. 6.69. The slopes of −2 (that is, −40 db per decade) and −3 (−60 db
per decade) show that the system would be unstable for any value of K if no derivative
feedback were used. This is clear because of Bode’s gain–phase relationship, which
shows that the phase would be −180◦ for the −2 slope and −270◦ for the −3 slope and
which would correspond to a PM of 0◦ or −90◦ . Therefore, derivative control is required
to bring the slope to −1 at the crossover frequency that was shown in Section 6.5 to be
a requirement for stability. The problem now is to pick values for the three parameters
in Eq. (6.52)—K , TD , and TI —that will satisfy the specifications.

The easiest approach is to work first on the phase so that PM = 65◦ is achieved at a
reasonably high frequency. This can be accomplished primarily by adjusting TD , noting
that TI has a minor effect if sufficiently larger than TD . Once the phase is adjusted, we
establish the crossover frequency; then we can easily determine the gain K .

We examine the phase of the PID controller in Fig. 6.67 to determine what would
happen to the compensated spacecraft system, D(s)G(s), as TD is varied. If 1/TD ≥
2 rad/sec, the phase lead from the PID control would simply cancel the sensor phase
lag, and the composite phase would never exceed −180◦ , an unacceptable situation. If
1/TD ≤ 0.01, the composite phase would approach −90◦ for some range of frequencies
and would exceed −115◦ for an even wider range of frequencies; the latter threshold
would provide a PM of 65◦ . In the compensated phase curve shown in Fig. 6.69, 1/TD =
0.1, which is the largest value of 1/TD that could provide the required PM of 65◦ . The
phase would never cross the −115◦ (65◦ PM) line for any 1/TD > 0.1. For 1/TD = 0.1,
the crossover frequency ωc that produces the 65◦ PM is 0.5 rad/sec. For a value of
1/TD 	 0.05, the phase essentially follows the dotted curve in Fig. 6.69, which indicates
that the maximum possible ωc is approximately 1 rad/sec and is provided by 1/TD =
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Figure 6.69
Compensation for PID
design in Example 6.19
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0.05. Therefore, 0.05 < 1/TD < 0.1 is the only sensible range for 1/TD ; anything less
than 0.05 would provide no significant increase in bandwidth, while anything more than
0.1 could not meet the PM specification. Although the final choice is somewhat arbitrary,
we have chosen 1/TD = 0.1 for our final design.

Our choice for 1/TI is a factor of 20 lower than 1/TD ; that is, 1/TI = 0.005. A
factor less than 20 would negatively impact the phase at crossover, thus lowering the
PM. Furthermore, it is generally desirable to keep the compensated magnitude as large
as possible at frequencies below ωc in order to have a faster transient response and
smaller errors; maintaining 1/TD and 1/TI at the highest possible frequencies will bring
this about.
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Figure 6.70 Transient response for PID example: (a) step response; (b) step-disturbance response

The only remaining task is to determine the proportional part of the PID controller,
or K . Unlike the system in Example 6.17, where we selected K in order to meet a steady-
state error specification, here we select a value of K that will yield a crossover frequency
at the point corresponding to the required PM of 65◦ . The basic procedure for finding
K , discussed in Section 6.6, consists of plotting the compensated system amplitude with
K = 1, finding the amplitude value at crossover, then setting 1/K equal to that value.
Figure 6.69 shows that when K = 1, |D(s)G(s)| = 20 at the desired crossover frequency
ωc = 0.5 rad/sec. Therefore,

1
K

= 20, so K = 1
20

= 0.05.

The compensation equation that satisfies all of the specifications is now complete:

D(s) = 0.05
s

[(10s + 1)(s + 0.005)].

It is interesting to note that this system would become unstable if the gain were
lowered so that ωc ≤ 0.02 rad/sec, the region in Fig. 6.69 where the phase of the compen-
sated system is less than −180◦ . As mentioned in Section 6.4, this situation is referred
to as a conditionally stable system. A root locus with respect to K for this and any con-
ditionally stable system would show the portion of the locus corresponding to very low
gains in the RHP. The response of the system for a unit step θcom is shown in Fig. 6.70(a)
and exhibits well damped behavior, as should be expected with a 65◦ PM.

The response of the system for a step disturbance torque Td = 0.1 N is shown in
Fig. 6.70(b). Note that the integral control term does eventually drive the error to zero;
however, it is slow due to the presence of a closed-loop pole in the vicinity of the zero at
s = −0.005. However, recall from the design process that this zero was located in order
that the integral term not impact the PM unduly. So if the slow disturbance response is
not acceptable, speeding up this pole will decrease the PM and damping of the system.
Compromise is often a necessity in control system design!
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Summary of Compensation
Characteristics 1. PD Control adds phase lead at all frequencies above the break point. If

there is no change in gain on the low-frequency asymptote, PD compensa-
tion will increase the crossover frequency and the speed of response. The
increase in magnitude of the frequency response at the higher frequencies
will increase the system’s sensitivity to noise.

2. Lead Compensation adds phase lead at a frequency band between the two
break points, which are usually selected to bracket the crossover frequency.
If there is no change in gain on the low-frequency asymptote, lead compen-
sation will increase both the crossover frequency and the speed of response
over the uncompensated system.

3. PI Control increases the frequency-response magnitude at frequencies be-
low the break point, thereby decreasing steady-state errors. It also con-
tributes phase lag below the break point, which must be kept at a low
enough frequency to avoid degrading the stability excessively.

4. Lag Compensation increases the frequency-response magnitude at fre-
quencies below the two break points, thereby decreasing steady-state er-
rors. Alternatively, with suitable adjustments in K , lag compensation can be
used to decrease the frequency-response magnitude at frequencies above
the two break points, so that ωc yields an acceptable phase margin. Lag
compensation also contributes phase lag between the two break points,
which must be kept at frequencies low enough to keep the phase decrease
from degrading the PM excessively. This compensation will typically pro-
vide a slower response than using lead compensation.

6.7.6 Design Considerations

We have seen in the preceding designs that characteristics of the open-loop
Bode plot of the loop gain, L(s) (= KDG), determine performance with
respect to steady-state errors and dynamic response. Other properties of feed-
back, developed in Chapter 4, include reducing the effects of sensor noise and
parameter changes on the performance of the system.

The consideration of steady-state errors due to command inputs and dis-
turbances has been an important design component in the different design
methods presented. Design for acceptable steady-state errors can be thought
of as placing a lower bound on the very-low-frequency gain of the system. An-
other aspect of the sensitivity issue concerns the high-frequency portion of the
system. So far, Chapter 4 and Sections 5.5 and 6.7 have briefly discussed the
idea that, to alleviate the effects of sensor noise, the gain of the system at high
frequencies must be kept low. In fact, in the development of lead compensation,
we added a pole to pure derivative control specifically to reduce the effects of
sensor noise at the higher frequencies. It is not unusual for designers to place
an extra pole in the compensation, that is, to use the relation
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Section 6.7 Compensation 391

D(s) = T s + 1
(αT s + 1)2 ,

in order to introduce even more attenuation for noise reduction.
A second consideration affecting high-frequency gains is that many systems

have high-frequency dynamic phenomena, such as mechanical resonances, that
could have an impact on the stability of a system. In very-high-performance
designs, these high-frequency dynamics are included in the plant model, and a
compensator is designed with a specific knowledge of those dynamics. A stan-
dard approach to designing for unknown high-frequency dynamics is to keep
the high-frequency gain low, just as we did for sensor-noise reduction. The rea-
son for this can be seen from the gain–frequency relationship of a typical system,
shown in Fig. 6.71. The only way instability can result from high-frequency dy-
namics is if an unknown high-frequency resonance causes the magnitude to rise
above 1. Conversely, if all unknown high-frequency phenomena are guaranteed
to remain below a magnitude of 1, stability can be guaranteed. The likelihood
of an unknown resonance in the plant G rising above 1 can be reduced if the
nominal high-frequency loop gain (L) is lowered by the addition of extra poles
in D(s). When the stability of a system with resonances is assured by tailoring
the high-frequency magnitude never to exceed 1, we refer to this process as
amplitude or gain stabilization. Of course, if the resonance characteristics areGain stabilization
known exactly, a specially tailored compensation, such as one with a notch at
the resonant frequency, can be used to change the phase at a specific frequency
to avoid encirclements of −1, thus stabilizing the system even though the am-
plitude does exceed magnitude 1. This method of stabilization is referred to
as phase stabilization. A drawback to phase stabilization is that the resonancePhase stabilization
information is often not available with adequate precision or varies with time;
therefore, the method is more susceptible to errors in the plant model used in
the design. Thus, we see that sensitivity to plant uncertainty and sensor noise
are both reduced by sufficiently low loop gain at high-frequency.

These two aspects of sensitivity—high- and low-frequency behavior—can
be depicted graphically, as shown in Fig. 6.72. There is a minimum low-frequency
gain allowable for acceptable steady-state error performance and a maximum

Figure 6.71
Effect of high-frequency
plant uncertainty
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Figure 6.72
Design criteria for low
sensitivity
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high-frequency gain allowable for acceptable noise performance and for low
probability of instabilities caused by plant-modeling errors. It is sometimes
convenient to define the low-frequency lower bound on the frequency response
as W1 and the upper bound as W−1

2 , as shown in the figure. Between these two
bounds the control engineer must achieve a gain crossover near the required
bandwidth; as we have seen, the crossover must occur at essentially a slope of
−1 for good PM and hence damping.

For example, if a control system was required to follow a sine reference
input with frequencies from 0 to ωd with errors no greater than 1%, the function
W1 would be 100 from ω = 0 to ωd . Similar ideas enter into defining possible
values for the W−1

2 function. These ideas will be discussed further in Section 6.9.

▲ 6.8 Alternative Presentations of Data

Before computers were widely available, other ways to present frequency-
response data were developed to aid both in understanding design and in easing
the designer’s work load. The widespread availability of computers has reduced
the need for these methods. Two techniques are the Nichols chart and the in-
verse Nyquist plot, both of which we examine in this section because of their
place in history.

