CHAPTER

4-1 | INTRODUCTION

If a solid body is suddenly subjected to a change in environment, some time must elapse
before an equilibrium temperature condition will prevail in the body. We refer to the equilib-
rium condition as the steady state and calculate the temperature distribution and heat transfer
by methods described in Chapters 2 and 3. In the transient heating or cooling process that
takes place in the interim period before equilibrium is established, the analysis must be
modified to take into account the change in internal energy of the body with time, and the
boundary conditions must be adjusted to match the physical situation that is apparent in the
unsteady-state heat-transfer problem. Unsteady-state heat-transfer analysis is obviously of
significant practical interest because of the large number of heating and cooling processes
that must be calculated in industrial applications.

To analyze a transient heat-transfer problem, we could proceed by solving the general
heat-conduction equation by the separation-of-variables method, similar to the analytical
treatment used for the two-dimensional steady-state problem discussed in Section 3-2. We
give one illustration of this method of solution for a case of simple geometry and then refer
the reader to the references for analysis of more complicated cases. Consider the infinite
plate of thickness 2 L. shown in Figure 4-1. Initially the plate is at a uniform temperature 1,
and at time zero the surfaces are suddenly lowered to 7' = T7. The differential equation is

PT 10T

— = 4-1
X2 o« ot [4-1]

The equation may be arranged in a more convenient form by introduction of the variable
0 =T —T1. Then

P01
e au 1421
with the initial and boundary conditions
0=0;=T,—T1 atr1=0,0<x<2L [a]
6=0 atx=0,7>0 [b]
6=0 atx=2L,7>0 [c]
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4-1 Introduction

Figure 4-1 | Infinite plate
subjected to sudden
cooling of surfaces.

Ty

|21 —]

Assuming a product solution 8(x, ) = X (x)H(7) produces the two ordinary differential
equations

d?x

4+ A2X =0
dx? +

d

—H +ar*H=0
dr

where 22 is the separation constant. In order to satisfy the boundary conditions it is necessary
that 4% > 0 so that the form of the solution becomes

0 =(Cy cosrx+ Cpsin )»x)e_)‘%”

From boundary condition (), C; =0 for > 0. Because C, cannot also be zero, we find
from boundary condition (c) that sin2LA =0, or
nmw

A= —
2L

n=1,2,3,...

The final series form of the solution is therefore

e.9)
2 nmox
9 — C e—[nﬂ/zL] oT Sin T
Z " 2L
n=1
This equation may be recognized as a Fourier sine expansion with the constants C,, deter-
mined from the initial condition (@) and the following equation:

1 [ . nmx 4
C,=— 0; sin —— dx = —6; n=1,3,5,...
L 0 2L nmw
The final series solution is therefore
e g (e8]
o _I-h =izle—[””/2”2“fsin@ n=1,3,5... [4-3]
9,‘ T, — T1 T o n 2L

We note, of course, that at time zero (r =0) the series on the right side of Equation (4-3)
must converge to unity for all values of x.
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CHAPTER4 Unsteady-State Conduction

In Section 4-4, this solution will be presented in graphical form for calculation purposes.
For now, our purpose has been to show how the unsteady-heat-conduction equation can be
solved, for at least one case, with the separation-of-variables method. Further information
on analytical methods in unsteady-state problems is given in the references.

4-2 | LUMPED-HEAT-CAPACITY SYSTEM

We continue our discussion of transient heat conduction by analyzing systems that may be
considered uniform in temperature. This type of analysis is called the lumped-heat-capacity
method. Such systems are obviously idealized because a temperature gradient must exist
in a material if heat is to be conducted into or out of the material. In general, the smaller
the physical size of the body, the more realistic the assumption of a uniform temperature
throughout; in the limit a differential volume could be employed as in the derivation of the
general heat-conduction equation.

If a hot steel ball were immersed in a cool pan of water, the lumped-heat-capacity
method of analysis might be used if we could justify an assumption of uniform ball tem-
perature during the cooling process. Clearly, the temperature distribution in the ball would
depend on the thermal conductivity of the ball material and the heat-transfer conditions
from the surface of the ball to the surrounding fluid (i.e., the surface-convection heat-
transfer coefficient). We should obtain a reasonably uniform temperature distribution in the
ball if the resistance to heat transfer by conduction were small compared with the convection
resistance at the surface, so that the major temperature gradient would occur through the
fluid layer at the surface. The lumped-heat-capacity analysis, then, is one that assumes that
the internal resistance of the body is negligible in comparison with the external resistance.

The convection heat loss from the body is evidenced as a decrease in the internal energy
of the body, as shown in Figure 4-2. Thus,

) dT
q=hA(T — 1'oo)=—chd— [4-4]
T

where A is the surface area for convection and V is the volume. The initial condition is
written
T=T at 7=0

so that the solution to Equation (4-4) is

ﬂ — o [hA/pcV]T [4-5]
To— T

Figure 4-2 | Nomenclature for single-lump heat-capacity
analysis.

dT
q=hA(T-Te) = —cpV g

(@) (b)
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4-2 Lumped-Heat-Capacity System

where T, is the temperature of the convection environment. The thermal network for the
single-capacity system is shown in Figure 4-2b. In this network we notice that the thermal
capacity of the system is “charged” initially at the potential Ty by closing the switch S.
Then, when the switch is opened, the energy stored in the thermal capacitance is dissipated
through the resistance 1/4 A. The analogy between this thermal system and an electric system
is apparent, and we could easily construct an electric system that would behave exactly like
the thermal system as long as we made the ratio

hA 1 1

e Rip = —

poc 1% Rtthh hA
equal to 1/R.C,, where R, and C, are the electric resistance and capacitance, respectively.
In the thermal system we store energy, while in the electric system we store electric charge.
The flow of energy in the thermal system is called heat, and the flow of charge is called
electric current. The quantity coV/h A is called the time constant of the system because it
has the dimensions of time. When

Cih=pcV

cpV
="
hA
it is noted that the temperature difference 7' — T has a value of 36.8 percent of the initial
difference Ty — Too.

The reader should note that the lumped-capacity formulation assumes essentially uni-
form temperature throughout the solid at any instant of time so that the change in internal
energy can be represented by pcVdT/dz. It does not require that the convection boundary
condition have a constant value of /. In fact, variable values of # coupled with radiation
boundary conditions are quite common. The specification of “time constant” in terms of
the 36.8 percent value stated above implies a constant boundary condition.

For variable convection or radiation boundary conditions, numerical methods (see
Section 4-6) are used to advantage to predict lumped capacity behavior. A rather general
setup of a lumped-capacity solution using numerical methods and Microsoft Excel is given
in Section D-6 of the Appendix. In some cases, multiple lumped-capacity formulations can
be useful. An example involving the combined convection-radiation cooling of a box of
electronic components is also given in this same section of the Appendix.

Applicability of Lumped-Capacity Analysis

We have already noted that the lumped-capacity type of analysis assumes a uniform temper-
ature distribution throughout the solid body and that the assumption is equivalent to saying
that the surface-convection resistance is large compared with the internal-conduction resis-
tance. Such an analysis may be expected to yield reasonable estimates within about 5 percent
when the following condition is met:

h(V/A)

<0.1 [4-6]

where k is the thermal conductivity of the solid. In sections that follow, we examine those
situations for which this condition does not apply. We shall see that the lumped-capacity
analysis has a direct relationship to the numerical methods discussed in Section 4-7. If one
considers the ratio V/A =s as a characteristic dimension of the solid, the dimensionless
group in Equation (4-6) is called the Biot number:

hs . .
- = Biot number = Bi

The reader should recognize that there are many practical cases where the lumped-capacity
method may yield good results. In Table 4-1 we give some examples that illustrate the
relative validity of such cases.
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CHAPTER4 Unsteady-State Conduction

Table 4-1 | Examples of lumped-capacity systems.

Approximate
value of 7, h(V/A)
Physical situation k, W/m.°C W/m?.°C A
1. 3.0-cm steel cube cooling in room air 40 7.0 8.75 x 10~%
2. 5.0-cm glass cylinder cooled by a 50-m/s airstream 0.8 180 2.81
3. Same as situation 2 but a copper cylinder 380 180 0.006
4. 3.0-cm hot copper cube submerged in water 380 10,000 0.132

such that boiling occurs

We may point out that uncertainties in the knowledge of the convection coefficient of
425 percent are quite common, so that the condition Bi = #(V/A)/k < 0.1 should allow for
some leeway in application.

Do not dismiss lumped-capacity analysis because of its simplicity. Because of uncer-
tainties in the convection coefficient, it may not be necessary to use more elaborate analysis

techniques.
Steel Ball Cooling in Air

A steel ball [c =0.46 kl/kg-°C, k=35 W/m - °C] 5.0 cm in diameter and initially at a uniform
temperature of 450°C is suddenly placed in a controlled environment in which the temperature
is maintained at 100°C. The convection heat-transfer coefficient is 10 W/ m? . °C. Calculate the
time required for the ball to attain a temperature of 150°C.

H Solution

We anticipate that the lumped-capacity method will apply because of the low value of /2 and high
value of k. We can check by using Equation (4-6):

h(V/A)  (10)[(4/3)7(0.025)3]
kT 4m(0.025)2(35)

=0.0023 <0.1

so we may use Equation (4-5). We have
1 =150°C p=7800kg/m> [486 lb,,/ft3]
Too = 100°C 7 =10 W/m?-°C [1.76Btwh- ft> - °F]
To=450°C  ¢=460J/kg-°C [0.11 Btu/lb,, - °F]

hA (10)47(0.025)>

== = =3344 x 10457 !
pcV — (7800)(460)(47/3)(0.025)3

T—To _ —[htfpcVie

150 — 100 _ 33445104
-,
450 — 100

7=5819s=1.62h

4-3 | TRANSIENT HEAT FLOW IN A
SEMI-INFINITE SOLID

Consider the semi-infinite solid shown in Figure 4-3 maintained at some initial temperature
1;. The surface temperature is suddenly lowered and maintained at a temperature 7p, and we
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4-3 Transient Heat Flow in a Semi-Infinite Solid

Figure 4-3 | Nomenclature for transient
heat flow in a semi-infinite
solid.

—_— g

seek an expression for the temperature distribution in the solid as a function of time. This
temperature distribution may subsequently be used to calculate heat flow at any x position
in the solid as a function of time. For constant properties, the differential equation for the
temperature distribution 7(x, t) is
Pr 19T 4
TSR [4-7]

The boundary and initial conditions are

I(x,0) =T;
10,7y =19 forz>0

This is a problem that may be solved by the Laplace-transform technique. The solution is

given in Reference | as

Tix, 7) — T
S Y S [4-8]
1 — 1y 2J/at

where the Gauss error function is defined as

x/2/at )
e T dn [4-9]

X
erf =—
NI
It will be noted that in this definition 7 is a dummy variable and the integral is a function of
its upper limit. When the definition of the error function is inserted in Equation (4-8), the
expression for the temperature distribution becomes

T T x/2/at
Ten—To_ / e dy [4-10]
T To \/_
The heat flow at any x position may be obtained from
aT
=—kA—
ax

Performing the partial differentiation of Equation (4-10) gives

I gy etor L (2 ) [4-11]
x 0 f ox \2/ar

;i =1y e—x2/4ozr
AT
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CHAPTER4 Unsteady-State Conduction

Figure 4-4 | Response of semi-infinite solid to (a) sudden change in surface temperature and
(b) instantaneous surface pulse of Q/A J/m?2.
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At the surface (x = 0) the heat flow is
kA(Ty— 1)
go=——1—++- [4-12]
AT

The surface heat flux is determined by evaluating the temperature gradient at x =0 from
Equation (4-11). A plot of the temperature distribution for the semi-infinite solid is given
in Figure 4-4. Values of the error function are tabulated in Reference 3, and an abbreviated
tabulation is given in Appendix A.

Constant Heat Flux on Semi-Infinite Solid

For the same uniform initial temperature distribution, we could suddenly expose the surface
to a constant surface heat flux go/A. The initial and boundary conditions on Equation (4-7)
would then become

T(x,0)=1;
oT
0 _ —k — fort=>0
A ax x=0

The solution for this case is

2 .2
e (CLC G W (L PRI
kA 4ot kA 2./at

T—1; [4-134]

Energy Pulse at Surface

Equation (4-13a) presents the temperature response that results from a surface heat flux that
remains constant with time. A related boundary condition is that of a short, instantaneous
pulse of energy at the surface having a magnitude of Qp/A4. The resulting temperature
response is given by

T — T =[Qo/Apc(an) /] exp(—x*/4aT) [4-13b]
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4-3 Transient Heat Flow in a Semi-Infinite Solid

In contrast to the constant-heat-flux case where the temperature increases indefinitely for
all x and times, the temperature response to the instantaneous surface pulse will die out with
time, or

T—1;,—0forallxas T —>

This rapid exponential decay behavior is illustrated in Figure 4-45.

Semi-Infinite Solid with Sudden Change

EXAMPLE 4-2 in Surface Conditions

Alarge block of steel [k =45 W/m - °C, ¢ =1.4 x 10— m2/s] is initially at a uniform temperature
of 35°C. The surface is exposed to a heat flux (a) by suddenly raising the surface temperature to
250°C and (b) through a constant surface heat flux of 3.2 x 10° W/m?. Calculate the temperature
at a depth of 2.5 cm after a time of 0.5 min for both these cases.

B Solution
We can make use of the solutions for the semi-infinite solid given as Equations (4-8) and (4-13a).

