CHAPTER

8-1 | INTRODUCTION

Preceding chapters have shown how conduction and convection heat transfer may be cal-
culated with the aid of both mathematical analysis and empirical data. We now wish to
consider the third mode of heat transfer—thermal radiation. Thermal radiation is that elec-
tromagnetic radiation emitted by a body as a result of its temperature. In this chapter, we
shall first describe the nature of thermal radiation, its characteristics, and the properties that
are used to describe materials insofar as the radiation is concerned. Next, the transfer of
radiation through space will be considered. Finally, the overall problem of heat transfer by
thermal radiation will be analyzed, including the influence of the material properties and
the geometric arrangement of the bodies on the total energy that may be exchanged.

8-2 | PHYSICAL MECHANISM

There are many types of electromagnetic radiation; thermal radiation is only one. Regardless
of the type of radiation, we say that it is propagated at the speed of light, 3 x 10% m/s. This
speed is equal to the product of the wavelength and frequency of the radiation,

c=MAv

where

¢ = speed of light

A = wavelength

v = frequency
The unit for A may be centimeters, angstroms (I A=10"% cm), or micrometers
(1 #m =10~ m). A portion of the electromagnetic spectrum is shown in Figure 8-1. Ther-
mal radiation lies in the range from about 0.1 to 100 rm, while the visible-light portion of
the spectrum is very narrow, extending from about 0.35 to 0.75 pm.

The propagation of thermal radiation takes place in the form of discrete quanta, each

quantum having an energy of
E=hv [8-1]

where £ is Planck’s constant and has the value

h=6.625x1073%*].5
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8-2 Physical Mechanism

Figure 8-1 | Electromagnetic spectrum.
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A very rough physical picture of the radiation propagation may be obtained by considering
each quantum as a particle having energy, mass, and momentum, just as we considered the
molecules of a gas. So, in a sense, the radiation might be thought of as a “photon gas” that
may flow from one place to another. Using the relativistic relation between mass and energy,
expressions for the mass and momentum of the “particles” could thus be derived; namely,

E=mc*=hv

hv

m=—

CZ
hv  hv
Momentum = ¢c— = —
2 ¢

By considering the radiation as such a gas, the principles of quantum-statistical thermody-
namics can be applied to derive an expression for the energy density of radiation per unit
volume and per unit wavelength as’

8rheh ™

= he/akT _ | 8-2]

Uy

where k is Boltzmann’s constant, 1.38066 x 10~23 J/molecule - K. When the energy density
is integrated over all wavelengths, the total energy emitted is proportional to absolute
temperature to the fourth power:

Ep=0l? [8-3]

Equation (8-3) is called the Stefan-Boltzmann law, E} is the energy radiated per unit time
and per unit area by the ideal radiator, and o is the Stefan-Boltzmann constant, which has
the value

0=5.669x 1078 W/m? - K* [0.1714 x 1078 Btu/h- ft> - °R*]

where Ej is in watts per square meter and 7 is in degrees Kelvin. In the thermodynamic
analysis the energy density is related to the energy radiated from a surface per unit time
and per unit area. Thus the heated interior surface of an enclosure produces a certain energy
density of thermal radiation in the enclosure. We are interested in radiant exchange with
surfaces—hence the reason for the expression of radiation from a surface in terms of its
temperature. The subscript » in Equation (8-3) denotes that this is the radiation from a black-
body. We call this blackbody radiation because materials that obey this law appear black
to the eye; they appear black because they do not reflect any radiation. Thus a blackbody is

%See, for example, J. P. Holman, Thermodynamics, 4th ed. New York: McGraw-Hill, 1988, p. 350.
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CHAPTERS8 Radiation Heat Transfer

also considered as one that absorbs all radiation incident upon it. £}, is called the emissive
power of a blackbody.

It is important to note at this point that the “blackness” of a surface to thermal radiation
can be quite deceiving insofar as visual observations are concerned. A surface coated with
lampblack appears black to the eye and turns out to be black for the thermal-radiation
spectrum. On the other hand, snow and ice appear quite bright to the eye but are essentially
“black” for long-wavelength thermal radiation. Many white paints are also essentially black
for long-wavelength radiation. This point will be discussed further in later sections.

8-3 | RADIATION PROPERTIES

When radiant energy strikes a material surface, part of the radiation is reflected, part is
absorbed, and part is transmitted, as shown in Figure 8-2. We define the reflectivity p as
the fraction reflected, the absorptivity « as the fraction absorbed, and the transmissivity ¢
as the fraction transmitted. Thus

ptat+t=1 [8-4]

Most solid bodies do not transmit thermal radiation, so that for many applied problems the
transmissivity may be taken as zero. Then

pta=1

Two types of reflection phenomena may be observed when radiation strikes a surface.
If the angle of incidence is equal to the angle of reflection, the reflection is called spec-
ular. On the other hand, when an incident beam is distributed uniformly in all directions
after reflection, the reflection is called diffise. These two types of reflection are depicted

Figure 8-2 | Sketch showing effects of
incident radiation.
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Figure 8-3 | (a) Specular (¢ = ¢) and (b) diffuse reflection.
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8-3 Radiation Properties

Figure 8-4 | Sketch showing model used for
deriving Kirchhoff’s law.

Black
enclosure

in Figure 8-3. Note that a specular reflection presents a mirror image of the source to the
observer. No real surface is either specular or diffuse. An ordinary mirror is quite specular
for visible light, but would not necessarily be specular over the entire wavelength range of
thermal radiation. Ordinarily, a rough surface exhibits diffuse behavior better than a highly
polished surface. Similarly, a polished surface is more specular than a rough surface. The
influence of surface roughness on thermal-radiation properties of materials is a matter of
serious concern and remains a subject for continuing research.

The emissive power of abody £ is defined asthe energy emitted by the body perunit areca
and per unit time. One may perform a thought experiment to establish a relation between the
emissive power of a body and the material properties defined above. Assume that a perfectly
black enclosure is available, i.e., one that absorbs all the incident radiation falling upon it,
as shown schematically in Figure 8-4. This enclosure will also emit radiation according to
the 7% law. Let the radiant flux arriving at some area in the enclosure be g; W/m?. Now
suppose that a body is placed inside the enclosure and allowed to come into temperature
equilibrium with it. At equilibrium the energy absorbed by the body must be equal to the
energy emitted; otherwise there would be an energy flow into or out of the body that would
raise or lower its temperature. At equilibrium we may write

EA=q;Aa [8-5]

If we now replace the body in the enclosure with a blackbody of the same size and shape
and allow it to come to equilibrium with the enclosure at the same temperature,

EpA=qiA(1) [8-6]
since the absorptivity of a blackbody is unity. If Equation (8-5) is divided by Equation (8-6),
i
— =
Ep

and we find that the ratio of the emissive power of a body to the emissive power of a
blackbody at the same temperature is equal to the absorptivity of the body. This ratio is
defined as the emissivity € of the body,

L [8-7]
€ = — -
Ep
so that
e=a [8-8]

Equation (8-8) is called Kirchhoff’s identity. At this point we note that the emissivities and
absorptivities that have been discussed are the fotal properties of the particular material;
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that is, they represent the integrated behavior of the material over all wavelengths. Real
substances emit less radiation than ideal black surfaces as measured by the emissivity of the
material. In reality, the emissivity of a material varies with temperature and the wavelength
of the radiation.

The Gray Body

A gray body is defined such that the monochromatic emissivity €, of the body is independent
of wavelength. The monochromatic emissivity is defined as the ratio of the monochromatic
emissive power of the body to the monochromatic emissive power of a blackbody at the
same wavelength and temperature. Thus

E,

€)=
Ep;

The total emissivity of the body may be related to the monochromatic emissivity by noting
that

oo

(e8]
E= / € Ep.d.  and  Ep= / Epy, d.=oT?
0 0

so that o
£ €x Epy di
= & M [8-9]
Ep o4
where Ep, is the emissive power of a blackbody per unit wavelength. If the gray-body
condition is imposed, that is, €, = constant, Equation (8-9) reduces to

e=e, [8-10]

The emissivities of various substances vary widely with wavelength, temperature, and
surface condition. Some typical values of the total emissivity of various surfaces are given in
Appendix A. We may note that the tabulated values are subject to considerable experimental
uncertainty. A rather complete survey of radiation properties is given in Reference 14.

The functional relation for Ep; was derived by Planck by introducing the quantum
concept for electromagnetic energy. The derivation is now usually performed by methods
of statistical thermodynamics, and Ejp, is shown to be related to the energy density of
Equation (8-2) by

Epp. === [8-11]
or c )\’_5
Ep = m [8-12]
where

A =wavelength, um
T =temperature, K
C1=3.743 x 103 W- um*/m?  [1.187 x 10 Btu - um*/h - ft?]
Cr>=1.4387 x 10* um - K [2.5896 x 10* um - °R]
Aplotof Ep, as afunction of temperature and wavelength is given in Figure 8-5a. Notice

that the peak of the curve is shifted to the shorter wavelengths for the higher temperatures.
These maximum points in the radiation curves are related by Wien’s displacement law,

Amax ! =2897.6 ym-K [5215.6 um - °R] [8-13]
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Figure 8-5 | (a) Blackbody emissive power as a function of wavelength
and temperature; (b) comparison of emissive power of ideal
blackbodies and gray bodies with that of a real surface.
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Figure 8-5b indicates the relative radiation spectra from a blackbody at 3000°F and a
corresponding ideal gray body with emissivity equal to 0.6. Also shown is a curve indicating
an approximate behavior for a real surface, which may differ considerably from that of
either an ideal blackbody or an ideal gray body. For analysis purposes surfaces are usually
considered as gray bodies, with emissivities taken as the integrated average value.
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The shift in the maximum point of the radiation curve explains the change in color of
a body as it is heated. Since the band of wavelengths visible to the eye lies between about
0.3and 0.7 pum, only a very small portion of the radiant-energy spectrum at low temperatures
is detected by the eye. As the body is heated, the maximum intensity is shifted to the shorter
wavelengths, and the first visible sign of the increase in temperature of the body is a dark-red
color. With further increase in temperature, the color appears as a bright red, then bright
yellow, and finally white. The material also appears much brighter at higher temperatures
because a larger portion of the total radiation falls within the visible range.

We are frequently interested in the amount of energy radiated from a blackbody in a
certain specified wavelength range. The fraction of the total energy radiated between 0 and
A is given by

8-14
Ep, ., f o Epdr [ ]
Equation (8-12) may be rewritten by dividing both sides by 7, so that
E C
0 ! [8-15]

T5 (AD5(gC2/KT -1
Now, for any specified temperature, the integrals in Equation (8-14) may be expressed in

terms of the single variable A T. The ratio in Equation (8-14) is plotted in Figure 8-6 and
tabulated in Table 8-1, along with the ratio in Equation (8-15). If the radiant energy emitted

Figure 8-6 | Fraction of blackbody radiation in wavelength interval.
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Table 8-1 | Radiation functions.

AT Ep/T? Epy-rt AT Epy /T3 Epysr
oT4 oT4
— W x1o!! —Wx10Mt

pm - K mZ‘KS-um pm- K mZ‘KS-um
1000 0.02110 0.00032 6300 0.42760 0.76180
1100 0.04846 0.00091 6400 0.41128 0.76920
1200 0.09329 0.00213 6500 0.39564 0.77631
1300 0.15724 0.00432 6600 0.38066 0.78316
1400 0.23932 0.00779 6700 0.36631 0.78975
1500 0.33631 0.01285 6800 0.35256 0.79609
1600 0.44359 0.01972 6900 0.33940 0.80219
1700 0.55603 0.02853 7000 0.32679 0.80807
1800 0.66872 0.03934 7100 0.31471 0.81373
1900 0.77736 0.05210 7200 0.30315 0.81918
2000 0.87858 0.06672 7300 0.29207 0.82443
2100 0.96994 0.08305 7400 0.28146 0.82949
2200 1.04990 0.10088 7500 0.27129 0.83436
2300 1.11768 0.12002 7600 0.26155 0.83906
2400 1.17314 0.14025 7700 0.25221 0.84359
2500 1.21659 0.16135 7800 0.24326 0.84796
2600 1.24868 0.18311 7900 0.23468 0.85218
2700 1.27029 0.20535 8000 0.22646 0.85625
2800 1.28242 0.22788 8100 0.21857 0.86017
2900 1.28612 0.25055 8200 0.21101 0.86396
3000 1.28245 0.27322 8300 0.20375 0.86762
3100 1.27242 0.29576 8400 0.19679 0.87115
3200 1.25702 0.31809 8500 0.19011 0.87456
3300 1.23711 0.34009 8600 0.18370 0.87786
3400 1.21352 0.36172 8700 0.17755 0.88105
3500 1.18695 0.38290 8800 0.17164 0.88413
3600 1.15806 0.40359 8900 0.16596 0.88711
3700 1.12739 0.42375 9000 0.16051 0.88999
3800 1.09544 0.44336 9100 0.15527 0.89277
3900 1.06261 0.46240 9200 0.15024 0.89547
4000 1.02927 0.48085 9300 0.14540 0.89807
4100 0.99571 0.49872 9400 0.14075 0.90060
4200 0.96220 0.51599 9500 0.13627 0.90304
4300 0.92892 0.53267 9600 0.13197 0.90541
4400 0.89607 0.54877 9700 0.12783 0.90770
4500 0.86376 0.56429 9800 0.12384 0.90992
4600 0.83212 0.57925 9900 0.12001 0.91207
4700 0.80124 0.59366 10,000 0.11632 0.91415
4800 0.77117 0.60753 10,200 0.10934 0.91813
4900 0.74197 0.62088 10,400 0.10287 0.92188
5000 0.71366 0.63372 10,600 0.09685 0.92540
5100 0.68628 0.64606 10,800 0.09126 0.92872
5200 0.65983 0.65794 11,000 0.08606 0.93184
5300 0.63432 0.66935 11,200 0.08121 0.93479
5400 0.60974 0.68033 11,400 0.07670 0.93758
5500 0.58608 0.69087 11,600 0.07249 0.94021
5600 0.56332 0.70101 11,800 0.06856 0.94270
5700 0.54146 0.71076 12,000 0.06488 0.94505
5800 0.52046 0.72012 12,200 0.06145 0.94728
5900 0.50030 0.72913 12,400 0.05823 0.94939
6000 0.48096 0.73778 12,600 0.05522 0.95139
6100 0.46242 0.74610 12,800 0.05240 0.95329
6200 0.44464 0.75410 13,000 0.04976 0.95509
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Table 8-1| (Continued).

AT Epy /TS Epy—r1 AT Epy /TS Epy—r1
aT? aT?
w 11 w 11

pm - K mZ.KS.,LmXIO pm - K mZ.KS.,LmXIO
13,200 0.04728 0.95680 19,800 0.01151 0.98515
13,400 0.04494 0.95843 20,000 0.01110 0.98555
13,600 0.04275 0.95998 21,000 0.00931 0.98735
13,800 0.04069 0.96145 22,000 0.00786 0.98886
14,000 0.03875 0.96285 23,000 0.00669 0.99014
14,200 0.03693 0.96418 24,000 0.00572 0.99123
14,400 0.03520 0.96546 25,000 0.00492 0.99217
14,600 0.03358 0.96667 26,000 0.00426 0.99297
14,800 0.03205 0.96783 27,000 0.00370 0.99367
15,000 0.03060 0.96893 28,000 0.00324 0.99429
15,200 0.02923 0.96999 29,000 0.00284 0.99482
15,400 0.02794 0.97100 30,000 0.00250 0.99529
15,600 0.02672 0.97196 31,000 0.00221 0.99571
15,800 0.02556 0.97288 32,000 0.00196 0.99607
16,000 0.02447 0.97377 33,000 0.00175 0.99640
16,200 0.02343 0.97461 34,000 0.00156 0.99669
16,400 0.02245 0.97542 35,000 0.00140 0.99695
16,600 0.02152 0.97620 36,000 0.00126 0.99719
16,800 0.02063 0.97694 37,000 0.00113 0.99740
17,000 0.01979 0.97765 38,000 0.00103 0.99759
17,200 0.01899 0.97834 39,000 0.00093 0.99776
17,400 0.01823 0.97899 40,000 0.00084 0.99792
17,600 0.01751 0.97962 41,000 0.00077 0.99806
17,800 0.01682 0.98023 42,000 0.00070 0.99819
18,000 0.01617 0.98081 43,000 0.00064 0.99831
18,200 0.01555 0.98137 44,000 0.00059 0.99842
18,400 0.01496 0.98191 45,000 0.00054 0.99851
18,600 0.01439 0.98243 46,000 0.00049 0.99861
18,800 0.01385 0.98293 47,000 0.00046 0.99869
19,000 0.01334 0.98340 48,000 0.00042 0.99877
19,200 0.01285 0.98387 49,000 0.00039 0.99884
19,400 0.01238 0.98431 50,000 0.00036 0.99890
19,600 0.01193 0.98474

between wavelengths A1 and %, is desired, then

Ep, Ebofxl
Ep, 0 =Epy ., <M - [8-16]
A1—A2 0 bbo,oo bbo,oo
where Eyp, . is the total radiation emitted over all wavelengths,
Ep, . =oT* [8-17]

and is obtained by integrating the Planck distribution formula of Equation (8-12) over all
wavelengths.