6.8.1 Nichols Chart

A rectangular plot of log |G(jω)| versus � G(jω) can be drawn by simply trans-
ferring the information directly from the separate magnitude and phase por-
tions in a Bode plot; one point on the new curve thus results from a given value
of the frequency ω . This means that the new curve is parameterized as a func-
tion of frequency. As with the Bode plots, the magnitude information is plotted
on a logarithmic scale, while the phase information is plotted on a linear scale.
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Section 6.8 Alternative Presentations of Data 393

This template was suggested by N. Nichols and is usually referred to as a Nichols
chart. The idea of plotting the magnitude of G(jω) versus its phase is similar
to the concept of plotting the real and imaginary parts of G(jω), which formed
the basis for the Nyquist plots shown in Sections 6.3 and 6.4. However, it is
difficult to capture all the pertinent characteristics of G(jω) on the linear scale
of the Nyquist plot. The log scale for magnitude in the Nichols chart alleviates
this difficulty, allowing this kind of presentation to be useful for design.

For any value of the complex transfer function G(jω), Section 6.6 showed
that there is a unique mapping to the unity-feedback closed-loop transfer
function

T(jω) = G(jω)

1 + G(jω)
, (6.54)

or in polar form,

T(jω) = M(ω)ejα(ω), (6.55)

where M(ω) is the magnitude of the closed-loop transfer function and α(ω) is
the phase of the closed-loop transfer function. Specifically,

M =
∣∣∣∣ G

1 + G

∣∣∣∣ , (6.56)

α = tan−1(N) = � G

1 + G
. (6.57)

It can be proven that the contours of constant closed-loop magnitude and
phase are circles when G(jω) is presented in the linear Nyquist plot. These
circles are referred to as the M and N circles respectively.M and N circles

The Nichols chart also contains contours of constant closed-loop magnitude
and phase based on these relationships, as shown in Fig. 6.73; however, they
are no longer circles, because the Nichols charts are semilog plots of magnitude
vs. phase. A designer can therefore graphically determine the bandwidth of a
closed-loop system from the plot of the open-loop data on a Nichols chart by
noting where the open-loop curve crosses the 0.70 contour of the closed-loop
magnitude and determining the frequency of the corresponding data point.
Likewise, a designer can determine the resonant peak amplitude Mr by noting
the value of the magnitude of the highest closed-loop contour tangent to the
curve. The frequency associated with the magnitude and phase at the point of
tangency is sometimes referred to as the resonant frequency ωr . Similarly, aResonant frequency
designer can determine the gain margin (GM) by observing the value of the
gain where the Nichols plot crosses the −180◦ line, and the phase margin (PM)
by observing the phase where the plot crosses the amplitude 1 line.10 MATLAB
provides for easy drawing of a Nichols chart via the nicholsm-file.

10 James, H. M., N. B. Nichols, and R. S. Phillips (1947).
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Figure 6.73 Nichols chart

EXAMPLE 6.20 Nichols Chart for PID Example

Determine the bandwidth and resonant peak magnitude of the compensated system
whose frequency response is shown in Fig. 6.69.

Solution. The magnitude and phase information of the compensated design example
seen in Fig. 6.69 is shown on a Nichols chart in Fig. 6.74. When comparing the two
figures, it is important to divide the magnitudes in Fig. 6.69 by a factor of 20 in order
to obtain |D(s)G(s)| rather than the normalized values used in Fig. 6.69. Because the
curve crosses the closed-loop magnitude 0.70 contour at ω = 0.8 rad/sec, we see that the
bandwidth of this system is 0.8 rad/sec. Because the largest-magnitude contour touched
by the curve is 1.20, we also see that Mr = 1.2.
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Figure 6.74 Example plot on the Nichols chart for determining bandwidth and Mr

This presentation of data was particularly valuable when a designer had to
generate plots and perform calculations by hand. A change in gain, for example,
could be evaluated by sliding the curve vertically on transparent paper over a
standard Nichols chart. The GM, PM, and bandwidth were then easy to read
off the chart, thus allowing evaluations of several values of gain with a minimal
amount of effort. With access to computer-aided methods, however, we can now
calculate the bandwidth and perform many repetitive evaluations of the gain
or any other parameter with a few key strokes. Today the Nichols chart is used
primarily as an alternative way to present the information in a Nyquist plot.
For complex systems for which the −1 encirclements need to be evaluated, the
magnitude log scale of the Nichols chart enables us to examine a wider range
of frequencies than a Nyquist plot does, as well as allowing us to read the gain
and phase margins directly.
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396 Chapter 6 The Frequency-Response Design Method

EXAMPLE 6.21 Stability Margins from Nichols Chart

For the system of Example 6.12, whose Nichols plot is shown in Fig. 6.41, determine the
PM and GM using the Nyquist plot.

Solution. Figure 6.75 shows a Nichols chart with the data from the same system shown
in Fig. 6.41. Note that the PM for the magnitude 1 crossover frequency is 36◦ and the
GM is 1.25 (= 1/0.8). It is clear from this presentation of the data that the most critical
portion of the curve is where it crosses the −180◦ line; hence the GM is the most relevant
stability margin in this example.
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Figure 6.75 Nichols chart of the complex system in Examples 6.12 and 6.21
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Figure 6.76
Inverse Nyquist plot for
Example 6.9
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6.8.2 Inverse Nyquist

The inverse Nyquist plot is simply the reciprocal of the Nyquist plot described in
Section 6.3 and used in Section 6.4 for the definition and discussion of stability
margins. It is obtained most easily by computing the inverse of the magnitude
from the Bode plot and plotting that quantity at an angle in the complex plane,
as indicated by the phase from the Bode plot. It can be used to find the PM
and GM in the same way that the Nyquist plot was used. When |G(jω)| =
1, |G−1(jω)| = 1 also, so the definition of PM is identical on the two plots.
However, when the phase is −180◦ or +180◦ , the value of |G−1(jω)| is the
GM directly; no calculation of an inverse is required, as was the case for the
Nyquist plot.

The inverse Nyquist plot for the system in Fig. 6.24 (Example 6.9) is shown
in Fig. 6.76 for the case where K = 1 and the system is stable. Note that
GM = 2 and PM ∼= 20◦ . As an example of a more complex case, Fig. 6.77
shows an inverse Nyquist plot for the sixth-order case whose Nyquist plot was
shown in Fig. 6.41 and whose Nichols chart was shown in Fig. 6.75. Note here

Figure 6.77
Inverse Nyquist plot of the
system whose Nyquist plot
is in Fig. 6.41
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398 Chapter 6 The Frequency-Response Design Method

that GM = 1.2 and PM ∼= 35◦ . Had the two crossings of the unit circle not
occurred at the same point, the crossing with the smallest PM would have been
the appropriate one to use.

▲ 6.9 Specifications in Terms of the Sensitivity Function

We have seen how the gain and phase margins give useful information about
the relative stability of nominal systems and can be used to guide the design of
lead and lag compensations. However, the GM and PM are only two numbers
and have limitations as guides to the design of realistic control problems. We
can express more complete design specifications in the frequency domain if we
first give frequency descriptions for the external signals, such as the reference
and disturbance, and consider the sensitivity function defined in Section 4.1.
For example, we have so far described dynamic performance by the transient
response to simple steps and ramps. A more realistic description of the actual
complex input signals is to represent them as random processes with corre-
sponding frequency power density spectra. A less sophisticated description,
which is adequate for our purposes, is to assume that the signals can be repre-
sented as a sum of sinusoids with frequencies in a specified range. For example,
we can usually describe the frequency content of the reference input as a sum
of sinusoids with relative amplitudes given by a magnitude function |R| such as
that plotted in Fig. 6.78, which represents a signal with sinusoidal components
having about the same amplitudes up to some value ω1 and very small ampli-
tudes for frequencies above that. With this assumption, the response tracking
specification can be expressed by a statement such as “the magnitude of the

Figure 6.78
Plot of typical reference
spectrum

10�2 10�1 100 101 102

v (rad/sec)

� R
�

db

10�1

100

101

102

103

�20

0

20

40

60

W1

PreTEX, Inc., Technical Typesetters Tel. (902)454-8111 FAX (902)454-2894 Franklin, Feedback Control of Dynamic Systems, 5e

Feedback Control of Dynamic Systems, Fifth Edition, 
by Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. 

ISBN 0-13-149930-0. © 2006 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.
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Figure 6.79
Closed-loop block diagram
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system error is to be less than the bound eb (a value such as 0.01) for any si-
nusoid of frequency ωo in the range 0 ≤ ωo ≤ ω1 and of amplitude given by
|R(jωo)|”. To express such a performance requirement in terms that can be
used in design, we consider again the unity-feedback system drawn in Fig. 6.79.
For this system, the error is given by

E(jω) = 1
1 + DG

R
�= �(jω)R, (6.58)

where we have used the sensitivity functionSensitivity function

�(jω)
�= 1

1 + DG
. (6.59)

In addition to being the factor multiplying the system error, the sensitivity
function is also the reciprocal of the distance of the Nyquist curve, DG, from
the critical point −1. A large value for � indicates a Nyquist plot that comes
close to the point of instability. The frequency-based error specification based
on Eq. (6.58) can be expressed as |E| = |�| |R| ≤ eb . In order to normalize
the problem and not need to define both the spectrum R and the error bound
each time, we define the real function of frequency W1(ω) = |R| /eb and the
requirement can be written as

|�|W1 ≤ 1. (6.60)

EXAMPLE 6.22 Performance Bound Function

A unity feedback system is to have an error less than 0.005 for all unity amplitude
sinusoids below frequency 100 Hz. Draw the performance frequency function W1(ω)

for this design.

Solution. The spectrum, from the problem description, is unity for 0 ≤ ω ≤ 200π .
Because eb = 0.005, the required function is given by a rectangle of amplitude 1/0.005 =
200 over the given range. The function is plotted in Fig. 6.80.
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400 Chapter 6 The Frequency-Response Design Method

Figure 6.80
Plot of example
performance function, W1
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The expression in Eq. (6.60) can be translated to the more familiar Bode
plot coordinates and given as a requirement on loop gain by observing that
over the frequency range when errors are small the loop gain is large. In that
case |�| ≈ 1

|DG| , and the requirement is approximately

W1

|DG| ≤ 1,

|DG| ≥ W1.

(6.61)

This requirement can be seen as an extension of the steady-state error require-
ment from just ω = 0 to the range 0 ≤ ωo ≤ ω1.