For case a,
0.025

X
e Oiaxioseo2 o

The error function is determined from Appendix A as

x
f —— =erf 0.61=0.61164
€ 2/at €

We have T; =35°C and T =250°C, so the temperature at x =2.5 cm is determined from
Equation (4-8) as
X
T(x, ) =1 T, — Ty)erf ——
(x 'U) O+( 1 O)e 2\/&
=250+ (35— 250)(0.61164) =118.5°C

For the constant-heat-flux case b, we make use of Equation (4-13a). Since ¢ /A is given as
3.2 x 105 W/m?2, we can insert the numerical values to give

(2)(3.2 x 10°)[(1.4 x 10_5)(30)/’7]1/26—<°~61>2
45

(0.025)(3.2 x 10°)

T

=79.3°C x=25cm,7=30s

T(x, 1) = 35+

(1-0.61164)

For the constant-heat-flux case the surface temperature after 30 s would be evaluated with x =0
in Equation (4-13a). Thus,
(2)(3.2 x 10%)[(1.4 x 1075)(30)/7]1/2

T(x=0) =35 =199.4°C
(x=0)=35+ 45

Pulsed Energy at Surface of Semi-Infinite Solid

An instantaneous laser pulse of 10 MJ/m? is imposed on a slab of stainless steel having properties
of p=7800 kg/m3, c=460J/kg-°C,and @ = 0.44 x 1072 mz/s. The slab is initially at a uniform
temperature of 40 °C. Estimate the temperature at the surface and at a depth of 2.0 mm after a time
of 2 s.
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CHAPTER4 Unsteady-State Conduction

B Solution
This problem is a direct application of Equation (4-13b). We have Q/A = 107 J/m? and at x=0

To — T; = Qo/Apc(nar)!2
= 107/(7800)(460)[(0.44 x 107)(2)]%> = 530°C

and
Tp =40+ 530=570°C
Atx =2.0mm = 0.002 m,
T-T, = (530)exp[—(0.002)2/(4)(0.44 X 10_5)(2)] =473°C
and

T=40+473=513°C

Heat Removal from Semi-Infinite Solid EXAMPLE 4-4

A large slab of aluminum at a uniform temperature of 200°C suddenly has its surface temperature
lowered to 70°C. What is the total heat removed from the slab per unit surface area when the
temperature at a depth 4.0 cm has dropped to 120°C?

B Solution
We first find the time required to attain the 120°C temperature and then integrate Equation (4-12)
to find the total heat removed during this time interval. For aluminum,

@=84x107m?/s k=215W/m-°C[124Btu/h- ft-°F]
We also have
1;=200°C  1p=70°C  T(x,1)=120°C
Using Equation (4-8) gives

120 —
0=70 _ip > _ 03847
200 — 70 2/at

From Figure 4-4 or Appendix A,
X

—— =0.3553

2/ at
and

(0.04)2
T =
(4)(0.3553)2(8.4 x 10~5)

=37.72s

The total heat removed at the surface is obtained by integrating Equation (4-12):

& Tk(Ty—1; /
@ :/ @dr:/ Md‘r:Zk(To—Ti) x
A 0o A 0 A/mat oL

37.72

172
—] = 21.13x 10° J/m? [—1861 Btu/ft?]
(8.4 x 10~5)

= (2)(215)(70 — 200) [

4-4 | CONVECTION BOUNDARY CONDITIONS

In most practical situations the transient heat-conduction problem is connected with a con-
vection boundary condition at the surface of the solid. Naturally, the boundary conditions
for the differential equation must be modified to take into account this convection heat
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4-4 Convection Boundary Conditions

transfer at the surface. For the semi-infinite-solid problem, the convection boundary con-
dition would be expressed by

Heat convected into surface = heat conducted into surface
or

aT
hA(To — D=0 =—kA —i| [4-14]
ox x=0

The solution for this problem is rather involved and is worked out in detail by Schneider
[1]. The result is

-1 hx  h? h/az
—lzl—eer—|:exp<7x+£)i| x |:1—erf<X+%)i| [4-15]
i

Too — T, k2
where
X=x/2/at)

T; = initial temperature of solid
1x, = environment temperature

This solution is presented in graphical form in Figure 4-5.

Solutions have been worked out for other geometries. The most important cases are
those dealing with (1) plates whose thickness is small in relation to the other dimensions,
(2) cylinders where the diameter is small compared to the length, and (3) spheres. Results
of analyses for these geometries have been presented in graphical form by Heisler [2],
and nomenclature for the three cases is illustrated in Figure 4-6. In all cases the convection
environment temperature is designated as T, and the center temperature forx =0orr =01is
Tp. At time zero, each solid is assumed to have a uniform initial temperature 7;. Temperatures
in the solids are given in Figures 4-7 to 4-13 as functions of time and spatial position. In
these charts we note the definitions

0=Tx,1)— T or Tr, 1) — T
0i=T,— T
=10 — 1o

If a centerline temperature is desired, only one chart is required to obtain a value for 6y and
then 7p. To determine an off-center temperature, two charts are required to calculate the
product

<>

0 6
b 6 bo
Forexample, Figures 4-7 and 4-10 would be employed to calculate an off-center temperature
for an infinite plate.

The heat losses for the infinite plate, infinite cylinder, and sphere are given in
Figures 4-14 to 4-16, where Q¢ represents the initial internal energy content of the body in
reference to the environment temperature

Qo =pcV(I; — Teo) = pcVO; [4-16]

In these figures Q is the actual heat lost by the body in time .
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Figure 4-5 | Temperature distribution in the semi-infinite solid with convection boundary condition.
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Figure 4-6 | Nomenclature for one-dimensional solids suddenly subjected to convection
environment at 7ix;: (a) infinite plate of thickness 2L; () infinite cylinder of
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CHAPTER4 Unsteady-State Conduction

Figure 4-7 | (Continued). (b) expanded scale for 0 < Fo < 4, from Reference 2.

Ho I 100
NN S - e ——— 2
07 NINENNR N e e ) s e ey 8
< os NN e 0 s et A
S 0A4 \\V\\Y\\Q\sQ}%\\\:\\ \\\i
S EEA\WNNANNSNENSN eSS
T 03 VAN NN NG S SIS S
& R NSRRI 2
% 02 \\\ \\ \\\\\\ \‘\\\ \\ i\ 9y
® \\\\\\\\ N \\ \\ \\\ N5
N
NN N NN
WL
0.1 \ \ \ \ N N
0102 03 04 05 06 0.8 1.0 12
0 1 2 3 4

(b)

If one considers the solid as behaving as a lumped capacity during the cooling or heating
process, that is, small internal resistance compared to surface resistance, the exponential
cooling curve of Figure 4-5 may be replotted in expanded form, as shown in Figure 4-13
using the Biot-Fourier product as the abscissa. We note that the following parameters apply
for the bodies considered in the Heisler charts.

(AV)ing plate = /L
(AV)ing cylinder = 2fro
(AMsphere =3/ro

Obviously, there are many other practical heating and cooling problems of interest. The
solutions for a large number of cases are presented in graphical form by Schneider [7], and
readers interested in such calculations will find this reference to be of great utility.

The Biot and Fourier Numbers

A quick inspection of Figures 4-5 to 4-16 indicates that the dimensionless temperature
profiles and heat flows may all be expressed in terms of two dimensionless parameters
called the Biot and Fourier numbers:

. . hs
Biot number =Bi= %

ot kt

Fourier number = Fo = - =
A

pcs?

In these parameters s designates a characteristic dimension of the body; for the plate it is
the half-thickness, whereas for the cylinder and sphere it is the radius. The Biot number
compares the relative magnitudes of surface-convection and internal-conduction resistances
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CHAPTER4 Unsteady-State Conduction

Figure 4-8 | (Continued). (b) expanded scale for 0 < Fo <4, from Reference 2.
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to heat transfer. The Fourier modulus compares a characteristic body dimension with an
approximate temperature-wave penetration depth for a given time 7.

A very low value of the Biot modulus means that internal-conduction resistance is
negligible in comparison with surface-convection resistance. This in turn implies that the
temperature will be nearly uniform throughout the solid, and its behavior may be approxi-
mated by the lumped-capacity method of analysis. It is interesting to note that the exponent
of Equation (4-5) may be expressed in terms of the Biot and Fourier numbers if one takes
the ratio V/A as the characteristic dimension s. Then,

hA _ ht  hs kr

Vr_ =Bi Fo
pc

pcs  k pes?

Applicability of the Heisler Charts

The calculations for the Heisler charts were performed by truncating the infinite series
solutions for the problems into a few terms. This restricts the applicability of the charts to
values of the Fourier number greater than 0.2.

at
Fo=—>02
A
For smaller values of this parameter the reader should consult the solutions and charts given
in the references at the end of the chapter. Calculations using the truncated series solutions

directly are discussed in Appendix C.
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Figure 4-9 | (Continued). (b) expanded scale for 0 < Fo < 3, from Reference 2.
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Figure 4-10 | Temperature as a function of center temperature in an

infinite plate of thickness 21, from Reference 2.

(=3
(=}
E =
E =)
v
(=]
[V}
\ o
= =
AL WY
VRN
i v
NS o
I A S
HoRSE
LTRAVANN o
SRR
\ NI S
T\ ~ N~ = -
“ 2 I/ ~ = - “»
= — S
A S ~ -~
N N i
AN ~ N N
\ N ~ =
N ~
N N, —
- - - =
— Y AV N AY AN ©w
= Y X X v
F o =< o ok o o °
i | QO } da| . A T ~
N I | ) S
| = o
—_
<
S o e e v % o a4 = o9
— (=] (=] (=) (=) (=] (=] (=] (=] (=]

r-DIr-1) =68

—|

|

C—

m

~
~

155


http://www.abbyy.com/buy
http://www.abbyy.com/buy

8/8y= (T— T.)(Ty—T..)

(T-THTH-T.,)

Figure 4-11 | Temperature as a function of axis temperature in an
infinite cylinder of radius r(, from Reference 2.
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Figure 4-12 | Temperature as a function of center temperature for a
sphere of radius r(, from Reference 2.
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Figure 4-13 | Temperature variation with time for solids that may be
treated as lumped capacities: (a) 0 < BiFo < 10,
(b) 0.1 <BiFo < 1.0, (¢) 0 < BiFo < 0.1.
Note: (AV)inf plate = 1/L, (A/V)inf cy1 = 2/r0,
(A/V)sphere = 3/ro- See Equations (4-5) and (4-6).
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Figure 4-13 | (Continued).
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Figure 4-14 | Dimensionless heat loss O/ Q¢ of an infinite plane of thickness 2L with time,
from Reference 6.
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CHAPTER4 Unsteady-State Conduction

Figure 4-15 | Dimensionlesss heat loss Q/ Qg of an infinite cylinder of radius rg with time,
from Reference 6.
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Figure 4-16 | Dimensionless heat loss Q/Q( of a sphere of radius ry with time, from
Reference 6.
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Sudden Exposure of Semi-Infinite

Slab to Convection EXAMPLE 4-5

The slab of Example 4-4 is suddenly exposed to a convection-surface environment of 70°C with
a heat-transfer coefficient of 525 W/m2 - °C. Calculate the time required for the temperature to
reach 120°C at the depth of 4.0 cm for this circumstance.

B Solution

We may use either Equation (4-15) or Figure 4-5 for solution of this problem, but Figure 4-5 is
easier to apply because the time appears in two terms. Even when the figure is used, an iterative
procedure is required because the time appears in both of the variables /e7/k and x/(2/aT).
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4-4 Convection Boundary Conditions

We seek the value of 7 such that
T—T, _120-200
Too —T;  70—200

=0.615 [a]

We therefore try values of ¢ and obtain readings of the temperature ratio from Figure 4-5 until
agreement with Equation (a) is reached. The iterations are listed below. Values of k and « are
obtained from Example 4-4.

hJjot x T _Ti

from Figure 4-5

7,5 k 20T T —T;

1000  0.708 0.069 0.41
3000 1.226 0.040 0.61
4000 1.416 0.035 0.68

Consequently, the time required is approximately 3000 s.

Aluminum Plate Suddenly Exposed to Convection

Alarge plate of aluminum 5.0 cm thick and initially at 200°C is suddenly exposed to the convection
environment of Example 4-5. Calculate the temperature at a depth of 1.25 cm from one of the faces
1 min after the plate has been exposed to the environment. How much energy has been removed
per unit area from the plate in this time?

B Solution

The Heisler charts of Figures 4-7 and 4-10 may be used for solution of this problem. We first
calculate the center temperature of the plate, using Figure 4-7, and then use Figure 4-10 to calculate
the temperature at the specified x position. From the conditions of the problem we have

0 =T —Too=200—70=130 «=84x10">m%s [3.26 ft¥/h]
2L =50cm L=25cm T=1min=60s

k=215W/m-°C [124 Btu/h-ft-°F]

h=525W/m?-°C [92.5 Btu/h - ft - °F]

x=25-125=125cm

Then
or _ B4x1079)(60) o000 k215 o
L2 (0.0252 hL ~ (525)(0.025)
12
LB s
L 5

From Figure 4-7

)
— =0.61
0;

0o =1y — Too =(0.61)(130)=79.3
From Figure 4-10 at x/L = 0.5,
0
— =098

and
0=T—Ts =(0.98)(79.3)=77.7
T=777+70=147.7°C
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CHAPTER4 Unsteady-State Conduction

We compute the energy lost by the slab by using Figure 4-14. For this calculation we require the
following properties of aluminum:

p=2700kg/m®>  ¢=0.9kJ/kg-°C
For Figure 4-14 we need

h2ar 3 (525)2(8.4 x 10=3)(60) 3 hL  (525)(0.025)

=0.03 = =0.061
k2 (215)2 k 215
From Figure 4-14
L _om
0
For unit area
Qo pcVe;
70 = = pe2Lyp;

— (2700)(900)(0.05)(130)
= 15.8 x 10° J/m?

so that the heat removed per unit surface area is

Q

—=(158x 10%)(0.41) = 6.48 x 10° J/m?  [571 Btu/ft%]

Long Cylinder Suddenly Exposed to Convection

A long aluminum cylinder 5.0 cm in diameter and initially at 200°C is suddenly exposed to a
convection environment at 70°C and & = 525 W/m? - °C. Calculate the temperature at a radius of
1.25 cm and the heat lost per unit length 1 min after the cylinder is exposed to the environment.