Solar radiation has a spectrum approximating that of a blackbody at 5800 K. Ordinary
window glass transmits radiation up to about 2.5 um. Consulting Table 8-1 for
AT =(2.5)(5800) = 14,500 um - K, we find the fraction of the solar spectrum below 2.5um
to be about 0.97. Thus the glass transmits most of the solar radiation incident upon it. In
contrast, room radiation at about 300 K below 2.5 um has A1 = (2.5)(300) =750 um - K,
and only a minute fraction (less than 0.001 percent) of this radiation would be transmitted
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Figure 8-7 | Method of
constructing a blackbody

enclosure.

Incident radiation

8-4 Radiation Shape Factor

through the glass. The glass, which is essentially transparent for visible light, is almost
totally opaque for thermal radiation emitted at ordinary room temperatures.

Construction of a Blackbody

The concept of a blackbody is an idealization; that is, a perfect blackbody does not exist—
all surfaces reflect radiation to some extent, however slight. A blackbody may be approxi-
mated very accurately, however, in the following way. A cavity is constructed, as shown in
Figure 8-7, so that it is very large compared with the size of the opening in the side. An
incident ray of energy is reflected many times on the inside before finally escaping from the
side opening. With each reflection there is a fraction of the energy absorbed corresponding
to the absorptivity of the inside of the cavity. After the many absorptions, practically all
the incident radiation at the side opening is absorbed. It should be noted that the cavity of
Figure 8-7 behaves approximately as a blackbody emitter as well as an absorber.

EXAMPLE 8-1 Transmission and Absorption in a Glass Plate

A glass plate 30 cm square is used to view radiation from a furnace. The transmissivity of the glass
is 0.5 from 0.2 to 3.5 pm. The emissivity may be assumed to be 0.3 up to 3.5 um and 0.9 above
that. The transmissivity of the glass is zero, except in the range from 0.2 to 3.5 pm. Assuming that
the furnace is a blackbody at 2000°C, calculate the energy absorbed in the glass and the energy
transmitted.

H Solution
T =2000°C=2273 K
21T = (0.2)(2273) =454.6 ym - K
2T = (3.5)(2273) =7955.5 um - K
A =(0.3)2=0.09 m?

From Table 8-1
Epy_s

Ep,
=0 2 _().85443
oT4 oT4
oT* = (5.669 x 10~8)(2273)* = 1513.3 kW/m?

Total incident radiation is

0.2 um < A < 3.5 um = (1.5133 x 10%)(0.85443 — 0)(0.3)2
= 116.4kW [3.97 x 10° Btu/h]

Total radiation transmitted = (0.5)(116.4) = 58.2 kW

Radiation | (0.3)(116.4) =34.92 kW for 0 <X <3.5 um
absorbed | (0.9)(1 — 0.85443)(1513.3)(0.09) = 17.84 kW  for 3.5 um < A < 00

Total radiation absorbed =34.92+4 17.84 =52.76 kW [180,000 Btu/h]

8-4 | RADIATION SHAPE FACTOR

Consider two black surfaces A1 and A», as shown in Figure 8-8. We wish to obtain a general
expression for the energy exchange between these surfaces when they are maintained at
different temperatures. The problem becomes essentially one of determining the amount of
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Figure 8-8 | Sketch showing area elements used in deriving
radiation shape factor.
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energy that leaves one surface and reaches the other. To solve this problem the radiation
shape factors are defined as

F1_p = fraction of energy leaving surface 1 that reaches surface 2
F>_1 = fraction of energy leaving surface 2 that reaches surface 1

F;_j = fraction of energy leaving surface : that reaches surface j

Other names for the radiation shape factor are view factor, angle factor, and configuration
factor. The energy leaving surface 1 and arriving at surface 2 is

EpA1F12
and the energy leaving surface 2 and arriving at surface 1 is
EpAr ki

Since the surfaces are black, all the incident radiation will be absorbed, and the net energy
exchange is

Ep1A1F1o— EnnArlr = Q12

Ifboth surfaces are at the same temperature, there can be no heat exchange, that is, 9, =0.
Also, for 171 =15

Ep1 = Ep
so that
AFin=AF [8-18]
The net heat exchange is therefore
Qi1—2=A1F12(Ep1 — Er2) = A2F21(Ep1 — Ep2) [8-19]

Equation (8-18) is known as a reciprocity relation, and it applies in a general way for
any two surfaces ¢ and j:

A,‘Fij =Aij,‘ [8-18a]

Although the relation is derived for black surfaces, it holds for other surfaces also as long
as diffuse radiation is involved.
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Figure 8-9 | Elevation view of area shown
in Figure 8-8.
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We now wish to determine a general relation for #1; (or #>1). To do this, we consider
the elements of area dA1 and dA; in Figure 8-8. The angles ¢»; and ¢; are measured between
a normal to the surface and the line drawn between the area elements r. The projection of
dA1 on the line between centers is

dA1 cos

This may be seen more clearly in the elevation drawing shown in Figure 8-9. We assume
that the surfaces are diffuse, that is, that the intensity of the radiation is the same in all
directions. The intensity is the radiation emitted per unit area and per unit of solid angle in a
certain specified direction. So, in order to obtain the energy emitted by the element of area
dA) in a certain direction, we must multiply the intensity by the projection of dA; in the
specified direction. Thus the energy leaving dA; in the direction given by the angle ¢, is

Ip dA1 cos ¢ [a]

where [, is the blackbody intensity. The radiation arriving at some area element dA, at a
distance r from A would be

dA,
Ib dA1 COS¢1 - [b]
Is

where dA,, is constructed normal to the radius vector. The quantity dA, /r* represents
the solid angle subtended by the area dA,,. The intensity may be obtained in terms of the
emissive power by integrating expression (b) over a hemisphere enclosing the element of
area dA1. In a spherical coordinate system like that in Figure 8-10,

dA, =rsing dy de

Figure 8-10 | Spherical coordinate system used in derivation of
radiation shape factor.

Vi
7

/
/ dA,=r*sin ¢dpdy
/
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Then

2x  pw/2
EydA) =1, dA / / sin¢ cos ¢ d¢ dyr
0 0
=7le dA1

so that
Ep=mlp [8-20]

We may now return to the energy-exchange problem indicated in Figure 8-8. The area
element dA, is given by
dA, =cos¢r dAj

so that the energy leaving dA1 that arrives at dA; is

, dAy dA;
dq1-2 = Ep cos$r cos ¢y — 75—

That energy leaving dA, and arriving at dA| is

dAz dA
dqr—1 = Epy cosd cos ¢ —5—

and the net energy exchange is

dA1dA;

net;_, = (Ep1 — Ebz)/ / COs 1 COS py ———— [8-21]
Ay J A Ty

The integral is either A F12 or Ay F»1 according to Equation (8-19). To evaluate the inte-
gral, the specific geometry of the surfaces A} and A, must be known. We shall work out
an elementary problem and then present the results for more complicated geometries in
graphical and equation form.

Consider the radiation from the small area dA; to the flat disk Aj, as shown in
Figure 8-11. The element of area dA» is chosen as the circular ring of radius x. Thus

dAy =2mx dx

Figure 8-11 | Radiation from a
small-area element
to a disk.
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8-4 Radiation Shape Factor

We note that ¢} = ¢ and apply Equation (8-21), integrating over the area A»:

5 2mx dx
dA1 Faa,—a, =dAq cos” ¢ 3
A r
Making the substitutions
R
_ep2 24172 K~
r=(R +x%) and cos ¢ = 1D
we have
Ak A /D/2 2R%x dx
1 Faa—4, =aA) A (B2 1272

Performing the integration gives

A1 Finy-a,=—dM <R2—+xz)L =R
so that
D2
Fan—= oy 2

[8-22]

The calculation of shape factors may be extended to more complex geometries, as described
in References 3, 5, 24, and 32; 32 gives a very complete catalog of analytical relations and
graphs for shape factors. For our purposes we give only the results of a few geometries as
shown in Figures 8-12 through 8-16. The analytical relations for these geometries are given

in Table 8-2.

Figure 8-12 | Radiation shape factor for radiation between parallel rectangles.
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Figure 8-13 | Radiation shape factor for radiation between parallel equal
coaxial disks.
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Real-Surface Behavior

Real surfaces exhibit interesting deviations from the ideal surfaces described in the preced-
ing paragraphs. Real surfaces, for example, are not perfectly diffuse, and hence the intensity
of emitted radiation is not constant over all directions. The directional-emittance charac-
teristics of several types of surfaces are shown in Figure 8-17. These curves illustrate the
characteristically different behavior of electric conductors and nonconductors. Conductors
emit more energy in a direction having a large azimuth angle. This behavior may be satis-
factorily explained with basic electromagnetic wave theory, and is discussed in Reference
24. As a result of this basic behavior of conductors and nonconductors, we may antici-
pate the appearance of a sphere which is heated to incandescent temperatures, as shown in
Figure 8-18. An electric conducting sphere will appear bright around the rim since more
energy is emitted at large angles ¢. A sphere constructed of a nonconducting material will
have the opposite behavior and will appear bright in the center and dark around the edge.
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8-4 Radiation Shape Factor

Figure 8-14 | Radiation shape factor for radiation between perpendicular rectangles with a
common edge.
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Reflectance and absorptance of thermal radiation from real surfaces are a function not
only of the surface itself but also of the surroundings. These properties are dependent on the
direction and wavelength of the incident radiation. But the distribution of the intensity of
incident radiation with wavelength may be a very complicated function of the temperatures
and surface characteristics of all the surfaces that incorporate the surroundings. Let us
denote the total incident radiation on a surface per unit time, per unit area, and per unit
wavelength as G, . Then the total absorptivity will be given as the ratio of the total energy
absorbed to the total energy incident on the surface,
or

f OOO (5% G A di

o= G [8-23]
0

If we are fortunate enough to have a gray body such that ¢, = e = constant, this relation
simplifies considerably. It may be shown that Kirchoft’s law [Equation(8-8)] may be written
for monochromatic radiation as

€) =Uy [8-24]

Therefore, for a gray body, «; = constant, and Equation (8-23) expresses the result that
the total absorptivity is also constant and independent of the wavelength distribution of
incident radiation. Furthermore, since the emissivity and absorptivity are constant over all
wavelengths for a gray body, they must be independent of temperature as well. Unhappily,
real surfaces are not always “gray” in nature, and significant errors may ensue by assuming
gray-body behavior. On the other hand, analysis of radiation exchange using real-surface
behavior is so complicated that the ease and simplification of the gray-body assumption is
justified by the practical utility it affords. References 10, 11, and 24 present comparisons
of heat-transfer calculations based on both gray and nongray analyses.
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Figure 8-15 | Radiation shape factors for two concentric cylinders of finite
length. (a) Outer cylinder to itself; (b) outer cylinder to inner
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396 8-4 Radiation Shape Factor

Figure 8-16 | Radiation shape factor for radiation between two parallel
coaxial disks.
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Table 8-2 | Radiation shape factor relations.
Geometry Shape factor
1. Parallel, equal rectangles F1_2:(2/nxy){ln[(l+x2)(l+y2)/(1+x2+y2)]1/2+x(1+y2)1/2tan_1[x/(l+y2)1/2]
(Fig. 8-12) + y(1 —i—xz)l/2 tan_l[y/(l +x2)1/2] — xtan~! x—ytan_1 y}
x=X/D,y=Y/D
2. Parallel, equal, coaxial disks Fl_,= [X — (X2 —4)1/2]/2
(Fig. 8-13)
R=d/2x, X=(2R? + 1)/R?
3. Perpendicular rectangles with F1_2:(l/nW)(Wtan_l(l/W)+Htan_1(l/H)—(H2+W2)1/2tan_1[1/(H2+W2)1/2]
@ common edge (/4 ([ 4+ W2+ H2) /(1 + WP B2 (W21 W2+ 1)/ 4+ W2 (w2 4 52 Y
(Fie &-14) X [H2(1+ H? + W2)/(1 + H) (H? + W) H))
H=Z/X,W=Y/X
4. Finite, coaxial cylinders Fr_1=1/X)— (1/xX){cos 1 (B/A) — (1/2N)[(A2 + 4A — 4X2 + /2 cos~1(B/ X A)
(Fig. 8-15) + Bsin~1(1/X) —nA/2]}
X=nr/r,Y=L/n Fr_p=1—(1/X) + 2/aX)tan ' [2(X2 — D1/2/7]
A=X2472 -1 — (¥27X) ([ (4X2 + Y2/ ¥Isin~H{[4(X2 — 1) + ¥/ X)2 (X2 = 21/[¥? +4(X2 - )]}
B=Y2-x%+1 —sinT (X2 = 2)/ X2+ r/2)[(AX% + YH2 7y — 1)
5. Parallel, coaxial disks F1_2:{X—[ —4(Ry/Ry) ]1/2}
(Fig. 8-16)
Ri=r/L
Ry=ry/L

X=1+(1+R})/R}



http://www.abbyy.com/buy
http://www.abbyy.com/buy

CHAPTERS8 Radiation Heat Transfer

Figure 8-17 | Typical directional behavior of emissivity for conductors and
nonconductors. €4 is emissivity at angle ¢ measured from
normal to surface. Nonconductor curves are for (a) wet ice,
(b) wood, (c) glass, (d) paper, (e) clay, (f) copper oxide, and
(g) aluminum oxide.
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Figure 8-18 | Effect of directional emittance on appearance of an
incandescent sphere: (@) electrical conductor; (b) electrical
nonconductor.

O-® -0

Heat Transfer Between Black Surfaces

Two parallel black plates 0.5 by 1.0 m are spaced 0.5 m apart. One plate is maintained at 1000°C

and the other at 500°C. What is the net radiant heat exchange between the two plates?

B Solution

The ratios for use with Figure 8-12 are
Y 05
—=—=1.0
D 05

so that F1p =0.285. The heat transfer is calculated from

1.
= =2.0
.5

ol
s

q=A1F12(Ep) — Epp) =0A1 Fia(T} = T3)
= (5.669 x 1078)(0.5)(0.285)(1273% — 773%)
—18.33kW  [62,540 Btu/h]
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8-5 Relations Between Shape Factors

8-5 | RELATIONS BETWEEN SHAPE FACTORS

Some useful relations between shape factors may be obtained by considering the system
shown in Figure 8-19. Suppose that the shape factor for radiation from A3 to the combined
area Ay 7 is desired. This shape factor must be given very simply as

Fs12=F_1+ 3 [8-25]

that is, the total shape factor is the sum of its parts. We could also write Equation (8-25) as

A3l3_10=A3F3_ 1+ A3l3; [8-26]

and making use of the reciprocity relations

Azl3_12=A121 03
A3l 1 =A1F 3
A3l o =AyF) 3

the expression could be rewritten

A2 2 3=A1F13+ A2 k)3 [8-27]

which simply states that the total radiation arriving at surface 3 is the sum of the radiations
from surfaces 1 and 2. Suppose we wish to determine the shape factor F1_3 for the surfaces
in Figure 8-20 in terms of known shape factors for perpendicular rectangles with a common
edge. We may write

Fioos=F_2+Fi-3

in accordance with Equation (8-25). Both F1_»3 and Fj_, may be determined from
Figure 8-14, so that F|_j is easily calculated when the dimensions are known. Now con-
sider the somewhat more complicated situation shown in Figure §-21. An expression for the
shape factor F_4 is desired in terms of known shape factors for perpendicular rectangles

Figure 8-19 | Sketch showing some
relations between shape
factors.

