

العلمي والبحث العالي التعليم وزارة

المستنصرية الجامعة

 كلية الهندسة

الحاسوب ندسةه قسم

Ministry of Higher Education and

Scientific Research

 Al-Mustansiriyah University

 Faculty of Engineering

Computer Engineering Department

Prepared By

Dr. Hanan Ahmed Salman

Data Structure

 Lab.

1026

1027

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

1

Experiment No. (1)

Introduction to C++ Basic Programming Language

Object:

To give a general introduction to computer programming, programming

languages, and simple programs in C++ language.

Theory:

A computer program is a set of instructions that a programmer writes to

tell a computer how to carry out a certain task. The instructions, however,

must be in a language that the computer understands. Computers only

understand a binary language i.e. that composed of 1’s and 0’s. This is a

low-level language and very hard to program in. So, humans invented

higher level languages such as C++ or Pascal to make the job easier. As

you will see, these languages are nearly like English but you don’t have

the freedom to write what you like – there are still rules you have to

follow.

As shown in below, the input to a computer can be thought of as

consisting of two parts, a program and some data. The computer follows

the instructions in the program, and in that way, performs some process.

The data is what we conceptualize as the input to the program. For

example, if the program adds two numbers, then the two numbers are the

data. In other words, the data is the input to the program, and both the

program and the data are input to the computer.

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

2

Languages: High, low level and assembly

C++ is a high-level language, like most of the other programming

languages such as C, Java, Pascal, Visual Basic, FORTRAN, COBOL,

Lisp, Scheme, and Ada. High-level languages resemble human

languages in many ways. They are designed to be easy for human beings

to write programs in and to be easy for human beings to read. A high-

level language contains instructions that are much more complicated than

the simple instructions a computer’s processor (CPU) is capable of

following.

The kind of language a computer can understand is called a low-level

language. The exact details of low-level languages differ from one kind

of computer to another. A typical low-level instruction might be the

following:

ADD X Y Z

This instruction might mean “Add the number in the memory location

called X to the number in the memory location called Y, and place the

result in the memory location called Z.” The above sample instruction is

written in what is called assembly language. Although assembly

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

3

language is almost the same as the language understood by the computer,

it must undergo one simple translation before the computer can

understand it. In order to get a computer to follow an assembly language

instruction, the words need to be translated into strings of zeros and ones.

For example, the word ADD might translate to 0110, the X might

translate to 1001, the Y to 1010, and the Z to 1011.

The version of the above instruction that the computer ultimately follows

would then be:

0110 1001 1010 1011

Assembly language instructions and their translation into zeros and ones

differ from machine to machine.

Programs written in the form of zeros and ones are said to be written in

machine language, because that is the version of the program that the

computer (the machine) actually reads and follows.

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

4

Editor: accepts the typing of the source code (or header file).

Source file: the file that contains the program you prepared in the editor

after you save it. (.cpp)

Header file: header files such as iostream.h

Pre-processor: performs preliminary operations on files before they are

passed to the compiler.

Compiler: translates the source code to machine language.

Object code: the file containing the translated source code. (.obj)

Linker: links the object file with additional code, such as the library

codes.

Executable code: the file containing the final product. (.exe)

PROGRAMMING AND PROBLEM-SOLVING

The most difficult part of solving a problem on a computer is discovering

the method of solution. After you come up with a method of solution, it is

routine to translate your method into the required language, be it C++ or

some other programming language.

A sequence of precise instructions which leads to a solution is called an

algorithm.

A computer program is simply an algorithm expressed in a language that

a computer can understand. Thus, the term algorithm is more general than

the term program .Designing a program is often a difficult task. There is

no complete set of rules, no algorithm to tell you how to write programs.

Program design is a creative process.

The entire program design process can be divided into two phases, the

problem-solving phase and the implementation phase. The result of the

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

5

problem-solving phase is an algorithm, expressed in English, for solving

the problem. To produce a program in a programming language such as

C++, the algorithm is translated into the programming language.

Producing the final program from the algorithm is called the

implementation phase.

Program 1:

Probably the best way to start learning a programming language is by

writing a program. Therefore, here is our first program:

// my first program in C++

#include <iostream.h>

int main ()

{

 cout << "Hello World!";

 return 0;

}

Hello World!

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

6

The first panel shows the source code for our first program. The second

one shows the result of the program once compiled and executed. The

way to edit and compile a program depends on the compiler you are

using.

// my first program in C++

This is a comment line. All lines beginning with two slash signs (//)

are considered comments and do not have any effect on the

behavior of the program. The programmer can use them to include

short explanations or observations within the source code itself. In

this case, the line is a brief description of what our program is.

#include <iostream.h>

Lines beginning with a pound sign (#) are directives for the

preprocessor. They are not regular code lines with expressions but

indications for the compiler's preprocessor. In this case, the

directive #include <iostream> tells the preprocessor to include the

iostream standard file. This specific file (iostream) includes the

declarations of the basic standard input-output library in C++, and

it is included because its functionality is going to be used later in

the program.

int main ()

This line corresponds to the beginning of the definition of the main

function. The main function is the point by where all C++

programs start their execution, independently of its location within

the source code. It does not matter whether there are other

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

7

functions with other names defined before or after it - the

instructions contained within this function's definition will always

be the first ones to be executed in any C++ program. For that same

reason, it is essential that all C++ programs have a main function.

The word main is followed in the code by a pair of parentheses (()).

That is because it is a function declaration: In C++, what

differentiates a function declaration from other types of

expressions are these parentheses that follow its name. Optionally,

these parentheses may enclose a list of parameters within them.

Right after these parentheses we can find the body of the main

function enclosed in braces ({}). What is contained within these

braces is what the function does when it is executed.

 cout << "Hello World";

This line is a C++ statement. A statement is a simple or compound

expression that can actually produce some effect. In fact, this

statement performs the only action that generates a visible effect in

our first program.

cout represents the standard output stream in C++, and the meaning

of the entire statement is to insert a sequence of characters (in this

case the Hello World sequence of characters) into the standard

output stream (which usually is the screen).

cout is declared in the iostream standard file within the std

namespace, so that's why we needed to include that specific file

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

8

and to declare that we were going to use this specific namespace

earlier in our code.

Notice that the statement ends with a semicolon character (;). This

character is used to mark the end of the statement and in fact it

must be included at the end of all expression statements in all C++

programs (one of the most common syntax errors is indeed to

forget to include some semicolon after a statement).

 return 0;

The return statement causes the main function to finish. return

may be followed by a return code (in our example is followed by

the return code 0). A return code of 0 for the main function is

generally interpreted as the program worked as expected without

any errors during its execution. This is the most usual way to end a

C++ program.

You may have noticed that not all the lines of this program perform

actions when the code is executed. There were lines containing only

comments (those beginning by //). There were lines with directives for the

compiler's preprocessor (those beginning by #). Then there were lines that

began the declaration of a function (in this case, the main function) and,

finally lines with statements (like the insertion into cout), which were all

included within the block delimited by the braces ({}) of the main

function.

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

9

Comments

Comments are parts of the source code disregarded by the compiler. They

simply do nothing. Their purpose is only to allow the programmer to

insert notes or descriptions embedded within the source code. C++

supports two ways to insert comments:

// line comment

/* block comment */

The first of them, known as line comment, discards everything from

where the pair of slash signs (//) is found up to the end of that same line.

The second one, known as block comment, discards everything between

the /* characters and the first appearance of the */ characters, with the

possibility of including more than one line.

Program 2

We are going to add comments to our second program:

/* my second program in C++

 with more comments */

#include <iostream.h>

int main ()

{

 cout << "Hello World! "; // prints Hello World!

 cout << "I'm a C++ program"; // prints I'm a C++

program

 return 0;

}

Hello World! I'm

a C++ program

If you include comments within the source code of your programs

without using the comment characters combinations //, /* or */, the

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

10

compiler will take them as if they were C++ expressions, most likely

causing one or several error messages when you compile it.

Questions:

1- Write a C++ program that prints a message “Welcome to the first

your lesson”.

2- Write a C++ program that prints your name and your class number.

 For example:- Ali 1
st
 Class

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

11

Experiment No. (2)

Variables and Data Types

Object:

Programming is not limited only to print simple texts on the screen. In

order to be able to write programs that perform useful tasks that really

save us work, we need to introduce the concept of variables and data

types.

Theory:

Let us think that we ask you to retain the number 5 in your mental

memory, and then ask you to memorize the number 2 at the same time.

You have just stored two different values in your memory. Now, if we

ask you to add 1 to the first number, you should be retaining the numbers

6 (that is 5+1) and 2 in your memory. Now for example, we could

subtract and obtain 4 as result. The whole process that you have just done

with your mental memory is a simile of what a computer can do with two

variables. The same process can be expressed in C++ with the following

instruction set:

Obviously, this is a very simple example since we have only used two

small integer values, but consider that your computer can store millions

of numbers like these at the same time and conduct sophisticated

mathematical operations with them.

a = 5;

b = 2;

a = a + 1;

result = a - b;

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

12

Therefore, we can define a variable as a portion of memory to store a

determined value. Each variable needs an identifier that distinguishes it

from the others, for example, in the previous code the variable identifiers

were a, b and result, but we could have called the variables any names we

wanted to invent, as long as they were valid identifiers.

Identifiers

Symbolic names can be used in C++ for various data items used by a

programmer. A symbolic name is generally known as an identifier. The

identifier is a sequence of characters taken from C++ character set. The

rules for the formation of an identifier are:

 An identifier can consist of alphabets, digits and/or underscores.

 It must not start with a digit

 C++ is case sensitive that is upper case and lower case letters are

considered different from each other.

 It should not be a reserved word.

Another rule that you have to consider when inventing your own

identifiers is that they cannot match any keyword of the C++ language or

your compiler's specific ones since they could be confused with these.

The standard reserved keywords are:

asm auto break case catch

char class const continue default

delete do double else enum

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

13

extern inline Int float for

friend goto If long new

operator private protected public register

return short signed sizeof static

struct switch template this Try

typedef union unsigned virtual void

volatile while

When programming, we store the variables in our computer's memory.

But the computer has to know what we want to store in them, since it is

not going to occupy the same amount of memory to store a simple

number than to store a single letter or a large number, and they are not

going to be interpreted the same way.

