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Block Diagram Models,
Signal Flow Graphs and
Simplification Methods

Block Diagram Models

• Visualize input output relations

• Useful in design and realization of (linear) components

• Helps understand flow of information between internal 
variables.

• Are equivalent to a set of linear algebraic equations 

(of rational functions ).

• Mainly relevant where there is a cascade of information 
flow 
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Block Diagram Reduction
(with SISO components)
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Signal Flow Graphs

• Alternative to block diagrams

• Do not require iterative reduction to find 
transfer functions (using Mason’s gain rule)

• Can be used to find the transfer function 
between any two variables (not just the input 
and output).

• Look familiar to computer scientists (?)

Block Diagram Vs. SFG

• Blocks                 ⇒    Edges (aka branches) 

(representing transfer functions)

• Edges + junctions ⇒     Vertices (aka nodes)

(representing variables)
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Algebraic Eq 
representation

• x = Ax + r

x1 = a11x1+a12x2+r1

x2 = a21x1+a22x2+r2

• y(s) = G(s)u(s) u1(s)

u2(s)
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Another SFG Example
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Input / Output

• Input (source) has only 
outgoing edges

• Output (sink) has only 
incoming edges

• any variable can be 
made into an output by 
adding a sink with “1” 
edge  
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Definitions

• Input: (source) has only outgoing branches

• Output: (sink) has only incoming branches

• Path: (from node i to node j) has no loops.

• Forward-path: path connecting a source to a sink 

• Loop: A simple graph cycle.

• Path Gain: Product of gains on path edges

• Loop Gain: Product of gains on loop

• Non-touching Loops: Loops that have no vertex 
in common (and, therefore, no edge.)

Mason’s Gain Rule (1956)
Given an SFG, a source and a sink, N forward paths 
between them and K loops, the gain (transfer function) 
between the source-sink pair is

       !Pk!k
Tij =  !!!!

       !

Pk is the gain of path k, ! is the “graph determinant”:

! = 1- !(all loop gains)

      + !(products of non-touching-loop gain pairs)

      - !(products of non-touching-loop gain triplets)

      + ...

!k = ! of the SFG after removal of the kth

forward path



Mason’s Rule for Simple 
Feedback loop 

P1 = G(s)

L1 = -G(s)H(s)

! = 1 - (-G(s)H(s))

!1 = 1

             P1 !1        G(s)          G(s)
T(s) = !!! = !! = !!!!!
               !              !         1+G(s)H(s)
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Forward paths:
P1 = G1G2G3G4G5G6   P2 = G1G2G7G6   P3 = G1G2G3G4G8 

Feedback loops:
L1 = -G2G3G4G5H2     L2 = -G5G6H1     L3 = -G8H1

L4 = -G7H2G2              L5 = -G4H4           L6 = -G1G2G3G4G5G6H3

L7 = -G1G2G7G6H3         L8 = -G1G2G3G4G8H3

Loops {3,4},{4,5} and {5,7} don’t touch

! = 1-(L1+L2+L3+L4+L5+L6+L7+L8)+(L3L4+L4L5+L5L7)

!1 = !3 = 1   ,  !2 = 1-L5 = 1 - G4H4

            y(s)      P1+P2!2+P3
T(s) = !! = !!!!!`

            x(s)             !
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A Feedback Loop Reduces 
Sensitivity To Plant Variations

1 G(s) 1
y(s)

-H(s)

u(s)

G=10000

y(s)/u(s)=10000/(1+10000*0.01)=99.01

G=20000

y(s)/u(s)=20000/(1+20000*0.01)=99.50

y(s)/u(s)=G/(1+GH)

= 0.01