Fy_p=F3- 1 +F5-,
AsF3 1= A3Fy + A3F3- 5
A1 pF 1 p-3= A1 F 3+ AyF) 3
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Figure 8-20 Figure 8-21
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with a common edge. We write
A1pF1234=A1F134+A2F2 34 [a]

in accordance with Equation (8-25). Both [ -3 4 and F,_3 4 can be obtained from
Figure 8-14, and F_3 4 may be expressed

AF134=A1F13+A1F 14 [b]

Also
A1pF1203=A1F 13+ A F>_3 [c]

Solving for A F'1_3 from (¢), inserting this in (b), and then inserting the resultant expression
for A1 F'1_3 4 in (a) gives

ApF1234=A12F103— Al 3+ A1Fia+Aska 34 [d]
Notice that all shape factors except F1_4 may be determined from Figure 8-14. Thus

1
Fig4= A—(A1,2F1,2—3,4 +AF) 3 —A1pF 123 —AxFr 34) [8-28]
1

In the foregoing discussion the tacit assumption has been made that the various bodies
do not see themselves, that is,
Fu=tn=1r3=0---

To be perfectly general, we must include the possibility of concave curved surfaces, which
may then see themselves. The general relation is therefore

n
> Fi=10 [8-29]
j=1

where Fj; is the fraction of the total energy leaving surface : that arrives at surface j. Thus
for a three-surface enclosure we would write

Fiu+ro+Fi3=1.0

and £ represents the fraction of energy leaving surface 1 that strikes surface 1. A certain
amount of care is required in analyzing radiation exchange between curved surfaces.
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Figure 8-22 | Generalized
perpendicular-rectangle
arrangement.
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Hamilton and Morgan [5] have presented generalized relations for parallel and perpen-
dicular rectangles in terms of shape factors which may be obtained from Figures 8-12 and
8-14. The two situations of interest are shown in Figures 8-22 and 8-23. For the perpen-
dicular rectangles of Figure 8-22 it can be shown that the following reciprocity relations
apply [5]:

APy =A3F5 = Ay Fy = Ay Fis [8-30]

By making use of these reciprocity relations, the radiation shape factor F3 may be
expressed by
: 1
AF1y =5 [Kgo34s62 —Kosasp —Kaoser + Kaser — Kase—1,2.3.4.5.6)
—K23456-@.56)+Ki12s6-56 +Ka3as5-@s)+Kse-a.2.56)

+Kasy—234.5)+Kaosp—Kasy-s — Kis.p — Kasp — Ks—2.5)+ K5
[8-31]
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where the K terms are defined by
Kpyn=AnFu—n [8-32]
K(m>2 = Am ﬁ;ﬂi —m’ [8'33]
The generalized parallel-rectangle arrangement is depicted in Figure 8-23. The reci-
procity relations that apply to this situation are given in Reference 5 as

A1Fly = A3F37 = AgFoyr = A7 F7y [8-34]
Making use of these relations, it is possible to derive the shape factor Fo as

1
APl =7[Kaq23456789° —K125.678°2—Kasass02—Ki12345.62
+ K562 T Kn3as52+Kausgor—Kase—Kisge—Kisep
—Kus67892+Kis6782+ Kaser+Kaosse —Kasp+Kese] [835]

The nomenclature for the K terms is the same as given in Equations (8-32) and (8-33).

Shape-Factor Algebra for Open Ends

of Cylinders

Two concentric cylinders having diameters of 10 and 20 cm have a length of 20 cm. Calculate the
shape factor between the open ends of the cylinders.

B Solution
We use the nomenclature of Figure 8-15 for this problem and designate the open ends as sur-
faces 3 and 4. We have L/ =20/10=2.0 and r1/rp =0.5; so from Figure 8-15 or Table 8-2
we obtain

1 =0.4126 Fry =0.3286

Using the reciprocity relation [Equation (8-18)] we have
A1F1p=4AF and F1p=(dy/d1)F>1 =(20/10)(0.4126) = 0.8253

For surface 2 we have
1+ Fn+ B3+ =10

From symmetry 3 = F4 so that
[ (%) (1—0.4126 — 0.3286) = 0.1294
Using reciprocity again,
Ar I3 =A3l3)

and 20)(20
= 200 0466901
7(202 — 102) /4

We observe that I']] = F33 = F44 =0 and for surface 3
31+ F3p+F34=1.0 [a]
So, if F31 can be determined, we can calculate the desired quantity F34. For surface 1

Fio+Fi34+Fi4=1.0
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and from symmetry F13 = F14 so that

1
Fi3= <5> (1-0.8253)=0.0874

Using reciprocity gives
A1 F3 = A3F3)
7(10)(20)

= Y 0874 =0.233
L= 202 —102)/4

Then, from Equation (a)
F34=1-0.233 —0.6901 =0.0769

Shape-Factor Algebra for Truncated Cone

A truncated cone has top and bottom diameters of 10 and 20 cm and a height of 10 cm. Calculate
the shape factor between the top surface and the side and also the shape factor between the side
and itself.

B Solution
We employ Figure 8-16 for solution of this problem and take the nomenclature as shown, desig-
nating the top as surface 2, the bottom as surface 1, and the side as surface 3. Thus, the desired
quantities are F»3 and F33. We have L/r1 =10/10=1.0 and r,/L =5/10=0.5. Thus, from
Figure 8-16

Fip=0.12

From reciprocity [Equation (8-18)]

A1F1p = A2
Fy1 = (20/10)2(0.12) = 0.48

and
F=0
so that
1+ Fy)3=1.0
and

Fr3=1-0.48=0.52

For surface 3,
1+ Fp+ F33=1.0 |a]

so we must find /31 and £3) in order to evaluate £33. Since #71 =0, we have

Fpp+Fi3=1.0 and F13=1-0.12=0.88

and from reciprocity
AF13=A3F3 (6]

The surface area of the side is
1/2
Ay =a(ry +r2) [ = r2? +12]

= (54 10)(52 + 10%)1/? =526.9 cm?
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So, from Equation (b)

102
Fyy = 209 g5 0.55
526.9

A similar procedure applies with surface 2 so that

7(5)2
F3=—"_0.52=0.0775
526.9

Finally, from Equation (a)
F33=1-10.525-0.0775=0.397

Shape-Factor Algebra for Cylindrical Reflector

The long circular half-cylinder shown in Figure Example 8-5 has a diameter of 60 cm and a square
rod 20 by 20 cm placed along the geometric centerline. Both are surrounded by a large enclosure.
Find Fy, F13, and Fq in accordance with the nomenclature in the figure.

Figure Example 8-5

Half-cylinder, d = 60 cm

@ = Large room

B Solution
From symmetry we have
Fy =F;3=05 [a]

In general, F'11 + F1p + F13 = 1.0. To aid in the analysis we create the fictitious surface 4 shown
as the dashed line. For this surface, F41 = 1.0. Now, all radiation leaving surface 1 will arrive
either at 2 or at 3. Likewise, this radiation will arrive at the imaginary surface 4, so that

Fla=Fp+ Fi3 (5]

From reciprocity,
A1F14=AqFy

The areas are, for unit length,

Ay = nd/2 = 7(0.6)/2 = 0.942
Ay = 0.2+ (2)[(0.1)2 +(0.2)411/2 = 0.647
Ay = (4)(0.2)=0.8

so that
Ay _ 0.647)(1.0)

Fa=3="00m

=0.686 c
= le]
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We also have, from reciprocity,
Ay o1 = A1y

SO
Ay (0.8)(0.5)
Flo=—"=F|1=——""=0425 d
=477 oo 4]
Combining (b), (¢), and (d) gives

F13=0.686 —0.425=0.261

Finally,
Fli=1—-F;p—F3=1-0425-0.261=0.314

This example illustrates how one may make use of clever geometric considerations to calculate
the radiation shape factors.

8-6 | HEAT EXCHANGE BETWEEN
NONBLACKBODIES

The calculation of the radiation heat transfer between black surfaces is relatively easy
because all the radiant energy that strikes a surface is absorbed. The main problem is one
of determining the geometric shape factor, but once this is accomplished, the calculation of
the heat exchange is very simple. When nonblackbodies are involved, the situation is much
more complex, for all the energy striking a surface will not be absorbed; part will be reflected
back to another heat-transfer surface, and part may be reflected out of the system entirely.
The problem can become complicated because the radiant energy can be reflected back and
forth between the heat-transfer surfaces several times. The analysis of the problem must
take into consideration these multiple reflections if correct conclusions are to be drawn.

We shall assume that all surfaces considered in our analysis are diffuse, gray, and
uniform in temperature and that the reflective and emissive properties are constant over all
the surface. Two new terms may be defined:

G = irradiation

= total radiation incident upon a surface per unit time and per unit area
J =radiosity

= total radiation that leaves a surface per unit time and per unit area

In addition to the assumptions stated above, we shall also assume that the radiosity
and irradiation are uniform over each surface. This assumption is not strictly correct, even
for ideal gray diffuse surfaces, but the problems become exceedingly complex when this
analytical restriction is not imposed. Sparrow and Cess [10] give a discussion of such
problems. As shown in Figure §8-24, the radiosity is the sum of the energy emitted and the
energy reflected when no energy is transmitted, or

J=¢Ep+ pG [8-36]
where ¢ is the emissivity and E}, is the blackbody emissive power. Since the transmissivity
is assumed to be zero, the reflectivity may be expressed as

p=l—a=1—¢

so that
J=€ekp+ (1 —6)G [8-37]
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Figure 8-24 | (a) Surface energy balance for opaque material; (b) element
representing “surface resistance” in the radiation-network

method.
J=¢eE,+pG
g B J
— O0—AVW—0
l-¢
€A
(a) )

The net energy leaving the surface is the difference between the radiosity and the irradiation:

4 _G=¢E,+(1-G—-G

A
Solving for G in terms of J from Equation (8-37),
€A
g=-"(Ey—J)
l—e
or
Ep—J
g=—"""— [8-38]
(1—€)/eA

At this point we introduce a very useful interpretation for Equation (8-38). If the denom-
inator of the right side is considered as the surface resistance to radiation heat transfer,
the numerator as a potential difference, and the heat flow as the “current,” then a network
element could be drawn as in Figure 8-24(b) to represent the physical situation. This is the
first step in the network method of analysis originated by Oppenheim [20].

Now consider the exchange of radiant energy by two surfaces, A; and Aj, shown in
Figure 8-25. Of that total radiation leaving surface 1, the amount that reaches surface 2 is

JIA I

and of that total energy leaving surface 2, the amount that reaches surface 1 is

S Ar Iy

Figure 8-25 | (a) Spatial energy exchange between two surfaces; (b) element
representing “space resistance” in the radiation-network

method.
/"\
AN 912 et
\ =J1AF1y—J42 8,
\
\
\
\
\
\
7
7
7
//
7
e TR S

(@) (®)

405


http://www.abbyy.com/buy
http://www.abbyy.com/buy

406

8-6 Heat Exchange Between Nonblackbodies

The net interchange between the two surfaces is

q12=J1A1F12 — HhA o

But
A=A
so that
qi2=(J1 = D)AIFiu=(J1 — h)Ay
or
N1 = [8-39]
N-2= -
1/A1F12

We may thus construct a network element that represents Equation (8-39), as shown in
Figure 8-25b. The two network elements shown in Figures 8-24 and 8-25 represent the
essentials of the radiation-network method. To construct a network for a particular radiation
heat-transfer problem we need only connect a “surface resistance” (1 —¢)/€A to each
surface and a “space resistance” 1/A;F;; between the radiosity potentials. For example,
two surfaces that exchange heat with each other and nothing else would be represented by
the network shown in Figure 8-26. In this case the net heat transfer would be the overall
potential difference divided by the sum of the resistances:

Ept — Ep

(I—en/etAi+1/A1F2+ (1 —e)/eAr
o(T} = T3

- [8-40]
(I—e/alA1+1/A1Fi2+ (1 —e)/e2Ar

dnet =

A network for a three-body problem is shown in Figure §8-27. In this case each of the
bodies exchanges heat with the other two. The heat exchange between body 1 and body 2
would be

_hi—h
q1-2= —1/A1F12
and that between body 1 and body 3,
=k
1= A

To determine the heat flows in a problem of this type, the values of the radiosities must be
calculated. This may be accomplished by performing standard methods of analysis used in
dc circuit theory. The most convenient method is an application of Kirchhoff’s current law
to the circuit, which states that the sum of the currents entering a node is zero. Example 8-6
illustrates the use of the method for the three-body problem.

Figure 8-26 | Radiation network for two
surfaces that see each other
and nothing else.

E, Ji J2 £y,

1-¢ 1 1-¢
€4, A1Fyy €4,
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Figure 8-27 | Radiation network for three
surfaces that see each other
and nothing else.

Ji D Eyp,

Insulated Surfaces and Surfaces with Large Areas

As we have seen, (Ep — J) represents the potential difference for heat flow through the
surface resistance (1 — €) /€ A. If a surface is perfectly insulated, or re-radiates all the energy
incident uponit, it has zero heat flow and the potential difference across the surface resistance
is zero, resulting in J = E},. But, the insulated surface does not have zero surface resistance.
In effect, the J node in the network is floating, that is, it does not draw any current. On the
other hand, a surface with a very large area (A — c0) has a surface resistance approaching
zero, which makes it behave like a blackbody with € = 1.0. It, too, will have J = Ej, because
of the zero surface resistance. Thus, these two cases—insulated surface and surface with a
large area—both have J = E}, but for entirely different reasons. We will make use of these
special cases in several examples.

Aproblem that may be easily solved with the network method is that of two flat surfaces
exchanging heat with one another but connected by a third surface that does not exchange
heat, i.e., one that is perfectly insulated. This third surface nevertheless influences the heat-
transfer process because it absorbs and re-radiates energy to the other two surfaces that
exchange heat. The network for this system is shown in Figure 8-28. Notice that node J3 is
not connected to a radiation surface resistance because surface 3 does not exchange energy.
A surface resistance (1 — €) /e A exists, but because there is no heat current flow there is no

Figure 8-28 | Radiation network for two
plane or convex surfaces
enclosed by a third surface
that is nonconducting but
re-radiating (insulated).

1-¢ 1-¢,

E, g4, Ji S g4, Ep

1

1
A4 (1= Fyp)
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potential difference, and J3 = Ep,. Notice also that the values for the space resistances have
been written

Fiz=1-Fp

Fp3=1-17

since surface 3 completely surrounds the other two surfaces. For the special case where sur-
faces 1 and 2 are convex, that is, they do not see themselves and F1; = Fy =0,
Figure 8-28 is a simple series-parallel network that may be solved for the heat flow as

oAL(T} =T

Inet = T A, —2AFp <1 ) A1<1 )

— 1)+ (==
Ay — A1 (F12)? €1 Ay \ e

[8-41]

where the reciprocity relation
A1F1a=A2F

has been used to simplify the expression. It is fo be noted again that Equation (8-41) applies
only to surfaces that do not see themselves, that is, F11 = F, = 0. If these conditions do not
apply, one must determine the respective shape factors and solve the network accordingly.
Example 8-7 gives an appropriate illustration of a problem involving an insulated surface.

This network, and others that follow, assume that the only heat exchange is by radiation.
Conduction and convection are neglected for now.

Hot Plates Enclosed by a Room

Two parallel plates 0.5 by 1.0 m are spaced 0.5 m apart, as shown in Figure Example 8-6. One
plate is maintained at 1000°C and the other at 500°C. The emissivities of the plates are 0.2 and
0.5, respectively. The plates are located in a very large room, the walls of which are maintained
at 27°C. The plates exchange heat with each other and with the room, but only the plate surfaces
facing each other are to be considered in the analysis. Find the net transfer to each plate and to
the room.

Figure Example 8-6 | (a) Schematic. (b) Network.
T, =1000°C

Room at27°C

E, =oT}* Ji 5 Ey, =0T

®

7,=500°C
(a) (%)

B Solution
This is a three-body problem, the two plates and the room, so the radiation network is shown in
Figure 8-27. From the data of the problem

T) =1000°C=1273K  A;=A;=0.5m?

