
55

Pattern Association

Associative memory neural nets are single-layer nets in which the

weights are determined in such a way that the net can store a set of

pattern associations.

- Each association is an input-output vector pair, s: t.

- If each vector t is the same as the vectors with which it is associated,

then the net is called an autoassociative memory.

- If the t's are different from the s's, the net is called a heteroassociative

memory.

- In each of these cases, the net not only learns the specific pattern pairs

that were used for training, but also is able to recall the desired response

pattern when given an input stimulus that is similar, but not identical, to

the training input.

Before training an associative memory neural net, the original patterns

must be converted to an appropriate representation for computation.

In a simple example, the original pattern might consist of "on" and

"off" signals, and the conversion could be "on" = (+1), "off" = (0)

(binary representation) or "on" = (+1), "off" =(-1) (bipolar

representation).

TRAINING ALGORITHMS FOR PATTERN ASSOCIATION
1- Hebb Rule for Pattern Association:

- The Hebb rule is the simplest and most common method of

determining the weights for an associative memory neural net.

- we denote our training vector pairs (input training-target output

vectors) as s: t. We then denote our testing input vector as x, which

may or may not be the same as one of the training input vectors.

- In the training algorithm of hebb rule the weights initially adjusted

to 0, then updated using the following formula:

56

wij(new) = wij(old)+ xiyj ; (i = 1, . . . , n; j = 1, . . . ,

m):

where,

xi = si

yj = tj

Outer products:

The weights found by using the Hebb rule (with all weights initially 0)

can also be described in terms of outer products of the input vector-output

vector pairs s:t. The outer product of two vectors

s = (s1, ……., si, ……., sn) ; t = (t1, ……., tj, ……., tm)

w = sTt

To store a set of associations s(p) : t(p), p = 1, . . . , P, where

s(p) = (s1(p), …., si(p), …., sn(p)) ;

t(p) = (t1(p), ……., tj(p), ……., tm(p))





P

p
j

T
iij ptpsw

1

)()(

This is the sum of the outer product matrices required to store each

association separately. In general, we shall use the preceding formula or

the more concise vector matrix form,





P

p

T ptpsW
1

)()(

- Several authors normalize the weights found by the Hebb rule by a

factor of 1/n, where n is the number of units in the system

57

2- Delta Rule for Pattern Association

In its original form, the delta rule assumed that the activation function for

the output unit was the identity function. Thus, using y for the computed

output for the input vector x, we have

n

yJ =netJ = ∑xiwiJ

i=1

The weights can be updated using the following equation:

∆wij = α (tj – yj) xi

A simple extension allows for the use of any differentiable activation

function; we shall call this the extended delta rule. The update for the

weight from the I’th input unit to the J’th output unit is:

∆wIJ = α (tJ – yJ) xI f ʹ(netJ)

1- HETEROASSOCIATIVE MEMORY NEURAL NETWORK

- Associative memory neural networks are nets in which the weights

are determined in such a way that the net can store a set of P

pattern associations.

- In heteroassociative memory the number of input units differ than

that of output units.

- Each association is a pair of vectors (s(p), t(p)), with p = 1, 2, . . . ,

P. Each vector s(p) is an n-tuple (has n components), and each t(p)

is an m-tuple.

- The weights may be found using the Hebb rule or the delta rule

- The net will find an appropriate output vector that corresponds to

an input vector x that may be either one of the stored patterns s(p)

or a new pattern (such as one of the training patterns corrupted by

noise).

58

- The architecture of a heteroassociative memory neural network is

as shown:

- For bipolar targets the activation of the output units:

 1 if netj > 0
yj = f(netj) = 0 if netj = 0

-1 if netj < 0
- If the target responses of the net are binary, a suitable activation

function is given by

 1 if x > 0
f(x) =

 0 if x ≤ 0

Example-1: A heteroassociative neural net for a mapping from input

vectors with four components to output vectors with two components is

shown in the figure. The net is to be trained to store the following

mapping from input row vector s = (s1,s2,s3,s4) and output target row

vector t = (t1, t2) using the Hebb rule.

59

P s1 s2 s3 s4 t1 t2

1 s(1 0 0 0) t(1 0)

2 s(1 1 0 0) t(1 0)

3 s(0 0 0 1) t(0 1)

4 s(0 0 1 1) t(0 1)

Sol:

The training is accomplished by the Hebb rule, which is defined as:

wij(new) = wij(old)+ xiyj ; i.e., ∆wij = xiyj

xi = si

yj = tj

Training:

W = 0

Note: only the weights that change at each step of the process are shown):
1. For the first pattern p=1, s: t pair (1, 0, 0, 0):(1, 0):

xl = 1; x2 = x3 = x4 = 0.; yl = 1; y2 = 0.
w11(new) = w11(old)+ x1y1 = 0 + 1 = 1

(all other weights remain 0)

2. For the second pattern p=2, s: t pair (1, 1, 0, 0):(1, 0):

xl = x2 = 1 ; x3 = x4 = 0.; yl = 1; y2 = 0.
w11(new) = w11(old)+ x1y1 = 1 + 1 = 2

w21(new) = w21(old)+ x2y1 = 0 + 1 = 1

(all other weights remain 0)

60

3. For the third pattern p=3, s: t pair (0, 0, 0, 1):(0, 1):

xl = x2 = x3 = 0 x4 = 1; yl = 0; y2 = 1.
W42(new) = w42(old)+ x4y2 = 0 + 1 = 1

(all other weights remain unchanged)

4. For the fourth pattern p=4, s: t pair (0, 0, 1, 1):(0, 1):

xl = x2 = 0; x3 = x4 = 1; yl = 0; y2 = 1.
W32(new) = w32(old)+ x3y2 = 0 + 1 = 1

W42(new) = w42(old)+ x4y2 = 1 + 1 = 2

(all other weights remain unchanged)
The weight matrix is

Now let us find the weight vector using outer products instead of the
algorithm for the Hebb rule.
The weight matrix to store the pattern pair (p) is given by the outer
product of the vector s(p) and t(p):

W(p) = s(p)Tt(p)

For p = 1 ; s = [1, 0, 0, 0] and t = [1, 0], the weight matrix
is

Similarly, to store the second pair, p = 2 ; s = [1, 1, 0, 0] and t = [1, 0]
The weight matrix is

To store the third pattern pair, p =3 ; s = [0, 0, 0, 1]and t = [0, 1] the
weight matrix is

61

And to store the fourth pattern pair, p = 4; s = [0, 0, 1, 1] and t = [0, 1]
the weight matrix is

The weight matrix to store all four pattern pairs is the sum of the weight
matrices to store each pattern pair separately, namely,

We can also find the weight matrix to store all four patterns directly using
the outer product

W = sT t

1 1 0 0 1 0
0 1 0 0 1 0
0 0 0 1 0 1
0 0 1 1 0 1

W =

W =

2 0
1 0
0 1
0 2