B Solution
This problem is like Example 4-6 except that Figures 4-8 and 4-11 are employed for the solution.
We have
0;=T; — To =200 — 70 =130 (x:8.4x10_5m2/s
ro = 2.5 cm 7=1min=60s
k=215W/m-°C  h=525W/m?-°C r=1.25cm
p=2700kg/m>  c¢=0.9kJ/kg-°C

We compute
8.4 x 107°)(60 k 215
z- (X—z)()zs.om — = —16.38
I (0.025) hro  (525)(0.025)
1.25
L
70 5
From Figure 4-8
6o
— =0.38
b;
and from Figures 4-11 at /rg = 0.5
0
— =0.98
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4-5 Multidimensional Systems

so that

and
0=T — T = (0.372)(130) = 48.4
T=70+484=118.4°C

To compute the heat lost, we determine

n2 25)2(8.4 x 10~ h 25)(0.02
ar _ (525284 x107°)(60) _ . hro _ (525)(0.025) _

k2 (215)2 k 215

Then from Figure 4-15
— =0.65

For unit length

Qo _ peVo; _
L L

,ocrrr%@i = (2700)(900)71(0.025)2(130) =6.203 x 10° J/m

and the actual heat lost per unit length is

Q

+ =(6.203 109)(0.65) =4.032 x 10° J/m  [116.5 Btu/ft]

4-5 | MULTIDIMENSIONAL SYSTEMS

The Heisler charts discussed in Section 4-4 may be used to obtain the temperature distri-
bution in the infinite plate of thickness 2L, in the long cylinder, or in the sphere. When a
wall whose height and depth dimensions are not large compared with the thickness or a
cylinder whose length is not large compared with its diameter is encountered, additional
space coordinates are necessary to specify the temperature, the charts no longer apply, and
we are forced to seek another method of solution. Fortunately, it is possible to combine the
solutions for the one-dimensional systems in a very straightforward way to obtain solutions
for the multidimensional problems.

It is clear that the infinite rectangular bar in Figure 4-17 can be formed from two
infinite plates of thickness 21,1 and 2L, respectively. The differential equation governing
this situation would be

Pro*r 19T

i — _ 4-17
ax2 922 w ot [4-17]

and to use the separation-of-variables method to effect a solution, we should assume a
product solution of the form

T(x,z, 1) =X(x)Z(2)O(1)

It can be shown that the dimensionless temperature distribution may be expressed as a
product of the solutions for two plate problems of thickness 2L and 2L», respectively:

) (), (), e
li =T / par li — T 2L, plate li — T 2Ly plate

where 7; is the initial temperature of the bar and 7' is the environment temperature.
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CHAPTER4 Unsteady-State Conduction

Figure 4-17 | Infinite rectangular bar.

A
%/2

For two infinite plates the respective differential equations would be

2T 19T 2 15

—_— = —_— = 4-19
a2 a ot 0z2 o« dr [4-19]

and the product solutions assumed would be
h="Txr1 DL="7zr1) [4-20]

We shall now show that the product solution to Equation (4-17) can be formed from a simple
product of the functions (77, 13), that is,

Ix,z,n)=T1(x,0h(z, ) [4-21]

The appropriate derivatives for substitution in Equation (4-17) are obtained from Equa-
tion (4-21) as
2Tt 2T P
— =1

a2 a2 372 32
oT . a1, e a7y
ar ! ot 2 aT

Using Equations (4-19), we have

aT , 921 ot 21
—_— = _ o _
ot 152 270:2

Substituting these relations in Equation (4-17) gives

PT Pn 1 - P - PT
TZE'l‘Ta—Zz—& <Ol 1@4‘05 ZW)
or the assumed product solution of Equation (4-21) does indeed satisfy the original dif-
ferential equation (4-17). This means that the dimensionless temperature distribution for
the infinite rectangular bar may be expressed as a product of the solutions for two plate
problems of thickness 21,1 and 2L, respectively, as indicated by Equation (4-18).

In a manner similar to that described above, the solution for a three-dimensional block
may be expressed as a product of three infinite-plate solutions for plates having the thickness
of the three sides of the block. Similarly, a solution for a cylinder of finite length could be
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4-5 Multidimensional Systems

expressed as a product of solutions of the infinite cylinder and an infinite plate having
a thickness equal to the length of the cylinder. Combinations could also be made with
the infinite-cylinder and infinite-plate solutions to obtain temperature distributions in semi-
infinite bars and cylinders. Some of the combinations are summarized in Figure 4-18, where

C(©®) = solution for infinite cylinder
P(X) = solution for infinite plate

S(X) = solution for semi-infinite solid

Figure 4-18 | Product solutions for
temperatures in
multidimensional systems:
(a) semi-infinite plate;

(b) infinite rectangular bar;
(c) semi-infinite rectangular
bar; (d) rectangular
parallelepiped;

(e) semi-infinite cylinder;
(f) short cylinder.

P(X)S (X)) P (X)) S (X3)

SX) P (X)) P (X)

2L, | 2L,

(©)
C®)S X

|<— 2r0—’l re—

2ry
(e) )]
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CHAPTER4 Unsteady-State Conduction

The general idea is then
6 6 6 6
5 combined 9_ intersection 9_ intersection 9_ intersection
' solid " solid 1 '/ solid 2 "/ solid 3

Heat Transfer in Multidimensional Systems

Langston [16] has shown that it is possible to superimpose the heat-loss solutions for one-
dimensional bodies, as shown in Figures 4-14, 4-15, and 4-16, to obtain the heat for a
multidimensional body. The results of this analysis for intersection of two bodies is

(GG E-E)] e

where the subscripts refer to the two intersecting bodies. For a multidimensional body
formed by intersection of three one-dimensional systems, the heat loss is given by

(@) (@) @U@ @ -G -@)

If the heat loss is desired after a given time, the calculation is straightforward. On the other
hand, if the time to achieve a certain heat loss is the desired quantity, a trial-and-error or
iterative procedure must be employed. The following examples illustrate the use of the
various charts for calculating temperatures and heat flows in multidimensional systems.

Semi-Infinite Cylinder Suddenly Exposed

to Convection EXAMPLE 4-8

A semi-infinite aluminum cylinder 5 cm in diameter is initially at a uniform temperature of 200°C.
It is suddenly subjected to a convection boundary condition at 70°C with =525 W/m? - °C.
Calculate the temperatures at the axis and surface of the cylinder 10 cm from the end 1 min after
exposure to the environment.

B Solution
This problem requires a combination of solutions for the infinite cylinder and semi-infinite slab in
accordance with Figure 4-18e. For the slab we have

x=10cm «@=84x107m%s k=215Wm- °C

so that the parameters for use with Figure 4-5 are

ez _ (525)[(8.4x 107260112 _ - .
ko 215 -
0.1

0.704

X
2Jar  (2)[(8.4 x 10-5)(60)]1/2
From Figure 4-5

0
(—) =1-0.036 =0.964 = S(X)
Y / semi-infinite slab

For the infinite cylinder we seek both the axis- and surface-temperature ratios. The parameters
for use with Figure 4-8 are

k (024 Zh)
ro=2.5cm — =16.38 — =8.064 — =0.38
hro i 6;
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4-5 Multidimensional Systems

This is the axis-temperature ratio. To find the surface-temperature ratio, we enter Figure 4-11, using

r %]
—=1.0 — =0.97
10 )
Thus )
0.38 at r=0
cC(®)=[— =
(®) <9i>inf il {(0.38)(0.97):0.369 atr=ry

Combining the solutions for the semi-infinite slab and infinite cylinder, we have

%
( ) = C(®)S(X)
% / semi—infinite cylinder

=(0.38)(0.964) =0.366 atr=0
=(0.369)(0.964)=0.356 atr=r

The corresponding temperatures are

T=70+4(0.366)(200 —70) =117.6 atr=0
T=704(0.356)(200 —70) =116.3 atr=ry

Finite-Length Cylinder Suddenly Exposed

EXAMPLE 4-9 to Convection

A short aluminum cylinder 5.0 cm in diameter and 10.0 cm long is initially at a uniform temperature
0f 200°C. It is suddenly subjected to a convection environment at 70°C, and & =525 W/m? - °C.
Calculate the temperature at a radial position of 1.25 cm and a distance of 0.625 cm from one end

of the cylinder 1 min after exposure to the environment.

H Solution

To solve this problem we combine the solutions from the Heisler charts for an infinite cylinder and
an infinite plate in accordance with the combination shown in Figure 4-18f. For the infinite-plate

problem
L=5cm
The x position is measured from the center of the plate so that
x 4375
x=5-0.625=4.375 cm =5 =0.875

For aluminum
a=84x10"m?/s k=215W/m-°C
SO
k 215 ar (8.4 x107°)(60)

—=———=8.19 i =2.016
hL  (525)(0.05) L2 (0.05)2

From Figures 4-7 and 4-10, respectively,
to

0
— =0.75 — =0.95
0; o

so that

|

) =(0.75)(0.95) =0.7125
plate

D>

@
For the cylinder rp = 2.5 cm

1.25 k 215
=S

— == _16.38
o 25 hro  (525)(0.025)
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CHAPTER4 Unsteady-State Conduction

A4x1073
ar _ 84x1077)(60) _ ¢ s

rg (0.025)2

and from Figures 4-8 and 4-11, respectively,
b

2
— =0.38 — =0.98
0; 6o

so that o
<_> =(0.38)(0.98) =0.3724
6i cyl

Combining the solutions for the plate and cylinder gives

2
(-) =1(0.7125)(0.3724) = 0.265
6i / short cylinder

Thus
T =T~ +(0.265(T; — Too) =70 + (0.265)(200 — 70) = 104.5°C

Heat Loss for Finite-Length Cylinder

Calculate the heat loss for the short cylinder in Example 4-9.

B Solution

We first calculate the dimensionless heat-loss ratio for the infinite plate and infinite cylinder that
make up the multidimensional body. For the plate we have L = 5 cm = 0.05 m. Using the properties
of aluminum from Example 4-9, we calculate

hL  (525)(0.05)

=0.122
k 215

hat  (525)%(8.4 x 1075)(60)

=0.03
k2 (215)2

From Figure 4-14, for the plate, we read

)
— ) =0.22
(Qo @

For the cylinder 7o =2.5 cm = 0.025 m, so we calculate

hro _ (525)(0.025)
ko 215

<g> =0.55
Qo c

The two heat ratios may be inserted in Equation (4-22) to give

=0.061

and from Figure 4-15 we can read

<2> =0.22 +(0.55)(1 — 0.22) =0.649
Q0 / tot

The specific heat of aluminum is 0.896 kJ/kg - °C and the density is 2707 kg /m3, so we calculate
Qo as

Qo =pcVb; = (2707)(0.896)71(0.025)2(0.1)(200 —70)
=619kJ
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The actual heat loss in the 1-min time is thus

0= (61.9 kJ)(0.649) = 40.2 kJ

4-6 | TRANSIENT NUMERICAL METHOD

The charts described in Sections 4-4 and 4-5 are very useful for calculating temperatures
in certain regular-shaped solids under transient heat-flow conditions. Unfortunately, many
geometric shapes of practical interest do not fall into these categories; in addition, one is
frequently faced with problems in which the boundary conditions vary with time. These
transient boundary conditions as well as the geometric shape of the body can be such that
a mathematical solution is not possible. In these cases, the problems are best handled by
a numerical technique with computers. It is the setup for such calculations that we now
describe. For ease in discussion we limit the analysis to two-dimensional systems. An
extension to three dimensions can then be made very easily.

Consider a two-dimensional body divided into increments as shown in Figure 4-19.
The subscript m denotes the x position, and the subscript n denotes the y position. Within
the solid body the differential equation that governs the heat flow is

. 82T+82T T [4-24]
a2 T ) T e -

assuming constant properties. We recall from Chapter 3 that the second partial derivatives
may be approximated by

2T 1 . .
32 ™ (g Tt + Tt =2 14-25]
2T 1 . .
a2 (it Bt + Tt = 20n) l4-261

Figure 4-19 | Nomenclature for numerical
solution of two-dimensional
unsteady-state conduction
problem.

m, n+1

m—1,nlmn |m+1n

m, n—1

- Ax —»le Ax |
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The time derivative in Equation (4-24) is approximated by

or  THL -1k
Nl m,n m,n [ 4_27]
ot At
In this relation the superscripts designate the time increment. Combining the relations above
gives the difference equation equivalent to Equation (4-24)
P P
m+1n+1m 1,n 21"17” 1+1 21"17”

mn+ m,n—1 _

1oh —1h
(Ax)? (Ay)? Ta At

[4-28]

Thus, if the temperatures of the various nodes are known at any particular time, the
temperatures after a time increment At may be calculated by ertlng an equation like
Equation (4-28) for each node and obtaining the values of T,ﬁ » - The procedure may be
repeated to obtain the distribution after any desired number of time increments. If the
increments of space coordinates are chosen such that

Ax=Ay

the resulting equation for T,ﬁf;l becomes

11 aAT 4a AT
Tnli,n = (Ax)2 <T£+1,n + Tnl;—l,n + Tn11) n+1 +17 m,n— 1> + |:1 - W Tn11) n [4-29]
If the time and distance increments are conveniently chosen so that
(Ax)?
=4 [4-30]
a At

it is seen that the temperature of node (2, n) after a time increment is simply the arithmetic
average of the four surrounding nodal temperatures at the beginning of the time increment.
When a one-dimensional system is involved, the equation becomes

41« AT » » 200 At
LT = W (Tm-H + Tm—l) + |:1 (Ax)2 Ly [4-31]
and if the time and distance increments are chosen so that
(Ax)?
=2 [4-32]
a At

the temperature of node m after the time increment is given as the arithmetic average of the
two adjacent nodal temperatures at the beginning of the time increment.