) =500°C=773 K €1=0.2

T3 =27°C=300 K €=0.5
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Because the area of the room Aj is very large, the resistance (1 — €3)/€3 A3 may be taken as zero
and we obtain Ep, = J3. The shape factor F|, was given in Example 8-2:

F1p =0.285= I
Fi3=1-F;p=0.715
3 =1—-Fp1=0.715

The resistances in the network are calculated as

l—ey_ 1-02 o l—ep_ 1-05 _
e1A]  (0.2)(0.5) ©4;  (0.5)(0.5)

L _ ! =7.018 L _ ! =2.797
A F2  (0.5)(0.285) A F13  (0.5)(0.715)

1 1

= =2.797
Ar I3 (0.5)(0.715)

Taking the resistance (1 — €3)/€3 A3 as zero, we have the network as shown. To calculate the heat
flows at each surface we must determine the radiosities /1 and J,. The network is solved by setting
the sum of the heat currents entering nodes J; and J, to zero:

node J1:
Ep =N  h=N  En—T_ la]
8.0 7.018 2.797
e Ji—I Ep—J Ep—J
1—h  Ep—Dh Ep—D
7.018 2.797 20 0 15]
Now

Ep, = o} = 148.87 kW/m?  [47,190 Btu/h - fi%]
Ep, = oT5 =20.241 kW/m?  [6416 Btu/h - ft°]
Epy = 0Ty =0.4592 kW/m?  [145.6 Btu/h - ft%]

Inserting the values of Ep,, Ep,, and Ep, into Equations (a) and (b), we have two equations and
two unknowns J; and J, that may be solved simultaneously to give

J1=33.469 kW/m?  Jp =15.054 kW/m?

The total heat lost by plate 1 is
Ep —J1  148.87—33.469

= =14.425 kW
(1—€1)/e141 8.0

q1 =

and the total heat lost by plate 2 is
Ep,—J  20.241 —15.054

= = =2.594 kW
(1—e€3)/e2Ar 2.0

92

The total heat received by the room is
=N JH—
S 1/AF13 0 1/Ay s
33.469 — 0.4592  15.054 — 0.4592

= =17.020 kW [58,070 Btu/h
2.797 + 2.797 [ e

g3

From an overall-balance standpoint we must have
93=91t 92

because the net energy lost by both plates must be absorbed by the room.
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8-6 Heat Exchange Between Nonblackbodies

EXAMPLE 8-7 Surface in Radiant Balance

Two rectangles 50 by 50 cm are placed perpendicularly with a common edge. One surface has
T1=1000 K, €1 =0.6, while the other surface is insulated and in radiant balance with a large
surrounding room at 300 K. Determine the temperature of the insulated surface and the heat lost
by the surface at 1000 K.

Figure Example 8-7 | (a) Schematic. (b) Network.

£y

1

Roomcz? 300K @

7,= 1000 K
: Insulated J3= Eb3

(a) (b)

B Solution

Although this problem involves two surfaces that exchange heat and one that is insulated or re-
radiating, Equation (8-41) may not be used for the calculation because one of the heat-exchanging
surfaces (the room) is not convex. The radiation network is shown in Figure Example 8-7 where
surface 3 is the room and surface 2 is the insulated surface. Note that J3 = Ep, because the room is
large and (1 — €3)/€3 A3 approaches zero. Because surface 2 is insulated it has zero heat transfer
and J, = Ep, . J; “floats” in the network and is determined from the overall radiant balance. From
Figure 8-14 the shape factors are

Fip=02=1I5

Because /1] =0 and /57 =0 we have
Fip+Fi3=10 and F13=1-02=08=F)3

A=Ay =(0.52=0.25m>

The resistances are

l—¢ 0.4 2667
eq1A; — (0.6)(0.25)
1 1 1
— — — — =5.0
A1tz Axlry (0.25)(0.8)
1 1
=20.0

ALF2  (0.25)(0.2)
We also have
Ep, = (5.669 x 1078)(1000)* = 5.669 x 10* W/m?
Iy = Epy = (5.669 x 1078)(300)* = 459.2 W/m?

The overall circuit is a series-parallel arrangement and the heat transfer is
. Ep, — Ep,
Requiv
We have

Requiv = 2667 + 6.833

§+1/(20+5):
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and
56,690 —459.2

= =8.229k 2 Btu/h
q 6833 8.229 kW  [28,086 Btu/h]

This heat transfer can also be written
gt
(1—€1)/e14

Inserting the values we obtain
J) = 34,745 W/m?>

The value of ./, is determined from proportioning the resistances between Jj and J3, so that

Nh—DHh -4
20~ 2045

and
h=7316=Ep, =Ty

Finally, we obtain the temperature of the insulated surface as

1/4

7316

7= <—> —599.4K [619°F]
5.669 x 108

H Comment

Note, once again, that we have made use of the J = E}, relation in two instances in this example,
but for two different reasons. ./, = Ep, because surface 2 is insulated and there is zero current
flow through the surface resistance, while J3 = Ep, because the surface resistance for surface 3
approaches zero as A3 — o0.

8-7 | INFINITE PARALLEL SURFACES

When two infinite parallel planes are considered, A; and A, are equal; and the radiation
shape factor is unity since all the radiation leaving one plane reaches the other. The network
is the same as in Figure 8-26, and the heat flow per unit area may be obtained from Equation
(8-40) by letting A] = Ay and F12 =1.0. Thus
4
q_ o(Ty = 15) [8-42]
A lfer+1/ea—1

When two long concentric cylinders as shown in Figure 8-29 exchange heat we may again
apply Equation (8-40). Rewriting the equation and noting that F1; = 1.0,

B oA (T} — 15
=1 e + A/ AD (e — 1)

[8-43]

The area ratio A1/A; may be replaced by the diameter ratio &1 /d> when cylindrical bodies
are concerned.

Convex Object in Large Enclosure

Equation (8-43) is particularly important when applied to the limiting case of a convex
object completely enclosed by a very large concave surface. In this instance Aj/A> — 0
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8-7 Infinite Parallel Surfaces

Figure 8-29 | Radiation exchange between
two cylindrical surfaces.

o4, (T)*-T)Y)

TSy
2 g A \g,

Figure 8-30 | Radiation heat transfer between simple two-body
diffuse, gray surfaces. In all cases F1 =1.0.

Small convex object Infinite parallel planes

in large enclosure /@
@ @\A

q
_>q
o(TH-TH
g=Ae1o(I} ~T3) @/A) = ety
for A1/A)—0 with A] = A

Infinite concentric cylinders

Concentric spheres
——m—fme
/
\ ! Q
| |
I~ i

L @
_ eANTI-TH __ oAI-TH
1= e+ 0/a-D01/m 1= Vet e /m)?
with Aj/Ay=r1/r; ri/L—0 for Ay/Ay = (r1/r)?
and the following simple relation results:
g=cA1e (T} =15 [8-43a]

This equation is readily applied to calculate the radiation-energy loss from a hot object in
a large room.

Some of the radiation heat-transfer cases for simple two-body problems are summarized
in Figure 8-30. In this figure, both surfaces are assumed to be gray and diffuse.
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Open Hemisphere in Large Room EXAMPLE 8-8

The 30-cm-diameter hemisphere in Figure Example 8-8 is maintained at a constant temperature
of 500°C and insulated on its back side. The surface emissivity is 0.4. The opening exchanges
radiant energy with a large enclosure at 30°C. Calculate the net radiant exchange.

Figure Example 8-8
< O
| ©)
Insulated @D\J Enclosure
i

hemisphere | at 30°C

B Solution

This is an object completely surrounded by a large enclosure but the inside surface of the sphere is
not convex; that s, it sees itself, and therefore we are not permitted to use Equation (8-43a). In the
figure we take the inside of the sphere as surface 1 and the enclosure as surface 2. We also create
an imaginary surface 3 covering the opening. We actually have a two-surface problem (surfaces 1
and 2) and therefore may use Equation (8-40) to calculate the heat transfer. Thus,

Ep, = o} =0(773)* =20,241 W/m?

By, = 615‘ =0(303)* =478 W/m?
Ay = 2772 = (2)7(0.15)2 = 0.1414 m?
1— .
i 06 _ o6
€141 (0.4)(0.1414)
Ay — 00
so that
1—e
—0
€4

Now, at this point we recognize that all of the radiation leaving surface 1 that will eventually arrive
at enclosure 2 will also hit the imaginary surface 3 (i.e., F1p = F13). We also recognize that

A1 F13=A3F3

But, F31 =1.0 so that

Then 1/A1 F1p =1/(0.1414)(0.5) = 14.14 and we can calculate the heat transfer by inserting the
quantities in Equation (8-40):
20,241 — 478

=T T 799w
1= 7061+ 141440

Apparent Emissivity of a Cavity

Consider the cavity shown in Figure 8-31 having an internal concave surface area A; and
emissivity ¢; radiating out through the opening with area A,. The cavity exchanges radiant
energy with a surrounding at 7y having an area that is large compared to the area of the
opening. We want to determine a relationship for an apparent emissivity of the opening
in terms of the above variables. If one considers the imaginary surface A, covering the

Figure 8-31 | Apparent
emissivity of cavity.

Surrounding, T
A >> A4,
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8-7 Infinite Parallel Surfaces

opening and exchanging heat with A; we have

F,i=1.0
and, from reciprocity,
Aokoi =Aikip
But, Fj, = I so that
AiFiy=A, [8-44]

The net radiant exchange of surface A; with the large enclosure A; is given by
qi—s = (Epi — Epg) /[(1 =€) [€iAi + 1/ Ai Fis] [8-45]
and the net radiant energy exchange of an imaginary surface A, having an apparent emis-
sisvity €, with the large surroundings is given by Equation (8-43a) as
Go—s = €q Ao (Ep; — Eps) [8-46]
for A, at the same temperature at the cavity surface A;. Substituting (8-44) in (8-45) and
equating (8-45) and (8-46) gives, after algebraic manipulation,
€a =€ Ai/[Ao+ €i(A; — Ag)] [8-47]

We can observe the following behavior for €, in limiting cases:

€, =¢; for Ao = A, or no cavity at all

Figure 8-32 | Apparent emissivity of cavity.

Apparent emissivity, g,

1

0.9 t; i\\\ I s e SR PP
0.8 \\ \\ \\
0.7 \\\ \\ I — =07
4 ~ = 0.
\ T
0.5 \ £=05
\ \\
0.4
\ ]
03 \\ \\‘\
0.2 \\ T £ =02
B ~—] i— L.
\
\
0.1 —— g =01
0
0 0.1 02 03 0.4 0.5 0.6 0.7 0.8 0.9 1

A, /4,
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and
€a— 1.0  for A;> A,

or a very large cavity. A plot of Equation (8-47) is given in Figure 8-32.

The apparent emissivity concept may also be used to analyze transient problems that
admit to the lumped capacity approximation. Such an example is discussed in Appendix D,
section D-6. In addition, an example is given of multiple lumped capacity formulation
applied to the heating of a box of electronic components exchanging energy by convection
and radiation with an enclosure.

Effective Emissivity of Finned Surface

A repeating finned surface having the relative dimensions shown in Figure Example 8-9 is utilized
to produce a higher effective emissivity than that for a flat surface alone. Calculate the effective
emissivity of the combination of fin tip and open cavity for surface emissivities of 0.2, 0.5,

and 0.8.
Figure Example 8-9
5 4,
4 10 4,
A3
B v
/
H Solution

For unit depth in the z-dimension we have
A1=10, Ay =5, A3=(2)(25)+10=60
The apparent emissivity of the open cavity area A is given by Equation (8-47) as
€q1 =€A3/[A] +€(A3 — A1)] =60¢/(10 + 50¢) [a]
For constant surface emissivity the emitted energy from the total erea A + A is
(ea1A1 +€A))Ep (6]
and the energy emitted per unit area for that total area is

[(eaj A +€Ap) /(A1 + A))]Ep [c]
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The coefficient of E}, is the effective emissivity, €q¢ of the combination of the flat surface and
open cavity. Inserting Equation (a) in (c) gives the following numerical values:

Fore=0.2 eeff =0.4667
Fore=0.5 eeff =0.738
Fore=0.8 €eff =0.907

One could employ these eftective values to calculate the radiation performance of such a finned
surface in conjunction with applicable radiation properties of surrounding surfaces.

8-8 | RADIATION SHIELDS

One way of reducing radiant heat transfer between two particular surfaces is to use mate-
rials that are highly reflective. An alternative method is to use radiation shields between
the heat-exchange surfaces. These shields do not deliver or remove any heat from the
overall system; they only place another resistance in the heat-flow path so that the overall
heat transfer is retarded. Consider the two parallel infinite planes shown in Figure 8-33a.
We have shown that the heat exchange between these surfaces may be calculated with
Equation (8-42). Now consider the same two planes, but with a radiation shield placed
between them, as in Figure 8-33b. The heat transfer will be calculated for this latter case
and compared with the heat transfer without the shield.

Since the shield does not deliver or remove heat from the system, the heat transfer
between plate 1 and the shield must be precisely the same as that between the shield and
plate 2, and this is the overall heat transfer. Thus

4 (4L -1
<A>1—3_<A>3—2_A
q oI} =T  oT{—T)) (848
A 1/er+1/es—1 1/es+1/ex—1

The only unknown in Equation (8-48) is the temperature of the shield 75. Once this tem-
perature is obtained, the heat transfer is easily calculated. If the emissivities of all three
surfaces are equal, that is, €| = ) = €3, we obtain the simple relation

1
1= z(T;‘ +13) [8-49]

Figure 8-33 | Radiation between parallel infinite

planes with and without a radiation
shield.

q/4 q/4

Shield

(@) (b)
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Figure 8-34 | Radiation network for two parallel planes separated by one
radiation shield.

q/4
—-

By, Ji I3 Ey, J3 J2 £y,
o—WWN—0—" N—O— " N—O— " N—O— " N—O—AN—0
1-¢ i 1-& 1-¢; i 1-¢,
£ Fu3 £ €3 Fy, )

and the heat transfer is | . .
q _ 207 =1,)

A e+ 1/e3—1

But since €3 = €3, we observe that this heat flow is just one-half of that which would be
experienced if there were no shield present. The radiation network corresponding to the
situation in Figure 8-335 is given in Figure 8-34.

By inspecting the network in Figure 8-34, we see that the radiation heat transfer is
impeded by the insertion of three resistances more than would be present with just two
surfaces facing each other: an extra space resistance and two extra surface resistances for
the shield. The higher the reflectivity of the shield (i.e., the smaller its emissivity), the
greater will be the surface resistances inserted. Even for a black shield, with € = 1 and zero
surface resistance, there will still be an extra space resistance inserted in the network. As
a result, insertion of any surface that intercepts the radiation path will always cause some
reduction in the heat-transfer rate, regardless of its surface emissive properties.

Multiple-radiation-shield problems may be treated in the same manner as that outlined
above. When the emissivities of all surfaces are different, the overall heat transfer may be
calculated most easily by using a series radiation network with the appropriate number of
elements, similar to the one in Figure 8-34. If the emissivities of all surfaces are equal,
a rather simple relation may be derived for the heat transfer when the surfaces may be
considered as infinite parallel planes. Let the number of shields be n. Considering the
radiation network for the system, all the “surface resistances” would be the same since the
emissivities are equal. There would be two of these resistances for each shield and one for
each heat-transfer surface. There would be n + 1 “space resistances,” and these would all
be unity since the radiation shape factors are unity for the infinite parallel planes. The total
resistance in the network would thus be

R(n shields) = (2n+2)% ++DH(H=@n+1) <§ - 1)

The resistance when no shield is present is

1 1 2
R(noshield)=-4+-—-1=-—1
€ € €
We note that the resistance with the shields in place is n + 1 times as large as when the
shields are absent. Thus
<%> with = 1 1 <%>With0ut [8-50]
shields T shields

if the temperatures of the heat-transfer surfaces are maintained the same in both cases. The
radiation-network method may also be applied to shield problems involving cylindrical
systems. In these cases the proper area relations must be used in formulating the resistance
elements.
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Notice that the analyses above, dealing with infinite parallel planes, have been carried
out on a per-unit-area basis because all areas are the same.

Heat-Transfer Reduction

with Parallel-Plate Shield

Two very large parallel planes with emissivities 0.3 and 0.8 exchange heat. Find the percentage
reduction in heat transfer when a polished-aluminum radiation shield (¢ = 0.04) is placed between
them.

B Solution
The heat transfer without the shield is given by
g  oT}-T3)

4 o4
2 TN _09790(TH - T
A~ T/e +1/ep—1 oI —15)

The radiation network for the problem with the shield in place is shown in Figure 8-34. The
resistances are

1-— 1-0.

