Lecture 2
Stability

Bounded-Input Bounded-Output (BIBO) Stability
Asymptotic Stability

Lyapunov Stability

Linear Approximation of a Nonlinear System

Bounded-Input Bounded-Output (BIBO) stablility

Definition: For any constant N, M >0
Any bounded input yields bounded output, i.e.

‘u(t)‘£N<oo—>‘y(t)‘SM<oo

BIBO Stability <> All the poles of the transfer function lie in the LHP.

q(s)=0 ‘ Solve for poles of the transfer function 7(s)
.

Characteristic Equation



Asymptotic stablility
When u(¢) =0, 1. . thesystemx = Ax
x(t) >0 as t >

For linear systems: = Ar+ Bu
y=0Cx
Asymptotically stable & All the eigenvalues of the A matrix

have negative real parts
(i.e.in the LHP)

C adj[s] — A|B
‘S[ — A‘

T(s)= P C(sI-A)"'B=
q(s)

s/ —4/=0 mm) Solve for the eigenvalues for A matrix

Note: Asy. Stability 1s indepedent of B and C'Matrix

Asy. Stability from Model Decomposition

Suppose that all the eigenvalues of A are distinct. 4 € R™"
Let V; the eigenvector of matrix A with respect to eigenvalue 4,
ie. A,satisfyingdv, = Av, i=1,--n

Coordinate Matrix 7 =[v, v,, ---,v, ]
= E-TUTE A=1ar
S I B=T"B
& A 0 0--- 0] _
Ll 1o 24 o o0& ¢=Cr
= N 0 : : -1 -1
. : . : : z=T ATz+T Bu
én _0 0 An__gn_ y=CTz+ Du

x(1) = T (£) = v, E(0) +v,e™E,(0) +---+v e™E (0), £(0)=T"x(0)
Hence, system Asy. Stable < all the eigenvales of A at lie in the LHP



Asymptotic Stablility versus BIBO Stability

In the absence of pole-zero cancellations, transfer function poles are
1dentical to the system eigenvalues. Hence BIBO stability is
equivalent to asymptotical stability.

Conclusion: If the system is both controllable and observable, then
BIBO Stability < Asymptotical Stability

Methods for Testing Stability

e Asymptotically stable

e All the eigenvalues of A lie in the LHP
e BIBO stable

e Routh-Hurwitz criterion

e Root locus method

e Nyquist criterion

e ..etc

Lyapunov Stablility
A statex, of an autonomous systemis called an equilibrium state,
if startingat that statethesystemwill not move
from it in the absence of the forcing input.

In other words, consider the system x = f(x(7),u(t))

equilibrium statex, mustsatisty f(x,,0)=0, V=g,

Example: N
= X+ u -
-2 =3 1 X
o= >
Set  u(¢)=0,

0 1 |x, X, 0
we get =0= =
-2 =3|x,, X,, 0



Definition: An equilibrium state x, of an autonomous system Is
stable in the sense of Lyapunov if for every & >0 , exist ad(e)>0
such that on —Xx,||<0= Hx(t, X,)—Xx,||<& for Vit

A

x(t)
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Definition: An equilibrium state x, of an autonomous system is
asymptotically stable if

(1) it is stable

(11) there exista O6,>0 such that

<0, = Hx(z‘) - X,

—>0,as t—>

on _ xe

X

\4




Instability in 1D 1{
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Lyapunov Theorem
Consider the system x=f(x)

Eq.State: x,=0 (. £(0)=0)
A function Wx) is called a Lapunov fuction W x) if
() V(x)>0,vx=0

2) V(0)=0 for x=0

dV(x) dV(x)
3) & f(x)<0

Then eq. state of the system (6.1) is stable.

Moreover, if the Lyapunov function satisfies

dv (x) dv(x) _
o <0,Vx#0 and Ji

0 <

Then eq. state of the system (6.1) is asy. stable.
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Explanation of the Lyapunov Stability Theorem

1. The derivative of the Lyapunov function along the trajectory is negative.

2. The Lyapunov function may be consider as an energy function of the system.

=
Lyapunov equation

\ For any p.d. matrix Q, there exists a p.d. solution of the E
| 1

Proof: Choose V(x)=x"Px
V(x)=x"Px+x'Px
= x'A"Px+x"PAx
o gl _
= x' (A"P+PA)x A P+PA=-0
= —x'Ox<0,forx=0
Hence, the eq. state x=0 is asy. stable by Lapunov theorem.
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Asymptotically stable in the large
( globally asymptotically stable)

(1) The system is asymptotically stable for all the initial states x(z,) .
(2) The system has only one equilibrium state.

(3) For an LTI system, asymptotically stable and globally
asymptotically stable are equivalent.