The memory in our computers is organized in bytes. A byte is the

minimum amount of memory that we can manage in C++. A byte can

store a relatively small amount of data: one single character or a small

integer (generally an integer between 0 and 255). In addition, the

computer can manipulate more complex data types that come from

grouping several bytes, such as long numbers or non-integer numbers.

Next, you have a summary of the basic fundamental data types in C++, as

well as the range of values that can be represented with each one:

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

14

Name Description Size* Range*

char Character or small integer. 1byte
signed: -128 to 127

unsigned: 0 to 255

short int

(short)
Short Integer. 2bytes

signed: -32768 to 32767

unsigned: 0 to 65535

int Integer. 4bytes

signed: -2147483648 to

2147483647

unsigned: 0 to 4294967295

long int

(long)
Long integer. 4bytes

signed: -2147483648 to

2147483647

unsigned: 0 to 4294967295

bool
Boolean value. It can take one of two values:

true or false.
1byte true or false

float Floating point number. 4bytes 3.4e +/- 38 (7 digits)

double Double precision floating point number. 8bytes 1.7e +/- 308 (15 digits)

long

double

Long double precision floating point

number.
8bytes 1.7e +/- 308 (15 digits)

wchar_t Wide character. 2bytes 1 wide character

* The values of the columns Size and Range depend on the architecture

of the system where the program is compiled and executed.

Declaration of variables

In order to use a variable in C++, we must first declare it specifying

which data type we want it to be. The syntax to declare a new variable is

to write the desired data type (e.g. int, bool, float...) followed by a valid

variable identifier. For example:

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

15

int a;

float mynumber;

These are two valid declarations of variables. The first one declares a

variable of type int with the identifier a. The second one declares a

variable of type float with the identifier mynumber. Once declared, the

variables a and mynumber can be used within the rest of their scope in

the program.

If you are going to declare more than one variable of the same type, you

can declare all of them in a single statement by separating their identifiers

with commas. For example:

int a, b, c;

This declares three variables (a, b and c), all of them of type int, and has

exactly the same meaning as:

int a;

int b;

int c;

The integer data types char, short, long and int can be either signed or

unsigned depending on the range of numbers needed to be represented.

Signed types can represent both positive and negative values, whereas

unsigned types can only represent positive values (and zero). This can be

specified by using either the specified signed or the specified unsigned

before the type name. For example:

unsigned short int Number;

signed int MyAccount;

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

16

By default, if we do not specify either signed or unsigned most compiler

settings will assume the type to be signed, therefore instead of the second

declaration above we could have written:

int MyAccount;

with exactly the same meaning (with or without the keyword signed)

An exception to this general rule is the char type, which exists by itself

and is considered a different fundamental data type from signed char and

unsigned char, thought to store characters. You should use either signed

or unsigned if you intend to store numerical values in a char-sized

variable.

short and long can be used alone as type of specifies. In this case, they

refer to their respective integer fundamental types: short is equivalent to

short int and long is equivalent to long int. The following two variable

declarations are equivalent:

short Year;

short int Year;

Finally, signed and unsigned may also be used as standalone type

specifies, meaning the same as signed int and unsigned int respectively.

The following two declarations are equivalent:

unsigned NextYear;

unsigned int NextYear;

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

17

Program 1

To see what variable declarations look like in action within a program,

we are going to see the C++ code of the example about your mental

memory proposed at the beginning of this section:

// operating with variables

#include <iostream.h>

int main ()

{

 // declaring variables:

 int a, b;

 int result;

 // process:

 a = 5;

 b = 2;

 a = a + 1;

 result = a - b;

 // print out the result:

 cout << result;

 // terminate the program:

 return 0;}

4

Initialization of variables

When declaring a regular local variable, its value is by default

undetermined. But you may want a variable to store a concrete value at

the same moment that it is declared. In order to do that, you can initialize

the variable. There are two ways to do this in C++:

The first one, known as c-like, is done by appending an equal sign

followed by the value to which the variable will be initialized:

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

18

type identifier = initial_value ;

For example, if we want to declare an int variable called a initialized with

a value of 0 at the moment in which it is declared, we could write:

int a = 0;

The other way to initialize variables, known as constructor

initialization, is done by enclosing the initial value between parentheses

(()):

type identifier (initial_value) ;

For example:

int a (0);

Both ways of initializing variables are valid and equivalent in C++.

Program 2

// initialization of variables

#include <iostream.h>

int main ()

{

 int a=5; // initial value = 5

 int b(2); // initial value = 2

 int result; // initial value undetermined

 a = a + 3;

 result = a - b;

 cout << result;

 return 0;

}

6

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

19

Variable Scope

Scope is a region of the program and broadly speaking there are three

places, where variables can be declared:

 Inside a function or a block which is called local variables,

 In the definition of function parameters which is called formal

parameters.

 Outside of all functions which is called global variables.

We will learn what a function is and it's parameter in subsequent

chapters. Here, let us explain what local and global variables are.

Local Variables:

Variables that are declared inside a function or block are local variables.

They can be used only by statements that are inside that function or block

of code. Local variables are not known to functions outside their own.

Following is the example using local variables.

Program 3

#include<iostream.h>

int main ()

{

// Local variable declaration:

int a, b;

int c;

// actual initialization

a =10;

b =20;

c = a + b;

cout << c;

return0; }

30

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

20

Global Variables:

Global variables are defined outside of all the functions, usually on top of

the program. The global variables will hold their value throughout the

life-time of your program. A global variable can be accessed by any

function. That is, a global variable is available for use throughout your

entire program after its declaration. Following is the example using

global and local variables.

Program 4

#include<iostream.h>

// Global variable declaration:

int g=10;

int main ()

{

// Local variable declaration:

int a, b, c;

// actual initialization

a =10;

b =20;

c = a + b+ g;

cout << c;

return0;

}

40

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

21

A program can have same name for local and global variables but value

of local variable inside a function will take preference.

Program 5

 #include<iostream.h>

// Global variable declaration:

int g=20;

int main ()

{

// Local variable declaration:

int g =10;

cout << g;

return0;

}

10

Questions:

1- Write a C++ program that computes the z value from the following

equations:

a- z= a(b*d)-(c*b)+d where a=10, b=20, c=14, and d= 5

b- z=1/x+1/x
2
+1/x

3
 where x=2

2- Write a C++ program that prints a temperature in Celsius when a

Fahrenheit is given. Use the formula:

C0=5/9(F-32)

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

22

Experiment No. (3)

String and Constant

Object:

How defining and using stream of characters and constant in the program.

Theory:

Variables that can store non-numerical values that are longer than one

single character are known as strings.

The C++ language library provides support for strings through the

standard string class. This is not a fundamental type, but it

behaves in a similar way as fundamental types do in its most basic

usage.

A first difference with fundamental data types is that in order to

declare and use objects (variables) of this type we need to include

an additional header file in our source code: <string> and have

access to the std namespace (which we already had in all our

previous programs thanks to the using namespace statement).

Program 1

// my first string

#include <iostream.h>

#include <string.h>

int main ()

{

 string mystring = "This is a string";

 cout << mystring;

 return 0;

This is a string

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

23

}

Strings can be initialized with any valid string literal just like numerical

type variables can be initialized to any valid numerical literal. Both

initialization formats are valid with strings:

string mystring = "This is a string";

string mystring ("This is a string");

Strings can also perform all the other basic operations that fundamental

data types can, like being declared without an initial value and being

assigned values during execution.

Program 2

// my first string

#include <iostream.h>

#include <string.h>

int main ()

{

 string mystring;

 mystring = "This is the initial string

content";

 cout << mystring << endl;

 mystring = "This is a different

string content";

 cout << mystring << endl;

 return 0;

}

This is the initial string content

This is a different string content

An integer literal can be a decimal, octal, or hexadecimal constant. A

prefix specifies the base or radix: 0x or 0X for hexadecimal, 0 for octal,

and nothing for decimal. An integer literal can also have a suffix that is a

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

24

combination of U and L, for unsigned and long, respectively. The suffix

can be uppercase or lowercase and can be in any order. Here are some

examples of integer literals:

212// Legal

215u// Legal

0xFeeL// Legal

078// Illegal: 8 is not an octal digit

032UU// Illegal: cannot repeat a suffix

Following are other examples of various types of Integer literals:

85// decimal

0213// octal

0x4b// hexadecimal

30// int

30u// unsigned int

30l// long

30ul// unsigned long

Floating-point literals:

A floating-point literal has an integer part, a decimal point, a fractional

part, and an exponent part. You can represent floating point literals either

in decimal form or exponential form. While representing using decimal

form, you must include the decimal point, the exponent, or both and

while representing using exponential form, you must include the integer

part, the fractional part, or both. The signed exponent is introduced by e

or E.

Here are some examples of floating-point literals:

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

25

3.14159// Legal

314159E-5L// Legal

510E// Illegal: incomplete exponent

210f// Illegal: no decimal or exponent

.e55 // Illegal: missing integer or fraction

Boolean literals:

There are two Boolean literals and they are part of standard C++

keywords:

 A value of true representing true.

 A value of false representing false.

You should not consider the value of true equal to 1 and value of false

equal to 0.

Character literals:

Character literals are enclosed in single quotes. If the literal begins with L

(uppercase only), it is a wide character literal (e.g., L'x') and should be

stored in wchar_t type of variable. Otherwise, it is a narrow character

literal (e.g., 'x') and can be stored in a simple variable of char type.

A character literal can be a plain character (e.g., 'x'), an escape sequence

(e.g., '\t'), or a universal character (e.g., '\u02C0').

There are certain characters in C++ when they are preceded by a

backslash they will have special meaning and they are used to represent

like new line (\n) or tab (\t). Here, you have a list of some of such escape

sequence codes:

\n Newline

\r carriage return

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

26

\t Tab

\v vertical tab

\b backspace

\f form feed (page feed)

\a alert (beep)

\' single quote (')

\" double quote (")

\? question mark (?)

\\ backslash (\)

String literals:

String literals are enclosed in double quotes. A string contains characters

that are similar to character literals: plain characters, escape sequences,

and universal characters.You can break a long line into multiple lines

using string literals and separate them using whitespaces.

Here are some examples of string literals. All the three forms are identical

strings.