=g =0 —2333
€1 0.3

1-— —0.

i e L
€3 0.04

1-— 1-0.

A= L0 =025
€ 0.8

The total resistance with the shield is

2.333 +(2)(24.0) + (2)(1) +0.25=152.583

and the heat transfer is 4 4
o(Ty — T
4 _ I =T 6 01902078 — 1)
A 52.583

so that the heat transfer is reduced by 93.2 percent.

Open Cylindrical Shield in Large Room

The two concentric cylinders of Example 8-3 have 71 = 1000 K, €] = 0.8, ¢ = 0.2 and are located
in a large room at 300 K. The outer cylinder is in radiant balance. Calculate the temperature of the
outer cylinder and the total heat lost by the inner cylinder.

Figure Example 8-11
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B Solution

The network for this problem is shown in Figure Example 8-11. The room is designated as surface
3 and J3 = £}, , because the room is very large (i.e., its surface resistance is very small). In this
problem we must consider the inside and outside of surface 2 and thus have subscripts 7 and o to
designate the respective quantities. The shape factors can be obtained from Example 8-3 as

Fip =0.8253 Fi3=0.1747
Fy3i = (2)(0.1294) =0.2588  F3, =1.0

Also,
A} = m(0.1)(0.2) = 0.06283 m?
Ay = m(0.2)(0.2) = 0.12566 m?
Ep, = (5.669 x 107)(1000)* = 5.669 x 10* W/m?
Ep, = (5.669 x 1078)(300)* = 459.2 W/m?

and the resistances may be calculated as

— €1 —€

=3.979 =31.83
€141 €A,
1
=19.28 =30.75
ArF12 Ay o3
1
=17.958 =91.1
Ay F3, A1Fi3

The network could be solved as a series-parallel circuit to obtain the heat transfer, but we will
need the radiosities anyway, so we set up three nodal equations to solve for Ji, J»;, and J,,. We
sum the currents into each node and set them equal to zero:

node Ji: Ep, =1 Ep,—T1  hi—N1 _
3.979 91.1 19.28
node J;: Ji—hi | Epy—Di | ho— D _
19.28 30.75 (2)(31.83)
node Jp,: Epy—ho | hi=ly _

7.958 (2)(31.83)
These equations have the solution
7| = 49,732 W/m?>
Jo; = 26,444 W/m?
Do = 3346 W/m?

The heat transfer is then calculated from
Ep, — 56,690 — 49,732
(1—ep)/erAr 3.979

= =1749 W [5968 Btu/h]
From the network we see that
D+, 26,444+ 3346

2
, = 5 = 14,895 W/m

14,895 \1/4
T2=<—> =716 K [829°F]
5.669 x 10—8

Ep

and
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Figure 8-35 |
Absorption in a gas
layer.

8-9 Gas Radiation

If the outer cylinder had not been in place acting as a “shield” the heat loss from cylinder 1 could
have been calculated from Equation (8-43a) as

q= 6lAl(El71 - Eb3)
=(0.8)(0.06283)(56,690 — 459.2) =2826 W  [9644 Btu/h]

8-9 | GAS RADIATION

Radiation exchange between a gas and a heat-transfer surface is considerably more complex
than the situations described in the preceding sections. Unlike most solid bodies, gases are
in many cases transparent to radiation. When they absorb and emit radiation, they usually
do so only in certain narrow wavelength bands. Some gases, such as N>, O,, and others of
nonpolar symmetrical molecular structure, are essentially transparent at low temperatures,
while CO,, H,O, and various hydrocarbon gases radiate to an appreciable extent.

The absorption of radiation in gas layers may be described analytically in the following
way, considering the system shown in Figure 8-35. A monochromatic beam of radiation
having an intensity I, impinges on the gas layer of thickness dx. The decrease in intensity
resulting from absorption in the layers is assumed to be proportional to the thickness of the
layer and the intensity of radiation at that point. Thus

dI)LZ fa;hl;hdx [8-51]

where the proportionality constant a,, is called the monochromatic absorption coefficient.

Integrating this equation gives
I, d I}\, X
[t e
L, I 0

or

Dr [8-52]
L,

Equation (8-52) is called Beer’s law and represents the familiar exponential-decay
formula experienced in many types of radiation analyses dealing with absorption. In accor-
dance with our definitions in Section 8-3, the monochromatic transmissivity will be given as

o= % [8-53]
If the gas is nonreflecting, then
T o =1
and
a,=1—e [8-54]

As we have mentioned, gases frequently absorb only in narrow wavelength bands. For
example, water vapor has an absorptivity of about 0.7 between 1.4 and 1.5 pm, about 0.8
between 1.6 and 1.8 pm, about 1.0 between 2.6 and 2.8 um, and about 1.0 between 5.5
and 7.0 um. As we have seen in Equation (8-54), the absorptivity will also be a function of
the thickness of the gas layer, and there is a temperature dependence as well.

The calculation of gas-radiation properties is quite complicated, and References 23 to
25 should be consulted for detailed information.
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CHAPTERS8 Radiation Heat Transfer

8-10 | RADIATION NETWORK FOR AN ABSORBING
AND TRANSMITTING MEDIUM

The foregoing discussions have shown the methods that may be used to calculate radiation
heat transfer between surfaces separated by a completely transparent medium. The radiation-
network method is used to great advantage in these types of problems.

Many practical problems involve radiation heat transfer through a medium that is both
absorbing and transmitting. The various glass substances are one example of this type of
medium; gases are another. Some approximate transmissivities or glass substances over the
wavelength range of 0.5 um < A < 2.5 pum are given in Table 8-3.

Keeping in mind the complications involved with the band absorption characteris-
tics of gases, we shall now examine a simplified radiation network method for analyzing
transmitting absorbing systems.

To begin, let us consider a simple case, that of two nontransmitting surfaces that see
each other and nothing else. In addition, we let the space between these surfaces be occupied
by a transmitting and absorbing medium. The practical problem might be that of two large
planes separated by either an absorbing gas or a transparent sheet of glass or plastic. The
situation is shown schematically in Figure 8-36. The transparent medium is designated
by the subscript m. We make the assumption that the medium is nonreflecting and that
Kirchhoff’s identity applies, so that

U+ Tm=1=¢€pn + [8-55]

The assumption that the medium is nonreflecting is a valid one when gases are con-
sidered. For glass or plastic plates this is not necessarily true, and reflectivities of the order

Table 8-3 | Approximate transmissivities for glasses at 20°C.

Glass 7(0.5 pm < A < 2.5 pm)
Soda lime glass
Thickness = 1.6 mm 0.9
= 6.4mm 0.75
= 9.5mm 0.7
=12.7 mm 0.65
Aluminum silicate, thickness = 12.7 mm 0.85
Borosilicate =12.7mm 0.8
Fused silica =12.7 mm 0.85
Pyrex =12.7mm 0.65

Figure 8-36 | Radiation system consisting of a
transmitting medium between two
planes.

q/A
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Figure 8-37 | Network
element for transmitted
radiation through

medium.
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Figure 8-38 | Network
element for radiation
exchange between
medium and surface.
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8-10 Radiation Network for an Absorbing and Transmitting Medium

of 0.1 are common for many glass substances. In addition, the transmissive properties of
glasses are usually limited to a narrow wavelength band between about 0.2 and 4 zem. Thus
the analysis that follows is highly idealized and serves mainly to furnish a starting point
for the solution of problems in which transmission of radiation must be considered. Other
complications with gases are mentioned later in the discussion. When both reflection and
transmission must be taken into account, the analysis techniques discussed in Section §8-12
must be employed.

Returning to the analysis, we note that the medium can emit and transmit radiation
from one surface to the other. Our task is to determine the network elements to use in
describing these two types of exchange processes. The transmitted energy may be analyzed
as follows. The energy leaving surface 1 that is transmitted through the medium and arrives
at surface 2 is

J1A 1 Faty

and the energy leaving surface 2 and arrives at surface 1 is

S Ay Frity

The net exchange in the transmission process is therefore
=Afnt(N1 —J2)
J1— )
q1-2 ransmitted
e 1/ AL Fia (1 — )

q1 —2transmitted

[8-56]

and the network element that may be used to describe this process is shown in Figure 8-37.
Now consider the exchange process between surface 1 and the transmitting medium.
Since we have assumed that this medium is nonreflecting, the energy leaving the medium
(other than the transmitted energy, which we have already considered) is precisely the
energy emitted by the medium
I = € Eppy

And of the energy leaving the medium, the amount which reaches surface 1 is

Am}"mljm = Am}"mlemEbm

Of that energy leaving surface 1, the quantity that reaches the transparent medium is

J1A 1 Fia = 1AL Flnem

At this point we note that absorption in the medium means that the incident radiation
has “reached” the medium. Consistent with the above relations, the net energy exchange
between the medium and surface | is the difference between the amount emitted by the
medium toward surface 1 and that absorbed which emanated from surface 1. Thus

Im—1lpet = A€ Epy — J1A 1 Flyep

Using the reciprocity relation
APy = A P
we have
Epm — 11

= 8-57
e 1/A1Fimen [ ]

This heat-exchange process is represented by the network element shown in Figure 8-38.
The total network for the physical situation of Figure 8-36 is shown in Figure §-39.
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Figure 8-39 | Total radiation network for
system of Figure 8-36.

1-¢; 1 1-¢,

gi1A  AFp(1-g,) €4,

E, bm

If the transport medium is maintained at some fixed temperature, then the potential
Epy, is fixed according to
Ep =0T2

On the other hand, if no net energy is delivered to the medium, then £}, becomes a floating
node, and its potential is determined by the other network elements.

In reality, the radiation shape factors F1_j, F1_;,, and F>_,, are unity for this example,
so that the expression for the heat flow could be simplified to some extent; however, these
shape factors are included in the network resistances for the sake of generality in the analysis.

When the practical problem of heat exchange between gray surfaces through an absorb-
ing gas is encountered, the major difficulty is that of determining the transmissivity and
emissivity of the gas. These properties are functions not only of the temperature of the gas,
but also of the thickness of the gas layer; that is, thin gas layers transmit more radiation
than thick layers. The usual practical problem almost always involves more than two heat-
transfer surfaces, as in the simple example given above. As a result, the transmissivities
between the various heat-transfer surfaces can be quite different, depending on their geo-
metric orientation. Since the temperature of the gas will vary, the transmissive and emissive
properties will vary with their location in the gas. One way of handling this situation is
to divide the gas body into layers and set up a radiation network accordingly, letting the
potentials of the various nodes “float,” and thus arriving at the gas-temperature distribution.
Even with this procedure, an iterative method must eventually be employed because the
radiation properties of the gas are functions of the unknown “floating potentials.” Naturally,
if the temperature of the gas is uniform, the solution is much easier.

We shall not present the solution of a complex gas-radiation problem since the tedious
effort required for such a solution is beyond the scope of our present discussion; however,
it is worthwhile to analyze a two-layer transmitting system in order to indicate the general
scheme of reasoning that might be applied to more complex problems.

Consider the physical situation shown in Figure 8-40. Two radiating and absorbing
surfaces are separated by two layers of transmitting and absorbing media. These two layers
might represent two sheets of transparent media, such as glass, or they might represent
the division of a separating gas into two parts for purposes of analysis. We designate the
two transmitting and absorbing layers with the subscripts m and n. The energy exchange
between surface 1 and m is given by

ql—mZAlFlmemJI_Am}"mlemEmeM [8-58]
1/ A1 Fimem
and that between surface 2 and n is
JZ - Ebn
Q-n=A1Fyer — ApFpe Epp=——— [8-59]

I/AZFZnGn
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Figure 8-41 | Network
element for transmitted
radiation between planes.
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Figure 8-42 | Network
element for transmitted
radiation for medium # to
plane 1.
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8-10 Radiation Network for an Absorbing and Transmitting Medium

Figure 8-40 | Radiation system
consisting of two
transmitting layers
between two planes.

q/A

|
i

Of that energy leaving surface 1, the amount arriving at surface 2 is

qro2=A1F 1 tnte = A1 F12J1(1 — )1 —€y)

and of that energy leaving surface 2, the amount arriving at surface 1 is

Gr—1 =A2l01 17T = At 12r(1 — €,)(1 — &)

so that the net energy exchange by transmission between surfaces 1 and 2 is

Ji—D
ql_ztransmined:AlFlz(l_GWL)(I_GYL)(Jl_JZ): 1/A1F12(1—€ )(1—6 ) [8'60]
m n

and the network element representing this transmission is shown in Figure 8-41. Of that
energy leaving surface 1, the amount that is absorbed in » is

ql-n=A1F1 1 Ten = A1, 1 (1 — €€y

Also,
Gn—-1=AnFy1 Iyt = AnFn1€n Epn (1 — €4)
since
Jn=€nEpy
The net exchange between surface 1 and # is therefore
J1—Ep
Q1 =npes = A1F1n (1 = ) en(J1 — Epn) = . [8-61]

1/AlFlrL(l - €m)€n

and the network element representing this situation is shown in Figure 8-42. In like manner,
the net exchange between surface 2 and m is

D — Epy,
I/AZFZm(I — €n)€m

Of that radiation leaving m, the amount absorbed in # is

qz_mnet =

Gm—n = I A Frunttn = Ay Frun€m€n Epm

and
Gn-m =AnFumencmEpy
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Figure 8-44 | Total radiation network for system of Figure 8-40.

1
AIFIZ(l - Sm)(l _Sn) JZ Eb
MV

1
AZFZm(l - Sn)gm

£y Ji

1
AlFln(l - Sm)gn /

m* mn<m<n

so that the net energy exchange between m and n is
Ebm - Ebn

S L [8-62]
1/ Ay Funemen

Gm—nnet = Am Frun€m€n(Epm — Ebn)
and the network element representing this energy transfer is given in Figure 8-43.

The final network for the entire heat-transfer process is shown in Figure 8-44, with
the surface resistances added. If the two transmitting layers m and »n are maintained at
given temperatures, the solution to the network is relatively easy to obtain because only
two unknown potentials J; and J, need be determined to establish the various heat-flow
quantities. In this case the two transmitting layers will either absorb or lose a certain quantity
of energy, depending on the temperature at which they are maintained.

When no net energy is delivered to the transmitting layers, nodes £}, and £}, must
be left “floating” in the analysis; and for this particular system four nodal equations would
be required for a solution of the problem.

Network for Gas Radiation Between

Panllel Pltes

Two large parallel planes are at 71 =800 K, €1 = 0.3, 7, =400 K, ¢ = 0.7 and are separated by a
gray gas having € = 0.2, 7o = 0.8. Calculate the heat-transfer rate between the two planes and the
temperature of the gas using a radiation network. Compare with the heat transfer without presence
of the gas.

B Solution
The network shown in Figure 8-39 applies to this problem. All the shape factors are unity for large
planes and the various resistors can be computed on a unit-area basis as

l—e; 07 1 1
=L —2333 - —125
g 03 Fio(l—€g) 1-02
l—ey 03 1 1 1
2 _ 22 _0.4286 - - —50
€ 0.7 Figeg Frgeg 0.2

Ep, =0T} =23220 Wm?  Ep, =0Ty = 1451 W/m?

425

Figure 8-43 | Network
element for radiation
exchange between two
transparent layers.