Some general remarks concerning the use of numerical methods for solution of transient
conduction problems are in order at this point. We have already noted that the selection of
the value of the parameter

(Ax)?
o At

governs the ease with which we may proceed to effect the numerical solution; the choice
of a value of 4 for a two-dimensional system or a value of 2 for a one-dimensional system
makes the calculation particularly easy.

Once the distance increments and the value of M are established, the time increment
is fixed, and we may not alter it without changing the value of either Ax or M, or both.
Clearly, the larger the values of Ax and Az, the more rapidly our solution will proceed.
On the other hand, the smaller the value of these increments in the independent variables,
the more accuracy will be obtained. At first glance one might assume that small distance
increments could be used for greater accuracy in combination with large time increments
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to speed the solution. This is not the case, however, because the finite-difference equa-
tions limit the values of At that may be used once Ax is chosen. Note that if M < 2 in
Equation (4-31), the coefficient of T;;, becomes negative, and we generate a condition that
will violate the second law of thermodynamics. Suppose, for example, that the adjoining
nodes are equal in temperature but less than 7;5. After the time increment Az, 7}, may not
be lower than these adjoining temperatures; otherwise heat would have to flow uphill on
the temperature scale, and this is impossible. A value of M < 2 would produce just such an
effect; so we must restrict the values of M to

(Ax)> (M >2 one-dimensional systems
a AT { M >4  two-dimensional systems
This restriction automatically limits our choice of Az, once Ax is established.

It so happens that the above restrictions, which are imposed in a physical sense, may also
be derived on mathematical grounds. It may be shown that the finite-difference solutions will
not converge unless these conditions are fulfilled. The problems of stability and convergence
of numerical solutions are discussed in References 7, 13, and 15 in detail.

The difference equations given above are useful for determining the internal temper-
ature in a solid as a function of space and time. At the boundary of the solid, a convection
resistance to heat flow is usually involved, so that the above relations no longer apply. In
general, each convection boundary condition must be handled separately, depending on the
particular geometric shape under consideration. The case of the flat wall will be considered
as an example.

For the one-dimensional system shown in Figure 4-20 we may make an energy balance
at the convection boundary such that

X

oT
—kA —} = hA(Ty — To) [4-33]
wall

The finite-difference approximation would be given by

Ay
_kE(Tm-H — L) =h Ay(Tyy1 — To)

Figure 4-20 | Nomenclature for
numerical solution of
unsteady-state conduction
problem with convection
boundary condition.

m—1 m m+l

Environment
T.

=

— Surface, T, = T,
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or
T+ (h Ax/ 5 Too

1+h Ax/k

Tm—H =

To apply this condition, we should calculate the surface temperature 73,4+ at each time
increment and then use this temperature in the nodal equations for the interior points of the
solid. This is only an approximation because we have neglected the heat capacity of the
element of the wall at the boundary. This approximation will work fairly well when a large
number of increments in x are used because the portion of the heat capacity that is neglected
is then small in comparison with the total. We may take the heat capacity into account in a
general way by considering the two-dimensional wall of Figure 3-7 exposed to a convection
boundary condition, which we duplicate here for convenience as Figure 4-21. We make a
transient energy balance on the node (2, n) by setting the sum of the energy conducted and
convected into the node equal to the increase in the internal energy of the node. Thus

];111)—1,n - Tnl;,n Ax ];711)7”_;,_1 - Tnl;,n Ax ];711)7”_1 - Tnl;,n

KAy —— bk ——— ——— +hk—————
Ax 2 Ay 2 Ay
Ax TR -1k
+h AY(Too = Ty7 ) = pe —= Ay == —==

If Ax= Ay, the relation for 1;5;1 becomes

1 a At h Ax
}ﬁ,—; = (A)C)z {2 k TOO+2THI’L)—1JL+THI’L)JL+1+THI’L)JL—1
(AX)?2  _hAx p
A A [4-34]

The corresponding one-dimensional relation is

, aAT [ hAx (Ax)??  _hAx
T+ :W{ZTTOO+2T£_1+ a1 L [4-35]

Notice now that the selection of the parameter (Ax)%/a At is not as simple as it is for the
interior nodal points because the heat-transfer coefficient influences the choice. It is still

Figure 4-21 | Nomenclature for nodal
equation with convective
boundary condition.

m-1,n m, n Ary

d |

—F—

m,n-1

 ——
 ,— Surface
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possible to choose the value of this parameter so that the coefficient of T} or T,ﬁﬁ will be
zero. These values would then be

h Ax . .
(Ax)? B 2 <T + 1) for the one-dimensional case

- h A
AT 2 <Tx + 2) for the two-dimensional case

To ensure convergence of the numerical solution, all selections of the parameter (Ax)/« At
must be restricted according to

h Ax . .
(Ax)? 2 < + 1) for the one-dimensional case

alAT

= h Ax
2 <T + 2) for the two-dimensional case

Forward and Backward Differences

The equations above have been developed on the basis of a_forward-difference technique
in that the temperature of a node at a future time increment is expressed in terms of the
surrounding nodal temperatures at the beginning of the time increment. The expressions
are called explicit formulations because it is possible to write the nodal temperatures T,ﬁjll
explicitly in terms of the previous nodal temperatures 77 ,,. In this formulation, the calcula-
tion proceeds directly from one time increment to the next until the temperature distribution
is calculated at the desired final state.

The difference equation may also be formulated by computing the space derivatives
in terms of the temperatures at the p 4 1 time increment. Such an arrangement is called
a backward-difference formulation because the time derivative moves backward from the
times for heat conduction into the node. The equation equivalent to Equation (4-28) would
then be

(R SRy S KARTEUY ARy S AR Ky v

(Ax)? (Ay)? o At

[4-36]

The equivalence to Equation (4-29) is

o —aAT [ pt] P+l 4p+l1 P+l da At +1
1"1177” = (AX)Z <1m+1,n + Im—l,n +1 1 + 1m,n—1> +|1+ Iﬂlii,ﬂ [4-37]

it (Ax)?

We may now note that this backward-difference formulation does not permit the explicit
calculation of the 77*! in terms of 7'7. Rather, a whole set of equations must be written
for the entire nodal system and solved simultaneously to determine the temperatures 77+
Thus we say that the backward-difference method produces an implicit formulation for the
future temperatures in the transient analysis. The solution to the set of equations can be
performed with the methods discussed in Chapter 3.

The Biot and Fourier numbers may also be defined in the following way for problems
in the numerical format:

. hAx
Bi=— [4-38]
a At
Fo= W [4-39]

By using this notation, Tables 4-2 and 4-3 have been constructed to summarize some typical
nodal equations in both the explicit and implicit formulations. For the cases of Ax = Ay
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displayed in Table 4-2, the most restrictive stability requirement (smallest A7) is exhibited
by an exterior corner node, assuming all the convection nodes have the same value of Bi.

Table 4-2 | Explicit nodal equations. (Dashed lines indicate element volume.)’

Stability
Physical situation Nodal equation for Ax = Ay requirement
. +1
(a) Interior node T,ﬁ,n =Fo <Tn€—l,n —+ Tnin_H + Tn€+l,n + Tnﬁ,n—l) Fo < A—l‘
—_— +[1 = 4(Fo)IT;)
b — p+1 _ r r r r
T Tm»" =Fo <Tm—l,n + Tm,n+l + Tm+l,n + Tm,n—l
| A AT 4 T
m-1,n ,nlm+ 1, n J_
T I
! I T
L_d__1 Ay
m, n—1 J_
|<— Ax —>|<— Ax —>|
(b) Convection boundary node T,ﬁ:;l =Fo [2T£—1,n + Tnin_'_l + Tnin_l +2BHTE]  Fo(2+Bi) < %
| +[1 — 4(Fo) — 2(Fo)(BOI T »
T e T2 _Fo 2Bi (T2, — T ) + 217 7?7
; mmp — 110 1({oo — L) + m—l,n+ m,n+1
y F= +T7 | —4Th 1+ Th
_ mn—1 m,n m,n
_*_ m Il, L Y W T,
|
Ay l==
—L m,n—1

|<— Ax—>|

(c) Exterior corner with convection

boundary

m-1,n

h, T,

— Ax —]

1 .
Thh =2(Fo) [Th_|  +TF  +2B)HTL]

+[1 — 4(Fo) — 4(Fo)(B) 1T n
1
Tiﬁjl =2Fo [Tns—l,n + Tnﬁ n—1 _ZTHIS,"
+2BI(TE, — Th ) + T n

Fo(1+Bi) < §

(d) Interior corner with convection

boundary
m, n+1
r——|——-
m-1,n|m n m+1,n

+1
Ton = %(FO) [2T£,n+l +2Tn€+l,n

14 14 NP
200 T+ 2BDTE]
+[1 — 4(Fo) — § (Fo)(BDITH,
+1
T =(@/3F0 [Ty +T0
+TE | = 3T+ B (TL — Th )1+ T

Fo(3+Bi)<3
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Table 4-2 | (Continued).

Stability
Physical situation Nodal equation for Ax = Ay requirement
1
(e) Insulated boundary T,ﬁ:; =Fo [2Tn€—l,n + Tn’il,n+l + Tnﬁ,n—l] Fo < 71‘
+H1 — 4(Fo)] T
m,n+1
| =
' 123
m—1,n m, n| 8
T I 3
=
Ay Bog
—L m, n—1

e

T Convection surfaces may be made insulated by setting 2 =0 (Bi=0).

Table 4-3 | Implicit nodal equations. (Dashed lines indicate volume element.)

Physical situation Nodal equation for Ax =Ay
. 1 1 1 1
(a) Interior node [1+4(Fo) T4, —Fo <Tnffl W T T
+1
T A ) — T8, =0
m+1,n
=~ T~ Ay
m—1,n mn [m+1n
i I
L_d__ Ay
m—1,n _L
|<— Ax—+—Ax—>|
(b) Convection boundary node [142(Fo)(2 + Bi)]T,ﬁ:;l —Fo [Tns,-;:—l + TnT;Ll_l
+1 . +1
K mn+1 +2T£—1»"+2(BI)T£ ]_T’ﬁ’":
Ay -
1
4*7 m—ll,n mn h, Tw
|
1
m,n—1
-
(c) Exterior corner with convection boundary [1+4(Fo)(1 + Bi)]T,ﬁ:;l —2(Fo) [Tnffi .t Tnf-;l_
hT ' '
m—1,n > Lo ; P‘H]_ (-
; : o +2(Bi) T3, Tnn=0

Ay l——

J— m,n—1

-« Ax —»
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Table 4-3 | (Continued).

Physical situation Nodal equation for Ax =Ay
Bi 2(F
(d) Interior corner with convection |:1 + 4(Fo) (1 + ?1):| TnT;ll _ % x [2T£fi at Tns-;l—l
boundary ' '
1 .
+orftl art TS - 1, =0
mn+1
:-____1
m—1,n{mn m+1,n
Ay - = hT,
—L m,n—-1
e
+1 +1 +1 +1
(¢) Insulated boundary [+ 4FITEL —Fo (2120 420l w728l )~ 1, =0
m,n+1
.
m—1,n m, n =
1713
Ay R (=
4 m,n—1

-

The advantage of an explicit forward-difference procedure is the direct calculation
of future nodal temperatures; however, the stability of this calculation is governed by the
selection of the values of Ax and Az. A selection of a small value of Ax automatically
forces the selection of some maximum value of Az. On the other hand, no such restriction
is imposed on the solution of the equations that are obtained from the implicit formulation.
This means that larger time increments can be selected to speed the calculation. The obvious
disadvantage of the implicit method is the larger number of calculations for each time step.
For problems involving a large number of nodes, however, the implicit method may result in
less total computer time expended for the final solution because very small time increments
may be imposed in the explicit method from stability requirements. Much larger increments
in At can be employed with the implicit method to speed the solution.

Most problems will involve only a modest number of nodes and the explicit formulation
will be quite satisfactory for a solution, particularly when considered from the standpoint
of the more generalized formulation presented in the following section.

Fora discussion of many applications of numerical analysis to transient heat conduction
problems, the reader is referred to References 4, 8§, 13, 14, and 15.

It should be obvious to the reader by now that finite-difference techniques may be
applied to almost any situation with just a little patience and care. Very complicated problems
then become quite easy to solve with only modest computer facilities. The use of Microsoft
Excel for solution of transient heat-transfer problems is discussed in Appendix D.