"hello, dear"

"hello, \

dear"

"hello, ""d""ear"

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

27

Defined constants (#define)

You can define your own names for constants that you use very often

without having to resort to memory-consuming variables, simply by using

the #define preprocessor directive. Its format is:

#define identifier value

For example:

#define PI 3.14159265

#define NEWLINE '\n'

This defines two new constants: PI and NEWLINE. Once they are

defined, you can use them in the rest of the code as if they were any other

regular constant, for example:

Program 3

// defined constants: calculate

circumference

#include <iostream.h>

#define PI 3.14159

#define NEWLINE '\n';

int main ()

{

 double r=5.0; // radius

 double circle;

 circle = 2 * PI * r;

 cout << circle;

 cout << NEWLINE;

 return 0; }

31.4159

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

28

In fact the only thing that the compiler preprocessor does when it

encounters #define directives is to literally replace any occurrence of their

identifier (in the previous example, these were PI and NEWLINE) by the

code to which they have been defined (3.14159265 and '\n' respectively).

The #define directive is not a C++ statement but a directive for the

preprocessor; therefore it assumes the entire line as the directive and does

not require a semicolon (;) at its end. If you append a semicolon character

(;) at the end, it will also be appended in all occurrences within the body

of the program that the preprocessor replaces.

Declared constants (const)

With the const prefix you can declare constants with a specific type in the

same way as you would do with a variable:

const type variable = value;

const int pathwidth = 100;

const char tabulator = '\t';

const zipcode = 12440;

In case that no type is explicitly specified (as in the last example) the

compiler assumes that it is of type int.

Program 4

#include<iostream.h>

int main()

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

29

{

const int LENGTH =10;

const int WIDTH =5;

const char NEWLINE ='\n';

int area;

area = LENGTH * WIDTH;

cout << area;

cout << NEWLINE;

return 0;

}

When the above code is compiled and executed, it produces the following

result:

50

Questions:

1- Write a C++ program to compute the volume of a sphere.

2- Write a C++ program that computes the average of two marks. For

example, if 75 is the degree of Maths and 89 of Chemistry then the

average is 82.

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

30

Experiment No. (4)

Operators

Object:

How Mathematical and Logical Operators in the C++ program are.

Theory:

Once we know of the existence of variables and constants, we can begin

to operate with them. For that purpose, C++ integrates operators. Unlike

other languages whose operators are mainly keywords, operators in C++

are mostly made of signs that are not part of the alphabet but are available

in all keyboards. This makes C++ code shorter and more international,

since it relies less on English words, but requires a little of learning effort

in the beginning.

Assignation (=)

The assignation operator assigns a value to a variable.

a = 5;

This statement assigns the integer value 5 to the variable a. The part at the

left of the assignation operator (=) is known as the lvalue (left value) and

the right one as the rvalue (right value). The lvalue has to be a variable

whereas the rvalue can be either a constant, a variable, the result of an

operation or any combination of these.

The most important rule of assignation is the right-to-left rule: The

assignation operation always takes place from right to left, and never the

other way:

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

31

a = b;

This statement assigns to variable a (the lvalue) the value contained in

variable b (the rvalue). The value that was stored until this moment in a is

not considered at all in this operation, and in fact that value is lost.

Consider also that we are only assigning the value of b to a at the

moment of the assignation. Therefore a later change of b will not affect

the new value of a.

Program 1

// assignation operator

#include <iostream.h>

int main ()

{

 int a, b;

 a = 10;

 b = 4;

 // a:10, b:4

 a = b;

 // a:4, b:4

 b = 7;

 // a:4, b:7

 cout << "a:";

 cout << a;

 cout << " b:";

 cout << b;

 return 0;

}

a:4 b:7

This code will give us as result that the value contained in a is 4 and the

one contained in b is 7. Notice how a was not affected by the final

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

32

modification of b, even though we declared a = b earlier (that is because

of the right-to-left rule).

A property that C++ has over other programming languages is that the

assignation operation can be used as the rvalue (or part of an rvalue) for

another assignation. For example:

a = 2 + (b = 5);

is equivalent to:

b = 5;

a = 2 + b;

The following expression is also valid in C++:

a = b = c = 5;

It assigns 5 to the all the three variables: a, b and c.

Arithmetic operators (+, -, *, /, %)

The five arithmetical operations supported by the C++ language are:

+ Addition

- Subtraction

* multiplication

/ division

% modulo

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

33

Operations of addition, subtraction, multiplication and division literally

correspond with their respective mathematical operators. The only one

that you might not be so used to see may be modulo; whose operator is

the percentage sign (%). Modulo is the operation that gives the remainder

of a division of two values. For example, if we write:

a = 11 % 3;

the variable a will contain the value 2, since 2 is the remainder from

dividing 11 between 3.

Compound assignation

 (+=, -=, *=, /=, %=, >>=, <<=, &=, ^=, |=)

When we want to modify the value of a variable by performing an

operation on the value currently stored in that variable we can use

compound assignation operators:

Expression is equivalent to

value += increase; value = value + increase;

a -= 5; a = a - 5;

a /= b; a = a / b;

price *= units + 1; price = price * (units + 1);

Program 2

 // compund assignation

#include <iostream.h>

int main ()

5

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

34

{

 int a, b=3;

 a = b;

 a+=2; // equivalent to a=a+2

 cout << a;

 return 0;

}

Increase and decrease (++, --)

C++ provides two special operators '++' and '--' for incrementing and

decrementing the value of a variable by 1. The increment/decrement

operator can be used with any type of variable but it cannot be used with

any constant. Increment and decrement operators each have two forms,

pre and post.

The syntax of the increment operator is:

Pre-increment: ++variable

Post-increment: variable++

The syntax of the decrement operator is:

Pre-decrement: – –variable

Post-decrement: variable– –

In Prefix form first variable is first incremented/decremented, then

evaluated

In Postfix form first variable is first evaluated, then

incremented/decremented

Program 3

// compund assignation

#include <iostream.h>

int main ()

{

int x,y;

int i=10,j=10;

x = ++i; //add one to i, store the result back in

11

10

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

35

x

y= j++; //store the value of j to y then add one

to j

cout<<x;

cout<<y;

}

Questions:

1- First, determine the values of the variables for each of the

following C++ statements manually:

a- z=x++*y.

b- z=2*++x*y.

c- y %=x.

Second, write a C++ program to find the above values to ensure

from your answer.

2- Write a C++ program for the following expressions:

a- x+y
2
+t/z

b- a
3
-b

2
/ c

2
+25

For the next experiments you shall need to know the following

operators:

Relational and equality operators

 (==, !=, >, <, >=, <=)

In order to evaluate a comparison between two expressions we can use

the relational and equality operators. The result of a relational operation is

a Boolean value that can only be true or false, according to its Boolean

result.

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

36

We may want to compare two expressions, for example, to know if they

are equal or if one is greater than the other is. Here is a list of the

relational and equality operators that can be used in C++:

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Here there are some examples:

(7 == 5) // evaluates to false.

(5 > 4) // evaluates to true.

(3 != 2) // evaluates to true.

(6 >= 6) // evaluates to true.

(5 < 5) // evaluates to false.

Of course, instead of using only numeric constants, we can use any valid

expression, including variables. Suppose that a=2, b=3 and c=6,

(a == 5) // evaluates to false since a is not equal to 5.

(a*b >= c) // evaluates to true since (2*3 >= 6) is true.

(b+4 > a*c) // evaluates to false since (3+4 > 2*6) is false.

((b=2) == a) // evaluates to true.

Be careful!

The operator = (one equal sign) is not the same as the operator == (two

equal signs), the first one is an assignation operator (assigns the value at

its right to the variable at its left) and the other one (==) is the equality

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

37

operator that compares whether both expressions in the two sides of it are

equal to each other. Thus, in the last expression ((b=2) == a), we first

assigned the value 2 to b and then we compared it to a, that also stores the

value 2, so the result of the operation is true.

Logical operators (!, &&, ||)

(!) Operator is the C++ operator to perform the Boolean operation

NOT, it has only one operand, located at its right, and the only thing that

it does is to inverse the value of it, producing false if its operand is true

and true if its operand is false. Basically, it returns the opposite Boolean

value of evaluating its operand. For example:

!(5 == 5) // evaluates to false because the expression at its right (5 ==

5) is true.

!(6 <= 4) // evaluates to true because (6 <= 4) would be false.

!true // evaluates to false

!false // evaluates to true.

The logical operators && and || are used when evaluating two

expressions to obtain a single relational result. The operator &&

corresponds with Boolean logical operation AND. This operation results

true if both its two operands are true, and false otherwise. The following

panel shows the result of operator && evaluating the expression a && b:

(&&) Operator

a b a && b

true true True

true false False

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

38

false true False

false false False

(||) Operator

The operator || corresponds with Boolean logical operation OR. This

operation results true if either one of its two operands is true, thus being

false only when both operands are false themselves. Here are the possible

results of a || b:

a b a || b

true true true

true false true

false true true

false false false

For example:

((5 == 5) && (3 > 6)) // evaluates to false (true && false).

((5 == 5) || (3 > 6)) // evaluates to true (true || false).

 (?) Conditional operator

The conditional operator evaluates an expression returning a value if that

expression is true and a different one if the expression is evaluated as

false. Its format is:

condition ? result1 : result2

7==5 ? 4 : 3 // returns 3, since 7 is not equal to 5.

7==5+2 ? 4 : 3 // returns 4, since 7 is equal to 5+2.

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

39

5>3 ? a : b // returns the value of a, since 5 is greater than 3.

a>b ? a : b // returns whichever is greater, a or b.

If condition is true the expression will return result1, if it is not it will

return result2.

Example:

// conditional operator

#include <iostream.h>

int main ()

{

 int a,b,c;

 a=2;

 b=7;

 c = (a>b) ? a : b;

 cout << c;

 return 0;

}

7

In this example a was 2 and b was 7, so the expression being evaluated

(a>b) was not true, thus the first value specified after the question mark

was discarded in favor of the second value (the one after the colon) which

was b, with a value of 7.

(,) Comma operator

The comma operator (,) is used to separate two or more expressions that

are included where only one expression is expected. When the set of

expressions has to be evaluated for a value, only the rightmost expression

is considered.

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

40

For example, the following code:

a = (b=3, b+2);

Would first assign the value 3 to b, and then assign b+2 to variable a. So,

at the end, variable a would contain the value 5 while variable b would

contain value 3.