Ebm Ebn
o MV O
_

Aman Em€n


http://www.abbyy.com/buy
http://www.abbyy.com/buy

426

8-11 Radiation Exchange with Specular Surfaces

The equivalent resistance of the center “triangle” is
1

R= =1.1111
1/1.25+1/(5.0 + 5.0)

The total heat transfer is then
g Ep —Ep 23,200 — 1451

q_ - = 5616 W/m?
A SR 2333 + 1.111 + 0.4286

If there were no gas present the heat transfer would be given by Equation (8-42):

g 23,200 — 1451

2
4 _ 22T _sg1 W,
A 1/03+1/07—1 /m

The radiosities may be computed from

q €1 €2 2
—=(Ey, —J —— |=(hL-FE —=— ] =5616 W
- =By, 1><1_61> (1 b2)<1 62) 5616 W/m

which gives J; = 10,096 W/m? and J, = 3858 W/m?>. For the network Ep, is just the mean of
these values

1
Epg= 5(10,096 +3858)=6977= ng

so that the temperature of the gas is
T,=5923K

8-11 | RADIATION EXCHANGE
WITH SPECULAR SURFACES

All the preceding discussions have considered radiation exchange between diffuse surfaces.
In fact, the radiation shape factors defined by Equation (8-21) hold only for diffuse radiation
because the radiation was assumed to have no preferred direction in the derivation of this
relation. In this section we extend the analysis to take into account some simple geometries
containing surfaces that may have a specular type of reflection. No real surface is com-
pletely diffuse or completely specular. We shall assume, however, that all the surfaces to be
considered emit radiation diffusely but that they may reflect radiation partly in a specular
manner and partly in a diffuse manner. We therefore take the reflectivity to be the sum of a
specular component and a diffuse component:

p=ps~+pPD [8-63]
It is still assumed that Kirchhoff’s identity applies so that

e=u=1—p [8-64]
The net heat lost by a surface is the difference between the energy emitted and absorbed:

q=A(cEp —aG) [8-65]

We define the diffuse radiosity Jp as the total diffuse energy leaving the surface per unit
area and per unit time, or

Jp=€Ep+ ppG [8-66]
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Solving for the irradiation G from Equation (8-66) and inserting in Equation (8-65)
gives

cA
qg=—IEw(e+ pp)— Jp]
PD

or, written in a different form,

o Er=Ip/0=p)
po/leAT = p))]

where 1 — p; has been substituted for € 4+ pp. It is easy to see that Equation (8-67) may be
represented with the network element shown in Figure 8-45. A quick inspection will show
that this network element reduces to that in Figure 8-24 for the case of a surface that reflects
in only a diffuse manner (i.e., for p; =0).

Now let us compute the radiation exchange between two specular-diffuse surfaces.
For the moment, we assume that the surfaces are oriented as shown in Figure 8-46. In this
arrangement any diffuse radiation leaving surface 1 that is specularly reflected by 2 will not
be reflected directly back to 1. This is an important point, for in eliminating such reflections
we are considering only the direct diffuse exchange between the two surfaces. In subsequent
paragraphs we shall show how the specular reflections must be analyzed. For the surfaces
in Figure 8-46 the diffuse exchanges are given by

Q12 =J1pA1F12(1 — p2y) [8-68]
q2—-1="DpAr2F>1(1 — p15) [8-69]

[8-67]

Equation (8-68) expresses the diffuse radiation leaving 1 that arrives at 2 and that may con-
tribute to a diffuse radiosity of surface 2. The factor 1 — p; represents the fraction absorbed
plus the fraction reflected diffusely. The inclusion of this factor is important because we are
considering only diffuse direct exchange, and thus must leave out the specular-reflection
contribution for now. The net exchange is given by the difference between Equations (8-68)
and (8-69), according to Reference 21.

_ Jip/(A —p15) — ap/(1 — pag)
2= A (= pio(L— poy)]

The network element representing Equation (8-70) is shown in Figure §-47.

To analyze specular reflections we utilize a technique presented in References 12 and
13. Consider the enclosure with four long surfaces shown in Figure 8-48. Surfaces 1, 2, and
4 reflect diffusely, while surface 3 has both a specular and a diffuse component of reflection.
The dashed lines represent mirror images of the surfaces 1, 2, and 4 in surface 3. (A specular
reflection produces a mirror image.) The nomenclature 2 (3) designates the mirror image
of surface 2 in mirror 3.

Now consider the radiation leaving 2 that arrives at 1. There is a direct diffuse radiation
of

[8-70]

di

(@2 Diimone = A2 Fa1 [8-71]
Part of the diffuse radiation from 2 is specularly reflected in 3 and strikes 1. This specularly
reflected radiation acts like diffise energy coming from the image surface 2 (3). Thus we

may write
specular

(225 D efiected = T2 A23) F2(3)1 035 [8-72]

The radiation shape factor f7(3); is the one between surface 2 (3) and surface 1. The
reflectivity p3; is inserted because only this fraction of the radiation gets to 1. Of course,

427
Figure 8-45 | Network
element representing
Equation (8-67).
Jp
Eb 1 —Ps
qg—> O——ANW——0
__Pp
€A1~ py)
Figure 8-46
Figure 8-47 | Network
element representing
Equation (8-70).
Jip o
1 —Pis 1 — P
qip—> O———MWWN—0

A1Fp(1 = p)L =poy)

Figure 8-48 | System with one
specular-diffuse surface.
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1,2.,4 Diffuse reflecting
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Figure 8-49 | Network
element for Equation (8-75).
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8-11 Radiation Exchange with Specular Surfaces

Ap = Ap(3y. We now have

Gr—1=DA2(F21 + p3sF23)1) [8-73]

Similar reasoning leads to

g2 =J1A1(F12 + p3:813)2) [8-74]

Combining Equations (8-73) and (8-74) and making use of the reciprocity relation A F', =
Ay Fy1 gives

J—Jh
J[A1(F12 + p3sF13)2)]

2= [8-75]

The network element represented by Equation (8-75) is shown in Figure 8-49.

Analogous network elements may be developed for radiation between the other surfaces
in Figure 8-48, so that the final complete network becomes as shown in Figure 8-50. It is
to be noted that the elements connecting to /3 p are simple modifications of the one shown
in Figure 8-47 since p1; = p2; = p4s = 0. An interesting observation can be made about this
network for the case where p3p = 0. In this instance surface 3 is completely specular and

J3p=e3Ep,

so that we are left with only three unknowns, .J1, .J, and J4, when surface 3 is completely
specular-reflecting.

Now let us complicate the problem a step further by letting the enclosure have two
specular-diffuse surfaces, as shown in Figure 8-51. In this case multiple images may be
formed as shown. Surface 1 (3, 2) represents the image of 1 after it is viewed first through 3
and then through 2. In other words, it is the image of surface 1 (3) in mirror 2. At the same
location is surface 1 (2, 3), which is the image of surface 1 (2) in mirror 3.

This problem is complicated because multiple specular reflections must be considered.
Consider the exchange between surfaces | and 4. Diffuse energy leaving 1 can arrive at 4 in

Figure 8-50 | Complete radiation network for system in Figure 8-48.

1

£y, Jy Ay (Fiatp3gFiay) J Ey,
o MV C MV 0 N °]
1-¢ 1-¢,
= 4 1
.4 _— £,4,
i Ay (Fi47+ p3gFi3ya)
1 § § 1
A Fi3(1-p3g) Ay (Fog P3gFoaya)
R S
T Ay Fy3(1=p3y)
Eb3 1 ~P3s J4 E’74
o AAAY o} A% O
P3p 1 1-¢g,
£343(1-p3y) AgFy3(1—p3y) €444
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Figure 8-51 | System with two specular-diffuse

surfaces.

:’"4_(3_)_ 4

113) 3 1

L_EQ_)_ 2 1,4 Diffuse reflecting

: | : 2,3  Specular-diffuse

13,2123 3@1Q) reflecting
4@y 1 4
4(3,2)

five possible ways:
direct: JIA1F14
reflection in 2 only: J1A1F1(2)4 025
reflection in 3 only: J1A1F1(3)4035 [8-76]
reflection first in 2 and then in 3: J1A1 035025 F102,3)4
reflection first in 3 and then in 2: J1A102:035F1(3,2)4

The last shape factor, /(3 2)4, is zero because surface 1 (3, 2) cannot see surface 4 when
looking through mirror 2. On the other hand, F1(2 34 is not zero because surface 1 (2, 3)
can see surface 4 when looking through mirror 3. The sum of the above terms is given as

Q4= J1AI(F14+ p2s 1034 + 035 F13)4 + 03502:F'12,3)4) [8-77]
In a similar manner,
Qa1 = J4Ag(Fa1 + p2s Fay1 + p3sFa)1 + 0350243, 2)1) [8-78]

Subtracting these two equations and applying the usual reciprocity relations gives the net-
work element shown in Figure 8-52.

Now consider the diffuse exchange between surfaces 1 and 3. Of the energy leaving 1,
the amount which contributes to the diffuse radiosity of surface 3 is

q1—3 =J1A1F13(1 — p35) + 1A 1025 F12)3(1 — p3s) [8-79]

The first term represents the direct exchange, and the second term represents the exchange
after one specular reflection in mirror 2. As before, the factor 1 — p3; is included to leave
out of consideration the specular reflection from 3. This reflection, of course, is taken into
account in other terms. The diffitse energy going from 3 to 1 is

@31 ="hpA3F31 + J3pA3 02 F300)1 [8-80]

The first term is the direct radiation, and the second term is that which is specularly reflected
in mirror 2. Combining Equations (8-79) and (8-80) gives the network element shown in
Figure 8-53.

Figure 8-52 | Network element representing
exchange between surfaces 1
and 4 of Figure 8-51.
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8-12 Radiation Exchange with Transmitting, Reflecting, and Absorbing Media

Figure 8-53 | Network element
representing exchange
between surfaces 1
and 3 of Figure 8-51.
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Figure 8-54 | Complete radiation network for system in Figure 8-51.
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The above two elements are typical for the enclosure of Figure 8-51 and the other
elements may be constructed by analogy. Thus the final complete network is given in
Figure 8-54.

If both surfaces 2 and 3 are pure specular reflectors, that is,

p2p=p3p=0
we have
Jp=erEp, J3p = €3 Ep,

and the network involves only two unknowns, /1 and J4, under these circumstances.

We could complicate the calculation further by installing the specular surfaces opposite
each other. In this case there would be an infinite number of images, and a series solution
would have to be obtained; however, the series for such problems usually converge rather
rapidly. The reader should consult Reference 13 for further information on this aspect of
radiation exchange between specular surfaces.

8-12 | RADIATION EXCHANGE WITH
TRANSMITTING, REFLECTING,
AND ABSORBING MEDIA

We now consider a simple extension of the presentations in Sections 8-10 and 8-11 to
analyze a medium where reflection, transmission, and absorption modes are all important.
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As in Section §-10, we shall analyze a system consisting of two parallel diffuse planes with
a medium in between that may absorb, transmit, and reflect radiation. For generality we
assume that the surface of the transmitting medium may have both a specular and a diffuse
component of reflection. The system is shown in Figure 8-55.

For the transmitting medium m we have

U+ OmD + Oms + Tm =1 [8-81]
Also
€m = U
The diffuse radiosity of a particular surface of the medium is defined by

JuD = €mEpm + pmpG [8-82]

where G is the irradiation on the particular surface. Note that ./, p no longer represents the
total diffuse energy leaving a surface. Now it represents only emission and diffuse reflection.
The transmitted energy will be analyzed with additional terms. As before, the heat exchange
is written

qg=A(cEp — aG) [8-83]

Solving for G from Equation (8-82) and making use of Equation (8-81) gives

g= Epp — Jup/ (1 — Ty — Pius)
10;11D/[€;71Am(1 — Tm — Ioms)]

[8-84]

The network element representing Equation (8-84) is shown in Figure 8-56. This element is
quite similar to the one shown in Figure 8-45, except that here we must take the transmissivity
into account.
The transmitted heat exchange between surfaces 1 and 2 is the same as in Section 8-10;
that is,
Ji—D

=12 [8-85]
1/A1F12mm

q

The heat exchange between surface 1 and m is computed in the following way. Of

that energy leaving surface 1, the amount that arrives at s and contributes to the diffuse
radiosity of m is

qiom = J1IALFim (1 — T — Pms) [8-86]
The diffuse energy leaving m that arrives at 1 is
Gm—1= JuDAm F1 [8-87]

Subtracting (8-87) from (8-86) and using the reciprocity relation
Al Flm = Am le

gives
_ Jl - mD/(l_Tm_/Oms)
L/[A1 P 1 (] — Ty — pms)]

The network element corresponding to Equation (8-89) is quite similar to the one shown
in Figure 8-50. An equation similar to Equation (8-89) can be written for the radiation
exchange between surface 2 and m. Finally, the complete network may be drawn as in
Figure 8-57. It is to be noted that J,, p represents the diffuse radiosity of the left side of m,
while J/ ,, represents the diffuse radiosity of the right side of .

qim [8-88]
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Figure 8-55 | Physical
system for analysis of
transmitting and
reflecting layers.
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Figure 8-57 | Complete radiation network for system in Figure 8-55.
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Ifm is maintained at a fixed temperature, then /| and ./, must be obtained as a solution
to nodal equations for the network. On the other hand, if no net energy is delivered to m,
then Epy, is a floating node, and the network reduces to a simple series-parallel arrangement.
In this latter case the temperature of m must be obtained by solving the network for Ej,,.

We may extend the analysis a few steps further by distinguishing between specular
and diffuse transmission. A specular transmission is one where the incident radiation goes
“straight through” the material, while a diffuse transmission is encountered when the inci-
dent radiation is scattered in passing through the material, so that it emerges from the other
side with a random spatial orientation. As with reflected energy, the assumption is made
that the transmissivity may be represented with a specular and a diffuse component:

T=T;+1p [8-89]

The diffuse radiosity is still defined as in Equation (8-82), and the net energy exchange
with a transmitting surface is given by Equation (8-84). The analysis of transmitted energy
exchange with other surfaces must be handled somewhat differently, however.

Consider, for example, the arrangement in Figure 8-58. The two diffuse opaque surfaces
are separated by a specular-diffuse transmitting and reflecting plane. For this example all
planes are assumed to be infinite in extent. The specular-transmitted exchange between
surfaces 1 and 3 may be calculated immediately with

J1—J3
(g 13)specular—transmitted = m [8-90]
The diffuse-transmitted exchange between 1 and 3 is a bit more complicated. The energy
leaving 1 that is transmitted diffusely through 2 is

J1A1Fiamap
Of this amount transmitted through 2, the amount that arrives at 3 is
(413 )diffuse—transmitted = /141 F1272D 123 [8-91]
Similarly, the amount leaving 3 that is diffusely transmitted to 1 is

(g31) diffuse—transmitted = J3A43F3272p 21 [8-92]
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Figure 8-58 | Radiation network for infinite parallel planes separated by a
transmitting specular-diffuse plane.

1,3 Opaque and diffuse
2 Transmitting and
specular diffuse

1 2 3
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A1 F1p (1= 1= pyy) A3F3(1=75=po)
E
J b7 4
Lo A o- AN J2p
1=7= Py Pap Pap 1= —pa

€4, (1= 1—pyy) €24y (1 - 1= pyy)

Now, by making use of the reciprocity relations, A1 F1p = A2 Fo1 and A3 F3p = A F3, sub-
traction of Equation (8-92) from Equation (8-91) gives
J1— A

(@13 )net diffuse—transmitted = m [8-93]

Apparent Emissivity of Cavity with Transparent Cover

Using similar reasoning to that which enabled us to arrive at a relation for the apparent
emissivity of a cavity in Equation (8-47), we may consider the effect a transparent covering
may have on €,. The covered cavity is indicated in Figure 8-59 with the characteristics of
the cover described by

e2+m+1n=10

The corresponding radiation network for this cavity exchanging heat with a large surround-
ing at T is shown in Figure 8-60. As in Equation (8-47), we define the apparent emissivity

Figure 8-59 | Cavity with
semitransparent covering.

” P A, = area of

opening

Semitransparent
o~ 1 cover

&+t n+p,=1.0
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Figure 8-60 | Radiation network for cavity with partially transparent cover.
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of the cavity in terms of the net radiation exchange with the surroundings as

q=¢aA2(Ep1 — Epy) [8-94]

The shape factors in the radiation network are determined as

=1, AlFp=AF1 =4, Fp=1, AF;3=A4A;

But, F1p = F13 so that A1 F13 = A>. The heat exchange is determined from the network as
q=(Ep1 — Eps)/ ER [8-95]
where X R is the equivalent resistance for the series parallel network. Performing the nec-

essary algebraic manipulation to evaluate 2R, and equating the heat transfers in (8-95) and
(8-94) gives the relation for the apparent emissivity as

€a/(m2+€2/2)=K/[(A2/AD( —€1) + K] [8-96]
where
K=¢1/(1a+e/2) [8-964]
We may note the following behavior for three limiting conditions.

1. For 75 — 1, we have an open cavity and the behavior approaches that described by
Equation (8-47).

2. For 7y — 1 and A; = A1, we have neither cavity nor cover and €, — €].

3. For A; > A, we have a very large cavity with €, — 1, + €, /2.

The behavior of €, is displayed graphically in Figure 8-61.