In addition to the requirement on dynamic performance, the designer is
usually required to design for stability robustness. By this we mean that, while
the design is done for a nominal plant transfer function, the actual system is
expected to be stable for an entire class of transfer functions that represents
the range of changes that are expected to be faced as temperature, age, and
other operational and environmental factors vary the plant dynamics from the
nominal case. A realistic way to express this uncertainty is to describe the plant
transfer function as having a multiplicative uncertainty:

G(jω) = Go(jω)[1 + W2(ω)�(jω)]. (6.62)
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Section 6.9 Specifications in Terms of the Sensitivity Function 401

In Eq. (6.62), the real function W2 is a magnitude function that expresses the
size of changes as a function of frequency that the transfer function is expected
to experience. In terms of G and Go , the expression is

W2 =
∣∣∣∣G − Go

Go

∣∣∣∣ . (6.63)

The shape of W2 is almost always very small for low frequencies (we know
the model very well there) and increases substantially as we go to high fre-
quencies, where parasitic parameters come into play and unmodeled structural
flexibility is common. A typical shape is sketched in Fig. 6.81. The complex
function, �(jω), represents the uncertainty in phase and is restricted only by
the constraint

0 ≤ |�| ≤ 1. (6.64)

We assume that the nominal design has been done and is stable, so that the
Nyquist plot of DGo satisfies the Nyquist Stability Criterion. In this case, the
nominal characteristic equation 1 +DGo = 0 is never satisfied for any real fre-
quency. If the system is to have stability robustness, the characteristic equation
using the uncertain plant as described by Eq. (6.62) must not go to zero for any
real frequency for any value of �. The requirement can be written as

1 + DG �= 0, (6.65)

1 + DGo[1 + W2�] �= 0,

(1 + DGo)(1 + TW2�) �= 0,

Figure 6.81
Plot of typical plant
uncertainty, W2
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402 Chapter 6 The Frequency-Response Design Method

where we have defined the complementary sensitivity function as

T(jω)
�= DGo/(1 + DGo) = 1 − �. (6.66)

Because the nominal system is stable, the first term in Eq. (6.65), (1 + DGo),

is never zero. Thus, if Eq. (6.65) is not to be zero for any frequency and any �,
then it is necessary and sufficient that

|TW2�| < 1,

which reduces to

|T| W2 < 1, (6.67)

making use of Eq. (6.64). As with the performance specification, for single-
input–single-output unity-feedback systems this requirement can be approxi-
mated by a more convenient form. Over the range of high frequencies where W2
is non-negligible because there is significant model uncertainty, DGo is small.
Therefore we can approximate T ≈ DGo , and the constraint reduces to

|DGo| W2 < 1,

|DGo| <
1

W2
. (6.68)

EXAMPLE 6.23 Typical Plant Uncertainty

The uncertainty in a plant model is described by a function W2 that is zero until ω = 3000,
increases linearly from there to a value of 100 at ω = 10,000, and remains at 100 for
higher frequencies. Plot the constraint on DGo to meet this requirement.

Solution. Where W2 = 0, there is no constraint on the magnitude of loop gain; above
ω = 3000, 1/W2 = DGo is a hyperbola from ∞ to 0.01 at ω = 10,000 and remains at
0.01 for ω > 10,000. The bound is sketched in Fig. 6.82.

In practice, the magnitude of the loop gain is plotted on log–log (Bode)
coordinates, and the constraints of Eqs. (6.61) and (6.68) are included on the
same plot. A typical sketch is drawn in Fig. 6.83. The designer is expected to
construct a loop gain that will stay above W1 for frequencies below ω1, cross
over the magnitude 1 line (|DG| = 0) in the range ω1 ≤ ω ≤ ω2 , and stay
below 1/W2 for frequencies above ω2 .
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Figure 6.82
Plot of constraint on
|DGo| (= |W−1
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Figure 6.83
Tracking and stability
robustness constraints on
the Bode plot
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6.9.1 Limitations on Design in Terms of the
Sensitivity Function

One of the major contributions of Bode was to derive important limitations
on transfer functions that set limits on achievable design specifications. For
example, one would like to have the system error kept small for the widest
possible range of frequencies and yet have a system that is robustly stable for

PreTEX, Inc., Technical Typesetters Tel. (902)454-8111 FAX (902)454-2894 Franklin, Feedback Control of Dynamic Systems, 5e

Feedback Control of Dynamic Systems, Fifth Edition, 
by Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. 

ISBN 0-13-149930-0. © 2006 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.



404 Chapter 6 The Frequency-Response Design Method

a very uncertain plant. In terms of the plot in Fig. 6.83, we want W1 and W2
to be very large in their respective frequency ranges and for ω1 to be pushed
up close to ω2 . Thus the loop gain is expected to plunge with a large negative
slope from being greater than W1 to being less than 1/W2 in a very short span,
while maintaining a good phase margin to assure stability and good dynamic
performance. The Bode gain–phase formula given earlier shows that this is
impossible with a linear controller, by showing that the minimum possible phase
is determined by an integral depending on the slope of the magnitude curve. If
the slope is constant for a substantial range around ωo , then the formula can
be approximated by

φ(ωo) ≈ π

2
dM

du

∣∣∣∣
u=0

, (6.69)

where M is the log magnitude and u = log ω
ωo

. If, for example, the phase is
to be kept above −150◦ to maintain a 30◦ phase margin, then the magnitude
slope near ωo is estimated to be

dM

du
≈ 2

π

(
−150

π

180

)

≈ −1.667.

If we try to make the average slope faster (more negative) than this, we will
lose the phase margin. From this condition, there developed the design rule that
the asymptotes of the Bode plot magnitude, which are restricted to be integral
values for rational functions, should be made to cross over the zero-db line at a
slope of −1 over a frequency range of about one decade around the crossover
frequency, as already discussed in Section 6.5. Modifications to this rule need
of course be made in particular cases, but the limitation implied by Eq. (6.69)
is a hard limit that cannot be avoided.

EXAMPLE 6.24 Robustness Constraints

If W1 = W2 = 100, and we want PM = 30◦ , what is the minimum ratio of ω2/ω1?

Solution. The slope is

log W1 − log 1
W2

log ω1 − log ω2
= 2 + 2

log ω1
ω2

= −1.667.

Thus, the log of the ratio is log ω1
ω2

= −2.40 and ω2 = 251ω1 .
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Section 6.9 Specifications in Terms of the Sensitivity Function 405

An alternative to the standard Bode plot as a design guide can be based
on a plot of the sensitivity function as a function of frequency. In this format,
Eq. (6.60) requires that |�| < 1

W1
over the range 0 ≤ ω ≤ ω1 for performance,

and Eq. (6.68) requires that |�| ≈ 1 over the range ω2 ≤ ω for stability ro-
bustness. It should come as no surprise that Bode found a limitation on the
possibilities in this case, too. The constraint, extended by Freudenberg and
Looze, shows that an integral of the sensitivity function is determined by the
presence of poles in the right half-plane. Suppose the loop gain DGo has np

poles, pi , in the right half-plane and “rolls off” at high frequencies at a slope
faster than −1. For rational functions, this means that there is an excess of at
least two more finite poles than zeros. Then it can be shown that

∫ ∞

0
ln(|�|) dω = π

np∑
i=1

Re{pi}. (6.70)

If there are no right-half plane poles, then the integral is zero. This means that if
we make the log of the sensitivity function very negative over some frequency
band to reduce errors in that band, then, of necessity, ln |�| will be positive
over another part of the band, and errors will be amplified there. If there are
unstable poles, the situation is worse, because the positive area where sensitivity
magnifies the error must exceed the negative area where the error is reduced by
the feedback. If the system is minimum phase, then it is in principle possible to
keep the magnitude of the sensitivity small by spreading the sensitivity increase
over all positive frequencies to infinity, but such a design requires an excessive
bandwidth and is rarely practical. If a specific bandwidth is imposed, then the
sensitivity function is constrained to take on a finite, possibly large, positive
value at some point below the bandwidth. As implied by the definition of the
vector margin (VM) in Section 6.4 (Fig. 6.38), a large �max corresponds to aVector margin
Nyquist plot that comes close to the −1 critical point and a system having a
small vector margin, because

VM = �max

�max − 1
. (6.71)

If the system is not minimum phase, the situation is worse. An alternative
to Eq. (6.70) is true if there is a nonminimum-phase zero of DGo , a zero in
the right half-plane. Suppose that the zero is located at zo = σo + jωo , where
σo > 0. Again, we assume there are np right half-plane poles at locations pi

with conjugate values pi . Now the condition can be expressed as a two-sided
weighted integral

∫ ∞

−∞
ln(|�|) σo

σ 2
o + (ω − ωo)2 dω = π

np∑
i=1

ln
∣∣∣∣pi + zo

pi − zo

∣∣∣∣ . (6.72)
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406 Chapter 6 The Frequency-Response Design Method

In this case, we do not have the “roll-off” restriction, and there is no possibility
of spreading the positive area over high frequencies, because the weighting
function goes to zero with frequency. The important point about this integral is
that if the nonminimum-phase zero is close to a right half-plane pole, the right
side of the integral can be very large, and the excess of positive area is required
to be correspondingly large. Based on this result, one expects especially great
difficulty meeting both tracking and robustness specifications on sensitivity with
a system having right half-plane poles and zeros close together.

EXAMPLE 6.25 Sensitivity Function for Antenna

Compute and plot the sensitivity function for the design of the antenna for which G(s) =
1/s(s + 1) and D(s) = 10(0.5s + 1)/(0.1s + 1).

Solution. The sensitivity function for this case is

� = s(s + 1)(s + 10)

s3 + 11s2 + 60s + 100
, (6.73)

and the plot shown in Fig. 6.84 is given by the MATLAB commands

numS = [1 11 10 0];
denS = [1 11 60 100];
sysS = tf(numS,denS);
[mag,ph,w] = bode(sysS);
semilogy(w,mag)

The largest value of � is given by M = max(mag) and is 1.366, from which the
vector margin is VM = 3.73.