Finite-element methods for use in conduction heat-transfer problems are discussed in
References 9 to 13. A number of software packages are available commercially.
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4-7 | THERMAL RESISTANCE AND CAPACITY
FORMULATION

As in Chapter 3, we can view each volume element as a node that is connected by thermal
resistances to its adjoining neighbors. For steady-state conditions the net energy transfer
into the node is zero, while for the unsteady-state problems of interest in this chapter the
net energy transfer into the node must be evidenced as an increase in internal energy of the
element. Each volume element behaves like a small “lumped capacity,” and the interaction
of all the elements determines the behavior of the solid during a transient process. If the
internal energy of a node i can be expressed in terms of specific heat and temperature, then
its rate of change with time is approximated by
AE (R

- AVL— L
AT pe AT

where AV is the volume element. If we define the thermal capacity as
C,‘ = PiCi AV,‘ [4'40]
then the general resistance-capacity formulation for the energy balance on a node is

TP 1P TP—H _ Tj

J ! i i
. —=C; 4-41
gi + Ej Ry i~ AT [4-41]

where all the terms on the left are the same as in Equation (3-31). The resistance and volume
elements for a variety of geometries and boundary conditions were given in Tables 3-3 and
3-4. Physical systems where the internal energy E involves phase changes can also be
accommodated in the above formulation but are beyond the scope of our discussion.

The central point is that use of the concepts of thermal resistance and capacitance
enables us to write the forward-difference equation for all nodes and boundary conditions
in the single compact form of Equation (4-41). The setup for a numerical solution then
becomes a much more organized process that can be adapted quickly to the computational
methods at hand.

Equation (4-41) is developed by using the forward-difference concept to produce an
explicitrelation for each Tip 1 Asinour previous discussion, we could also write the energy
balance using backward differences, with the heat transfers into each ith node calculated in
terms of the temperatures at the p + 1 time increment. Thus,

o+l p+l 1
1! _ Ii TP+ _ TP

qi+Z 1 % =Gt [4-42]
J

Now, as before, the set of equations produces an implicit set that must be solved
simultaneously for the Tip +1, etc. The solution can be carried out by a number of methods
as discussed in Chapter 3. If the solution is to be performed with a Gauss-Seidel iteration
technique, then Equation (4-42) should be solved for Tip 1 and expressed as

gi+ Y (TT Ry + (C/ADT!
N Zj(l/Rij)'i‘Ci/AT

It is interesting to note that in the steady-state limit of At — oo this equation becomes
identical with Equation (3-32), the formulation we employed for the iterative solution in
Chapter 3.

.
1

[4-43]
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The stability requlrement in the explicit formulation may be examined by solving
Equation (4-41) for Tp

AT 1
13 p+1 <q, + Z ) < F, R_ij)TiP [4-44]
i j

The value of ¢; can influence the stability, but we can choose a safe limit by observing the
behavior of the equation for ¢; =0. Using the same type of thermodynamic argument as
with Equation (4-31), we find that the coefficient of Tip cannot be negative. Our stability
requirement is therefore

At 1
1—— — >0 4-45
Yy s

Suppose we have a complicated numerical problem to solve with a variety of boundary

conditions, perhaps nonuniform values of the space increments, etc. Once we have all the

nodal resistances and capacities formulated, we then have the task of choosing the time

increment At to use for the calculation. To ensure stability we must keep At equal to or

less than a value obtained from the most restrictive nodal relation like Equation (4-45).
Solving for At gives

C .
At < |: —_ :| for stability [4-46]
m

> (U/Ry)

While Equation (4-44) is very useful in establishing the maximum allowable time
increment, it may involve problems of round-off errors in computer solutions when small

thermal resistances are employed. The difficulty may be alleviated by expressing 7} +
the following form for calculation purposes:
At Tp
P =0 g+ Z +17 [4-47]

C;

In Table 4-2 the nodal equations for Ax=Ay are listed in the formats of both
equations (4-44) and (4-47). The equations listed in Table 4-2 in the form of Equation
(4-47) do not include the heat-source term. If needed, the term may be added using

qgi=qi AV;

where ¢; is the heat generation per unit volume and A V; is the volume element shown by
dashed lines in the table. For radiation input to the node,

qi = q;,/rad X AAi

where ¢, is the net radiant energy input to the node per unit area and A A; is the area of
the node for radiant exchange, which may or may not be equal to the area for convection
heat transfer.

We should remark that the resistance-capacity formulation is easily adapted to take into
account thermal-property variations with temperature. One need only calculate the proper
values of p, ¢, and & for inclusion in the C; and R;;. Depending on the nature of the problem
and accuracy required, it may be necessary to calculate new values of C; and R;; for each
time increment. Example 4-17 illustrates the effects of variable conductivity.
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Steady State as a Limiting Case of Transient Solution

As we have seen, the steady-state numerical formulation results when the right side of
Equation (4-41) is set equal to zero. It also results when the calculation of the unsteady case
using either Equation (4-44) or (4-47) is carried out for a large number of time increments.
While the latter method of obtaining a steady-state solution may appear rather cumbersome,
it can proceed quite rapidly with a computer. We may recall that the Gauss-Seidel iteration
method was employed for the solution of many steady-state numerical problems, which
of course entailed many computer calculations. If variable thermal resistances resulting
from either variable thermal conductivities or variations in convection boundary condi-
tions are encountered, the steady-state limit of a transient solution may offer advantages
over the direct steady-state solution counterpart. We will recall that when variable thermal
resistances appear, the resulting steady-state nodal equations become nonlinear and their
solution may be tedious. The transient solution for such cases merely requires that each
resistance be recalculated at the end of each time increment Az, or the resistances may be
entered directly as variables in the nodal equations. The calculations are then carried out
for a sufficiently large number of time increments until the values of the Tip o longer
change by a significant amount. At this point, the steady-state solution is obtained as the
resulting values of the 7;.

The formulation and solution of transient numerical problems using Microsoft Excel
is described in Section D-5 of the Appendix, along with worked examples. An example
is also given of a transient solution carried forward a sufficient length of time to achieve
steady-state conditions.

Sudden Cooling of a Rod

Asteelrod [k =50 W/m - °C] 3 mm in diameter and 10 cm long is initially at a uniform temperature
0f200°C. At time zero it is suddenly immersed in a fluid having # = 50 W/m? - °C and T =40°C
while one end is maintained at 200° C. Determine the temperature distribution in the rod after 100 s.
The properties of steel are p = 7800 kg/m> and ¢ = 0.47 kJ/kg - °C.

Figure Example 4-11

T, = 200°C
ol 02 o3l o4
T.,=40°C
<—Ax—>l<—Ax—>|<—Ax—>|<—Ax—>|

Ax=2.5cm

B Solution
The selection of increments on the rod is as shown in the Figure Example 4-11. The cross-sectional
area of the rod is A = 71(1.5)2 =7.069 mm?. The volume element for nodes 1,2,and 3 is

AV = AAx = (7.069)(25) = 176.725 mm°

Node 4 has a AV of half this value, or 88.36 mm?3. We can now tabulate the various resistances
and capacities for use in an explicit formulation. For nodes 1, 2, and 3 we have
Ax 0.025

Ryt = Ry = — = —=70.731°C/W
M= T T A T (500(7.069 x 10-6)

and
1 1

= = =84.883°C/W
h(md Ax) — (50)7(3 x 1073)(0.025)

R
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C=pc AV =(7800)(470)(1.7673 x 10_7) =0.6479J/°C
For node 4 we have

1 Ax
R+ = — =2829° _=—=70.731°
mt = 829°C/W R A 70.731°C/W

_ pcAV

C =169.77°C/W

=0.3240J/°C R

= hrdAx

To determine the stability requirement we form the following table:

C;
Y /R "
0.04006 0.6479  16.173
0.04006 0.6479  16.173
0.04006 0.6479  16.173
002038 03240 15897

Node Z(I/Rij) C;

AW N~

Thus node 4 is the most restrictive, and we must select At < 15.9 s. Since we wish to find the
temperature distribution at 100 s, let us use Ar=10 s and make the calculation for 10 time
increments using Equation (4-47) for the computation. We note, of course, that ¢; =0 because
there is no heat generation. The calculations are shown in the following table.

Node temperature

Time
increment Ty T, T3 Ty
0 200 200 200 200
1 170.87 170.87 170.87 169.19
2 153.40 147.04 146.68 145.05
3 141.54 128.86 126.98 125.54
4 133.04 115.04 111.24 109.70
5 126.79 104.48 98.76 96.96
6 122.10 96.36 88.92 86.78
7 118.53 90.09 81.17 78.71
8 115.80 85.23 75.08 72.34
9 113.70 81.45 70.31 67.31
10 112.08 78.51 66.57 63.37

We can calculate the heat-transfer rate at the end of 100 s by summing the convection heat
losses on the surface of the rod. Thus

T, — T
q:
Xi: Rioo
and
200 — 40 112.08 +78.51 4+ 66.57 — (3)(40) 1 1
= 63.37 —40
4 (2)(84.883) + 84.883 (169.77 + 2829) ( )

=2.704 W

Implicit Formulation EXAMPLE 4-12

We can illustrate the calculation scheme for the implicit formulation by reworking Example 4-11
using only two time increments, that is, At =50s.
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For this problem we employ the formulation indicated by Equation (4-43), with At =50 s.
The following quantities are needed.

C; 1 G

Node A 2w, A
1 0.01296 0.05302
2 0.01296 0.05302
3 0.01296 0.05302
4 0.00648 0.02686

We have already determined the R;; in Example 4-11 and thus can insert them into Equation (4-43)
to write the nodal equations for the end of the first time increment, taking all Tip =200°C. We use
the prime to designate temperatures at the end of the time increment. For node 1,

200 T, 4

0
0.053027"7 = 0.01296)(200
L 70.731+70.731+84.833+( )(200)
For node 2,
0.053027, = h + 5 + 40 + (0.01296)(200)
’ 2770731 ' 70.731 ' 84.833 ’

For nodes 3 and 4,

0.053021% = b + Iy + 40 +(0.01296)(200)
’ 3770731 7 70.731 ' 84.833 ’

T; N 40 N 40
70.731 2829 ' 169.77

0.02686T4 = =+ (0.00648)(200)

These equations can then be reduced to
0.053027] —0.014147; =5.8911
—0.014147| 4 0.053027;, — 0.014147} =3.0635
—0.01414T; 4 0.053027; — 0.014147; = 3.0635
—0.01414T5 + 0.02686T, = 1.5457

which have the solution
T{ =145.81°C T, =130.12°C
T3 =125.43°C T, =123.56°C

We can now apply the backward-difference formulation a second time using the double prime to
designate the temperatures at the end of the second time increment:

0.053027] = 200 + n + 40 +(0.01296)(145.81)
70.731 © 70.731 = 84.833

0.0530275 = gl + 13 + 40 +(0.01296)(130.12)
70.731 © 70.731 = 84.833

Tz” TA( 40
0.053027% = 0.01296)(125.43
37 70731 + 70.731 + 84.833 + A )

0.026867, = 5 + 40 +
’ 4770731 ' 2829 ' 169.77

+(0.00648)(123.56)
and this equation set has the solution

T/ =123.81°C Ty =97.27°C

T =88.32°C T/ =85.59°C
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CHAPTER4 Unsteady-State Conduction

We find this calculation in substantial disagreement with the results of Example 4-11. With a
larger number of time increments, better agreement would be achieved. In a problem involving a
large number of nodes, the implicit formulation might involve less computer time than the explicit
method, and the purpose of this example has been to show how the calculation is performed.

Cooling of a Ceramic EXAMPLE 4-13

A 1by 2 cm ceramic strip [k = 3.0 W/m - °C] is embedded in a high-thermal-conductivity material,
as shown in Figure Example 4-13, so that the sides are maintained at a constant temperature
of 300°C. The bottom surface of the ceramic is insulated, and the top surface is exposed to a
convection environment with 2 =200 W/m2 -°C and T = 50°C. At time zero the ceramic is
uniform in temperature at 300°C. Calculate the temperatures at nodes 1 to 9 after a time of
12 s. For the ceramic p = 1600 kg/m3 and ¢ = 0.8 kJ/kg - °C. Also calculate the total heat loss in
this time.

Figure Example 4-13

2 cm

h T.=50°C
T 1 2 |3
4
1cm > 46 > 17=300°C
l/ 7 |8 o
/

300°C

Insulated

B Solution

We treat this as a two-dimensional problem with Ax= Ay =0.5 cm. From symmetry 7 =13,
Ty =Tg, and 77 = Ty, so we have six unknown nodal temperatures. We now tabulate the various
nodal resistances and capacities. For nodes 4 and 5

Ax 0.005

Ryt =Ry =Ry =Rp— = — = ———— ___ —0.3333
e mE T T T A T (3.0)(0.005)
For nodes 1 and 2
Ax  (0.005)(2) . .
Ruy=Rp—=— = ——2 _06667°C/W  Rn_ =0.3333°C/W
mk = AT A T (3.0)(0.005) "
1 1
Ryt = 1.0°C/W

T hAx  (200)(0.005)
For nodes 7 and 8

Rm+ = Ry— =0.6667°C/W Rp+ =0.3333°C/W R, =0
For nodes 1, 2, 7, and 8 the capacities are

B pc(Ax)? _ (1600)(800)(0.005)2
-2 2

C

=161J/°C

For nodes 4 and 5
C = pe(Ax)? =3217/°C

181


http://www.abbyy.com/buy
http://www.abbyy.com/buy

182

4-7 Thermal Resistance and Capacity Formulation

The stability requirement for an explicit solution is now determined by tabulating the following
quantities:

1 C;
Node b3 Rij @ YR "
1 7 16 2.286
2 7 16 2.286
4 12 32 2.667
5 12 32 2.667
7 6 16 2.667
8 6 16 2.667

Thus the two convection nodes control the stability requirement, and we must choose At < 2.286s.
Let us choose Az =2.0 s and make the calculations for six time increments with Equation (4-47).
We note once again the symmetry considerations when calculating the temperatures of nodes 2,
5, and 8, that is, 77 = T3, etc. The calculations are shown in the following table.

