Hydrolysis of Acetyl Salicylic Acid Solution in Sorenson Phosphate Buffer at pH 8

BIOPHARMACEUTICS

What is in?

- Why to study ?
- How to study ?

Introduction

- Aspirin is a weak acid .it is soluble at 20 C° in 300 parts of water .
- It is unstable in aqueous solutions degrading to salicylic acid and acetic acid

Aspirin also degrades in solid dosage forms when exposed to moisture and therefore , should be stored in tightly closed containers and kept in a dry environment .

Aim of Experiment

To study the effect of temperature on the hydrolysis of aspirin, and to calculate the shelf life of aspirin.

Shelf life of any drug :it is the time required for the drug to LOSE 10% of its effectiveness

How to work

Procedure :

1. Dissolve 0.695 g of aspirin in 250 ml of phosphate buffer (use a volumetric flask)

- 2. place 200 ml of this solution in an erlenmeyer flask, then keep the flask in a water bath for (30 min) at required temperature. the temperature that will be used are(40, 60, 80 °C)
- Withdraw (5 ml) sample at the end of 30 mins, then continue withdrawing (5 ml) sample at 15 min interval for 90 min.

What to do with the sample ???

What is the sample ?

• Sample contains Aspirin

Notes:

absorbance increases with time

Concentration of S.A at zero time is ZERO since ASA is not hydrolyzed yet, however, the initial concentration of ASA is 2.78 mg/ml ??

ASA initial conc. Is 2.78 mg/ml?

We dissolved 0.695 g of Aspirin in 250 ml

Therefore :

 $\frac{0.695 \, gram}{250 \, ml} = 0.00278 \, gram \, per \, ml$

```
Since I gm = 1000 mg
```

```
So :
```

0.00278 * 1000 = **2.78 mg / ml**

Sorenson phosphate buffer (pH 8)

Consist of two solutions

A-1/15 M Monopotasium phosphate KH2PO4

B- I/I5 M Disodium phosphate Na₂HPO₄.2H₂O

The rate of ASA hydrolysis follows First
Order reaction

How to calculate ?

- Use the calibration curve equation
- Y= C + b*X

We are seeking ASA not SA

Since each MOLE of aspirin give 1 mole of salicylic acid and 1 mole of acetic acid

Time	Absorbance	Conc. of S. A	Conc. of aspirin hydrolyzed	Conc. Of aspirin remined (ct)	Log ct
0	0	0	0	2.78	
30		Y= c + bx	X *180/138	2.78 - C t	
45					
60					
75					
90					

First order Kinetics

$$\bullet - \frac{dc}{dt} = KC$$

$$\int_{c0}^{ct} \frac{dc}{c} = -k \int_{0}^{t} dt$$

$$-(\ln Ct - \ln C_{0}) = kt(t-0)$$

- Ln Ct $-\ln C_0 = -kt$
- $Ln Ct = ln C_o kt$
- Since $\ln = \log \times 2.303$
- Log Ct *2.303=log Co* 2.303-kt
- Log Ct = log Co -kt/2.303

What to do with data ?

- take the Log, or Ln for each calculated conc.
- Plot the log/ In of conc. against time in min for each temp.
- You will have 3 plots

• calculate K for each temp.

- take log K and plot I/T
- (draw Arrhenius plot) to find K at 25 $\,\,^{\circ}\text{C}$

Arrhenius equation :

- Log K = log A (Ea)/(2.303 R) *I/T
- Where A= frequency factor ,Ea = energy of activation ,T= absolute temp.(temp. +273)
- R= gas constant .
- ▶ t|0%= 0.|05/ K_{25℃}

Repot to have done according to this results

- I calculate K for each temp.
- 2- calculate Aspirin shelf life

ance at 80 C	ance at 60 C Absorb	bance at 40 C Absor	Time in min Absorb
0	0	0	0
0.33	0.125	0.095	30
0.5	0.2	0.118	45
0.64	0.27	0.15	60
0.76	0.31	0.2	75
0.76	0.4	0.23	90

The results for ASA hydrolysis in pH 8 was as the follow

Knowing that the calibration curve was y = x + 0.0897

Note: the calibration curve was in mg/ml