(&, |, ^, ~, <<, >>) Bitwise Operators

Bitwise operators modify variables considering the bit patterns that

represent the values they store.

operator asm equivalent Description

& AND Bitwise AND

| OR Bitwise Inclusive OR

^ XOR Bitwise Exclusive OR

~ NOT Unary complement (bit inversion)

<< SHL Shift Left

>> SHR Shift Right

Explicit type casting operator

Type casting operators allow you to convert a datum of a given type to

another. There are several ways to do this in C++. The simplest one,

which has been inherited from the C language, is to precede the

expression to be converted by the new type enclosed between parentheses

(()):

int i;

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

41

float f = 3.14;

i = (int) f;

The previous code converts the float number 3.14 to an integer value (3),

the remainder is lost. Here, the typecasting operator was (int). Another

way to do the same thing in C++ is using the functional notation:

preceding the expression to be converted by the type and enclosing the

expression between parentheses:

i = int (f);

Both ways of type casting are valid in C++.

sizeof() operator

This operator accepts one parameter, which can be either a type or a

variable itself and returns the size in bytes of that type or object:

a = sizeof (char);

This will assign the value 1 to a because char is a one-byte long type.

The value returned by sizeof is a constant, so it is always determined

before program execution.

Precedence of operators

When writing complex expressions with several operands, we may have

some doubts about which operand is evaluated first and which later. For

example, in this expression:

a = 5 + 7 % 2

we may doubt if it really means:

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

42

a = 5 + (7 % 2) // with a result of 6, or

a = (5 + 7) % 2 // with a result of 0

The correct answer is the first of the two expressions, with a result of 6.

There is an established order with the priority of each operator, and not

only the arithmetic ones (those whose preference come from

mathematics) but for all the operators which can appear in C++. From

greatest to lowest priority, the priority order is as follows:

Level Operator Description Grouping

1 :: scope
Left-to-

right

2

() [] . -> ++ -- dynamic_cast

static_cast reinterpret_cast

const_cast typeid

postfix
Left-to-

right

3

++ -- ~ ! sizeof new delete unary (prefix)

Right-to-

left
* &

indirection and

reference (pointers)

+ - unary sign operator

4 (type) type casting
Right-to-

left

5 .* ->* pointer-to-member
Left-to-

right

6 * / % multiplicative
Left-to-

right

7 + - additive
Left-to-

right

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

43

8 << >> shift
Left-to-

right

9 < > <= >= relational
Left-to-

right

10 == != equality
Left-to-

right

11 & bitwise AND
Left-to-

right

12 ^ bitwise XOR
Left-to-

right

13 | bitwise OR
Left-to-

right

14 && logical AND
Left-to-

right

15 || logical OR
Left-to-

right

16 ?: conditional
Right-to-

left

17
= *= /= %= += -= >>= <<= &= ^=

!=
assignment

Right-to-

left

18 , comma
Left-to-

right

Grouping defines the precedence order in which operators are evaluated

in the case that there are several operators of the same level in an

expression.

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

44

All these precedence levels for operators can be manipulated or become

more legible by removing possible ambiguities using parentheses signs (

and), as in this example:

a = 5 + 7 % 2;

might be written either as:

a = 5 + (7 % 2);

 Or a = (5 + 7) % 2;

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

45

Experiment No. (5)

Control Structure (if-statement)

Object:

Learning (if condition statements) in the C++ program.

Theory:

Conditional structure:

1. if statement

The if keyword is used to execute a statement or block only if a condition

is fulfilled. Its form is:

if (condition) statement

Where condition is the expression that is being evaluated. If this

condition is true, statement is executed. If it is false, statement is

ignored (not executed) and the program continues right after this

conditional structure.

Flow Diagram:

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

46

For example, the following code fragment prints x is 100 only if the value

stored in the x variable is indeed 100:

if (x == 100)

 cout << "x is 100";

If we want more than a single statement to be executed in case that the

condition is true we can specify a block using braces { }:

if (x == 100)

{

 cout << "x is ";

 cout << x;

}

Program 1

#include <iostream.h>

int main ()

{

// local variable declaration:

int a = 10;

// check the boolean condition

if(a < 20)

// if condition is true then print the

following

cout << "a is less than 20;" << endl;

cout << "value of a is : " << a << endl;

return 0; }

a is less than 20;

value of a is : 10

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

47

2. If else statement

We can additionally specify what we want to happen if the condition is

not fulfilled by using the keyword else. Its form used in conjunction with

if is:

if (condition) statement1 else statement2

For example:

if (x == 100)

 cout << "x is 100";

else

 cout << "x is not 100";

The program prints on the screen x is 100 if indeed x has a value of 100,

but if it has not -and only if not- it prints out x is not 100.

The if + else structures can be concatenated with the intention of

verifying a range of values. The following example shows its use telling

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

48

if the value currently stored in x is positive, negative or none of them (i.e.

zero):

if (x > 0)

 cout << "x is positive";

else if (x < 0)

 cout << "x is negative";

else

 cout << "x is 0";

Remember that in case that we want more than a single statement to be

executed, we must group them in a block by enclosing them in braces { }.

Program 2

#include <iostream.h>

int main ()

{

// local variable declaration:

int a = 100;

// check the boolean condition

if(a < 20)

{

// if condition is true then print the

following

cout << "a is less than 20;" << endl;

}

else

{

// if condition is false then print the

following

cout << "a is not less than 20;" << endl;

}

cout << "value of a is : " << a << endl;

return 0; }

a is not less than 20;

value of a is : 100

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

49

Program 3

#include <iostream.h>

int main ()

{

// local variable declaration:

int a = 100;

// check the boolean condition

if(a == 10)

{

// if condition is true then print the following

cout << "Value of a is 10" << endl;

}

else if(a == 20)

{

// if else if condition is true

cout << "Value of a is 20" << endl;

}

else if(a == 30)

{

// if else if condition is true

cout << "Value of a is 30" << endl;

}

else

{

// if none of the conditions is true

cout << "Value of a is not matching" << endl;

}

cout << "Exact value of a is : " << a << endl;

return 0; }

Value of a is not matching

Exact value of a is : 100

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

50

3. nested if statements: Syntax:

if (boolean_expression 1)

{

// Executes when the boolean expression 1 is true

if(boolean_expression 2)

{

// Executes when the boolean expression 2 is true

}}

Program 4

Write a program that converts an integer number to character.

#include <iostream.h>

Void main()

{

 int number;

 cout<<”Enter an integer number: “;

 cin>> number;

 if (number <=0)

 if (number >=127)

 cout<<”The Character is : “<< (char)

number<<endl;

}

Note: the above two if statements can be replaced by the statement:

If (number>=0&&number <=127)

cout<<”The character is: “ <<(char) number<<endl;

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

51

Questions:

1- Write a C++ program that computes the division for two integer

numbers.

2- Write a C++ program that inputs an integer number and determines

whether the number is even or odd.

3- Write a C++ program that computes the following equation:

Homework:

1- Write a program that reads a number and determines whether the

number is positive, negative, or zero.

2- Write a C++ program that computes the following equation:

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

52

Experiment No. (6)

Control Structure (switch-statement)

Object:

Learning (the selective structure switch) in the C++ program.

Theory:

The syntax of the switch statement is to check several possible constant

values for an expression. Something similar to several if and else if

instructions. Its form is the following:

switch (expression)

{

 case constant1:

 group of statements 1;

 break;

 case constant2:

 group of statements 2;

 break;

 .

 .

 .

 default:

 default group of statements

}

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

53

It works in the following way: switch evaluates expression and checks if

it is equivalent to constant1, if it is, it executes group of statements 1 until

it finds the break statement. When it finds this break statement the

program jumps to the end of the switch selective structure.

If expression was not equal to constant1 it will be checked against

constant2. If it is equal to this, it will execute group of statements 2 until

a break keyword is found, and then will jump to the end of the switch

selective structure.

Finally, if the value of expression did not match any of the previously

specified constants (you can include as many case labels as values you

want to check), the program will execute the statements included after the

default: label, if it exists (since it is optional).

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

54

Both of the following code fragments have the same behavior:

switch example if-else equivalent

switch (x) {

 case 1:

 cout << "x is 1";

 break;

 case 2:

 cout << "x is 2";

 break;

 default:

 cout << "value of x unknown";

 }

if (x == 1) {

 cout << "x is 1";

 }

else if (x == 2) {

 cout << "x is 2";

 }

else {

 cout << "value of x unknown";

 }

Notice that switch can only be used to compare an expression against

constants. Therefore we cannot put variables as labels (for example case

n: where n is a variable) or ranges (case (1..3):) because they are not valid

C++ constants.

If you need to check ranges or values that are not constants, use a

concatenation of if and else if statements.

Program 1

#include <iostream.h>

int main ()

{

// local variable declaration:

char grade = 'D';

switch(grade)

{

You passed

Your grade is D

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

55

case 'A' : cout << "Excellent!" << endl; break;

case 'B': cout << "good!" << endl; break;

case 'C': cout << "Well done" << endl; break;

case 'D': cout << "You passed" << endl; break;

case 'F' : cout << "Better try again" << endl; break;

default : cout << "Invalid grade" << endl;

}

cout << "Your grade is " << grade << endl;

return 0;

4. nested switch statements: Syntax

switch (ch1) {

case 'A':

cout << "This A is part of outer switch";

switch(ch2) {

case 'A':

cout << "This A is part of inner switch";

break;

case 'B': // ...

}

break;

case 'B': // ...

}

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

56

Questions:

1- Write a C++ program that performs the arithmetic operations (+, -,

*, /) determined by a user input.

2- Write a C++ program that reads an average mark and prints the

range of it. For example, if the mark is 95 then print your average

between 90-100.

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

57

Experiment No. (7)

Control Structure (while-loop)

Object:

Learning iteration structures (while-loops) in the C++ program.

Theory:

Loops have as purpose to repeat a statement a certain number of times or

while a condition is fulfilled.

1. The while loop

Its format is: while (expression) statement

Its functionality is simply to repeat statement while the condition set in

expression is true. Flow the following diagram:

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

58

Program 1

// custom countdown using while

#include <iostream.h>

int main ()

{

 int n;

 cout << "Enter the starting number

> ";

 cin >> n;

 while (n>0) {

 cout << n << ", ";

 --n;

 }

 cout << "loop is finish!";

 return 0;

}

Enter the starting number > 8

8, 7, 6, 5, 4, 3, 2, 1, loop is finish!