Figure 6.84
Sensitivity function for
Example 6.25
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Section 6.10 Time Delay 407

▲ 6.10 Time Delay

The Laplace transform of a pure time delay is GD(s) = e−sTd and was ap-
proximated by a rational function (Padé approximate) in our earlier discussion
of root-locus analysis. Although this same approximation could be used with
frequency-response methods, an exact analysis of the delay is possible with the
Nyquist criterion and Bode plots.

The frequency response of the delay is given by the magnitude and phase
of e−sTd |s=jω . The magnitude isTime-delay magnitude

|GD(jω)| = |e−jωTd | = 1 for all ω. (6.74)

This result is expected, because a time delay merely shifts the signal in time andTime-delay phase
has no effect on its magnitude. The phase is

� GD(jω) = −ωTd (6.75)

in radians, and it grows increasingly negative in proportion to the frequency.
This, too, is expected, because a fixed time delay Td becomes a larger fraction
or multiple of a sine wave as the period drops, due to increasing frequency.
A plot of � GD(jω) is drawn in Fig. 6.85. Note that the phase lag is greater
than 270◦ for values of ωTd greater than about 5 rad. This trend implies that it
would be virtually impossible to stabilize a system (or to achieve a positive PM)
with a crossover frequency greater than ω = 5/Td , and it would be difficult for
frequencies greater than ω ∼= 3/Td . These characteristics essentially place a
constraint on the achievable bandwidth of any system with a time delay. (See
Problem 6.68 for an illustration of this constraint.)

The frequency domain concepts such as the Nyquist criterion apply directly
to systems with pure time delay. This means that no approximations (Padé type
or otherwise) are needed and the exact effect of time delay can be included in
a Bode plot or in a Nyquist plot, as shown in the following example.

Figure 6.85
Phase lag due to pure time
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408 Chapter 6 The Frequency-Response Design Method

EXAMPLE 6.26 Nyquist Plot for System with Time Delay

Consider the system with

KG(s) = Ke−Td s

s
,

where Td = 1 sec. Determine the range of K for which the system is stable.

Solution. Because the Bode plotting rules do not apply for the phase of a time-delay
term, we will use an analytical approach to determine the key features of the frequency
response plot. As just discussed, the magnitude of the frequency response of the delay
term is unity and its phase is −ω radians. The magnitude of the frequency response of
the pure integrator is 1/ω , with a constant phase of −π/2. Therefore,

G(jω) = 1
ω

e−j (ω+π/2)

= 1
ω

(− sin ω − j cos ω). (6.76)

Using Eq. (6.76) and substituting in different values of ω , we can make the Nyquist plot,
which is the spiral shown in Fig. 6.86.

Figure 6.86
Nyquist plot for
Example 6.26
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Summary 409

Let us examine the shape of the spiral in more detail. We pick a Nyquist path
with a small detour to the right of the origin. The effect of the pole at the origin is
the large arc at infinity with a 180◦ sweep, as shown in Fig. 6.86. From Eq. (6.76), for
small values of ω > 0, the real part of the frequency response is close to −1 because
sin ω ∼= ω and Re[G(jω)] ∼= −1. Similarly, for small values of ω > 0, cos ω ∼= 1 and
Im[G(jω)] ∼= −1/ω—that is, very large negative values, as shown in Fig. 6.86. To obtain
the crossover points on the real axis, we set the imaginary part equal to zero:

cos ω

ω
= 0. (6.77)

The solution is then

ω0 = (2n + 1)π

2
, n = 0, 1, 2, . . . . (6.78)

After substituting Eq. (6.78) back into Eq. (6.76), we find that

G(jω0) = (−1)n

(2n + 1)

(
2
π

)
, n = 0, 1, 2, . . . .

So the first crossover of the negative real axis is at −2/π , corresponding to n = 0. The
first crossover of the positive real axis occurs for n = 1 and is located at 2/3π . As we
can infer from Fig. 6.86, there are an infinite number of other crossings of the real axis.
Finally, for ω = ∞, the Nyquist plot converges to the origin. Note that the Nyquist plot
for ω < 0 is the mirror image of the one for ω > 0.

The number of poles in the RHP is zero (P = 0), so for closed-loop stability, we
need Z = N = 0. Therefore, the Nyquist plot cannot be allowed to encircle the −1/K

point. It will not do so as long as

− 1
K

< − 2
π

, (6.79)

which means that, for stability, we must have 0 < K < π/2.

SUMMARY

• The frequency-response Bode plot is a graph of the transfer function mag-
nitude in logarithmic scale and the phase in linear scale versus frequency
in logarithmic scale. For a transfer function G(s),

A = |G(jω)| = |G(s)|s=jω

=
√

{Re[G(jω)]}2 + {Im[G(jω)]}2,

φ = tan−1
[

Im[G(jω)]
Re[G(jω)]

]
= � G(jω).
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410 Chapter 6 The Frequency-Response Design Method

• For a transfer function in Bode form,

KG(ω) = K0
(jωτ1 + 1)(jωτ2 + 1) · · ·
(jωτa + 1)(jωτb + 1) · · · ,

the Bode frequency response can be easily plotted by hand using the rules
described in Section 6.1.1.

• Bode plots can be obtained using computer algorithms (bode in MAT-
LAB), but hand-plotting skills are still extremely helpful.

• For a second-order system, the peak magnitude of the Bode plot is related
to the damping by

|G(jω)| = 1
2ζ

at ω = ωn.

• A method of determining the stability of a closed-loop system based on
the frequency response of the system’s open-loop transfer function is the
Nyquist stability criterion. Rules for plotting the Nyquist plot are described
in Section 6.3. The number of RHP closed-loop roots is given by

Z = N + P,

where

N = number of clockwise encirclements of the −1 point,

P = number of open-loop poles in the RHP.

• The Nyquist plot may be obtained using computer algorithms (nyquist in
MATLAB).

• The gain margin (GM) and phase margin (PM) can be determined directly
by inspecting the open-loop Bode plot or the Nyquist plot. Also, use of
MATLAB’s margin function determines the values directly.

• For a standard second-order system, the PM is related to the closed-loop
damping by Eq. (6.32),

ζ ∼= PM
100

.

• The bandwidth of the system is a measure of speed of response. For control
systems, it is defined as the frequency corresponding to 0.707 (−3 db) in
the closed-loop magnitude Bode plot and is approximately given by the
crossover frequency ωc , which is the frequency at which the open-loop
gain curve crosses magnitude 1.

• The vector margin is a single-parameter stability margin based on the clos-
est point of the Nyquist plot to the critical point −1/K .
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Figure 6.87
Typical system �

�

�
R YD G

E

• For a stable minimum-phase system, Bode’s gain–phase relationship
uniquely relates the phase to the gain of the system and is approximated
by Eq. (6.33),

� G(jω) ∼= n × 90◦,

where n is the slope of |G(jω)| in units of decade of amplitude per decade
of frequency. The relationship shows that, in most cases, stability is ensured
if the gain plot crosses the magnitude 1 line with a slope of −1.

• Experimental frequency-response data of the open-loop system can be
used directly for analysis and design of a closed-loop control system with
no analytical model.

• For the system shown in Fig. 6.87, the open-loop Bode plot is the frequency
response of GD , and the closed-loop frequency response is obtained from
T(s) = GD/(1 + GD).

• The frequency-response characteristics of several types of compensation
have been described, and examples of design using these characteristics
have been discussed. Design procedures were given for lead and lag com-
pensators in Section 6.7. The examples in that section show the ease of
selecting specific values of design variables, a result of using frequency-
response methods. A summary was provided at the end of Section 6.7.5.

• Lead compensation, given by Eq. (6.38),

D(s) = T s + 1
αT s + 1

, α < 1,

is a high-pass filter and approximates PD control. It is used whenever sub-
stantial improvement in damping of the system is required. It tends to
increase the speed of response of a system for a fixed low-frequency gain.

• Lag compensation, given by Eq. (6.51),

D(s) = α
T s + 1
αT s + 1

, α > 1, (6.80)

is a low-pass filter and approximates PI control. It is usually used to increase
the low-frequency gain of the system so as to improve steady-state response
for fixed bandwidth. For a fixed low-frequency gain, it will decrease the
speed of response of a system.
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412 Chapter 6 The Frequency-Response Design Method

• The Nichols plot is an alternate representation of the frequency response as▲
a plot of gain versus phase and is parameterized as a function of frequency.

• Tracking-error reduction and disturbance rejection can be specified in terms▲
of the low-frequency gain of the Bode plot. Sensor-noise rejection can
be specified in terms of high-frequency attenuation of the Bode plot (see
Fig. 6.72).

• Time delay can be analyzed exactly in a Bode plot or a Nyquist plot.▲

End-of-Chapter Questions

1. Why did Bode suggest plotting the magnitude of a frequency response on log–log
coordinates?

2. Define a decibel.

3. What is the transfer function magnitude if the gain is listed as 14 db?

4. Define gain crossover.

5. Define phase crossover.

6. Define phase margin, PM.

7. Define gain margin, GM.

8. What Bode plot characteristic is the best indicator of the closed-loop step response
overshoot?

9. What Bode plot characteristic is the best indicator of the closed-loop step response
rise time?

10. What is the principal effect of a lead compensation on Bode plot performance
measures?

11. What is the principal effect of a lag compensation on Bode plot performance measures?

12. How do you find the Kv of a type 1 system from its Bode plot?

13. Why do we need to know beforehand the number of open-loop unstable poles in
order to tell stability from the Nyquist plot?

14. What is the main advantage in control design of counting the encirclements of − 1
K

of D(jω)G(jω) rather than encirclements of −1 of KD(jω)G(jω)?

15. Define a conditionally stable feedback system. How can you identify one on a Bode
plot?

16. A certain control system is required to follow sinusoids, which may be any frequency▲
in the range 0 ≤ ω� ≤ 450 rad/sec and have amplitudes up to 5 units, with (sinusoidal)
steady-state error to be never more than 0.01. Sketch (or describe) the corresponding
performance function W1(ω).
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Problems

Problems for Section 6.1: Frequency Response

6.1. (a) Show that α0 in Eq. (6.2), with A = Uo and ωo = ω , is

α0 =
[
G(s)

U0ω

s − jω

]∣∣∣∣
s=−jω

= −U0G(−jω)
1

2j

and

α∗
0 =

[
G(s)

U0ω

s + jω

]∣∣∣∣
s=+jω

= U0G(jω)
1

2j
.