Node temperature

Time increment Ty T, Ty T5 T T3
0 300 300 300 300 300 300
1 268.75 268.75 300 300 300 300
2 25898 253.13 294.14 294.14 300 300
3 252.64 24531 289.75 287.55 297.80 297.80
4 284.73  239.48 285.81 28238 295.19 293.96
5 246.67 23535 282.63 277.79 29234 290.08
6 24332 23197 279.87 27395 289.71 286.32

The total heat loss during the 12-s time interval is calculated by summing the heat loss of each
node relative to the initial temperature of 300°C. Thus

g=7) Ci(300—1T})

where ¢ is the heat loss. For this summation, since the constant-temperature boundary nodes
experience no change in temperature, they can be left out. Recalling that 7 = 73, T = Tg, and
T7 =Ty, we have
Z C;(300 — 7;) = nodes (1, 2, 3, 7, 8, 9) + nodes (4, 5, 6)
= 16[(6)(300) — (2)(243.2) — 231.97 — (2)(289.71)
—286.32] + 32[(3)(300) — (2)(279.87) — 273.95]
= 5572.3 J/m length of strip

The average rate of heat loss for the 12-s time interval is
g 55723

At

=464.4 W [1585Btu/h]

Cooling of a Steel Rod, Nonuniform /

A nickel-steel rod having a diameter of 2.0 cm is 10 cm long and initially at a uniform temperature
0f200°C. It is suddenly exposed to atmospheric air at 30°C while one end of the rod is maintained
at 200°C. The convection heat-transfer coefficient can be computed from

h=9.0 AT%175 Wm?2 . °C
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where AT is the temperature difference between the rod and air surroundings. The properties of
nickel steel may be taken as k = 12 W/m - °C, ¢ = 0.48 kJ/kg - °C, and p = 7800 kg/m3. Using the
numerical method, (a) determine the temperature distribution in the rod after 250, 500, 750, 1000,
1250 s, and for steady state; (b) determine the steady-state temperature distribution for a constant
h=22.11 Wm? .°C and compare with an analytical solution.

Figure Example 4-14

200 =0
"N\
\ \
150 < 7=250s
o \\
0
125 \&Y 7=500s
\\ _
100 \ \\ o T0s
T~ 7=1000 s
\\ T=1250s
\ Steady state
75 X
T, T, T, T, T
Ax=2cm

I

IO,

®
.0

B Solution
Five nodes are chosen as shown in Figure Example 4-14 with Ax = 2.0 cm. The capacitances are
then

_ (7800)(480)7(0.02)2(0.02)

Cl=Cr=C3=Cy 7 =23.5241/°C
Cs=4c)=11.7621/°C
The resistances for nodes 1, 2, 3, and 4 are
LR WO (12 02 e

Rut+  Ru—  Ax (4)(0.02)

1
—— =hP Ax=(9.0)7(0.02)(0.02)(T — 30)0175 = (1.131 x 10~2)(T — 30)%175

oo

For node 5

1

— —0.188496

Ry
1 0.02)2

L ha—00T 00D 3000175 _ 2 827 x 10-3y(T — 30)0175

R+ 4
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4-7 Thermal Resistance and Capacity Formulation

1 1

= = (5.655 x 1073)(T —30)%173
R500 2Rloo

where Too = 30°C for all nodes. We can compute the following table for worst-case conditions
of 7'=200°C throughout the rod. The stability requirement so established will then work for all
other temperatures.

C;
Node YR, SWER)'
1 0.4048 58.11
2 0.4048 58.11
3 0.4048 58.11
4 0.4048 58.11
5 0.2093 56.197

Thus, time steps below 56 s will ensure stability. The computational procedure is compli-
cated by the fact that the convection-resistance elements must be recalculated for each time step.
Selecting At =50 s, we have:

Node AT/C;
1 2.1255
2 2.1255
3 2.1255
4 2.1255
5 4.251

We then use the explicit formulation of Equation (4-47) with no heat generation. The computational
algorithm is thus:

1. Compute R, values for the initial condition.

B

Compute temperatures at next time increment using Equation (4-47).

w

Recalculate R, values based on new temperatures.
Repeat temperature calculations and continue until the temperature distributions are obtained
at the desired times.

&

Results of these calculations are shown in the accompanying figure.

To determine the steady-state distribution we could carry the unsteady method forward a
large number of time increments or use the steady-state method and an iterative approach. The
iterative approach is required because the equations are nonlinear as a result of the variations in
the convection coefficient.

We still use a resistance formulation, which is now given as Equation (3-31):

T, -T;

IR

The computational procedure is:

Calculate R, values for all nodes assuming all 7; =200°C.
Formulate nodal equations for the 7;’s.

Solve the equations by an appropriate method.

Recalculate R, values based on 7; values obtained in step 3.

A

Repeat the procedure until there are only small changes in 7;’s.
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The results of this iteration are shown in the following table:

Iteration Ty, °C T,,°C Tz, °C Ty, °C Ts, °C
1 148.462 114.381 92.726 80.310 75.302
2 151.381 119.557 99.409 87.853 83.188
3 151.105 119.038 98.702 87.024 82.306
4 151.132 119.090 98.774 87.109 82.396

This steady-state temperature distribution is also plotted with the transient profiles.
The value of i for 7; =200°Cis 22.11 W/m? - °C, so the results of the first iteration correspond
to a solution for a constant 4 of this value. The exact analytical solution is given in Equation (2-34)

as
§ T—Tx _ coshm(L—x)+[h/km]sinhm(L — x)

G  To—Teo coshmL + [/ km]sinhmL

The required quantities are

172 172
hP 22.11 )
- <_> = [w] —19.1964
kA (12)7(0.01)2
mL = (19.1964)(0.1) = 1.91964
h/k 22.22 0.09598
m=——"—=~0.
(12)(19.1964)
The temperatures at the nodal points can then be calculated and compared with the numerical
results in the following table. As can be seen, the agreement is excellent.

Node X, m (6/80) num (6/80) anal Percent deviation
1 0.02 0.6968 0.6949 0.27
2 0.04 0.4964 0.4935 0.59
3 0.06 0.3690 0.3657 0.9
4 0.08 0.2959 0.2925 1.16
5 0.1 0.2665 0.2630 1.33

We may also check the heat loss with that predicted by the analytical relation in Equation (2-34).
When numerical values are inserted we obtain

Ganal = 11.874 W

The heat loss for the numerical model is computed by summing the convection loss from the six
nodes (including base node at 200°C). Using the temperatures for the first iteration corresponding
to h=22.11 W/m? . °C,

q= (22.11);1(0.02)(0.02)[(200 -~ 30)(%) +(148.462 — 30)
+ (114.381 — 30) + (92.726 — 30) + (80.31 — 30)
1
4 (75302 — 30)<5>] + (22.11)72(0.01)2(75.302 — 30)
=12.082 W
We may make a further check by calculating the energy conducted in the base. This must be the
energy conducted to node 1 plus the convection lost by the base node or
148.462)

g= (12);1(0.01)2(200_OT + (22.11)7(0.02)(0.01)(200 — 30)

=12.076 W
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This agrees very well with the convection calculation and both are within 1.8 percent of the
analytical value.

The results of this example illustrate the power of the numerical method in solving problems
that could not be solved in any other way. Furthermore, only a modest number of nodes, and
thus modest computation facilities, may be required to obtain a sufficiently accurate solution. For
example, the accuracy with which 4 will be known is typically 10 to 15 percent. This would
overshadow any inaccuracies introduced by using relatively large nodes, as was done here.

Radiation Heating and Cooling

The ceramic wall shown in Figure Example 4-15a is initially uniform in temperature at 20°C and
has a thickness of 3.0 cm. It is suddenly exposed to a radiation source on the right side at 1000°C.
The left side is exposed to room air at 20°C with a radiation surrounding temperature of 20°C.
Properties of the ceramic are k = 3.0 W/m - °C, p = 1600 kg/m3, and ¢ = 0.8 kJ/kg - °C. Radiation
heat transfer with the surroundings at 7, may be calculated from

qr=6€A(T4 == Tr4) W [a]
where 0 =5.669 x 10_8, €=0.8,and 7 is in degrees Kelvin. The convection heat-transfer coef-
ficient from the left side of the plate is given by

h=192ATY*  wm?.°C [b]
Convection on the right side is negligible. Determine the temperature distribution in the plate

after 15, 30, 45, 60, 90, 120, and 150 s. Also determine the steady-state temperature distribution.
Calculate the total heat gained by the plate for these times.

B Solution
We divide the wall into five nodes as shown and must express temperatures in degrees Kelvin
because of the radiation boundary condition. For node 1 the transient energy equation is

e | NN
4 _ pph P Sk op oy AxIy -1
oe(203* ~17*) —1.92(1] —203) "+ — (1 ~ 17 ) =pe = ——L  [e]
Similarly, for node 5
Ax TSP-H . T5p

2 Ar 141

4 _ pp4 k (rp 7Y _
oe(1273* - 1) + — (1} — 1) = pe
Equations (c¢) and (d) may be subsequently written

A k
P =2E [66(2932 + 172293+ 17)(293) — 1.92(TF —293)1/4(293) + —1{]
Cq Ax
Az 2, P2 P P 14, K P
+ 11— = |0e293% + TI)293 + 1) — 1.92(1F —293)1/* + — |1 17 [e]
Cq Ax
TP 2 A% | 12732 + TP2) (1273 + TP)(1273) + —— 1P
5 CS 5 5 Ax 4
At ) - k1] ..
+{1—C—5[ae(12732+15p )(1273+15P)+E]}15P [f1
where C| = Cs = pcAx/2. For the other three nodes the expressions are much simpler:

k(Tlp+T3P)+<1—2kAT>T2P ]

Tp—H ar k&
2 Cy A Cy A
2 Ax 2 AX
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Figure Example 4-15 | (a) Nodal system, () transient response, (c) heat added.
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p+1 AT ko P 2k AT\ p

i _C—3§(T2+T4)+ 1——C3Ax i [A]
At k 2k At

TP 2t 2 PPy (11— 77 i

4 C4Ax(3+ s+ CaAx) 4 1]

where Cy = C3 = C4 = pc Ax. So, to determine the transient response, we simply choose a suitable
value of At and march through the calculations. The stability criterion is such that the coefficients
of the last term in each equation cannot be negative. For Equations (g), (4), and (i) the maximum
allowable time increment is

_ C3Ax (1600)(800)(0.0075)%

AN —
2k (2)(3)

12s

For Equation (f), the worst case is at the start when TSP =20°C =293 K. We have

(1600)(800)(0.0075)
Cs=

—4
5 800

so that
4800

B (5.669 x 10—8)(0.8)(12732 + 2932)(1273 + 293) +3.0/0.0075
=943s

N e

For node 1 [Equation (e)] the most restrictive condition occurs when Tlp =293. We have

C1=C5=4800
so that
4800
T =
M8 (5,669 x 10~8)(0.8)(2932 + 2932)(293 + 293) + 3.0/0.0075

=11.86s

So, from these calculations we see that node 5 is most restrictive and we must choose At < 9.43 s.

The calculations were performed with Ar=3.0 s, and the results are shown in
Figure Example 4-15b, c. Note that a straight line is obtained for the steady-state temperature
distribution in the solid, which is what would be expected for a constant thermal conductivity. To
compute the heat added at any instant of time we perform the sum

Q(r)=>_ Ci(T; —293) [/l

and plot the results in Figure Example 4-15c.

EXAMPLE 4-16 Transient Conduction with Heat Generation

The plane wall shown has internal heat generation of 50 MW/m?> and thermal properties of k=
19 W/m- °C, p="7800 kg/m>, and C =460 J/kg - °C. It is initially at a uniform temperature of
100°C and is suddenly subjected to the heat generation and the convective boundary conditions
indicated in Figure Example 4-16A. Calculate the temperature distribution after several time
increments.

H Solution
We use this resistance and capacity formulation and write, for unit area,

1/R15 = kA/Ax = (19)(1)/0.001 = 19,000 W/°C
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Figure Example 4-16a

hy =400 W/m?.°C hg =500 W/m?.°C

T,=120°C ~ /TB =20°C

Ax Ax

Ax=1.0 mm

All the conduction resistances have this value. Also,
/Ry 4 = hA = (400)(1) = 400 W/°C
1/R1p = hA=(500)(1)=500 W/°C

The capacities are
Cy = Cg=p(Ax/2)c=(7800)(0.001/2)(460) = 1794 J/°C
Cy=C3=C4=C5=p(Ax)c=35881]/°C

We next tabulate values.

Ci
Node > (1/R;;) Ci > (1/R;;)
1 19,400 1794 0.092
2 38,000 3588 0.094
3 38,000 3588 0.094
4 38,000 3588 0.094
5 38,000 3588 0.094
6 19,500 1794 0.092

Any time increment At less than 0.09 s will be satisfactory. The nodal equations are now written
in the form of Equation (4-47) and the calculation marched forward on a computer.
The heat-generation terms are
gi=qAV;
so that
q1 = q6=(50x 106)(1)(0.001/2) =25,000 W
g2 = q3 =q4 =q5=(50 x 106)(1)(0.001) = 50,000 W

The computer results for several time increments of 0.09 s are shown in the following table.
Because the solid stays nearly uniform in temperature at any instant of time it behaves almost like
a lumped capacity. The temperature of node 3 is plotted versus time in Figure Example 4-16B to
illustrate this behavior.