The whole process of the previous program can be interpreted according

to the following script (beginning in main):

1. User assigns a value to n

2. The while condition is checked (n>0). At this point there are two

possibilities:

* condition is true: statement is executed (to step 3)

* condition is false: ignore statement and continue after it (to step

5)

3. Execute statement:

cout << n << ", ";

--n;

(prints the value of n on the screen and decreases n by 1)

4. End of block. Return automatically to step 2

5. Continue the program right after the block: print loop is finish! and

end program.

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

59

When creating a while-loop, we must always consider that it has to end at

some point, therefore we must provide within the block some method to

force the condition to become false at some point, otherwise the loop will

continue looping forever.

 In this case we have included --n; that decreases the value of the variable

that is being evaluated in the condition (n) by one - this will eventually

make the condition (n>0) to become false after a certain number of loop

iterations: to be more specific, when n becomes 0, that is where our

while-loop and our countdown end.

2. The do-while loop

Its format is: do statement while (condition);

Its functionality is exactly the same as the while loop, except that

condition in the do-while loop is evaluated after the execution of

statement instead of before, granting at least one execution of statement

even if condition is never fulfilled. Flow the following diagram:

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

60

For example, the following example program echoes any number you

enter until you enter 0.

Program 2

// number echoer

#include <iostream.h>

int main ()

{

 unsigned long n;

 do {

 cout << "Enter number (0 to end):

";

 cin >> n;

 cout << "You entered: " << n <<

"\n";

 } while (n != 0);

 return 0;

}

Enter number (0 to end): 12345

You entered: 12345

Enter number (0 to end): 160277

You entered: 160277

Enter number (0 to end): 0

You entered: 0

The do-while loop is usually used when the condition that has to

determine the end of the loop is determined within the loop statement

itself, like in the previous case, where the user input within the block is

what is used to determine if the loop has to end. In fact if you never enter

the a value 0 in the previous example you can be prompted for more

numbers forever.

Questions:

1- Write a C++ program that computes the sum of ten numbers input

by the user. Use while loop.

2- Write a C++ program that computes the sum of consecutive integer

number 1+2+3+….+ n. Use do/while loop.

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

61

Experiment No. (8)

Control Structure (for-loop)

Object:

Learning Iteration structures (loops) in the C++ program.

Theory:

Its format is: for (initialization; condition; increase) statement; and its

main function is to repeat statement while condition remains true, like the

while loop. But in addition, the for loop provides specific locations to

contain an initialization statement and an increase statement. So this loop

is specially designed to perform a repetitive action with a counter which

is initialized and increased on each iteration.

It works in the following way:

1. Initialization is executed. Generally it is an initial value setting for

a counter variable. This is executed only once.

2. Condition is checked. If it is true the loop continues, otherwise the

loop ends and statement is skipped (not executed).

3. Statement is executed. As usual, it can be either a single statement

or a block enclosed in braces { }.

4. Finally, whatever is specified in the increase field is executed and

the loop gets back to step 2.

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

62

Program 1

// countdown using a for loop

#include <iostream.h>

int main ()

{

 for (int n=10; n>0; n--) {

 cout << n << ", ";

 }

 cout << "loop completed!";

 return 0;

}

10, 9, 8, 7, 6, 5, 4, 3, 2, 1, loop

completed!

The initialization and increase fields are optional. They can remain

empty, but in all cases the semicolon signs between them must be written.

For example we could write: for (;n<10;) if we wanted to specify no

initialization and no increase; or for (;n<10;n++) if we wanted to include

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

63

an increase field but no initialization (maybe because the variable was

already initialized before).

Optionally, using the comma operator (,) we can specify more than one

expression in any of the fields included in a for loop, like in initialization,

for example:

for (n=0, i=100 ; n!=i ; n++, i--)

{

 // whatever here...

}

This loop will execute for 50 times if neither n or i are modified within

the loop:

n starts with a value of 0, and i with 100, the condition is n!=i (that n is

not equal to i). Because n is increased by one and i decreased by one, the

loop's condition will become false after the 50th loop, when both n and i

will be equal to 50.

The break statement

Using break we can leave a loop even if the condition for its end is not

fulfilled. It can be used to end an infinite loop, or to force it to end before

its natural end. For example, we are going to stop the count down before

its natural end (maybe because of an engine check failure?):

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

64

Program 2

// break loop example

#include <iostream.h>

int main ()

{

 int n;

 for (n=10; n>0; n--)

 {

 cout << n << ", ";

 if (n==3)

 {

 cout << "countdown aborted!";

 break;

 }

 }

 return 0;

}

10, 9, 8, 7, 6, 5, 4, 3, countdown

aborted!

The continue statement

The continue statement causes the program to skip the rest of the loop in

the current iteration as if the end of the statement block had been reached,

causing it to jump to the start of the following iteration.

Program 3

For example, we are going to skip the number 5 in our countdown:

// continue loop example

#include <iostream.h>

int main ()

{

 for (int n=10; n>0; n--) {

 if (n==5) continue;

10, 9, 8, 7, 6, 4, 3, 2, 1, loop

completed!

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

65

 cout << n << ", ";

 }

 cout << "loop completed!";

 return 0;

}

Questions:

1- Write a C++ program that prints the numbers from 1 to 20.

2- Write a C++ program that computes the sum of ten integer

numbers input by the user.

3- Write a C++ program that computes the factorial of an integer

number.

Homework:

1- Write a C++ program that computes the power of an integer

number.

2- Write a C++ program that computes the following series:

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

66

Experiment No. (9)

Array (Part I)

Object:

Learning how to define and use an array one-dimension in C++

programming language.

Theory:

C++ provides a data structure, the array, which stores a fixed-size

sequential collection of elements of the same type. An array is used to

store a collection of data, but it is often more useful to think of an array as

a collection of variables of the same type.

Instead of declaring individual variables, such as number0, number1, ...,

and number99, you declare one array variable such as numbers and use

numbers[0], numbers[1], and ..., numbers[99] to represent individual

variables. A specific element in an array is accessed by an index.

All arrays consist of contiguous memory locations. The lowest address

corresponds to the first element and the highest address to the last

element.

Declaring Arrays:

To declare an array in C++, the programmer specifies the type of the

elements and the number of elements required by an array as follows:

type arrayName [arraySize];

This is called a single-dimension array. The arraySize must be an integer

constant greater than zero and type can be any valid C++ data type. For

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

67

example, to declare a 10-element array called balance of type double, use

this statement:

double balance[10];

You can initialize C++ array elements either one by one or using a single

statement as follows:

double balance[5] = {1000.0, 2.0, 3.4, 17.0, 50.0};

The number of values between braces { } can not be larger than the

number of elements that we declare for the array between square brackets

[]. Following is an example to assign a single element of the array:

If you omit the size of the array, an array just big enough to hold the

initialization is created. Therefore, if you write:

double balance [] = {1000.0, 2.0, 3.4, 17.0, 50.0};

balance[4] = 50.0;

The above statement assigns element number 5th in the array a value of

50.0. Array with 4th index will be 5th, i.e., last element because all arrays

have 0 as the index of their first element which is also called base index.

Following is the pictorial representation of the same array we discussed

above:

Accessing Array Elements:

An element is accessed by indexing the array name. This is done by

placing the index of the element within square brackets after the name of

the array. For example:

double salary = balance[9];

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

68

The above statement will take 10th element from the array and assign the

value to salary variable. Following is an example, which will use all the

above-mentioned three concepts viz. declaration, assignment and

accessing arrays.

Program 1

Write a C++ program that calculates the sum and average of an initialized

integer array.

#include <iostream.h>

void main ()

{

int b[10]={9, 3, 11, 7, 1};

int sum=0;

for (int i = 0; i < 5; i++)

 sum+=b[i];

 cout<<”Sum is “ <<sum << endl;

 <<”Average is “<<sum/5.0;

}

Program 2

Write a C++ program that inputs ten integer values into an array and finds

the maximum number in the array.

#include <iostream.h>

void main ()

{

 const int size=10;

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

69

 int c[size], max;

 cout<<”Enter ten integer values: “ ;

 for (int i=0; i<10; i++)

 cin>>c[i];

 max=c[0];

 for (int i=0; i<10; i++)

 if (c[i]>max)

 max=c[i];

 cout<<”The maximum number is “<<max;

 }

Questions:

1- Write a C++ program that reads a one-dimensional array b and find

minimum number.

2- Write a C++ program that reads a one-dimensional array b and sort

its elements in ascending order.

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

70

Experiment No. (10)

Array (Part II)

Object:

To solve more problems about a one-dimension array in addition to an

array of string.

Theory:

String is a character array that is terminated with null. Null is zero and

can be expressed as NUL or ‘\0’. The compiler adds the null to the end of

string automatically.

For example:

char name[11];//hold 10 characters plus null

char str[12]={‘H’,’e’,’l’,’l’,’o’,’ ’,’t’,’h’,’e’,’r’,’e’};

or

char str[12]=”Hello there”;//string constant plus null

 str

H e l l o t h e r e 0

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

71

Program 3

Write a C++ program that reads a string and then computes the number of

capital letters in the string.

#include <iostream.h>

void main ()

{

 char str[30];

 int count=0

 cout<<”Enter your string: “;

 cin>>str;

 for (int i = 0; i < =30; i++)

 if (str[i]>=’A’&&str[i]<=’Z’)

 count++;

cout<<”No. of capital letters is “<< count;

}

Questions:

1- Write a C++ program that computes the number of even integer

numbers in an array entered by the user.

2- Write a C++ program that computes the length of a string entered

by the user.

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

72

Experiment No. (11)

Array (Part III)

Object:

Learning how to define and use multidimensional arrays in C++

programming language.

Theory:

C++ allows multidimensional arrays. Here is the general form of a

multidimensional array declaration:

type name[size1][size2]...[sizeN];

For example, the following declaration creates a three dimensional 5 . 10

. 4 integer array:

int threedim[5][10][4];

Two-Dimensional Arrays:

The simplest form of the multidimensional array is the two-dimensional

array. A two-dimensional array is, in essence, a list of one-dimensional

arrays. To declare a two-dimensional integer array of size x,y, you would

write something as follows:

type arrayName [x][y];

Where type can be any valid C++ data type and arrayName will be a

valid C++ identifier.

A two-dimensional array can be think as a table, which will have x

number of rows and y number of columns. A 2-dimensional array a,

which contains three rows and four columns can be shown as below:

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

73

Thus, every element in array a is identified by an element name of the

form a[i][j], where a is the name of the array, and i and j are the

subscripts that uniquely identify each element in a.