(b) By assuming the output can be written as

y(t) = α0e
−jωt + α∗

0ejωt ,

derive Eqs. (6.4)–(6.6).

6.2. (a) Calculate the magnitude and phase of

G(s) = 1
s + 10

by hand for ω = 1, 2, 5, 10, 20, 50, and 100 rad/sec.

(b) Sketch the asymptotes for G(s) according to the Bode plot rules, and compare
these with your computed results from part (a).

6.3. Sketch the asymptotes of the Bode plot magnitude and phase for each of the
following open-loop transfer functions. After completing the hand sketches, verify
your result using MATLAB. Turn in your hand sketches and the MATLAB results
on the same scales.

(a) L(s) = 2000
s(s + 200)

(b) L(s) = 100
s(0.1s + 1)(0.5s + 1)

(c) L(s) = 1
s(s + 1)(0.02s + 1)

(d) L(s) = 1
(s + 1)2(s2 + 2s + 4)

(e) L(s) = 10(s + 4)

s(s + 1)(s2 + 2s + 5)

(f) L(s) = 1000(s + 0.1)

s(s + 1)(s2 + 8s + 64)

(g) L(s) = (s + 5)(s + 3)

s(s + 1)(s2 + s + 4)

(h) L(s) = 4s(s + 10)

(s + 100)(4s2 + 5s + 4)

(i) L(s) = s

(s + 1)(s + 10)(s2 + 2s + 2500)
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414 Chapter 6 The Frequency-Response Design Method

6.4. Real poles and zeros. Sketch the asymptotes of the Bode plot magnitude and
phase for each of the listed open-loop transfer functions. After completing the
hand sketches, verify your result using MATLAB. Turn in your hand sketches and
the MATLAB results on the same scales.

(a) L(s) = 1
s(s + 1)(s + 5)(s + 10)

(b) L(s) = (s + 2)
s(s + 1)(s + 5)(s + 10)

(c) L(s) = (s + 2)(s + 6)
s(s + 1)(s + 5)(s + 10)

(d) L(s) = (s + 2)(s + 4)
s(s + 1)(s + 5)(s + 10)

6.5. Complex poles and zeros. Sketch the asymptotes of the Bode plot magnitude
and phase for each of the listed open-loop transfer functions, and approximate
the transition at the second-order break point, based on the value of the damping
ratio. After completing the hand sketches, verify your result using MATLAB. Turn
in your hand sketches, and the MATLAB results on the same scales.

(a) L(s) = 1
s2 + 3s + 10

(b) L(s) = 1
s(s2 + 3s + 10)

(c) L(s) = (s2 + 2s + 8)

s(s2 + 2s + 10)

(d) L(s) = (s2 + 2s + 12)

s(s2 + 2s + 10)

(e) L(s) = (s2 + 1)

s(s2 + 4)

(f) L(s) = (s2 + 4)

s(s2 + 1)

6.6. Multiple poles at the origin. Sketch the asymptotes of the Bode plot magnitude
and phase for each of the listed open-loop transfer functions. After completing
the hand sketches, verify your result with MATLAB. Turn in your hand sketches
and the MATLAB results on the same scales.

(a) L(s) = 1
s2(s + 8)

(b) L(s) = 1
s3(s + 8)

(c) L(s) = 1
s4(s + 8)

(d) L(s) = (s + 3)

s2(s + 8)

(e) L(s) = (s + 3)

s3(s + 4)

(f) L(s) = (s + 1)2

s3(s + 4)

(g) L(s) = (s + 1)2

s3(s + 10)2
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6.7. Mixed real and complex poles. Sketch the asymptotes of the Bode plot magni-
tude and phase for each of the listed open-loop transfer functions. Embellish the
asymptote plots with a rough estimate of the transitions for each break point. Af-
ter completing the hand sketches, verify your result with MATLAB. Turn in your
hand sketches and the MATLAB results on the same scales.

(a) L(s) = (s + 2)

s(s + 10)(s2 + 2s + 2)

(b) L(s) = (s + 2)

s2(s + 10)(s2 + 6s + 25)

(c) L(s) = (s + 2)2

s2(s + 10)(s2 + 6s + 25)

(d) L(s) = (s + 2)(s2 + 4s + 68)

s2(s + 10)(s2 + 4s + 85)

(e) L(s) = [(s + 1)2 + 1]
s2(s + 2)(s + 3)

6.8. Right half-plane poles and zeros. Sketch the asymptotes of the Bode plot magni-
tude and phase for each of the listed open-loop transfer functions. Make sure that
the phase asymptotes properly take the RHP singularity into account by sketch-
ing the complex plane to see how the � L(s) changes as s goes from 0 to +j∞.

After completing the hand sketches, verify your result with MATLAB. Turn in
your hand sketches and the MATLAB results on the same scales.

(a) L(s) = s + 2
s + 10

1
s2 − 1

; The model for a case of magnetic levitation with lead

compensation.

(b) L(s) = s + 2
s(s + 10)

1
(s2 − 1)

; The magnetic levitation system with integral con-

trol and lead compensation.

(c) L(s) = s − 1
s2

(d) L(s) = s2 + 2s + 1
s(s + 20)2(s2 − 2s + 2)

(e) L(s) = (s + 2)

s(s − 1)(s + 6)2

(f) L(s) = 1
(s − 1)[(s + 2)2 + 3]

6.9. A certain system is represented by the asymptotic Bode diagram shown in Fig. 6.88.
Find and sketch the response of this system to a unit-step input (assuming zero
initial conditions).

Figure 6.88
Magnitude portion of Bode
plot for Problem 6.9
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416 Chapter 6 The Frequency-Response Design Method

6.10. Prove that a magnitude slope of −1 in a Bode plot corresponds to −20 db per
decade or −6 db per octave.

6.11. A normalized second-order system with a damping ratio ζ = 0.5 and an additional
zero is given by

G(s) = s/a + 1
s2 + s + 1

.

Use MATLAB to compare the Mp from the step response of the system for
a = 0.01, 0.1, 1, 10, and 100 with the Mr from the frequency response of each
case. Is there a correlation between Mr and Mp?

6.12. A normalized second-order system with ζ = 0.5 and an additional pole is given
by

G(s) = 1
[(s/p) + 1](s2 + s + 1)

.

Draw Bode plots with p = 0.01, 0.1, 1, 10, and 100. What conclusions can you draw
about the effect of an extra pole on the bandwidth compared with the bandwidth
for the second-order system with no extra pole?

6.13. For the closed-loop transfer function

T (s) = ω2
n

s2 + 2ζωns + ω2
n

,

derive the following expression for the bandwidth ωBW of T (s) in terms of ωn

and ζ :

ωBW = ωn

√
1 − 2ζ 2 +

√
2 + 4ζ 4 − 4ζ 2.

Assuming that ωn = 1, plot ωBW for 0 ≤ ζ ≤ 1.

6.14. Consider the system whose transfer function is

G(s) = A0ω0s

Qs2 + ω0s + ω2
0Q

.

This is a model of a tuned circuit with quality factor Q.

(a) Compute the magnitude and phase of the transfer function analytically, and
plot them for Q = 0.5, 1, 2, and 5 as a function of the normalized frequency
ω/ω0 .

(b) Define the bandwidth as the distance between the frequencies on either side
of ω0 where the magnitude drops to 3 db below its value at ω0 , and show that
the bandwidth is given by

BW = 1
2π

(
ω0

Q

)
.

(c) What is the relation between Q and ζ ?
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6.15. A DC voltmeter schematic is shown in Fig. 6.89. The pointer is damped so that its
maximum overshoot to a step input is 10%.

Figure 6.89
Voltmeter schematic

u

T

k

�

I � 40 � 10�6 kg 
 m2

k � 4 � 10�6 kg 
 m2/sec2

T � input torque � Km�

� � input voltage
Km � 1 N 
 m/V

I

(a) What is the undamped natural frequency of the system?

(b) What is the damped natural frequency of the system?

(c) Plot the frequency response using MATLAB to determine what input fre-
quency will produce the largest magnitude output?

(d) Suppose this meter is now used to measure a 1-V AC input with a frequency
of 2 rad/sec. What amplitude will the meter indicate after initial transients
have died out? What is the phase lag of the output with respect to the input?
Use a Bode plot analysis to answer these questions. Use the lsim command
in MATLAB to verify your answer in part (d).

Problems for Section 6.2: Neutral Stability

6.16. Determine the range of K for which each of the listed systems is stable by making
a Bode plot for K = 1 and imagining the magnitude plot sliding up or down
until instability results. Verify your answers by using a very rough sketch of a
root-locus plot.

(a) KG(s) = K(s + 2)
s + 20

(b) KG(s) = K

(s + 10)(s + 1)2

(c) KG(s) = K(s + 10)(s + 1)

(s + 100)(s + 5)3
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418 Chapter 6 The Frequency-Response Design Method

6.17. Determine the range of K for which each of the listed systems is stable by making
a Bode plot for K = 1 and imagining the magnitude plot sliding up or down
until instability results. Verify your answers by using a very rough sketch of a
root-locus plot.

(a) KG(s) = K(s + 1)
s(s + 5)

(b) KG(s) = K(s + 1)

s2(s + 10)

(c) KG(s) = K

(s + 2)(s2 + 9)

(d) KG(s) = K(s + 1)2

s3(s + 10)

Problems for Section 6.3: The Nyquist Stability Criterion

6.18. (a) Sketch the Nyquist plot for an open-loop system with transfer function 1/s2 ;
that is, sketch

1
s2

∣∣∣∣
s=C1

,

where C1 is a contour enclosing the entire RHP, as shown in Fig. 6.17. (Hint:
Assume C1 takes a small detour around the poles at s = 0, as shown in
Fig. 6.27.)

(b) Repeat part (a) for an open-loop system whose transfer function is G(s) =
1/(s2 + ω2

0).