Number of time increments (A7 =0.09 s)

Node 5 20 100 200

1 106.8826 123.0504 190.0725 246.3855
106.478 122.8867 190.9618 248.1988
106.1888 122.1404 190.7033 248.3325
105.3772 120.9763 189.3072 246.7933
104.4622 119.2217 186.7698 243.5786
102.4416 117.0056 183.0735 238.6773

(o) WV, TN SN U I S
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Number of time increments (A7 =0.09 s)

Node 500 800 1200 3000
1 320.5766 340.1745 346.0174 347.2085
2 323.6071 343.5267 349.4654 350.676
3 324.2577 344.3137 350.2931 351.512
4 322.5298 342.536 348.5006 349.7165
5 318.4229 338.1934 344.0877 345.2893
6 311.9341 331.2853 337.0545 338.2306
Figure Example 4-16b
350
300 —
S
E 250 [~
g
5
2
% 200 —
=)
(]
F
150 —
100 | | | | |
0 20 40 60 80 100
Time, s

Numerical Solution for Variable Conductivity

A 4.0-cm-thick slab of stainless steel (18% Cr, 8% Ni) is initially at a uniform temperature of
0°C with the left face perfectly insulated as shown in Figure Example 4-17a. The right face is
suddenly raised to a constant 1000°C by an intense radiation source. Calculate the temperature
distribution after (a) 25 s, (b) 50 s, (¢) 100 s, (d) an interval long enough for the slab to reach a
steady state, taking into account variation in thermal conductivity. Approximate the conductivity
data in Appendix A with a linear relation. Repeat the calculation for the left face maintained at 0°C.

Figure Example 4-17a

/1000°C

Insulated or constant 0°C

Ax=1cm
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H Solution
From Table A-2 we have k=16.3 W/m-°C at 0°C and k=31 W/m- °C at 1000°C. A linear
relation for £ is assumed so that

k=ko(l+ pT)
where 7' is in degrees Celsius. Inserting the data gives

k=16.3(1+9.02 x 10~4T) Wm-°C

We also have p =7817 kg /m3 and ¢ =460 J/kg - °C, and use the thermal resistance-capacitance
formula assuming that the resistances are evaluated at the arithmetic mean of their connecting
nodal temperatures; i.e., R3_4 is evaluated at (73 4+ 74)/2.

First, the thermal capacities are evaluated for unit area:

C1 = p(Ax/2)c = (7817)(0.01/2)(460) = 17,980 J/m2 - °C
Cy = C3 = Cyq = p(Ax)c = (7817)(0.01)(460) = 35,960 J /m? - °C

For the resistances we have the form, for unit area,

I/R=k/Ax=ko(1+ BT)/ Ax

Evaluating at the mean temperatures between nodes gives
/R _p = (16.3)[1+4.51 x 10~4(T} +15)1/0.01 = I/R,_;
1/Ry_3 = (16.3)[1+4.51 x 10~4(T +T3)1/0.01 = 1/R3_,
1/R3_4 = (16.3)[1 +4.51 x 10~*(T3 + T4)1/0.01 = I/R4_3
1/R4—1000 = (16.3)[1 +4.51 x 10_4(T4 + 71000)1/0.01 = 1/R1000—4
The stability requirement is most severe on node 1 because it has the lowest capacity. To be on the
safe side we can choose a large k of about 31 W/m - °C and calculate

_(17,980)(0.01)

A'L'max —T 5.8

The nodal equations are now written in the form of Equation (4-47); that is to say, the equation
for node 2 would be

A
(CARE C—f{wso (1+4.51 x 1074@f + D11 - 1)
2
+1630 [1+4.51 x 10~4Tf + T))1(1f - sz)} +717

A computer solution has been performed with At =5 s and the results are shown in the tables. The
steady-state solution for the insulated left face is, of course, a constant 1000°C. The steady-state
distribution for the left face at 0°C corresponds to Equation (2-2) of Chapter 2. Note that, because
of the nonconstant thermal conductivity, the steady-state temperature profile is not a straight line.

Temperatures for left face at constant 0°C, At =5 s

Node 25s 50s 100 s Steady state
1 0 0 0 0
2 94.57888 236.9619 308.2699 317.3339
3 318.7637 486.5802 565.7786 575.9138
4 653.5105 748.1359 793.7976 799.7735
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Temperatures for left face insulated, Az =5 s

Node 25s 50s 100 s Steady state
1 30.55758 232.8187 587.021 1000
2 96.67601 310.1737 623.5018 1000
3 318.7637 505.7613 721.5908 1000
4 653.5105 752.3268 855.6965 1000

These temperatures are plotted in Figure Example 4-17b.

Figure Example 4-17b

Left face constant at 0°C
1000 = — === Left face insulated

800

600

Temperature,”C

400

200

The purpose of this example has been to show how the resistance-capacity formulation can
be used to take into account property variations in a rather straightforward way. These variations
may or may not be important when one considers uncertainties in boundary conditions.

4-8 | SUMMARY

In progressing through this chapter the reader will have noted analysis techniques of varying
complexity, ranging from simple lumped-capacity systems to numerical computer solutions.
At this point some suggestions are offered for a general approach to follow in the solution
of transient heat-transfer problems.

1. First, determine if a lumped-capacity analysis can apply. If so, you may be led to a
much easier calculation.
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Check to see if an analytical solution is available with such aids as the Heisler charts
and approximations.

. Ifanalytical solutions are very complicated, even when already available, move directly

to numerical techniques. This is particularly true where repetitive calculations must be
performed.

. When approaching a numerical solution, recognize the large uncertainties present in

convection and radiation boundary conditions. Do not insist upon a large number of
nodes and computer time (and chances for error) that cannot possibly improve upon
the basic uncertainty in the boundary conditions.

Finally, recognize that it is a rare occurrence when one has a “pure” conduction problem;
there is almost always a coupling with convection and radiation. The reader should keep
this in mind as we progress through subsequent chapters that treat heat convection and
radiation in detail.

REVIEW QUESTIONS

1.

N

What is meant by a lumped capacity? What are the physical assumptions necessary for
a lumped-capacity unsteady-state analysis to apply?
What is meant by a semi-infinite solid?

3. What initial conditions are imposed on the transient solutions presented in graphical

A A

form in this chapter?

What boundary conditions are applied to problems in this chapter?

Define the error function.

Define the Biot and Fourier numbers.

Describe how one-dimensional transient solutions may be used for solution of two-
and three-dimensional problems.

LIST OF WORKED EXAMPLES

4-1 Steel ball cooling in air
4-2 Semi-infinite solid with sudden change in surface conditions

4-3 Pulsed energy at surface of semi-infinite solid
4-4 Heat removal from semi-infinite solid

4-5 Sudden exposure of semi-infinite slab to convection
4-6 Aluminum plate suddenly exposed to convection
4-7 Long cylinder suddenly exposed to convection
4-8 Semi-infinite cylinder suddenly exposed to convection
4-9 Finite-length cylinder suddenly exposed to convection
4-10 Heat loss for finite-length cylinder
4-11 Sudden cooling of a rod
4-12 Implicit formulation
4-13 Cooling of a ceramic
4-14 Cooling of a steel rod, nonuniform %
4-15 Radiation heating and cooling
4-16 Transient conduction with heat generation
4-17 Numerical solution for variable conductivity

193


http://www.abbyy.com/buy
http://www.abbyy.com/buy

194

Problems

PROBLEMS

4-1

4-3

4-4

4-6

4-7

4-8

4-9

A copper sphere initially at a uniform temperature 7j is immersed in a fluid. Electric
heaters are placed in the fluid and controlled so that the temperature of the fluid
follows a periodic variation given by

Too — 1, = Asinwt
where

T,, = time-average mean fluid temperature
A = amplitude of temperature wave
o = frequency

Derive an expression for the temperature of the sphere as a function of time and the
heat-transfer coefficient from the fluid to the sphere. Assume that the temperatures
ofthe sphere and fluid are uniform at any instant so that the lumped-capacity method
of analysis may be used.

An infinite plate having a thickness of 2.5 cm is initially at a temperature of 150°C,
and the surface temperature is suddenly lowered to 30°C. The thermal diffusivity of
the material is 1.8 x 10~% m?/s. Calculate the center-plate temperature after 1 min
by summing the first four nonzero terms of Equation (4-3). Check the answer using
the Heisler charts.

What error would result from using the first four terms of Equation (4-3) to compute
the temperature at r =0 and x = L.? (Note: temperature = 7;.)

A solid body at some initial temperature 7p is suddenly placed in a room where the
air temperature is 1, and the walls of the room are very large. The heat-transfer
coefficient for the convection heat loss is %, and the surface of the solid may be
assumed black. Assuming that the temperature in the solid is uniform at any instant,
write the differential equation for the variation in temperature with time, considering
both radiation and convection.

A 20 by 20 cm slab of copper 5 cm thick at a uniform temperature of 260°C sud-
denly has its surface temperature lowered to 35°C. Using the concepts of thermal
resistance and capacitance and the lumped-capacity analysis, find the time at which
the center temperature becomes 90°C; o = 8900 kg/m3, cp =0.38 kl/kg - °C, and
k=370 W/m-°C.

A piece of aluminum weighing 6 kg and initially at a temperature of 300°C is
suddenly immersed in a fluid at 20°C. The convection heat-transfer coefficient is
58 W/m? - °C. Taking the aluminum as a sphere having the same weight as that given,
estimate the time required to cool the aluminum to 90°C, using the lumped-capacity
method of analysis.

Two identical 7.5-cm cubes of copper at 425 and 90°C are brought into contact.
Assuming that the blocks exchange heat only with each other and that there is no
resistance to heat flow as a result of the contact of the blocks, plot the temperature
of each block as a function of time, using the lumped-capacity method of analysis.
That is, assume the resistance to heat transfer is the conduction resistance of the two
blocks. Assume that all surfaces are insulated except those in contact.

Repeat Problem 4-7 for a 7.5-cm copper cube at 425°C in contact with a 7.5-cm
steel cube at 90°C. Sketch the thermal circuit.

An infinite plate of thickness 21, is suddenly exposed to a constant-temperature
radiation heat source or sink of temperature 7;. The plate has a uniform initial
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4-10

4-11

4-12

4-13

4-14

4-15

4-16

4-17

4-18

CHAPTER4 Unsteady-State Conduction

temperature of 7;. The radiation heat loss from each side of the plate is given by
q=0€eA(T* — T*), where o and € are constants and A is the surface area. Assuming
that the plate behaves as a lumped capacity, that is, K — oo, derive an expression for
the temperature of the plate as a function of time.

A stainless-steel rod (18% Cr, 8% Ni) 6.4 mm in diameter is initially at a uni-
form temperature of 25°C and is suddenly immersed in a liquid at 150°C with
h= 120 W/m? - °C. Using the lumped-capacity method of analysis, calculate the
time necessary for the rod temperature to reach 120°C.

A 5-cm-diameter copper sphere is initially at a uniform temperature of 200°C. It
is suddenly exposed to an environment at 20°C having a heat-transfer coefficient
h =28 W/m? - °C. Using the lumped-capacity method of analysis, calculate the time
necessary for the sphere temperature to reach 90°C.

A stack of common building brick 1 m high, 3 m long, and 0.5 m thick leaves an oven,
where it has been heated to a uniform temperature of 300°C. The stack is allowed
to cool in a room at 35°C with an air-convection coefficient of 15 W/m? - °C. The
bottom surface of the brick is on an insulated stand. How much heat will have been
lost when the bricks cool to room temperature? How long will it take to lose half
this amount, and what will the temperature at the geometric center of the stack be
at this time?

A copper sphere having a diameter of 3.0 cm is initially at a uniform temperature of
50°C. It is suddenly exposed to an airstream of 10°C with » =15 W/m? - °C. How
long does it take the sphere temperature to drop to 25°C?

An aluminum sphere, 5.0 cm in diameter, is initially at a uniform temperature of
50°C. It is suddenly exposed to an outer-space radiation environment at 0 K (no
convection). Assuming the surface of aluminum is blackened and lumped-capacity
analysis applies, calculate the time required for the temperature of the sphere to drop
to —110°C.

An aluminum can having a volume of about 350 cm? contains beer at 1°C. Using
a lumped-capacity analysis, estimate the time required for the contents to warm to
15°C when the can is placed in a room at 20°C with a convection coefficient of
15 W/m? - °C. Assume beer has the same properties as water.

A 12-mm-diameter aluminum sphere is heated to a uniform temperature of 400°C
and then suddenly subjected to room air at 20°C with a convection heat-transfer
coefficient of 10 W/m? - °C. Calculate the time for the center temperature of the
sphere to reach 200°C.

A 4-cm-diameter copper sphere is initially at a uniform temperature of 200°C. It
is suddenly exposed to a convection environment at 30°C with i =20 W/m? - °C.
Calculate the time necessary for the center of the sphere to reach a temperature
of 80°C.

When a sine-wave temperature distribution is impressed on the surface of a semi-
infinite solid, the temperature distribution in the solid is given by

[7n\ . ™
Ty :—1,=Aexp <—x —) sin <27m7:—x —)
o o

where

T, . = temperature at depth x and time 7 after start of temperature wave
at surface

1;,, = mean surface temperature
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4-19

4-20

4-21

4-22

4-23

4-24

4-25

4-26

4-27

4-28

4-29

n = frequency of wave, cycles per unit time
A = amplitude of temperature wave at surface

If a sine-wave temperature distribution is impressed on the surface of a large slab of
concrete such that the temperature varies from 35 to 90°C and a complete cycle is
accomplished in 15 min, find the heat flow through a plane 5 cm from the surface 2 h
after the start of the initial wave.