Initializing Two-Dimensional Arrays:

Multi-dimensioned arrays may be initialized by specifying bracketed

values for each row. Following is an array with 3 rows and each row has

4 columns.

int a[3][4] = {

{0, 1, 2, 3} , /* initializers for row indexed by 0 */

{4, 5, 6, 7} , /* initializers for row indexed by 1 */

{8, 9, 10, 11} /* initializers for row indexed by 2 */

};

The nested braces, which indicate the intended row, are optional. The

following initialization is equivalent to previous example:

int a[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11};

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

74

Accessing Two-Dimensional Array Elements:

An element in 2-dimensional array is accessed by using the subscripts ie.

row index and column index of the array. For example:

int val = a[2][3];

The above statement will take 4th element from the 3rd row of the array.

You can verify it in the above diagram.

Program 4

#include <iostream>

using namespace std;

int main ()

{

// an array with 5 rows and 2 columns.

int a[5][2] = { {0,0}, {1,2}, {2,4}, {3,6},{4,8}};

// output each array element's value

for (int i = 0; i < 5; i++)

for (int j = 0; j < 2; j++)

{

cout << "a[" << i << "][" << j << "]: ";

cout << a[i][j]<< endl;

}

}

return 0;

}

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

75

Program 5

Write a C++ program that finds the average of each row of a 3x4 matrix

input by the user.

#include <iostream>

void main ()

{

 int a[3][4];

 int sum;

cout<<”Enter 3x4 integer matrix: “;

for (int i=0; i<3; i++)

 for (int j=0; j<4; j++)

 cin>>a[i][j];

cout<<”Average of each row : “<<endl;

for (i=0; i<3; i++)

{

 sum=0;

 for (int j=0; j<4; j++)

 sum+=a[i][j];

 cout<<sum/4.0<<endl;

 }

}

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

76

Questions:

1- Write a C++ program that adds two initialized 3x4 matrices A and

B and then stores the result in a matrix C.

2- Write a C++ program that exchanges row3 with row1 in 4x4

integer matrix input by the user.

Experiment No. (12)

Array (Part IV)

Object:

To solve more problems about a Two-dimension array in addition to an

array of string.

Theory:

To create an array of strings, we use a two-dimensional character array.

The number of rows determines the number of strings and the number of

columns specifies the maximum length of each string.

For example:

 char str array[30][80];

 char day[7][10]={“Sunday”, Monday”, ”Tuesday”, ”Wednesday”,

”Thursday”, “Friday”, “Saturday”};

To access an individual string, we simply specify only the row index. For

example: cout<< day[1];

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

77

Questions:

1- Write a C++ program that inputs a 4x4 integer matrix and finds the

maximum value in the primary diagonal and the minimum value in

the secondary diagonal.

2- Write a C++ program that converts a two dimensional array into

one dimensional array. Then print the 1D.

3- Use array of string to write a C++ program that prints the week

days.

__

Experiment No. (13)

Function (Part I)

Object:

Learning how to define and use a Function in C++ programming

language.

Theory:

Using functions we can structure our programs in a more modular way,

accessing all the potential that structured programming can offer to us in

C++. A function is a group of statements that is executed when it is

called from some point of the program. The following is its format:

type name (parameter1, parameter2, ...) { statement }

where:

 Type is the data type.

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

78

 Name is the identifier by which it will be possible to call the

function.

 Parameters (as many as needed): Each parameter consists of a data

type followed by an identifier, like any regular variable declaration

(for example: int x) and which acts within the function as a regular

local variable. They allow to pass arguments to the function when

it is called. The different parameters are separated by commas.

 Statements are the function's body. It is a block of statements

surrounded by braces { }.

Program 1

// function example

#include <iostream.h>

int addition (int a, int b)

{

 int r;

 r=a+b;

 return (r);

}

int main ()

{

 int z;

 z = addition (5,3);

 cout << "The result is " << z;

 return 0;}

The result is 8

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

79

A C++ program always begins its execution by the main function. So we

can see how the main function begins by declaring the variable z of type

int. Right after that, we see a call to a function called addition. Paying

attention we will be able to see the similarity between the structure of the

call to the function and the declaration of the function itself some code

lines above:

The parameters and arguments have a clear correspondence. Within the

main function we called to addition passing two values: 5 and 3, that

correspond to the int a and int b parameters declared for function

addition.

At the point at which the function is called from within main, the control

is lost by main and passed to the function addition. The value of both

arguments passed in the call (5 and 3) are copied to the local variables int

a and int b within the function.

Function addition declares another local variable (int r), and by means of

the expression r=a+b, it assigns to r the result of a plus b. Because the

actual parameters passed for a and b are 5 and 3 respectively, the result is

8.

The following line of code:

return (r);

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

80

Finalizes function addition, and returns the control back to the function

that called it in the first place (in this case, main). At this moment the

program follows it regular course from the same point at which it was

interrupted by the call to addition. But additionally, because the return

statement in function addition specified a value: the content of variable r

(return (r);), which at that moment had a value of 8. This value becomes

the value of evaluating the function call.

So being the value returned by a function the value given to the function

call itself when it is evaluated, the variable z will be set to the value

returned by addition (5, 3), that is 8. To explain it another way, you can

imagine that the call to a function (addition (5,3)) is literally replaced by

the value it returns (8).

The following line of code in main is:

cout << "The result is " << z;

That, as you may already expect, produces the printing of the result on

the screen.

Program 2

// function example

#include <iostream.h>

int subtraction (int a, int b)

{

 int r;

 r=a-b;

 return (r);

}

The first result is 5

The second result is 5

Enter your fun

parameters

8 6

The third result is 2

The fourth result is 6

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

81

int main ()

{

 int x, y, z;

 z = subtraction (7,2);

 cout << "The first result is " << z << '\n';

 cout << "The second result is " << subtraction

(7,2) << '\n';

 cout<<"enter your fun parameters<< '\n';

 cin>>x>>y;

 cout << "The third result is " << subtraction (x,y)

<< '\n';

 z= 4 + subtraction (x,y);

 cout << "The fourth result is " << z << '\n';

 return 0;

}

In the case of:

cout << "The third result is " << subtraction (x,y);

The only new thing that we introduced is that the parameters of

subtraction are variables instead of constants. That is perfectly valid. In

this case the values passed to function subtraction are the values of x and

y, that are 8 and 6 respectively, giving 2 as result.

Functions with no type (using void)

If you remember the syntax of a function declaration:

type name (argument1, argument2 ...) statement

You will see that the declaration begins with a type, that is the type of

the function itself (i.e., the type of the data that will be returned by the

function with the return statement). But what if we want to return no

value? Imagine that we want to make a function just to show a message

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

82

on the screen. We do not need it to return any value. In this case we

should use the void type for the function. This is a special specifier that

indicates absence of type.

Program 3

// void function example

#include <iostream.h>

void printmessage ()

{

 cout << "I'm a function!";

}

int main ()

{

 printmessage ();

 return 0;

}

I'm a function!

Function Arguments:

If a function is to use arguments, it must declare variables that accept the

values of the arguments. These variables are called the formal

parameters of the function.

The formal parameters behave like other local variables inside the

function and are created upon entry into the function and destroyed upon

exit.

1. Call by value

The call by value method of passing arguments to a function copies the

actual value of an argument into the formal parameter of the function. In

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

83

this case, changes made to the parameter inside the function have no

effect on the argument.

By default, C++ uses call by value to pass arguments. In general, this

means that code within a function cannot alter the arguments used to

call the function. Consider the function swap() definition as follows.

Program 4

#include <iostream.h>

// function declaration

void swap(int x, int y);

int main ()

{

// local variable declaration:

int a = 100;

int b = 200;

cout << "Before swap, value of a :" << a << endl;

cout << "Before swap, value of b :" << b << endl;

// calling a function to swap the values.

swap(a, b);

cout << "After swap, value of a :" << a << endl;

cout << "After swap, value of b :" << b << endl;

return 0;

}

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

84

// function definition to swap the values.

void swap(int x, int y)

{

int temp;

temp = x; /* save the value of x */

x = y; /* put y into x */

y = temp; /* put x into y */

return; }

Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :100

After swap, value of b :200

Questions:

1- Write a C++ program that finds the max value in an integer array

a[10] using the function maxa().

2- Write a C++ program that computes the factorial of an integer

number using the function factorial().

3- Write a C++ program that computes the power of an integer

number using the function power().

Experiment No. (14)

Function (Part II)

Object:

 To learn passing an array to a function.

Theory:

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

85

C++ does not allow to pass an entire array as an argument to a function.

However, You can pass a pointer to an array by specifying the array's

name without an index.

If you want to pass a single-dimension array as an argument in a function,

you would have to declare function formal parameter in one of following

three ways and all three declaration methods produce similar results

because each tells the compiler that an integer pointer is going to be

received.

Way-1

Formal parameters as a pointer as follows:

void myFunction(int *param)

{ }

Way-2

Formal parameters as a sized array as follows:

void myFunction(int param[10])

{ . . . }

Way-3

Formal parameters as an unsized array as follows:

void myFunction(int param[])

{ . . . }

Now, consider the following function, which will take an array as an

argument along with another argument and based on the passed

arguments, it will return average of the numbers passed through the array

as follows.

Program 1

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

86

#include <iostream.h>

// function declaration:

double getAverage(int arr[], int size);

int main ()

{

// an int array with 5 elements.

int balance[5] = {1000, 2, 3, 17, 50};

double avg;

// pass pointer to the array as an argument.

avg = getAverage(balance, 5) ;

// output the returned value

cout << "Average value is: " << avg << endl;

return 0;

}

double getAverage(int arr[], int size)

{

int i, sum = 0;

double avg;

for (i = 0; i < size; ++i)

{

sum += arr[i];

}

avg = double(sum) / size;

return avg;

}

When the above code is compiled together and executed, it produces the

following result:

Average value is: 214.4

As you can see, the length of the array doesn't matter as far as the

function is concerned because C++ performs no bounds checking for the

formal parameters.

Return array from functions

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

87

C++ does not allow to return an entire array as an argument to a function.

However, you can return a pointer to an array by specifying the array's

name without an index.

If you want to return a single-dimension array from a function, you would

have to declare a function returning a pointer as in the following example.

Program 2

// main function to call above defined function.