Cavity with Transparent Cover

The rectangular cavity between the fins of Example 8-9 has €] = 0.5 along with a cover placed
over the opening with the properties

=05 pp=01 =04

Calculate the apparent emissivity of the covered opening.
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Figure 8-61 | Apparent emissivity of cavity with partially transparent cover.
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H Solution

Per unit depth in the z direction we have A} =225+ 25+ 10= 60 and A = 10. We may evaluate
K from Equation (8-96a)

K=0.5/(05404/2)=5/7
The value of ¢, is then computed from Equation (8-96) as

€q=1(0.540.4/2)(5/7)/[(10/60)(1 — 0.5) +5/7] = 0.6269

If there were no cover present, the value of €, would be given by Equation (8-47) as

€q=(0.5)(60)/[104 (0.5)(60 — 10)] =0.8571

Obviously, the presence of the cover reduces the heat transfer for values of 7 < 1.0.

Transmitting and Reflecting System

for Furnace Opening EXAMPLE 8-14

A furnace at 1000°C has a small opening in the side that is covered with a quartz window having
the following properties:

O<i<4pum =09 =01 p=0
4<i<o0 =0 e=08 p=02
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The interior of the furnace may be treated as a blackbody. Calculate the radiation lost through the
quartz window to a room at 30°C. Diffuse surface behavior is assumed.

Figure Example 8-14

Ep o AN o Ep,
_1
AF137,
I S e
A F,(0-7 A3F3(1- 1))
Furnace Window @ 1Fal 2) 2 :
s
@ Room @ 7, Eb2 Js
-z o, NV O MWV O -z
2 2
‘ ‘ P2 P2
£,4,(1-7) £4,(1-7)

B Solution

The diagram for this problem is shown in Figure Example 8-14. Because the room is large it may
be treated as a blackbody also. We shall analyze the problem by calculating the heat transfer for
each wavelength band and then adding them together to obtain the total. The network for each
band is a modification of Figure 8-57, as shown here for black furnace and room. We shall make
the calculation for unit area; then

Al=A=A3=1.0
Fi,=10 Fi3=1.0 I3, =1.0

The total emissive powers are
Ep, = (5.669 x 1078)(1273)* = 1.4887 x 10° W/m?
Epy = (5.669 x 1078)(303)* = 477.8 W/m?

To determine the fraction of radiation in each wavelength band, we calculate

ATy = (4)(1273) = 5092 um - K
AT3 = (4)(303) = 1212 um - K

Consulting Table 8-1, we find
Ep (0 —4 pum) = 0.6450Ep, = 96,021 W/m2
Ep,(0—4 pum) = 0.00235Ep,, =1.123 W/m?
Ep (4 —00) = (1 -0.6450)Ep = 52,849 W/m2
Ep, (4 —00) = (1 -0.00235)Ep, =476.7 W/m?

We now apply these numbers to the network for the two wavelength bands, with unit areas.
0<i <4 pm band:

1 1 1

1 1

Fizmp 0.9 Fyp(l—1) 0.1 Fpp(—mn)
_ P _,
el —12)
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The net heat transfer from the network is then
_ Ep —Ep, 96,021 —1.123
 Begmy  LIBAG

=91219 W/m>  0<i<4pum

4 pm < A < 400 band:

1 1 1
=00 = =1.0

Fism Fp(l—1n) Fp(l-1)
0.2

oz =0.25
e(l—1) 0.8

The net heat transfer from the network is
Ep, — Ep, 52,849 — 476.7 2
= = =20,949 W, 4 <A
1= 170251025+ 1 25 /m e

The total heat loss is then

Groal = 91,219+ 20,949 = 112,168 W/m?  [35,560 Btu/h - ft’]
With no window at all, the heat transfer would have been the difference in blackbody emissive
powers,

q— Ep, — Ep, = 1.4887 x 10° —477.8 = 1.4839 x 10 W/m?  [47,040 Btu/h - ft°]

8-13 | FORMULATION FOR NUMERICAL
SOLUTION

The network method that we have used to analyze radiation problems is an effective artifice
for visualizing radiant exchange between surfaces. For simple problems that do not involve
too many surfaces, the network method affords a solution that can be obtained quite easily.
When many heat-transfer surfaces are involved, it is to our advantage to formalize the
procedure for writing the nodal equations. For this procedure we consider only opaque, gray,
diffuse surfaces. The reader should consult Reference 10 for information on transmitting
and specular surfaces. The radiant-energy balance on a particular opaque surface can be
written

Net heat lost by surface = energy emitted — energy absorbed

or on a unit-area basis with the usual gray-body assumptions,

zzeEb—aG
A

Considering the ith surface, the total irradiation is the sum of all irradiations & ; from the
other j surfaces. Thus, for ¢ = «,

%:ei By - G, [8-97]
1 .
J

But, the irradiations can be expressed by

Al =GjA; [8-98]
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Figure 8-62 | Radiation
network balance on node J;.

£.
s B IR =0

8-13 Formulation for Numerical Solution

From reciprocity, we have

so that we can combine the equations to give

% =¢ | Ep, — E Fijd; [8-99]
i -
J

The heat transfer at each surface is then evaluated in terms of the radiosities J/;. These
parameters are obtained by recalling that the heat transfer can also be expressed as

@i _

=i Gi=Ji- > Fy; [8-100]
i X
J
Combining Equations (8-99) and (8-100) gives
Ji— (=&)Y Fiyli=eEp, [8-101]

J

In the equations above it must be noted that the summations must be performed over all
surfaces in the enclosure. For a three-surface enclosure, with i = 1, the summation would
then become
Z FiJi=Fuh+Foh+Fiz/;
J
Of course, if surface 1 is convex, £1; =0 and some simplification could be effected.

The nodal equations for the radiosities may also be derived from the nodes in the
network formulation, as indicated in Figure 8-62. At each J; node an energy balance gives

€i

[8-102]

1—6,‘

(Ep;, — Ji) + Z Fi;(J;i—J;)=0
j

Again, an equation will be obtained for each J; that is entirely equivalent to Equation
(8-101). Once all the equations are written out they can be expressed in the matrix form

[Al[/]=[C] [8-103]
where
Ji Cy
ail ap --- a4 J G,
[A]=|a21 a22 --- @i [J1=1| . [Cl=| .
ail 42 dji J; éi
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so that the unknown radiosities are written as
J1=b1Cr+b12Cr+ - -+ +b;C;

Ji=bi1C1+bppCo+- - +b;C;

Standard computer subroutines are available to obtain the inverse matrix and perform the
final calculations of the J;. The heat-transfer rate at each ith surface having an area A; is
then calculated from

G __ci

= Ep, — J; 8-104
Ai 1—6,‘( b; z) [ ]

In formulating the nodal equations one must take note of the consequence of
Equation (8-104) for an insulated surface (i.e., one for which there is no net heat trans-
fer). Equation (8-110) thus requires that

Ep, = J; for insulated surface [8-105]

From a practical point of view, a Gauss-Seidel iteration scheme may be the most
efficient numerical procedure to follow in solving the set of equations for the J;’s. For the
Gauss-Seidel scheme the above equations must be organized in explicit form for J;. Solving
for J; in Equation (8-101) and breaking out the F;; term gives

Ti=(—e)) Fyjlj+ (1 —e)Fili+€Ep
J#i
1

= | (1—¢ Fi;J; i Ep. 8-106
1 — Fy(l—e) ( €1)2: ijdj+e€bp [ ]

J#

i

For a surface in radiant equilibrium, ¢;/A; =0 and J; = E;, may be substituted into
Equation (8-106) to give
1

1 -F; Py

Ji= S Fyl; o for % =0 [8-107]

1

If the problem formulation is to include a specified heat flux ¢;/ A; at one of the ith surfaces,
we can solve for £, from Equation (8-104) to give

: 1—¢igqi
Ep=Ji+ — [8-108]
€ A,‘
Substituting this value into Equation (8-101) and then solving for J; give
PR | o) S [8-109]
1—Fy A;

In many cases the radiation solution must take conduction and convection into account at
the ith surface. The appropriate energy balance is then, for steady state,

Heat conducted into surface + heat convected into surface
=radiant heat /ost from surface

or
qcond,i T Gconv,i = i rad [8-110]
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This energy balance may then be used in conjunction with Equation (8-109) to obtain the
proper nodal equation for J;.

While the above formulations may appear rather cumbersome at first glance they are
easily solved by computer, with either matrix inversion or iteration. For many practical
radiation problems, the number of equations is small and programmable calculators may be
employed for solution. In most cases one will not know the surface properties (¢;) within
better than a few percent, so an iterative solution need not be carried out to unreasonable
limits of precision.

In summary, we outline the computational procedure to be followed for numerical
solution of radiation heat transfer between diffuse, gray surfaces.

1. Evaluate F;; and ¢; for all surfaces.
2. Evaluate L, for all surfaces with specified temperature.
3. Formulate nodal equations for the .J; using:
a. Equation (8-106) for surfaces with specified 7;.
b. Equation (8-107) for surfaces in radiant balance (.J; = Ey, ).
c. Equation (8-109) for surfaces with specified ¢;.
4. Solve the equations for the J;’s.
5. Compute the ¢;’s and 1;’s, using:
a. gq; from Equation (8-104) for gray surfaces and Equation (8-99) for black surfaces
with specified T;.
b. 1; from J; = Ep, = 01;4 for surfaces in radiant balance.
c. T; using Ej, obtained from Equation (8-108) for surfaces with specified ¢;.

Of course, the above equations may be put in the following form if direct matrix
inversion is preferred over an iteration scheme:

Jill = £ (1 —e)] = (1 —¢) Z FijJj=¢Ep, [8-1064]
J#
J(1—Fi) — Z FijJ;=0 [8-1074]
J#i
, , qi
Ji(l—f'ii)—ZﬁiijZXli [8-109a]

J#

Computation of the surface temperatures and heat transfers is the same as in step 5
above.

Insulated Surfaces and Surfaces with Large Areas

We have seen in the application of the network method that an insulated surface acts as
if it were perfectly reflective with € — 0, and thus J = E}. We may note that if one takes
€ =0 in Equation (8-106a), Equation (8-107a) will result. When the system of equations
is solved for the J’s, one may thus obtain the temperature of an insulated surface from
T = (Ep/o)"/* = (J/o)'/* When a surface with a very large area compared to other surfaces
inthe system is involved, it behaves like a blackbody with € — 1.0 because of its low surface
resistance. If such a large surface is concave, it will behave as if /j; — 1.0 and all the /;; — 0.
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Numerical Solution for Enclosure EXAMPLE 8-15

The geometry of Example 8-5 is used for radiant exchange with a large enclosure. Surface 2 is
diffuse with € = 0.5 while surface 1 is perfectly insulated. 75 = 1000 K, and 75 = 300 K. Calculate
the heat lost to the large room per unit length of surface 2, using the numerical formulation. Also
calculate the temperature of the insulated surface.

B Solution
For unit length we have:

Ep, =0Ty =5.669 x 10*  Ej, =oT§ =459
A1 =4%)(02)=0.8m%/m Ay =7(0.60)/2=0.94 m*/m
We will use the numerical formulation. We find from Example 8-5, using the nomencla-
ture of the figure, F11=0.314, Fip=0.425, F13=0.261, F1=0.5 =0, F»3=0.5,
31— 0, F3p — 0, F33 — 1.0. We now write the equations. Surface 1 is insulated so we use
Equation (8-107a):
J1(1—-0.314) — 0.425/, —0.261 /3 =0
Surface 2 is constant temperature so we use Equation (8-106a):
Jr(1—0) — (1 —0.5)[0.5J; + 0.573] = (0.5)(56,690)
Because surface 3 is so large,
I3 = Ep, =459 W/m?
Rearranging the equations gives

0.686J; —0.425J1, = 119.8
—0.25J1 + Jp = 28,460

which have the solutions

Ji = 21,070 W/m?
Jp = 33,727 W/m?>

The heat transfer is thus

Ep, — 1 56,690 — 33,727
_ _ = 18,370 W/m length
1= 1 T (1-05/(05)@)02) /m leng
€Ay

Because surface 1 is insulated, /1 = Ep,, and we could calculate the temperature as

1/4

21

T = <i> =781 K
5.669 x 10—8

For this problem a solution using the network method might be simpler because it involves only
a simple series—parallel circuit.

Numerical Solutions for Parallel Plates

Two 1-m-square surfaces are separated by a distance of 1 m with 77 =1000 K, 7> =400 K,
€1 =0.8,ep = 0.5. Obtain the numerical solutions for this system when (@) the plates are surrounded
by alarge room at 300 K and (b) the surfaces are connected by a re-radiating wall perfectly insulated
on its outer surface. Part (a) of this example is identical in principle to the problem that is solved
by the network method in Example 8-6.
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B Solution
Consulting Figure 8-12, we obtain

Fip=02  F =02 F=0=Fp
F13=0.8 F»3=0.8
A;=Ay=1m?
(surface 3 is the surroundings or insulated surface). For part (a)
Ep, = 0T} =56.69 kW/m?> [17,970 Btu/h - ft%]
Ep, = 013 =1.451 kW/m?
Epy = 0Ty =0.459 kW/m?

Because A3 — 00, F31 and F3) must approach zero since A1 F13 = A3 F31 and Ay Fo3 = A3 F3).
The nodal equations are written in the form of Equation (8-107):

surface 1: J1 = —e)(Frudy + Fiph + Fi33) =€ Ep,
surface 2: = (1 =) (Fa1J1 + FaJy + F3d3) =€ B, la]
surface 3: J3— (1 —e3)(F31J1 + F3pJy + F33J3) =€3Ep,;

Because /31 and I3 approach zero, F33 must be 1.0.
Inserting the numerical values for the various terms, we have

J1 — (1= 0.8)[(0) ) + (0.2).]> + (0.8)J3] = (0.8)(56.69)
T — (1 —0.5)[(0.2)J; + (0)J5 + (0.8).J3] = (0.5)(1.451) (6]
3= (1= e3)[(0)J] + (0).J5 + (1.0)3] = €3(0.459)

The third equation yields J3 =0.459 kW/m2~K. Because the room is so large it acts like a
hohlraum, or blackbody. But it does not have zero heat transfer.
Finally, the equations are written in compact form as

Jy —0.044; — 0.16J3 = 45.352
—0.1J1 + J, —0.4J3 =0.7255 [e]
J3 =0.459
Of course, there only remain two unknowns, Jq and .J, in this set.

For part (b), Az for the enclosing wall is 4.0 m2, and we set J3 = Ep, because surface 3 is
insulated. From reciprocity we have

(1.0)(0.8)
AlFi3=4A3F31 F31= a0 =0.2

(1.0)(0.8)
AyFp3=A3F3 F3p= Y —— 0.2

Then from F31 + F3 + F33 = 1.0 we have £33 =0.6.
The set of equations in (@) still applies, so we insert the numerical values to obtain
(with J3 = Ep,)
Ji— (1 =0.8)[(0)J1 +(0.2).]> + (0.8)J3] = (0.8)(56.69)
T — (1 =0.5)[(0.2)J; + (0)J> + (0.8).J3] = (0.5)(1.451) [d]
J3—(1—€3)[(0.2)J1 +(0.2) L, + (0.6) 3] =€3 /3

Notice that the third equation of set () can be written as

J(1—€3)— (1= e3)[(0.2)J] + (0.2).J5 + (0.6)J3] =0
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so that the 1 — €3 term drops out, and we obtain our final set of equations as
J1—0.04/, —0.16J3 =45.352
—0.1J1 + J, —0.4J3 =0.7255 [e]
—02J7-02/,+04/3=0

To obtain the heat transfers the set of equations is first solved for the radiosities. For set (c),
J] = 45.644 kW/m?
I = 5.474 kW/m?
J3 = 0.459 kW/m?

The heat transfers are obtained from Equation (8-104):

A 1.0)(0.8
g1=1 L (B, — Jp) = (1)—(08)(56.69 —45.644) =44.184 kW [150,760 Btu/h]
—€] —0.
A 1.0)(0.5
a@= lzi(Eb2 — )= (1)—(05)(1.451 —5.474)=—4.023kW [—13,730 Btu/h]
—€ —0.

The net heat absorbed by the room is the algebraic sum of ¢ and g or
43, absorbed = 44.184 —4.023 =40.161 kW [137,030 Btu/h]

For part (b) the solutions to set (e) are

J1=51.956kW/m?  J,=20.390 kW/m?  J3=236.173 kW/m?