Using the temperature distribution of Problem 4-18, show that the time lag between
maximum points in the temperature wave at the surface and at a depth x is given by

X 1
Ar=—,/—
2Y ann

A thick concrete wall having a uniform temperature of 54°C is suddenly subjected
to an airstream at 10°C. The heat-transfer coefficient is 10 W/m? - °C. Calculate the
temperature in the concrete slab at a depth of 7 cm after 30 min.
A very large slab of copper is initially at a temperature of 300°C. The surface tem-
perature is suddenly lowered to 35°C. What is the temperature at a depth of 7.5 cm
4 min after the surface temperature is changed?
On a hot summer day a concrete driveway may reach a temperature of 50°C. Suppose
that a stream of water is directed on the driveway so that the surface temperature is
suddenly lowered to 10°C. How long will it take to cool the concrete to 25°C at a
depth of 5 cm from the surface?
A semi-infinite slab of copper is exposed to a constant heat flux at the surface of
0.5 MW/m?. Assume that the slab is in a vacuum, so that there is no convection at
the surface. What is the surface temperature after 5 min if the initial temperature of
the slab is 20°C? What is the temperature at a distance of 15 cm from the surface
after 5 min?
A semi-infinite slab of material having k =0.1 W/m - °C and @ = 1.1 x 10~"m? /s is
maintained at an initially uniform temperature of 20°C. Calculate the temperature at
adepth of 5 cm after 100 s if (a) the surface temperature is suddenly raised to 150°C,
(b) the surface is suddenly exposed to a convection source with 1 = 40 W/m? - °C and
150°C, and (c) the surface is suddenly exposed to a constant heat flux of 350 W/m?.
A brick wall having a thickness of 10 cm is initially uniform in temperature at 25°C.
Onesideis insulated. The other side is suddenly exposed to a convection environment
with 7= 0°C and h =200 W/m? - °C. Using whatever method is suitable, plot the
temperature of the insulated surface as a function of time. How might this calculation
be applicable to building design?
A large slab of copper is initially at a uniform temperature of 90°C. Its surface
temperature is suddenly lowered to 30°C. Calculate the heat-transfer rate through a
plane 7.5 cm from the surface 10 s after the surface temperature is lowered.
A large slab of aluminum at a uniform temperature of 30°C is suddenly exposed
to a constant surface heat flux of 15 kW/m?. What is the temperature at a depth of
2.5 cm after 2 min?
For the slab in Problem 4-27, how long would it take for the temperature to reach
150°C at the depth of 2.5 cm?
Apiece of ceramic material [k = 0.8 W/m - °C, p =2700 kg/m>, ¢ =0.8kJ/kg - °C]
is quite thick and initially at a uniform temperature of 30°C. The surface of the mate-
rial is suddenly exposed to a constant heat flux of 650 W/m?. Plot the temperature
at a depth of 1 cm as a function of time.
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4-31

4-32

4-33

4-34

4-35

4-36

4-37

4-38

4-39

4-40

4-41

4-42

CHAPTER4 Unsteady-State Conduction

An aluminum sphere having a diameter of 5.6 cm is initially at a uniform temperature
of 355°C and is suddenly exposed to a convection environment at 7 =23°C with a
convection heat transfer coefficient of 78 W/m? - °C. Calculate the time for the center
of the sphere to cool to a temperature of 73°C. Express the answer in seconds.

A large thick layer of ice is initially at a uniform temperature of —20°C. If the
surface temperature is suddenly raised to —1°C, calculate the time required for
the temperature at a depth of 1.5 cm to reach —11°C. The properties of ice are
p =57 Iby /ft3, ¢, =0.46 Btw/lbm - °F, k = 1.28 Btwh - ft - °F, « = 0.048 ft?/h.

A large slab of concrete (stone 1-2-4 mix) is suddenly exposed to a constant radiant
heat flux of 900 W/m?. The slab is initially uniform in temperature at 20°C. Calculate
the temperature at a depth of 10 cm in the slab after a time of 9 h.

A very thick plate of stainless steel (18% Cr, 8% Ni) at a uniform temperature of
300°C has its surface temperature suddenly lowered to 100°C. Calculate the time
required for the temperature at a depth of 3 cm to attain a value of 200°C.

A large slab has properties of common building brick and is heated to a uniform
temperature of 40°C. The surface is suddenly exposed to a convection environment
at 2°C with h =25 W/m? - °C. Calculate the time for the temperature to reach 20°C
at a depth of 8 cm.

A large block having the properties of chrome brick at 200°C is at a uniform temper-
ature of 30°C when it is suddenly exposed to a surface heat flux of 3 x 10* W/m?.
Calculate the temperature at a depth of 3 cm after a time of 10 min. What is the
surface temperature at this time?

A slab of copper having a thickness of 3.0 cm is initially at 300°C. It is suddenly
exposed to a convection environment on the top surface at 80°C while the bottom
surface is insulated. In 6 min the surface temperature drops to 140°C. Calculate the
value of the convection heat-transfer coefficient.

A large slab of aluminum has a thickness of 10 cm and is initially uniform in tem-
perature at 400°C. Suddenly it is exposed to a convection environment at 90°C with
h =1400 W/m? - °C. How long does it take the centerline temperature to drop to
180°C?

A horizontal copper plate 10 cm thick is initially uniform in temperature at 250°C.
The bottom surface of the plate is insulated. The top surface is suddenly exposed to
a fluid stream at 80°C. After 6 min the surface temperature has dropped to 150°C.
Calculate the convection heat-transfer coefficient that causes this drop.

A large slab of aluminum has a thickness of 10 cm and is initially uniform in tem-
perature at 400°C. It is then suddenly exposed to a convection environment at 90°C
with h = 1400 W/m? - °C. How long does it take the center to cool to 180°C?

A plate of stainless steel (18% Cr, 8% Ni) has a thickness of 3.0 cm and is initially
uniform in temperature at 500°C. The plate is suddenly exposed to a convection
environment on both sides at 40°C with » = 150 W/m? - °C. Calculate the times for
the center and face temperatures to reach 120°C.

Assteel cylinder 10 cm in diameter and 10 cm long is initially at 300°C. It is suddenly
immersed in an oil bath that is maintained at 40°C, with # =280 W/m? - °C. Find
(@) the temperature at the center of the solid after 2 min and () the temperature at
the center of one of the regular faces after 2 min.

Derive an expression for the heat flux per unit area at depth x and time v when
a semi-infinite solid is suddenly exposed to an instantaneous energy pulse at the
surface of strength Q¢ /A.
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4-43

4-44

4-45

4-46

4-47
4-48

4-49

4-50

4-51

4-52

4-53

4-54

4-55

4-56

Buildings of various constructions exhibit different responses to thermal changes in
climate conditions. Consider a 10-cm-thick wall of normal weight structural concrete
(¢ =0.9kJ/kg - °C) suddenly exposed to a “blue norther” at —10°C with a convection
coefficient of 65 W/m? - °C. The wall is initially at 15°C. Estimate the time required
for the wall temperature to drop to 5°C. State the assumptions.

A semi-infinite solid of aluminum is coated with a special chemical material that
reacts suddenly to ultraviolet radiation and releases energy in the amount of
1.0 MJ/m?. If the solid is initially uniform in temperature at 20°C, calculate the
temperature at a depth of 2.3 cm after 1.8 s.

A semi-infinite solid of stainless steel (18% Cr, 8% Ni) is initially at a uniform
temperature of 0°C. The surface is pulsed with a laser with 10 MJ/m? instanta-
neous energy. Calculate the temperature at the surface and depth of 1 cm after a
time of 3 s.

What strength pulse would be necessary to produce the same temperature effect at
a depth of 1.2 cm as that experienced at a depth of 1.0 cm?

Calculate the heat flux at x=1 cm and = =3 s for the conditions of Problem 4-45.
A semi-infinite solid of aluminum is to be pulsed with a laser at the surface such that
a temperature of 600°C will be attained at a depth of 2 mm, 0.2 s after the pulse.
The solid is initially at 30°C. Calculate the strength of pulse required, expressed in
MJ/m?.

A slab of polycrystalline aluminum oxide is to be pulsed with a laser to produce a
temperature of 900°C at a depth of 0.2 mm after a time of 0.2 s. The solid is initially
at 40°C. Calculate the strength of pulse required expressed in MJ/m?.

Repeat Problem 4-49 for window glass.

An aluminum bar has a diameter of 11 cm and is initially uniform in tempera-
ture at 300°C. If it is suddenly exposed to a convection environment at 50°C with
h=1200 W/m? - °C, how long does it take the center temperature to cool to 80°C?
Also calculate the heat loss per unit length.

A fused-quartz sphere has a thermal diffusivity of 9.5 x 10~7 m?/s, a diameter of
2.5 cm, and a thermal conductivity of 1.52 W/m - °C. The sphere is initially at a
uniform temperature of 25°C and is suddenly subjected to a convection environment
at 200°C. The convection heat-transfer coefficient is 110 W/m? - °C. Calculate the
temperatures at the center and at a radius of 6.4 mm after a time of 3 min.

Lead shot may be manufactured by dropping molten-lead droplets into water. Assum-
ing that the droplets have the properties of solid lead at 300°C, calculate the time
for the center temperature to reach 120°C when the water is at 100°C with & =
5000 W/m?-°C, d = 1.5 mm.

A steel sphere 10 cm in diameter is suddenly immersed in a tank of oil at 10°C. The
initial temperature of the sphere is 220°C; i = 5000 W/m? - °C. How long will it
take the center of the sphere to cool to 120°C?

A boy decides to place his glass marbles in an oven at 200°C. The diameter of the
marbles is 15 mm. After a while he takes them from the oven and places them in
room air at 20°C to cool. The convection heat-transfer coefficient is approximately
14 W/m? - °C. Calculate the time the boy must wait until the center temperature of
the marbles reaches 50°C.

Alead sphere with d = 1.5 mm and initial temperature of 200°C is suddenly exposed
to a convection environment at 100°C and # = 5000 W/m? - °C. Calculate the time
for the center temperature to reach 120°C.
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A long steel bar 5 by 10 cm is initially maintained at a uniform temperature of
250°C. It is suddenly subjected to a change such that the environment temperature
is lowered to 35°C. Assuming a heat-transfer coefficient of 23 W/m? - °C, use a
numerical method to estimate the time required for the center temperature to reach
90°C. Check this result with a calculation using the Heisler charts.

A steel bar 2.5 cm square and 7.5 cm long is initially at a temperature of 250°C.
It is immersed in a tank of oil maintained at 30°C. The heat-transfer coefficient is
570 W/m? - °C. Calculate the temperature in the center of the bar after 3 min.

A cube of aluminum 10 cm on each side is initially at a temperature of 300°C and
is immersed in a fluid at 100°C. The heat-transfer coefficient is 900 W/m?2 - °C.
Calculate the temperature at the center of one face after 1 min.

A short concrete cylinder 15 cm in diameter and 30 cm long is initially at 25°C.
It is allowed to cool in an atmospheric environment in which the temperature is
0°C. Calculate the time required for the center temperature to reach 10°C if the
heat-transfer coefficient is 17 W/m? - °C.

Assume that node m in Problem 3-39 occurs along a circular rod having a diameter of
2 cm with Ax =1 cm. The material is glass with k = 0.8 W/m - °C, p =2700 kg/m3,
¢ =0.84kJ/kg - °C. The convection surrounding condition is # = 50 W/m? - °C and
T, = 35°C. Write the transient nodal equation for node m and determine the corre-
sponding maximum allowable time increment, expressed in seconds.

A 4.0-cm cube of aluminum is initially at 450°C and is suddenly exposed to a
convection environment at 100°C with » = 120 W/m? - °C. How long does it take
the cube to cool to 250°C?

A cube of aluminum 11 cm on each side is initially at a temperature of 400°C. It is
suddenly immersed in a tank of oil maintained at 85°C. The convection coefficient
is 1100 W/m? - °C. Calculate the temperature at the center of one face after a time
of 1 min.

An aluminum cube 5 cm on a side is initially at a uniform temperature of 100°C and
is suddenly exposed to room air at 25°C. The convection heat-transfer coefficient is
20 W/m? - °C. Calculate the time required for the geometric center temperature to
reach 50°C.

A stainless steel cylinder (18% Cr, 8% Ni) is heated to a uniform temperature of
200°C and then allowed to cool in an environment where the air temperature is
maintained constant at 30°C. The convection heat-transfer coefficient may be taken
as 200 W/m? - °C. The cylinder has a diameter of 10 cm and a length of 15 cm.
Calculate the temperature of the geometric center of the cylinder after a time of
10 min. Also calculate the heat loss.

A cylinder having a diameter of 15 cm and a length of 30 cm is initially uniform in
temperature at 300°C. It is suddenly exposed to a convection environment at 20°C
with # =35 W/m?2 - °C. Properties of the solid are k = 2.3 W/m - °C, p =300 kg/m>,
and ¢ =840 J/kg - °C. Calculate the time for (a) the center and () the center of one
face to reach a temperature of 120°C. Also calculate the heat loss for each case.
Arectangular solid is 15 by 10 by 20 cm and has the properties of fireclay brick. It is
initially uniform in temperature at 300°C and then suddenly exposed to a convection
environment at 80°C and 2 = 110 W/m? - °C. Calculate the time for («) the geometric
center and (b) the center of each face to reach a temperature of 190°C. Also calculate
the heat loss for each of these times.

Calculate the heat loss for both cases in Problem 4-45.
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