Lyapunov Theorem (Asy. Stability in the large)
If the Lyapunov function W x) further satisfies

(1) ‘v’HxH <00,V (x) <o

(ii) |x]| = oo,V (x) —> o0

Then, the (asy.) stability is global.
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Sylvester’s criterion

A symmetric nxn matrix Q 1s p.d. if and only if all its n
leading principle minors are positive.

Definition

The i-th leading principle minor |Q| i=123,---,n ofan nxn
matrix Q is the determinant of the ixi matrix extracted from
the upper left-hand corner of Q.

Example 6.1: 4 G G
O=\9) 492 9 ‘Q1‘ = ‘%1‘
| 931 932 433 ]
q q
ol="" " lol=ld
21 Y92
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Remark:
(1) |0|.|0.|.---|0,| are all negative Qisn.d.
(2) All leading principle minors of —Q are positive =y () 1s n.d.

b b

Example:

V(x)=2x] +4x,x, +3x] +6x,x, + x5

2 0 4| x

: 0]=2>0
:[xl X, %0 3 6]x, 0,/=6>0

10 0 1] x| 0,|=-24<0

(2 0 2 x|

2 3 1| x|
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Example: 0 1
X _— X

Let O=1, AssumeP = {p“ plz}

P> P
Solve for A" P+ PA=—1

|:0 —1:|{p11 p12:|+|:p11 p12}{0 1:|=|:_1 0}
I 1] p, P P Pn]-1 -1 0 -1
:}P:|:pll p12}=l[3 1:|
P Pn] 2|1 2
py|=3>0 |[P|=5>0 wmp Pisp.d.

System is asymptotically stable

The Lyapunov function is: V(x)=x"Px= % (33612 +2x,X, +2x;)
V(x)=—(x} +x3)
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Linear approximation of a function around an operating point X,

Let £(x) be a differentiable function.

Expanding the nonlinear equation into a 7aylor series about the
operation point X, , we have

df(x) (x—x,) , d"f(x)
X=X, 1! dx2

(x=x)

J ()= f(x)+ o 2

Neglecting all the high order terms, to yield
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df (x X—X
= e+ LB EED v
S(x)
S =f(x)=m-(x—x,) A
S (x) !
where ACH
_df(x) |
d‘x X=X E >
‘Modern Control Systems X, x X
Multi-dimensional Case:
Let x be a n-dimensional vector, i.e. X € R”
f(x1>"'>xn)
= f(xle’.”’xne) +z X=X (xl _xle) +z X=X (x2 _'x2e) +'”+i X=x (xn _xne)
ox, " ox, " ox,"
%) 0 0 0
= f(x,,X,,) +éx_xe(x—xe), where éx_xe = [a_flxx ,...,a_fnx_x ]

Let £ be a m-dimensional vector function, f(x):R" > R"
1.e.

fi(x,x,) |
F(x,,x,) = fz(x“;”’x")
S (X5 x,) |
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Linear approximation of a function around an operating point X,
Special Case: r=nr=2

f(x)—f(x»zg—’; (x—x,)= A(x—x,)

AR
Ox L Ox
where x = [xlsxz]T and i = ______1_3‘_:_)&:_:_______2_35?2‘;_‘ =4
ox |, o, o,
Oox, . ox, .
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Linear approximation of an autonomous nonlinear systems Xx(¢) = f(x(¢))

Let x, be an equilibrium state, from

x = f(x(?) = A(x-x,)

AN
ox 0.
where 4= I I e A 2|y,
x|, | 9 A
ox,| ox, |

The linearization of x(#) = f(x(¢)) around the equilibrium state X, is

z=Az where Z=Xx-X, and Z=X-X,=X

20



Example : Pendulum oscillator model

From Newton’s Law we have

2
Ja’@

e + Mglsin@ =0

where J1is the inertia.

N\
Length L — J/"/ i\a%‘
\ KIS
\'7 /| 2
| Mass M \\,/j
Define x,=6,x,=0 (@) (b)
(Reproduced from [1])
X, Y2
=| . |=| Mgl .
X, - S,
We can show that x, =0 is an equilibrium state.
21
Example (cont.):
Method I: fi(x,)=x, = f(x,)- f(0)=(x,-0)=z,
f>(x) =sinx,
. . d(s1
= £,(x,)- £,(0) = sinx, -sin0 ~ (Sd—mxl) (x,-0)=z,
X1

x;=0
The linearization around the equilibrium state x, =0 is

=] MgL
Z, -

J
where z=x and zZ=Xx

Z
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Example (cont.):
Method 2:  f(x)=x,, f,(x)=- M:

a
Ox

= | %

The linearization around the equilibrium state x, =0 is

z 0 1 z %

U |=Az=| Mgl "= MgL

z - 0 z - Z
2 J 2 ,]

where Zz=Xx and Z=x 23