6.19. Sketch the Nyquist plot based on the Bode plots for each of the following systems,
and then compare your result with that obtained by using the MATLAB command
nyquist:

(a) KG(s) = K(s + 2)
s + 10

(b) KG(s) = K

(s + 10)(s + 2)2

(c) KG(s) = K(s + 10)(s + 1)

(s + 100)(s + 2)3

(d) Using your plots, estimate the range of K for which each system is stable, and
qualitatively verify your result by using a rough sketch of a root-locus plot.
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6.20. Draw a Nyquist plot for

KG(s) = K(s + 1)

s(s + 3)
, (6.81)

choosing the contour to be to the right of the singularity on the jω-axis. Next,
using the Nyquist criterion, determine the range of K for which the system is
stable. Then redo the Nyquist plot, this time choosing the contour to be to the left
of the singularity on the imaginary axis. Again, using the Nyquist criterion, check
the range of K for which the system is stable. Are the answers the same? Should
they be?

6.21. Draw the Nyquist plot for the system in Fig. 6.90. Using the Nyquist stability
criterion, determine the range of K for which the system is stable. Consider both
positive and negative values of K .

Figure 6.90
Control system for
Problem 6.21

K�
�

�
R Y

s � 1
1

s2 � 2s � 2
1

6.22. (a) For ω = 0.1 to 100 rad/sec, sketch the phase of the minimum-phase system

G(s) = s + 1
s + 10

∣∣∣∣
s=jω

and the nonminimum-phase system

G(s) = − s − 1
s + 10

∣∣∣∣
s=jω

,

noting that � (jω − 1) decreases with ω rather than increasing.

(b) Does a RHP zero affect the relationship between the −1 encirclements on a
polar plot and the number of unstable closed-loop roots in Eq. (6.28)?

(c) Sketch the phase of the following unstable system for ω = 0.1 to 100 rad/sec:

G(s) = s + 1
s − 10

∣∣∣∣
s=jω

.

(d) Check the stability of the systems in (a) and (c) using the Nyquist criterion on
KG(s). Determine the range of K for which the closed-loop system is stable,
and check your results qualitatively by using a rough root-locus sketch.
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420 Chapter 6 The Frequency-Response Design Method

Problems for Section 6.4: Stability Margins

6.23. The Nyquist plot for some actual control systems resembles the one shown in
Fig. 6.91. What are the gain and phase margin(s) for the system of Fig. 6.91, given
that α = 0.4, β = 1.3, and φ = 40◦ . Describe what happens to the stability
of the system as the gain goes from zero to a very large value. Sketch what the
corresponding root locus must look like for such a system. Also, sketch what the
corresponding Bode plots would look like for the system.

Figure 6.91
Nyquist plot for
Problem 6.23

Re[G (s)]

Im[G (s)]

vo vL

b
a

f

v*

vH

�1

1

6.24. The Bode plot for

G(s) = 100[(s/10) + 1]
s[(s/1) − 1][(s/100) + 1]

is shown in Fig. 6.92.

(a) Why does the phase start at 270◦ at the low frequencies?

(b) Sketch the Nyquist plot for G(s).

(c) Is the closed-loop system shown in Fig. 6.92 stable?

(d) Will the system be stable if the gain is lowered by a factor of 100? Make a
rough sketch of a root locus for the system, and qualitatively confirm your
answer.
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Figure 6.92
Bode plot for Problem 6.24
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6.25. Suppose that in Fig. 6.93,

G(s) = 25(s + 1)

s(s + 2)(s2 + 2s + 16)
.

Use MATLAB’s margin to calculate the PM and GM for G(s) and, on the basis
of the Bode plots, conclude which margin would provide more useful information
to the control designer for this system.

Figure 6.93
Control system for
Problem 6.25

�
�

�
R YG(s)

6.26. Consider the system given in Fig. 6.94.

(a) Use MATLAB to obtain Bode plots for K = 1, and use the plots to estimate
the range of K for which the system will be stable.

(b) Verify the stable range of K by using margin to determine PM for selected
values of K .
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422 Chapter 6 The Frequency-Response Design Method

(c) Use rlocus and rlocfind to determine the values of K at the stability boundaries.

(d) Sketch the Nyquist plot of the system, and use it to verify the number of
unstable roots for the unstable ranges of K .

(e) Using Routh’s criterion, determine the ranges of K for closed-loop stability
of this system.

Figure 6.94
Control system for
Problem 6.26

�
�

�
R YK

s � 1
1

(s � 1)2 � 1
s � 2

6.27. Suppose that in Fig. 6.93,

G(s) = 3.2(s + 1)

s(s + 2)(s2 + 0.2s + 16)
.

Use MATLAB’s margin to calculate the PM and GM for G(s), and comment on
whether you think this system will have well-damped closed-loop roots.

6.28. For a given system, show that the ultimate period Pu and the corresponding ulti-
mate gain Ku for the Zeigler–Nichols method can be found by using the following:

(a) Nyquist diagram

(b) Bode plot

(c) Root locus

6.29. If a system has the open-loop transfer function

G(s) = ω2
n

s(s + 2ζωn)

with unity feedback, then the closed-loop transfer function is given by

T (s) = ω2
n

s2 + 2ζωns + ω2
n

.

Verify the values of the PM shown in Fig. 6.36 for ζ = 0.1, 0.4, and 0.7.

6.30. Consider the unity feedback system with the open-loop transfer function

G(s) = K

s(s + 1)[(s2/25) + 0.4(s/5) + 1]
.

(a) Use MATLAB to draw the Bode plots for G(jω), assuming that K = 1.

(b) What gain K is required for a PM of 45◦ ? What is the GM for this value of
K ?

(c) What is Kv when the gain K is set for PM = 45◦ ?

(d) Create a root locus with respect to K , and indicate the roots for a PM of 45◦ .
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6.31. For the system depicted in Fig. 6.95(a), the transfer-function blocks are defined
by

G(s) = 1
(s + 2)2(s + 4)

and H(s) = 1
s + 1

.

(a) Using rlocus and rlocfind, determine the value of K at the stability boundary.

(b) Using rlocus and rlocfind, determine the value of K that will produce roots
with damping corresponding to ζ = 0.707.

(c) What is the gain margin of the system if the gain is set to the value deter-
mined in part (b)? Answer this question without using any frequency response
methods.

(d) Create the Bode plots for the system, and determine the gain margin that
results for PM = 65◦ . What damping ratio would you expect for this PM?

(e) Sketch a root locus for the system shown in Fig. 6.95(b). How does it differ
from the one in part (a)?

(f) For the systems in Figs. 6.95(a) and (b), how does the transfer function
Y2(s)/R(s) differ from Y1(s)/R(s)? Would you expect the step response to
r(t) to be different for the two cases?

Y1�
�

�
R K H(s) G(s) Y2�

�

�
R K G(s)

H(s)

(b)(a)

Figure 6.95 Block diagram for Problem 6.31: (a) unity feedback; (b) H(s) in feedback

6.32. For the system shown in Fig. 6.96, use Bode and root-locus plots to determine the
gain and frequency at which instability occurs. What gain (or gains) gives a PM of
20◦ ? What is the gain margin when PM = 20◦ ?

Figure 6.96
Control system for
Problem 6.32

�
�

�
R Y

s2(s � 3)(s2 � 2s � 25)
(s � 1)(s � 2)

K

6.33. A magnetic tape-drive speed-control system is shown in Fig. 6.97. The speed sensor
is slow enough that its dynamics must be included. The speed-measurement time
constant is τm = 0.5 sec; the reel time constant is τr = J/b = 4 sec, where
b = the output shaft damping constant = 1 N·m·sec; and the motor time constant
is τ1 = 1 sec.
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424 Chapter 6 The Frequency-Response Design Method

(a) Determine the gain K required to keep the steady-state speed error to less
than 7% of the reference-speed setting.

(b) Determine the gain and phase margins of the system. Is this a good system
design?

Figure 6.97
Magnetic tape-drive speed
control

�
�

�

t1s � 1
K

Js � b
1

tms � 1
1

Torque
vc

Amplifier
and motor

Tape drive

Sensor

v

6.34. For the system in Fig. 6.98, determine the Nyquist plot and apply the Nyquist
criterion
(a) to determine the range of values of K (positive and negative) for which the

system will be stable, and
(b) to determine the number of roots in the RHP for those values of K for which

the system is unstable. Check your answer by using a rough root-locus sketch.

Figure 6.98
Control system for
Problems 6.34, 6.61, and
6.62

�
�

�
K s(s � 1)(s � 3)

3
R

E F Y

Ŷ
Sensor

1

6.35. For the system shown in Fig. 6.99, determine the Nyquist plot and apply the Nyquist
criterion
(a) to determine the range of values of K (positive and negative) for which the

system will be stable, and
(b) to determine the number of roots in the RHP for those values of K for which

the system is unstable. Check your answer by using a rough root-locus sketch.

Figure 6.99
Control system for
Problem 6.35

�
�

�
KR

E F Y

Sensor

1

(s � 1)2
s � 1

6.36. For the system shown in Fig. 6.100, determine the Nyquist plot and apply the
Nyquist criterion
(a) to determine the range of values of K (positive and negative) for which the

system will be stable, and
(b) to determine the number of roots in the RHP for those values of K for which

the system is unstable. Check your answer by using a rough root-locus sketch.
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Figure 6.100
Control system for
Problem 6.36

�
�

�
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Sensor

1

(s � 1)2
s � 1F

6.37. The Nyquist diagrams for two stable, open-loop systems are sketched in Fig. 6.101.
The proposed operating gain is indicated as K0 , and arrows indicate increasing
frequency. In each case give a rough estimate of the following quantities for the
closed-loop (unity feedback) system:

(a) Phase margin

(b) Damping ratio

(c) Range of gain for stability (if any)

(d) System type (0, 1, or 2)

Figure 6.101
Nyquist plots for
Problem 6.37

Re[G(s)]

Im[G(s)]

Im[G(s)]

Re[G(s)]

(a) (b)

K0

1
�

K0

1
�

6.38. The steering dynamics of a ship are represented by the transfer function

V (s)

δr (s)
= G(s) = K[−(s/0.142) + 1]

s(s/0.325 + 1)(s/0.0362) + 1)
,

where v is the ship’s lateral velocity in meters per second, and δr is the rudder
angle in radians.

(a) Use the MATLAB command bode to plot the log magnitude and phase of
G(jω) for K = 0.2.

(b) On your plot, indicate the crossover frequency, PM, and GM.

