
39

Single-layer patterns classification’s learning rules

1- Hebb net (Hebb rule)

 It is the easiest and simplest learning rule. This rule had been improved

and extended in 1988.

- we shall refer to a single-layer (feedforward) neural net trained
using the extended Hebb rule as a Hebb net.

- If data are represented in bipolar form, it is easy to express the
desired weight update

wi(new) = wi(old) +xiy

b(new) = b(old) + y

in general,
∆W = XY

and
W(new) = W(old) + ∆W

Example-4 : a Hebb net for AND function, using binary input and binary
target (we see later that the resulting separating line and results are
incorrect).
Sol:

∆w1 = x1t

∆w2 = x2t

∆b = 1* t

Only one iteration through the training vector

is required

Input Target

x1 x2 x0 t

1 1 1 1

1 0 1 0

0 1 1 0

0 0 1 0

x2

x0

x1

xn

y

w0=b

w1

w2

wn

40

Input Target Weight change Weight

x1 x2 1 t ∆w1 ∆w2 ∆b w1 w2 b

0 0 0

1 1 1 1 1 1 1 1 1 1

1 0 1 0 0 0 0 1 1 1

0 1 1 0 0 0 0 1 1 1

0 0 1 0 0 0 0 1 1 1

In the last three steps because the target is zero no learning occurs.

The separating line :

2
1

2

1
2 w

b
x

w

w
x

x2 = - x1 -1

Example-5 : a Hebb net for AND function, using bipolar inputs and

targets.

Sol:

Input Target Weight change Weight

x1 x2 1 t ∆w1 ∆w2 ∆b w1 w2 b

0 0 0
1 1 1 1 1 1 1 1 1 1
1 -1 1 -1 -1 1 -1 0 2 0
-1 1 1 -1 1 -1 -1 1 1 -1
-1 -1 1 -1 1 1 -1 2 2 -2

Input Target

x1 x2 x0 t

1 1 1 1
1 -1 1 -1
-1 1 1 -1
-1 -1 1 -1

x1

x2

incorrect

41

The separating line

2
1

2

1
2 w

b
x

w

w
x

x2 = - x1 +1

2- Perceptron

The perceptron rule is more powerful learning rule than the Hebb rule.

- The goal of the net is to classify each input pattern as belonging or

not belonging to a particular class.

- Belonging is signified by a response +1.

- Not belonging is signified by a response -1.

- The output of the Perceptron is:

y = f(net)

net = b + ∑xi wi
i

 1 if net > θ
y = f(net) = 0 if - θ ≤ net ≤ θ

-1 if net < -θ

wi(new) = wi(old) + αt xi

where, t is the target value (+1 or -1),

α is the learning rate, in general (0< α ≤ 1)

Note-1: in Perceptron learning rule, if y ≠ target then the weight must be

updated:

wi(new) = wi(old) + αt xi

bi(new) = bi(old) + αt

when y = target, then

wi(new) = wi(old)

x1

x2

+-

- -

42

bi(new) = bi(old)

Note-2: the result of the learning is two separable lines called “the line

bounding the inequality”

- the first line separate the region of positive response from the

region of zero response.

w1x1 + w2x2 + b > θ
- the second line separate the region of zero response from the region

of negative response.

w1x1 + w2x2 + b< - θ
- if the value of θ = 0, then there will be one separable line (separate

the positive region from the negative region).

Example-6: A perceptron for the AND function, bipolar inputs and

targets. The training process for the bipolar input α = 1. The

threshold and initial weights = 0

Sol:

y = f(net)

net = b + ∑xi wi
i

for y ≠ t ,

wi(new) = wi(old) + αt xi ∆wi = αt xi

bi(new) = bi(old) + αt ∆bi = αt

for y = target,

wi(new) = wi(old) ∆wi = 0

bi(new) = bi(old) ∆bi = 0

43

Input net f(net) target Weight change weight

x1 x2 1 y t ∆w1 ∆w2 ∆b w1 w2 b

1st. epoch 0 0 0

1 1 1 0 0 1 1 1 1 1 1 1

1 -1 1 1 1 -1 -1 1 -1 0 2 0

-1 1 1 2 1 -1 1 -1 -1 1 1 -1

-1 -1 1 -3 -1 -1 0 0 0 1 1 -1

2nd epoch

1 1 1 1 1 1 0 0 0 1 1 -1

1 -1 1 -1 -1 -1 0 0 0 1 1 -1

-1 1 1 -1 -1 -1 0 0 0 1 1 -1

-1 -1 1 -3 -1 -1 0 0 0 1 1 -1

Since all ∆w’s are 0 in 2nd. epoch, the system was fully trained after the

first epoch.

The separable line is

x2 + x1 -1 = 0
x1

x2

+-

- -

44

Example: A Perceptron to classify letters from different fonts
(character recognition)

Consider the 21 input patterns in Figure 1 as examples of A or not-A. In
other words, we train the perceptron to classify each of these vectors as
belonging, or not belonging, to the class A. In that case, the target value
for each pattern is either 1 or – 1.

We could, of course, use the same vectors as examples of B or not-
B and train the net in a similar manner.
Note: that is because we are using a single-layer net, the weights for the
output unit signifying A do not have any interaction with the weights for
the output unit signifying B.

Therefore, we can solve these two problems at the same time, by
allowing a column of weights for each output unit.

Our net would have 63 input units and 2 output units. The first
output unit would correspond to "A or not-A", the second unit to "B or
not-B." Continuing this idea, we can identify 7 output units, one for each
of the 7 categories into which we wish to classify our input.
The architecture of such a net is shown in Figure 2.

For this example, each input vector is a 63-tuple representing a
letter expressed as a pattern on a 7 x 9 grid of pixels. There are seven
components to the output vector, each representing a letter: A, B, C, D, E,
K, or J. For ease of reading, we show the target output pattern indicating
that
the input was an "A" as (A), a "B" a (. B), etc.

The training input patterns and target responses must be converted
to an appropriate form for the neural net to process. A bipolar
representation has better computational characteristics than does a binary
representation.

The input patterns may be converted to bipolar vectors.
The target output pattern (A) becomes the bipolar vector (1, -1, -1,
-1, -1, -1, -1), and the target pattern (. B) is represented by the
bipolar vector (- 1, 1, - 1, -1, -1, -1, -1).

45

Figure 1 Training input and target output patterns.

Figure 2 Perceptron to classify into seven categories.

46

A modified training algorithm for several output categories (threshold =
0,
learning rate = 1, bipolar training pairs) is as follows:

Step 0. Initialize weights and biases
(0 or small random values).

Step 1. While stopping condition is false, do Steps 1-6.
Step 2. For each bipolar training pair s : t, do Steps 3-5.

Step 3. Set activation of each input unit, i = 1, . . . n:
(n=63)

xi = si
Step 4. Compute activation of each output unit,

j=1, ,m
netj = bj + ∑ wij xi

i

1 if netj > θ
yj = 0 if - θ ≤ netj ≤ θ

-1 if netj < -θ

Step 5. Update biases and weights, j = 1, . . . , m; (m=7)
 i = 1, . . . , n:

 If tj ≠ yj then
b(new)j = b(old)j + tj

w(new)ij = w(old)ij + tjxi

Else, biases and weights remain unchanged.
Step 6. Test for stopping condition:
If no weight changes occurred in Step 2, stop; otherwise, continue.

After training, the net correctly classifies each of the training vectors.