#include<iostream.h>

int main ()

{

// a pointer to an int.

int *p;

p = getRandom();

for (int i = 0; i < 10; i++)

{

cout << "*(p + " << i << ") : ";

cout << *(p + i) << endl;

}

return 0;

}

Program 3

Write a C++ program that reads, sorts and prints an integer array a[10]

using three functions setarray(), sortarray, and putarray().

#include <iostream.h>

void setarray(int b[10]);

void sortarray(int b[10]);

void putarray(int b[10]);

void main()

{

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

88

 int a[10];

 setarray(a);

 sortarray(a);

 cout<<”Sorted array is “;

 putarray(a);

}

void setarray(int b[10])

{ cout<<”Enter ten integer array: “;

 for (int i=0;i<10;i++)

 cin>>b[i];

}

void sortarray(int b[10])

{ for (int i=0;i<9;i++)

 for (int j=i+1;j<10;j++)

 if (b[i]>b[j])

 { int temp=b[i];

 b[i]=b[j];

 b[j]=temp; }

}

void putarray(int b[10])

{

 for (int i=0;i<10;i++)

 cout>>b[i];

 cout<<endl;

}

Experiment No. (15)

Function (Part III)

Object:

 To learn passing an array to a function by reference.

Theory:

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

89

- When we need the function returns more than one value, we can pass

arguments by reference to the function.

- A reference provides an another name for a variable (It’s actually the

memory address of the variable that is passed).

- An important advantage of passing by refrefence is that the function

can access the actual variables in the calling program. This provides a

mechanism for passing more than one value from the function back to

the calling program.

Program 1

A simple program to understand the reference.

#include<iostream.h>

void main()

{ int y=10;

 int&w=y;

 cout<<y<<endl;

 w++;

cout<<y<<endl;

}

Program 2

Write a C++ program that computes the square of an integer number

using the function sqr() but the argument is passed by reference.

#include <iostream.h>

void sqr(int&)

void main()

{ int n;

 cout<<”Enter an integer number: “;

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

90

 cin>>n;

sqr(n);

cout<<”The square is “<<n<<endl;

}

Experiment No. (16)

Function (Part V)

Object:

Learning how to define and use a recursive and overloading function in

C++ programming language.

Theory:

Recursive Function

A recursive function is a function that calls itself in order to perform a

task of computation. There are two basic components of a recursive

solution:

- Termination step, stating the solution when the process comes to an

end.

- Inductive step, calling the function itself with a renewed parameter

value.

Program 1

Write a C++ program that computes the factorial of a positive

integer number using the recursive function factorial().

#include<iostream.h>

Long factorial(int);

Void main()

{ int number;

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

91

cout<<”Enter a positive integer number: “;

cin>>number;

cout<<”The factorial is “<<factorial(number);

}

long factorial (int n)

{ if (n==0)

 return 1;

else

return (n*factorial(n-1)); }

Function overloading

Overloading refers to the use of the same thing for different purposes.

Function overloading means that we can use the same function name to

create functions that perform a variety of different task.

Program 2

Write a C++ program that computes the area of square and the area

of rectangle using the overloaded function area().

#include<iostream.h>

int area(int);

int area(int, int);

void main()

{ int length, width;

 cout<<”Enter a length of square: ”;

 cin>>length;

cout<<”The area of square is “<<area(length)<<endl;

cout<<”Enter a length and width of rectangle : “;

cin>>length>>width;

cout<<”The area of rectangle is “<<area(length, width)<<endl;

}

int area(int a)

{

 return (a*a);

}

int area(int a, int b)

{

return (a*b);

}

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

92

Questions:

1- Write a C++ program that computes the power of an entered

integer number using the recursive function power().

2- Write a C++ program that adds two numbers of different numeric

data types(e.g. integer, float, double) using the overloaded function

add().

Experiment No. (17)

Structure (Part I)

Object:

Learning how to define and use the structure in C++ programming

language.

Theory:

When dealing with the students in a school, many variables of different

types are needed. For example, structure STUDENT which includes

name, age, and marks.

Program 1

#include <iostream.h>

struct STUDENT

{

 char name[80];

 int, age;

 float marks;

} ;

int main()

{ // declare two variables of the new type

 STUDENT s1, s3;

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

93

 //accessing of data members

 cin>> s1.name>> s1.age>>s1.marks;

 cout <<s1.name<<s1.age <<s1.marks;

 //initialization of structure variable

 STUDENT s2 = {”Aniket”,17,92};

 cout <<s2.name<<s2.age <<s2.marks;

 //structure variable in assignment statement

 s3=s2;

 cout <<s3.name<<s3.age <<s3.marks;

 return 0;

}

Arrays of Structure

Program 2

Write a C++ program that inputs and prints the personal details (e.g.

name, age, weight, phone_no) for 10 users using the structure Person.

#include<iostream.h>

struct Person

{ char name[10];

 int age;

 float weight;

 char phone_no[20];

};

void main()

{ const int size=10;

 Person p[size];//Define array of structure variables

 for (int i=0; i<size; i++)

 { cout<<”Person “<<i+1<<endl;

 cout<<”Enter name: “; cin>>p[i].name;

 cout<<”Enter age: “; cin>> p[i].age;

 cout<<”Enter weight: “; cin>>p[i].weight;

 cout<<”Enter phone_number: “; cin>>p[i].phone_no;

 cout<<endl;

 }

 for (int i=0; i<size; i++)

 { cout<<”Person “<<i+1<<endl;

 cout<<”Name: “; <<p[i].name<<endl;

 cout<<”Age: “; <<p[i].age<<endl;

 cout<<”Weight: “<<p[i].weight<<endl;

 cout<<”Phone_number: “; <<p[i].phone_no<<endl;

 } }

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

94

Questions:

1- Write a C++ program that inputs and prints the name and date of

birth using the structure Birth.

2- Write a C++ program that inputs and prints hours, minutes and

seconds using the structure Time.

Experiment No. (18)

Structure (Part II)

Object:

Learning how to define and use the structure in C++ programming

language.

Theory:

Passing Structure to Functions

1- Passing structure by value

Program 1

Write a C++ program that computes the area of rectangle using the

function area() and the structure Rectangle.

#include <iostream.h>

struct Rectangle

{ int length;

 int width;

};

int area (Rectangle);

void main ()

{ Rectangle rect;

 cout<<”Enter the length and width of rectangle: “;

 cin>>rect.length>>rect.width;

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

95

 cout<<”The area of rectangle is “<<area(rect);

}

int area(Rectangle r)

{

return(r.length*r.width);

}

2- Passing structure by reference

Program 2

Write a C++ program that inputs and prints the date (day, month, and

year) of birth using the structure Date and the functions getdate() and

putdate().

#include <iostream.h>

struct Date

{ int day;

 int month;

 int year;

};

void getdate(Date&);

void putdate(Date&);

void main ()

{ Date d;

 getdate(d);

 putdate(d);

}

void getdate(Date& dd)

{ cout<<”Enter your date of birth in day, month, year: “;

 cin>>dd.day>>dd.month>>dd.year;

}

void putdate(Date& dd)

{ cout<<”You were born in

“<<dd.day<<”/”<<dd.month<<”/”<<dd.year;

}

Question:

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

96

Write a C++ program that inputs a time in hours, minutes and seconds,

and then converts and prints the overall time in seconds, then in minutes

and then in hours using the functions seconds(), minutes(), hours() and

the structure Time.

__

Experiment No. (19)

Pointer (Part I)

Object:

Learning how to define and use Pointer variables in C++ programming

language.

Theory:

A pointer is a variable whose value is the address of another variable.

Like any variable or constant, you must declare a pointer before you

can work with it. The general form of a pointer variable declaration is:

type *var-name;

Here, type is the pointer's base type; it must be a valid C++ type and

var-name is the name of the pointer variable. The asterisk you used to

declare a pointer is the same asterisk that you use for multiplication.

However, in this statement the asterisk is being used to designate a

variable as a pointer. Following are the valid pointer declaration:

int *ip; // pointer to an integer

double *dp; // pointer to a double

float *fp; // pointer to a float

char *ch // pointer to character

Using Pointers in C++:

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

97

There are few important operations, which we will do with the pointers

very frequently.

 (a) we define a pointer variables

 (b) assign the address of a variable to a pointer

 (c) finally access the value at the address available in the pointer

variable.

This is done by using unary operator * that returns the value of the

variable located at the address specified by its operand. Following

example makes use of these operations:

Program 1

#include <iostream.h>

int main ()

{

int var = 20; // actual variable declaration.

int *ip; // pointer variable

ip = &var; // store address of var in pointer variable

cout << "Value of var variable: ";

cout << var << endl;

// print the address stored in ip pointer variable

cout << "Address stored in ip variable: ";

cout << ip << endl;

// access the value at the address available in pointer

cout << "Value of *ip variable: ";

cout << *ip << endl;

return 0;

}

Program 2

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

98

The NULL pointer is a constant with a value of zero defined in several

standard libraries, including iostream. Consider the following program:

#include <iostream.h>

int main ()

{

int *ptr = NULL;

cout << "The value of ptr is " << ptr ;

return 0;

}

When the above code is compiled and executed, it produces the following

result:

The value of ptr is 0

C++ Pointer Arithmetic

As you understood pointer is an address which is a numeric value;

therefore, you can perform arithmetic operations on a pointer just as you

can a numeric value. There are four arithmetic operators that can be used

on pointers: ++, --, +, and –

The arithmetic update will depend on type of pointer.

To understand pointer arithmetic, let us consider that ptr is an integer

pointer which points to the address 1000. Assuming 32-bit integers, let us

perform the following arithmatic operation on the pointer:

ptr++

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

99

The ptr will point to the location 1004 because each time ptr is

incremented, it will point to the next integer.

Program 3

#include <iostream.h>

const int MAX = 3;

int main ()

{

int var[MAX] = {10, 100, 200};

int *ptr;

// let us have array address in pointer.

ptr = var;

for (int i = 0; i < MAX; i++)

{

cout << "Address of var[" << i << "] = ";

cout << ptr << endl;

cout << "Value of var[" << i << "] = ";

cout << *ptr << endl; // point to the next location

ptr++;

}

return 0; }

Decrementing a Pointer:

The same considerations apply to decrementing a pointer, which

decreases its value by the number of bytes of its data type as shown

below:

Program 4

#include <iostream.h>

const int MAX = 3;

int main ()

{

int var[MAX] = {10, 100, 200};

int *ptr;

// let us have address of the last element in pointer.

ptr = &var[MAX-1];

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

100

for (int i = MAX; i > 0; i--)

{

cout << "Address of var[" << i << "] = ";

cout << ptr << endl;

cout << "Value of var[" << i << "] = ";

cout << *ptr << endl;

// point to the previous location

ptr--;

}

return 0;

}

Experiment No. (20)

Pointer (Part II)

Object:

Learning how to define and use pointers and array in C++ programming

language.