The heat transfers are

A 1.0)(0.8

a1= (g, - )= ALOOB) 56 60— 51.965) = 18.936 kW
1 —¢p 1-0.8
A 1.0)(0.5

g =22 (B, — )= ADOS) | 451 -20390)= —18.936 kW
1—¢e 1-0.5

Of course, these heat transfers should be equal in magnitude with opposite sign because the
insulated wall exchanges no heat. The temperature of the insulated wall is obtained from

Iy = Epy =0Ty =36.173 kW/m?

and
T3 =894K [621°C, 1150°F]

Radiation from a Hole with Variable Radiosity

To further illustrate the radiation formulation for numerical solution we consider the circular hole
2 cm in diameter and 3 cm deep, as shown in Figure Example 8-17. The hole is machined in
a large block of metal, which is maintained at 1000°C and has a surface emissivity of 0.6. The
temperature of the large surrounding room is 20°C. A simple approach to this problem would
assume the radiosity uniform over the entire heated internal surface. In reality, the radiosity varies
over the surface, and we break it into segments 1 (bottom of the hole), 2, 3, and 4 (sides of the
hole) for analysis.

The large room acts like a blackbody at 20°C, so for analysis purposes we can assume the
hole is covered by an imaginary black surface 5 at 20°C. We set the problem up for a numerical
solution for the radiosities and then calculate the heat-transfer rates. After that, we shall examine
an insulated-surface case for this same geometry.
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Figure Example 8-17

Q S O
@i yo
1 cm—»L—l ch-fl cm—]

H Solution
All the shape factors can be obtained with the aid of Figure 8-13 and the imaginary disk surfaces
6 and 7. We have

Ep, = oT} = (5.669 x 1078)(1273)* = 1.48874 x 10° W/m?
=Ep, =Ep, =Ep,

Epg = 0T =(5.669 x 1075)(293)* =417.8 W/m?

€1 =€y=€e3=¢€4=0.6 e5=1.0

Al =As=n(1)2=mcm?=Ag=A7

Ay = Ay = Ag=n(2)(1)=2n
Fj1=Fs5=0 F;4=037 F;7=0175 Fj5=0.1
Fip=1-F14=0.63=1F%y
Fi3 = Flg— F17=0.195 = Fs3
Fly=F17—F15=0.075=Fs5
P =F= F16§_; =0315=F45=F36=F37
Fp=1-F1—-F=037=F3=Fi
31 = Fnﬂ =0.0975

A3
F3p = F36— 131 =0.2175=F34= F3 = I3
Fy7=F6 — F23=F1 — F23=0.0975= Fys
Fq1 = Fl4ﬂ =0.0375= Fp5
Ay
Fpp = Fy6— F41=0.06= Iy
The equations for the radiosities are now written in the form of Equation (8-106), noting that
Fi1=0and Js = Ep,:
1= —e)(Fr2r + Fi13.3+ FlaJa+ FisEp) + €1 Ep,

1
hH=———"——[(1 —)U21J1 + P23 3 + [24J4 + F5Eps) + €2 Ep,]
1= Fpn(l—€)
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1

B=—
1 — F33(1 —€3)

[(1 —e3)(F31J1 + F320 + F34J4 + F35Epg) +€3Ep,]

J4 [(1 —€a)(Fa1J1 + FapJ2 + F43.J3 + F45Epg) +€4Ep, |

1= Fyy(l —ey)
When all the numerical values are inserted, we obtain

Ty =0.252.05 +0.078J5 + 0.03J4 + 89,341

Ty = 0.1479.1; +0.1021.J3 +0.02817 J4 + 104,848
J3 = 0.04577J1 +0.1021 5 +0.1021 J4 + 104,859
T4 =0.01761J) +0.02817.J5 + 0.1021.J3 + 104,902

These equations may be solved to give

J; = 1.4003 x 10° W/m?
Jp =1.4326 x 10° W/m?
J3 = 1.3872 x 10° W/m?
Ty = 1.2557 x 10° W/m?

The heat transfers can be calculated from Equation (8-104):

€iA;
%=1 En =)
—¢;

0.6)( x 10~
_ OO x1077) | 4gg7_1.4003)(10%) = 4.1658 W

1-06
0.6)(27 x 10~4

g — %(1.4887 —1.4326)(10%)=5.2873 W
0.6)(27 x 10~%) 5

g3 = = (14887 — 1.3872)(10°) =9.5661 W
0.6)(27 x 1074

g — %(1.4887 —1.2557)(10%) =21.959 W

The total heat transfer is the sum of these four quantities or

dtotal =40.979 W [139.8 Btu/h]

It is of interest to compare this heat transfer with the value we would obtain by assuming uniform
radiosity on the hot surface. We would then have a two-body problem with

Al=7+3Qm)=Trem?> As=z F5;=10 ¢=06 ¢e5=10

The heat transfer is then calculated from Equation (8-43), with appropriate change of nomenclature:
(Ep, — Eps)As (7 x 107%)(1.4887 x 10° — 417.8)

1= Ves+ (As/Apfea — 1) I+ (1)/06-1)
=42.581 W [145.3 Btu/h]

Thus, the simple assumption of uniform radiosity gives a heat transfer that is 3.9 percent above
the value obtained by breaking the hot surface into four parts for the calculation. This indicates
that the uniform-radiosity assumption we have been using is a rather good one for engineering
calculations.
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8-13 Formulation for Numerical Solution

Let us now consider the case where surface 1 is still radiating at 1000°C with € = 0.6 but
the side walls 2, 3, and 4 are insulated. The radiation is still to the large room at 20°C. The nodal
equation for Jj is the same as before but now the equations for J», J3, and J4 must be written
in the form of Equation (8-107). When that is done and the numerical values are inserted, we

obtain

J1 =0.252.J5 +0.078J3 + 0.03.J4 + 89,341
Jo = 0.57; +0.3452J3 +0.09524 J4 + 24.869
J3 = 0.1548J; + 0.3452.J5 +0.3452.J4 + 64.66
T4 = 0.05952. +0.0952.1 + 0.3452J5 +208.9

When these equations are solved, we obtain

Jp =1.1532 x 10° W/m?  [36,560 Btu/h - ft]
J, =0.81019 x 10° W/m?
J3 =0.57885 x 10° W/m?
T4 =0.34767 x 10° W/m?

The heat transfer at surface 1 is

€14 (0.6)( x 107%)
I

gil = (1.4887 — 1.1532)(10°)
1—¢

=1581W [53.95Btu/h]

The temperatures of the insulated surface elements are obtained from
J; = Ep, =0T}
T, = 1093 K =820°C [1508°F]
T3 =1005K=732°C [1350°F]
Ty = 895K =612°C  [1134°F]

It is of interest to compare the heat transfer calculated above with that obtained by assum-
ing surfaces 2, 3, and 4 uniform in temperature and radiosity. Equation (8-41) applies for

this case:
= A(Ep, — Epy)
A1+ Ay +2A1F 5 (1 1>+A1 (1 1)
As— A((F5)? €1 As \ s
and

_ (x 107%)(1.4887 x 107 — 417.8)
7+ —2r(0.1) +L 1
7 —m(0.1)2 0.6

=18.769 W [64.04 Btu/h]

In this case the assumption of uniform radiosity at the insulated surface gives an overall heat

transfer with surface 1 (bottom of hole) that is 18.7 percent too high.

Heater with Constant Heat Flux

and Surrounding Shields

In Figure Example 8-18, an electric heater is installed in surface 1 such that a constant heat
flux of 100 kW/m2 is generated at the surface. The four surrounding surfaces are in radiant
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balance with surface 1 and a large surrounding room at 20°C. The surface properties are €] = 0.8
and €) = €3 = €4 = €5 = 0.4. Determine the temperatures of all surfaces. The back side of surface 1
is insulated. Repeat the calculation assuming surfaces 2, 3, 4, and 5 are just one surface uniform in
temperature.

Figure Example 8-18

B Solution
In reality, surfaces 2, 3, 4, and 5 have rwo surfaces each; an inside and an outside surface. We thus
have nine surfaces plus the room, so a 10-body problem is involved. Of course, from symmetry we
can see that 7> = T and 73 = 75, but we set up the problem in the general numerical formulation.
We designate the large room as surface 6 and it behaves as if €g = 1.0. So, it is as if the opening
were covered with a black surface at 20°C. The shape factors of the inside surfaces are obtained
from Figures 8-12 and 8-14:

Fig=F4=0285  Fj3=Fj5=024=F; = Fs

Iy = Fi4=0.115 154 = Fyp =0.068

I35 = F53=0.285 F3p=F5 =F34=0.115

Fys = Fp3 = Fy5 = Fa3=F21 = F41 = 6 = F46=0.23

Fi1 = F=F3=F4=F55=0
For the outside surfaces,

Fyo=F36=Fo=F56=1.0

where the primes indicate the outside surfaces. We shall also use primes to designate the radiosities
of the outside surfaces. For the room, Jg = Ep, = (5.669 x 10_8)(293)4 =417.8 W/mz.
For surface 1 with constant heat flux, we use Equation (8-109a) and write

Ji — (FioJy + Fi3.3 + FigJ4 + FisJs + FigJg) = 1.0 x 10° [a]
Because of the radiant balance condition we have

€A
1—e

€A /
(/2 — Ebz)m =(Ep, — )

and

J+ I,
Ep=——" []
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8-13 Formulation for Numerical Solution

where the prime designates the outside radiosity. A similar relation applies for surfaces 3, 4, and 5.
Thus, we can use Equation (8-106a) for inside surface 2

€
f = (1= e)(Fn )1 + Fp3 73+ PuaJa+ Fasls + Fae o) = — (h + 1) [c]

and for the outside surface 2
€
B3 = (= )(Bglg) = 5 (+13) [4]

Equations like (¢) and (d) are written for surfaces 3, 4, and 5 also, and with the shape factors and
emissivities inserted the following set of equations is obtained:

Ty —0.115J5 — 0.24J3 — 0.115J4 — 0.24J5 = 1.0012 x 10°

—0.138.7) 4+ 0.8, — 0.2J5 — 0.138.J3 — 0.0408.J4 — 0.138.J5 = 57.66
0.2/, —0.8J5 = —250.68

—0.14471 —0.069.> +0.8J3 — 0.2.J3 — 0.069.J4 — 0.05J5 = 60.16
0.2J3 —0.8J5 = —250.68

—0.138.71 — 0.0408.J5 — 0.138.J3 +0.8J4 — 0.2.J; — 0.138.J5 = 57.66
0.274 —0.8J, = —250.68

—0.144.J; —0.069.J; — 0.057.J3 — 0.069.J4 + 0.8.]5 — 0.2.J5 = 60.16
0.2J5 —0.8J5 = —250.68

We thus have nine equations and nine unknowns, which may be solved to give
J) = 1.24887 x 10° W/m?
Jy = J4 =37,549
Jy =1y =9701
J3 = J5=33,605
Ty =J5=8714

The temperatures are thus computed from Equation (b):

37,549 + 9701
OOl 03605 T =T, =803.5K

by )
33,605 + 8714
b3:+:21,160 13=15=781.6K
For surface 1 we observed that q ‘
L e (B -
) 1_6( b — 1)
so that 5
1.0 x 10°)(1 —0.8
By = 0)8( ) | 124887 x 10° = 1.49887 x 10°
and

11 =1275K
We note again that we could have observed the symmetry of the problem and set J, = Jy, Jé =J [‘,

and so on. By so doing, we could have had only five equations with five unknowns.

B Surfaces 2, 3, 4, and 5 as one surface
We now go back and take surfaces 2, 3, 4, and 5 as one surface, which we choose to call surface 7.
The shape factors are then

Fig=Fg=0285 Fj7=1-0285=0.715
A;=20 A7=60
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Thus
F71=(0.715) (%) =0.2383 = £
I77=1-(2)(0.2383) =0.5233 F’//6 =1.0

Then for surface 1 we use Equation (8-109a) to obtain

Ji — (F17J7 + FigJs) = 1.0 x 10°
Using Ep, = (J7 + J.’,)/Z, we have for the inside of surface 7

€7
Hll = Fr(1—enl = (A —en(Fn )1 + FreJ) = 5 (J7 + T3

while for the outside we have

€7
Jp—(1—ep)Fhelo= ?(17 +J7)

When the numerical values are inserted, we obtain the set of three equations:

Jy —0.715J7 = 1.0012 x 10°
—0.143J; +0.486.J7 — 0.2.J; = 59.74
0.277 —0.8J7 = —250.68

which has the solution

Ji = 1.31054 x 10° W/m?
J7 = 43,264
J5=11,129

The temperatures are then calculated as before:

_ 43,264 +11,129

by > =27,197 T;=8322K

(1.0 x 107)(1 — 0.8)
Ep = 0.8

T) = 1306 K

1+ 1.31054 x 10° = 1.65054 x 10°

So, there is about a 30 K temperature difference between the two methods.

B Comment

With such a small difference between the solutions we may conclude that the extra complexity of
choosing each surface at a different radiosity is probably not worth the effort, particularly when
one recognizes the uncertainties that are present in the surface emissivities. This points out that
our assumptions of uniform irradiation and radiosity, though strictly not correct, give answers
that are quite satisfactory.

Numerical Solution for Combined Convection

and Radiation (Nonlinear System)

A 0.5 by 0.5 m plate is maintained at 1300 K and exposed to a convection and radiation sur-
rounding at 300 K. Attached to the top are two radiation shields 0.5 by 0.5 m as shown in Figure
Example 8-19(a). The convection heat-transfer coefficient for all surfaces is 50 W/m2 -K, and
€1 =0.8, ¢ = 0.3 = €3. Determine the total heat lost from the 1300 K surface and the temperature
of the shields.
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Figure Example 8-19
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This example illustrates how it is possible to handle convection-radiation problems with the numer-
ical formulation and an iterative computational procedure. Nomenclature is shown in the figure.
Using Figures 8-12 and 8-14, we can evaluate the shape factors as

Flo=F3=02 Fi4=1-02-02=06

F)3=F3=02  Fu;=F4p=10

)1 =Fip=F31=02  Fpyp="F34;=06

Fli=F»=F3=0

hHr= 7RI DhHr =R from symmetry
Jy = Ep,

We now use Equation (8-105) to obtain a relation for Ji:

J1 = —=€)[F122r + Fi3J31 + FlaJ4] + €1 Ep,
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But Jogr = J37, and Fip = Fi3 so that
Jy=(1—€1)2F13. g + F14J4) + €1 Ep, [a]
We use Equation (8-108) for the overall energy balance on surface 2:

€ €
2h(Toe — )= 1__62(Eb2 —hp)+ 1__62(Eb2 —hr)

€
=71 (2Ep, — hr— 1) (6]
e,

Equation (8-105) is used for surface /o g.
hp=0—e)(F1 1+ Fp3 31 + FoarJa) +€2Ep,

But /o g = J37, so that

hr= [(1 — ) (F21J1 + FoarJa) + €2Ep, | [c]

1
1—(1—-e)F3
For surface Jp; the equation is

Dor =1 —e)(Fpar J4) +2Ep, [d]

Equation () is nonlinear in £, so we must use an iterative method to solve the set. Such procedures
are described in Reference 34. Applying the iteration technique, we obtain the final solution set as

J1=13135x10° Jhp = 22,051
Dhr =710 Ep, =1275 Th =386.6K

The total heat flux lost by surface 1 is
€1

q1
—=h(T1 — T, Ep —J
A (Th — Teo) + (Ep, 1)1_61

=1.7226 x 10° W/m? [e]

For a 0.5 by 0.5 m surface the heat lost is thus
g1 = (1.7226 x 10°)(0.5)% = 43,065 W

Other cases may be computed, and the influence that / and € have on the results is shown in the
accompanying figure.

H Comment
This example illustrates how nonlinear equations resulting from combined convection and radia-
tion can be solved with an iterative procedure.

8-14 | SOLAR RADIATION

Solar radiation is a form of thermal radiation having a particular wavelength distribution.
Its intensity is strongly dependent on atmospheric conditions, time of year, and the angle of
incidence for the sun’s rays on the surface of the earth. At the outer limit of the atmosphere
the total solar irradiation when the earth is at its mean distance from the sun is 1395 W/m?.
This number is called the solar constant and is subject to modification upon collection of
more precise experimental data.

Not all the energy expressed by the solar constant reaches the surface of the earth,
because of strong absorption by carbon dioxide and water vapor in the atmosphere. The
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