(c) Is the ship steering system stable with K = 0.2?

(d) What value of K would yield a PM of 30◦ and what would the crossover
frequency be?
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426 Chapter 6 The Frequency-Response Design Method

6.39. For the open-loop system

KG(s) = K(s + 1)

s2(s + 10)2
,

determine the value for K at the stability boundary and the values of K at the
points where PM = 30◦ .

Problems for Section 6.5: Bode’s Gain–Phase Relationship

6.40. The frequency response of a plant in a unity feedback configuration is sketched
in Fig. 6.102. Assume that the plant is open-loop stable and minimum phase.
(a) What is the velocity constant Kv for the system as drawn?
(b) What is the damping ratio of the complex poles at ω = 100?
(c) Approximately what is the system error in tracking (following) a sinusoidal

input of ω = 3 rad/sec?
(d) What is the PM of the system as drawn? (Estimate to within ±10◦ .)

Figure 6.102
Magnitude frequency
response for Problem 6.40

v (rad/sec)

1 10 100 100020
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6.41. For the system

G(s) = 100(s/a + 1)

s(s + 1)(s/b + 1)
,

where b = 10a , find the approximate value of a that will yield the best PM by
sketching only candidate values of the frequency response magnitude.

Problem for Section 6.6: Closed-Loop Frequency Response

6.42. For the open-loop system

KG(s) = K(s + 1)

s2(s + 10)2
,

determine the value for K that will yield PM ≥ 30◦ and the maximum possible
closed-loop bandwidth. Use MATLAB to find the bandwidth.
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Problems for Section 6.7: Compensation Design

6.43. For the lead compensator

D(s) = T s + 1
αT s + 1

,

where α < 1,

(a) Show that the phase of the lead compensator is given by

φ = tan−1(T ω) − tan−1(αT ω).

(b) Show that the frequency where the phase is maximum is given by

ωmax = 1
T

√
α

and that the maximum phase corresponds to

sin φmax = 1 − α

1 + α
.

(c) Rewrite your expression for ωmax to show that the maximum-phase frequency
occurs at the geometric mean of the two corner frequencies on a logarithmic
scale:

log ωmax = 1
2

(
log

1
T

+ log
1

αT

)
.

(d) To derive the same results in terms of the pole-zero locations, rewrite D(s)

as

D(s) = s + z

s + p
,

and then show that the phase is given by

φ = tan−1
(

ω

|z|
)

− tan−1
(

ω

|p|
)

,

such that
ωmax =

√
|z||p|.

Hence the frequency at which the phase is maximum is the square root of the
product of the pole and zero locations.

6.44. For the third-order servo system

G(s) = 50,000
s(s + 10)(s + 50)

,

use Bode plot sketches to design a lead compensator so that PM ≥ 50◦ and
ωBW ≥ 20 rad/sec. Then verify and refine your design by using MATLAB.
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428 Chapter 6 The Frequency-Response Design Method

6.45. For the system shown in Fig. 6.103, suppose that

G(s) = 5
s(s + 1)(s/5 + 1)

.

Use Bode plot sketches to design a lead compensation D(s) with unity DC gain
so that PM ≥ 40◦ . Then verify and refine your design by using MATLAB. What
is the approximate bandwidth of the system?

Figure 6.103
Control system for
Problem 6.45

Y�
�

�
R

E
D G

ePIV

6.46. Derive the transfer function from Td to θ for the system in Fig. 6.68. Then apply
the Final Value Theorem (assuming Td = constant) to determine whether θ(∞)

is nonzero for the following two cases:

(a) When D(s) has no integral term: lims→0 D(s) = constant;

(b) When D(s) has an integral term:

D(s) = D′(s)
s

,

In this case, lims→0 D′(s) = constant.

6.47. The inverted pendulum has a transfer function given by Eq. (2.91), which is simi-
lar to

G(s) = 1
s2 − 1

.

(a) Use Bode plot sketches to design a lead compensator to achieve a PM of 30◦ .
Then verify and refine your design by using MATLAB.

(b) Sketch a root locus and correlate it with the Bode plot of the system.

(c) Could you obtain the frequency response of this system experimentally?

6.48. The open-loop transfer function of a unity feedback system is

G(s) = K

s(s/5 + 1)(s/50 + 1)
.

(a) Use Bode plot sketches to design a lag compensator for G(s) so that the
closed-loop system satisfies the following specifications:

i. The steady-state error to a unit-ramp reference input is less than 0.01.

ii. PM ≥ 40◦

(b) Verify and refine your design by using MATLAB.
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6.49. The open-loop transfer function of a unity feedback system is

G(s) = K

s(s/5 + 1)(s/200 + 1)
.

(a) Use Bode plot sketches to design a lead compensator for G(s) so that the
closed-loop system satisfies the following specifications:

i. The steady-state error to a unit-ramp reference input is less than 0.01.

ii. For the dominant closed-loop poles, the damping ratio ζ ≥ 0.4.

(b) Verify and refine your design using MATLAB, including a direct computation
of the damping of the dominant closed-loop poles.

6.50. A DC motor with negligible armature inductance is to be used in a position control
system. Its open-loop transfer function is given by

G(s) = 50
s(s/5 + 1)

.

(a) Use Bode plot sketches to design a compensator for the motor so that the
closed-loop system satisfies the following specifications:

i. The steady-state error to a unit-ramp input is less than 1/200.

ii. The unit-step response has an overshoot of less than 20%.

iii. The bandwidth of the compensated system is no less than that of the
uncompensated system.

(b) Verify and/or refine your design using MATLAB, including a direct compu-
tation of the step-response overshoot.

6.51. The open-loop transfer function of a unity-feedback system is

G(s) = K

s(1 + s/5)(1 + s/20)
.

(a) Sketch the system block diagram, including input reference commands and
sensor noise.

(b) Use Bode plot sketches to design a compensator for G(s) so that the closed-
loop system satisfies the following specifications:

i. The steady-state error to a unit-ramp input is less than 0.01.

ii. PM ≥ 45◦

iii. The steady-state error for sinusoidal inputs with ω < 0.2 rad/sec is less
than 1/250.

iv. Noise components introduced with the sensor signal at frequencies
greater than 200 rad/sec are to be attenuated at the output by at least a
factor of 100.

(c) Verify and/or refine your design using MATLAB, including a computation of
the closed-loop frequency response to verify (iv).
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430 Chapter 6 The Frequency-Response Design Method

6.52. Consider a type I unity-feedback system with

G(s) = K

s(s + 1)
.

Use Bode plot sketches to design a lead compensator so that Kv = 20 sec−1 and
PM > 40◦ . Use MATLAB to verify and/or refine your design so that it meets the
specifications.

6.53. Consider a satellite attitude-control system with the transfer function

G(s) = 0.05(s + 25)

s2(s2 + 0.1s + 4)
.

Amplitude-stabilize the system using lead compensation so that GM ≥ 2 (6 db),
and PM ≥ 45◦ , keeping the bandwidth as high as possible with a single lead.

6.54. In one mode of operation, the autopilot of a jet transport is used to control altitude.
For the purpose of designing the altitude portion of the autopilot loop, only the
long-period airplane dynamics are important. The linearized relationship between
altitude and elevator angle for the long-period dynamics is

G(s) = h(s)

δ(s)
= 20(s + 0.01)

s(s2 + 0.01s + 0.0025)

ft/ sec
deg

.

The autopilot receives from the altimeter an electrical signal proportional to alti-
tude. This signal is compared with a command signal (proportional to the altitude
selected by the pilot), and the difference provides an error signal. The error signal
is processed through compensation, and the result is used to command the eleva-
tor actuators. A block diagram of this system is shown in Fig. 6.104. You have been
given the task of designing the compensation. Begin by considering a proportional
control law D(s) = K .

Figure 6.104
Control system for
Problem 6.54

�
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(a) Use MATLAB to draw a Bode plot of the open-loop system for D(s) = K =
1.

(b) What value of K would provide a crossover frequency (i.e., where |G| = 1)

of 0.16 rad/sec?

(c) For this value of K , would the system be stable if the loop were closed?

(d) What is the PM for this value of K ?

(e) Sketch the Nyquist plot of the system, and locate carefully any points where
the phase angle is 180◦ or the magnitude is unity.

(f) Use MATLAB to plot the root locus with respect to K , and locate the roots
for your value of K from part (b).
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(g) What steady-state error would result if the command was a step change in
altitude of 1000 ft?

For parts (h) and (i), assume a compensator of the form

D(s) = K
T s + 1
αT s + 1

.

(h) Choose the parameters K , T , and α so that the crossover frequency is
0.16 rad/sec and the PM is greater than 50◦ . Verify your design by super-
imposing a Bode plot of D(s)G(s)/K on top of the Bode plot you obtained
for part (a), and measure the PM directly.

(i) Use MATLAB to plot the root locus with respect to K for the system includ-
ing the compensator you designed in part (h). Locate the roots for your value
of K from part (h).

(j) Altitude autopilots also have a mode in which the rate of climb is sensed
directly and commanded by the pilot.

i. Sketch the block diagram for this mode.

ii. Define the pertinent G(s).

iii. Design D(s) so that the system has the same crossover frequency as the
altitude hold mode and the PM is greater than 50◦ .

6.55. For a system with open-loop transfer function

G(s) = 10
s[(s/1.4) + 1][(s/3) + 1]

,

design a lag compensator with unity DC gain so that PM ≥ 40◦ . What is the
approximate bandwidth of this system?

6.56. For the ship-steering system in Problem 6.38,

(a) Design a compensator that meets the following specifications:

i. Velocity constant Kv = 2,

ii. PM ≥ 50◦ ,

iii. Unconditional stability (PM > 0 for all ω ≤ ωc , the crossover fre-
quency).

(b) For your final design, draw a root locus with respect to K , and indicate the
location of the closed-loop poles.

6.57. Consider a unity-feedback system with

G(s) = 1

s( s
20 + 1)( s2

1002 + 0.5 s
100 + 1)

. (6.82)

(a) A lead compensator is introduced with α = 1/5 and a zero at 1/T = 20.
How must the gain be changed to obtain crossover at ωc = 31.6 rad/sec, and
what is the resulting value of Kv ?