Theory:

C++ Pointers vs Arrays

Pointers and arrays are strongly related. In fact, pointers and arrays are

interchangeable in many cases. For example, a pointer that points to the

beginning of an array can access that array by using either pointer

arithmetic or array-style indexing. Consider the following program.

Program 1

#include <iostream.h>

void main()

{ int a[5]={31, 54, 77, 52, 93};

 for (int i=0; i<5; i++)

 cout<<a[i]<<endl;

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

101

 cout<<endl;

 // Or use pointer

 for (int i=0; i<5; i++)

 cout<<*(a+i)<<endl; }

Program 2

#include <iostream.h>

void main()

{ int a[5]={31, 54, 77, 52, 93};

 int *ptr;

 ptr=a;

 for (int i=0; i<5; i++)

 cout<<*(ptr++)]<<endl;

}

Question:

Write a C++ program that uses pointer to read an integer of ten marks

a[10] and compute the average using pointer and print the result.

Experiment No. (21)

Pointer (Part III)

Object:

Learning how to define and use pointers and function in C++

programming language.

Theory:

Pointer to Function

The call by pointer method of passing arguments to a function copies the

address of an argument into the formal parameter. Inside the function, the

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

102

address is used to access the actual argument used in the call. This means

that changes made to the parameter affect the passed argument.

To pass the value by pointer, argument pointers are passed to the

functions just like any other value. Accordingly, you need to declare

the function parameters as pointer types as in the following function

swap(), which exchanges the values of the two integer variables

pointed to by its arguments.

Program 1

#include <iostream.h>

// function declaration

void swap(int *x, int *y);

int main ()

{

// local variable declaration:

int a = 100;

int b = 200;

cout << "Before swap, value of a :" << a << endl;

cout << "Before swap, value of b :" << b << endl;

/* calling a function to swap the values.

* &a indicates pointer to a ie. address of variable a and

* &b indicates pointer to b ie. address of variable b.

*/

swap(&a, &b);

cout << "After swap, value of a :" << a << endl;

cout << "After swap, value of b :" << b << endl;

return 0;

}

// function definition to swap the values.

void swap(int *x, int *y)

{

int temp;

temp = *x; /* save the value at address x */

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

103

*x = *y; /* put y into x */

y = temp; / put x into y */

return;

}

Question:

Write a C++ program that finds the maximum value in an entered integer

a[10] using the function max(int*, int).

__

Experiment No. (22)

Pointer (Part IV)

Object:

Learning how to define and use pointers and Structure and string in C++

programming language.

Theory:

Pointers and Structures

Program

include <iostream.h>

struct Rectangle

{ float length;

 Float width;

};

void main()

{ Rectangle *rect;

 float a;

 cout<<”Enter the length and width of rectangle: “;

 cin>> rect->length*rect->width;

 a=rect->length*rect->width;

 cout<<”The area of rectangle is “<<a;

}

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

104

Pointers and String

Program 1

#include <iostream.h>

void main()

{

 char str1[]=”Defined as an array”;

 char* str2=”Define as a pointer”;

 cout<<str1<<endl;

 cout<<str2<<endl;

// str1++; // cannot do this because str1 is a constant

 str

}

Program 2

#include <iostream.h>

void dispstr(char*);

void main()

{

 char str1[]=”Idle people have the least leisure.”;

 dispstr(str);

}

void disptr (chr* ps)

{ while (*ps)

 cout<<*ps++;

 cout << endl;

}

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

105

Experiment No. (23)

Files

Object:

Learning how to write and read files in C++ programming language.

Theory:

Sometimes our program can generate a large amount of data as output, or

it requires a large amount of data as input. It is not feasible either to print

large amount of data to the screen or to read it from the keyboard. In

these cases, we use data files to store and/or retrieve the data.

Writing Data to a File

Program 1

#include <fstream.h>

#include <iostream.h>

void main()

{

 char ch=’x’;

 int j= 77;

 double d= 6.02;

 char str1[] = “Ahmed”; //string without embedded spaces

 char str2[] =”Hassan”;

fstream myfile; //creat a file object

myfile.open(“fdata.txt”, ios::out); //open file for writing

myfile <<ch<<j<<’ ‘<<d <<str1<<’ ‘<<str2; //write data to file

myfile.close(); //close file

cout<<”File written\n”;

}

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

106

Reading Data from a File

Program 2

#include <fstream.h>

#include <iostream.h>

void main()

{

 char ch;

 int j;

 double d;

 char str1[10];

 char str2[10];

 fstream myfile; //creat a file object

 myfile.open(“fdata.txt”, ios::in); //open file for reading

myfile >>ch>>j>>d >>str1>>str2; //read data from file

cout<<ch<<endl<<j<<endl<<d<<endl<<str1<<str2<<endl;

myfile.close(); //close file

}

Adding Data to a File

Program 3

#include <fstream.h>

#include <iostream.h>

void main()

{

 char ch=’y’;

 int j=88;

 double d=7.02;

 char str1[] = “Mohammad”;

 char str2[] =”Ali”;

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

107

fstream myfile;

myfile.open(“fdata.txt”, ios::app); //open file for adding data

myfile <<endl<<ch<<j<<’ ‘<<d <<str1<<’ ‘<< str2;

myfile.close(); //close file

cout<<”File is written\n”;

}

End-of-file eof()

Program 4

#include <fstream.h>

#include <iostream.h>

void main()

{

 char ch;

 int j;

 double d;

 char str1[10];

 char str2[10];

 fstream myfile;

 myfile.open(“fdata.txt”, ios::in);

 while(!myfile.eof())

 {

 myfile >>ch>>j>>d >>str1>>str2; //read data from file

 cout<<ch<<endl<<j<<endl<<d<<endl<<str1<<str2<<endl;

 }

myfile.close(); //close file

}

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

108

Experiment No. (24)

Stack

Object:

Learning how to define and use Stack in C++ programming language.

Theory:

A stack is a data structure that stores and retrieves items in a last-in-first-

out (LIFO) manner.

Static and Dynamic Stacks:

Static Stacks

• Fixed size

• Can be implemented with an array

Dynamic Stacks

• Grow in size as needed

• Can be implemented with a linked list

Stack Operations:

Push causes a value to be stored in (pushed onto) the stack.

Pop retrieves and removes a value from the stack.

#include <fstream.h>

#include <iostream.h>

#define max 5 // size of the stack

int top, a[max];

void push(void)

{

 int x;

 if (top==max-1) // condition for checking if Stack is Full

 {

 cout<<”stack is overflow\n”;

 return;

 }

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

109

 cout<<”Enter a No.\n”;

 cin>>”%d”,&x;

 a[++top]=x; //increment the top and inserting element

 cout<<”%d succ.pushed\n”,x;

 return;

}

void pop(void)

{

 int y;

 if (top==-1)// Condition for checking if Stack is Empty

 {

 cout<<”stack is underflow\n”;

 return;

 }

 y=a[top];

 a[top--]=0;

 //insert 0 at place of removing element and decrement the top

 cout<<”%d succ.poped\n”,y;

 return;

}

void display(void)

{ int i;

 If (top==-1)

{

 cout<<”stack is empty\n”;

return;

}

cout<<”elements of Stack are :\n”;

for (i=0;i<=top;i+=)

{

 cout<<”%d\n”, a[i];

}

return;

}

void main (void)

{

 int c, top=-1;

 do

 {

 cout<<”1:Push\n2:Pop\n3:Display\n4:Exit\nChoice: “;

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

110

 cin>>”%d”,&c;

 switch (c)

 {

 case1: push(); break;

 case2: pop(); break;

 case3: display(); break;

 case4: cout<<”program ends\n”; break;

 default: cout<<”wrong choic\n”; break;

 }

 }while(c!=4);

}

Questions:

1- Write a C++ program to transfer elements from stack S1 to stack s2

so that the elements from S2 are in the same order as on S1. (You

can use one additional stack).

2- Write a C++ program to put the elements on the stack S in

ascending order using two functions: sort_array and swap.

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

111

Experiment No. (25)

Queue

Object:

Learning how to define and use Queue in C++ programming language.

Theory:

A queue is a linear list in which data can only be inserted at one end,

called the rear, and deleted from the other end, called the front. These

restrictions ensure that the data is processed through the queue in the

order in which it is received. In other words, a queue is a first in, first out

(FIFO) structure.

Program

include <fstream.h>

#include <iostream.h>

#define MAX 50

int queue_array[MAX];

int rear=-1;

int front=-1;

void main()

{ int choice;

 while (1)

 {

 cout<<”1. Insert element to queue\n”;

 cout<<”2. Delete element from queue\n”;

 cout<<”3. Display elements of queue\n”;

 cout<<”4. Quit\n”;

 cout<<”Enter your choice: “;

 cin>>”%d”, &choice;

 switch (choice)

 {

 case 1: insert(); break;

 case 2: delete(); break;

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

112

 case 3: display(); break;

 case 4: exit(1);

 default: cout<<”Worng choice \n”;

}/*End of switch*/

}/*End of while*/

}/*End of main*/

insert()

{ int add_item;

 if (rear==MAX-1)

 cout<<”Queue Overflow \n”;

 else

 { if (front==-1)/*if queue is initially empty */

 front=0;

 cout<<”insert the element in queue: “;

 cin>>”%d”, &add_item;

 rear=rear+1;

 Queue_array[rear]=add_item;

 }

 } /*End of insert()*/

delete()

{

 if (front==-1|| front>rear)

 { cout<<”Queue is Underflow\n”;

 return;

 }

 else

 {

 cout<<”Element deleted from queue is : %\n”, queue_array[front];

 front=front+1;

 }

}/*End of delete()*/

display()

{ int i;

 if (front==-1)

 cout<<”Queue is empty\n”;

 else

 {

 cout<<”Queue is :\n”;

 for(i=front; i<= rear; i++)

Al-Mustansiriyah University First Class

Faculty of Engineering

Computer Engineering Department Data Structure Lab.

113

 cout<<”%d”, queue_array[i];

 cout<<”\n”;

 }

}/*End of display*/