(b) With the lead compensator in place, what is the required value of K for a lag
compensator that will readjust the gain to a Kv value of 100?
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432 Chapter 6 The Frequency-Response Design Method

(c) Place the pole of the lag compensator at 3.16 rad/sec, and determine the zero
location that will maintain the crossover frequency at ωc = 31.6 rad/sec. Plot
the compensated frequency response on the same graph.

(d) Determine the PM of the compensated design.

6.58. Golden Nugget Airlines had great success with their free bar near the tail of
the airplane. (See Problem 5.41.) However, when they purchased a much larger
airplane to handle the passenger demand, they discovered that there was some
flexibility in the fuselage that caused a lot of unpleasant yawing motion at the rear
of the airplane when in turbulence, which caused the revelers to spill their drinks.
The approximate transfer function for the Dutch roll mode (Section 10.3.1) is

r(s)

δr (s)
= 8.75(4s2 + 0.4s + 1)

(s/0.01 + 1)(s2 + 0.24s + 1)
,

where r is the airplane’s yaw rate and δr is the rudder angle. In performing a finite
element analysis (FEA) of the fuselage structure and adding those dynamics to
the Dutch roll motion, they found that the transfer function needed additional
terms which reflected the fuselage lateral bending that occurred due to excitation
from the rudder and turbulence. The revised transfer function is

r(s)

δr (s)
= 8.75(4s2 + 0.4s + 1)

(s/0.01 + 1)(s2 + 0.24s + 1)
· 1

( s2

ω2
b

+ 2ζ s
ωb

+ 1)
,

where ωb is the frequency of the bending mode (= 10 rad/sec) and ζ is the bending
mode damping ratio (= 0.02). Most swept-wing airplanes have a “yaw damper,”
which essentially feeds back yaw rate measured by a rate gyro to the rudder
with a simple proportional control law. For the new Golden Nugget airplane, the
proportional feedback gain K = 1, where

δr (s) = −Kr(s). (6.83)

(a) Make a Bode plot of the open-loop system, determine the PM and GM for
the nominal design, and plot the step response and Bode magnitude of the
closed-loop system. What is the frequency of the lightly damped mode that
is causing the difficulty?

(b) Investigate remedies to quiet down the oscillations, but maintain the same
low-frequency gain in order not to affect the quality of the Dutch roll damp-
ing provided by the yaw rate feedback. Specifically, investigate each of the
following one at a time:

i. Increasing the damping of the bending mode from ζ = 0.02 to ζ =
0.04 (would require adding energy-absorbing material in the fuselage
structure).

ii. Increasing the frequency of the bending mode from ωb = 10 rad/sec to
ωb = 20 rad/sec (would require stronger and heavier structural
elements).
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iii. Adding a low-pass filter in the feedback—that is, replacing K in Eq. (6.83)
with KD(s), where

D(s) = 1
s/τp + 1

. (6.84)

Pick τp so that the objectionable features of the bending mode are re-
duced while maintaining the PM ≥ 60◦ .

iv. Adding a notch filter as described in Section 5.5.3. Pick the frequency
of the notch zero to be at ωb , with a damping of ζ = 0.04, and pick
the denominator poles to be (s/100 + 1)2 , keeping the DC gain of the
filter = 1.

(c) Investigate the sensitivity of the preceding two compensated designs (iii and
iv) by determining the effect of a reduction in the bending mode frequency
of −10%. Specifically, reexamine the two designs by tabulating the GM, PM,
closed-loop bending mode damping ratio and resonant-peak amplitude, and
qualitatively describe the differences in the step response.

(d) What do you recommend to Golden Nugget to help their customers quit
spilling their drinks? (Telling them to get back in their seats is not an ac-
ceptable answer for this problem! Make the recommendation in terms of
improvements to the yaw damper.)

Problems for Section 6.8: Alternative Presentations of Data▲

6.59. A feedback control system is shown in Fig. 6.105. The closed-loop system is spec-
ified to have an overshoot of less than 30% to a step input.

Figure 6.105
Control system for
Problem 6.59

�
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(a) Determine the corresponding PM specification in the frequency domain and
the corresponding closed-loop resonant-peak value Mr . (See Fig. 6.37.)

(b) From Bode plots of the system, determine the maximum value of K that
satisfies the PM specification.

(c) Plot the data from the Bode plots [adjusted by the K obtained in part (b)]
on a copy of the Nichols chart in Fig. 6.73, and determine the resonant peak
magnitude Mr . Compare that with the approximate value obtained in part (a).

(d) Use the Nichols chart to determine the resonant-peak frequency ωr and the
closed-loop bandwidth.
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434 Chapter 6 The Frequency-Response Design Method

6.60. The Nichols plot of an uncompensated and a compensated system are shown in
Fig. 6.106.
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Figure 6.106 Nichols plot for Problem 6.60

(a) What are the resonance peaks of each system?

(b) What are the PM and GM of each system?

(c) What are the bandwidths of each system?

(d) What type of compensation is used?

6.61. Consider the system shown in Fig. 6.98.

(a) Construct an inverse Nyquist plot of [Y (jω)/E(jω)]−1 .

(b) Show how the value of K for neutral stability can be read directly from the
inverse Nyquist plot.

PreTEX, Inc., Technical Typesetters Tel. (902)454-8111 FAX (902)454-2894 Franklin, Feedback Control of Dynamic Systems, 5e

Feedback Control of Dynamic Systems, Fifth Edition, 
by Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. 

ISBN 0-13-149930-0. © 2006 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.



Problems 435

(c) For K = 4, 2, and 1, determine the gain and phase margins.

(d) Construct a root-locus plot for the system, and identify corresponding points
in the two plots. To what damping ratios ζ do the GM and PM of part (c)
correspond?

6.62. An unstable plant has the transfer function

Y (s)

F (s)
= s + 1

(s − 1)2
.

A simple control loop is to be closed around it, in the same manner as in the block
diagram in Fig. 6.98.

(a) Construct an inverse Nyquist plot of Y/F .

(b) Choose a value of K to provide a PM of 45◦ . What is the corresponding GM?

(c) What can you infer from your plot about the stability of the system when
K < 0?

(d) Construct a root-locus plot for the system, and identify corresponding points
in the two plots. In this case, to what value of ζ does PM = 45◦ correspond?

6.63. Consider the system shown in Fig. 6.107(a).

Figure 6.107
Control system for
Problem 6.63

U YG (s) � 
s (s � 2)2

4

(b)

�
�

�
KR

E U
Y

Sensor

1

G(s)

(a)

(a) Construct a Bode plot for the system.

(b) Use your Bode plot to sketch an inverse Nyquist plot.

(c) Consider closing a control loop around G(s), as shown in Fig. 6.107(b). Using
the inverse Nyquist plot as a guide, read from your Bode plot the values of
GM and PM when K = 0.7, 1.0, 1.4, and 2. What value of K yields PM = 30◦ ?

(d) Construct a root-locus plot, and label the same values of K on the locus. To
what value of ζ does each pair of PM/GM values correspond? Compare ζ

vs. PM with the rough approximation in Fig. 6.36.

Problems for Section 6.9: Specifications in Terms of the Sensitivity Function▲

6.64. Consider a system with the open-loop transfer function (loop gain)

G(s) = 1
s(s + 1)(s/10 + 1)

.

(a) Create the Bode plot for the system, and find GM and PM.

(b) Compute the sensitivity function and plot its magnitude frequency response.

(c) Compute the vector margin (VM).
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436 Chapter 6 The Frequency-Response Design Method

6.65. Prove that the sensitivity function �(s) has magnitude greater than 1 inside a circle
with a radius of 1 centered at the −1 point. What does this imply about the shape
of the Nyquist plot if closed-loop control is to outperform open-loop control at
all frequencies?

6.66. Consider the system in Fig. 6.103 with the plant transfer function

G(s) = 10
s(s/10 + 1)

.

(a) We wish to design a compensator D(s) that satisfies the following design
specifications:

i. Kv = 100

ii. PM ≥ 45◦

iii. Sinusoidal inputs of up to 1 rad/sec to be reproduced with ≤ 2% error

iv. Sinusoidal inputs with a frequency of greater than 100 rad/sec to be
attenuated at the output to ≤ 5% of their input value

(b) Create the Bode plot of G(s), choosing the open-loop gain so that Kv = 100.

(c) Show that a sufficient condition for meeting the specification on sinusoidal
inputs is that the magnitude plot lies outside the shaded regions in Fig. 6.108.
Recall that

Y

R
= KG

1 + KG
and

E

R
= 1

1 + KG
.

(d) Explain why introducing a lead network alone cannot meet the design
specifications.

(e) Explain why a lag network alone cannot meet the design specifications.

(f) Develop a full design using a lead–lag compensator that meets all the design
specifications, without altering the previously chosen low-frequency open-
loop gain.

Figure 6.108
Control system constraints
for Problem 6.66
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Problems for Section 6.10: Time Delay▲

6.67. Assume that the system

G(s) = e−Td s

s + 10

has a 0.2-sec time delay (Td = 0.2 sec). While maintaining a phase margin ≥ 40◦ ,
find the maximum possible bandwidth by using the following:

(a) One lead-compensator section

D(s) = K
s + a

s + b

where b/a = 100;

(b) Two lead-compensator sections

D(s) = K

(
s + a

s + b

)2

,

where b/a = 10.

(c) Comment on the statement in the text about the limitations on the bandwidth
imposed by a delay.

6.68. Determine the range of K for which the following systems are stable:

(a) G(s) = K e−4s

s

(b) G(s) = K e−s

s(s + 2)

6.69. In Chapter 5, we used various approximations for the time delay, one of which is
the first order Padé

e−Td s ∼= H1(s) = 1 − Tds/2
1 + Tds/2

.

Using frequency response methods, the exact time delay

H2(s) = e−Td s

can be obtained. Plot the phase of H1(s) and H2(s), and discuss the implications.

6.70. Consider the heat exchanger of Example 2.13 with the open-loop transfer function

G(s) = e−5s

(10s + 1)(60s + 1)
.

(a) Design a lead compensator that yields PM ≥ 45◦ and the maximum possible
closed-loop bandwidth.

(b) Design a PI compensator that yields PM ≥ 45◦ and the maximum possible
closed-loop bandwidth.
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