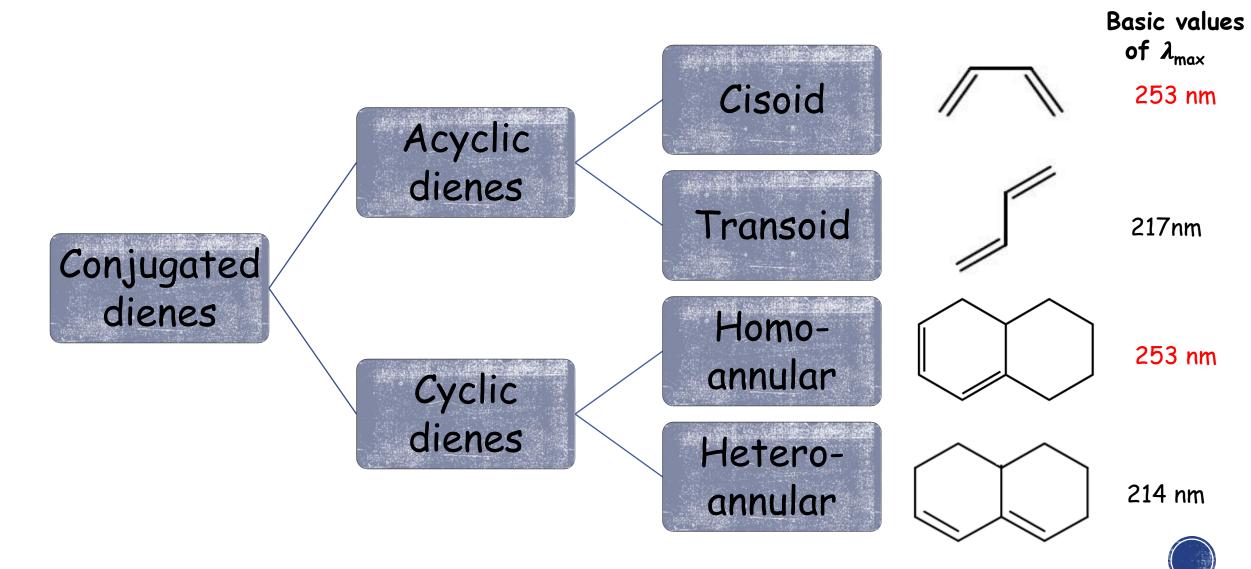


SPECTROCHEMICAL ANALYSIS

Calculation of λ_{max} : Woodward-Fieser rules

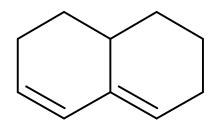
2022-2023



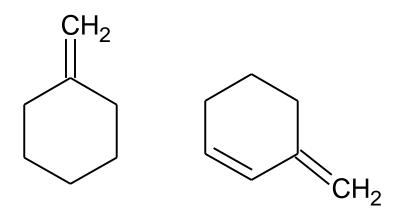
Conjugated dienes and polyenes

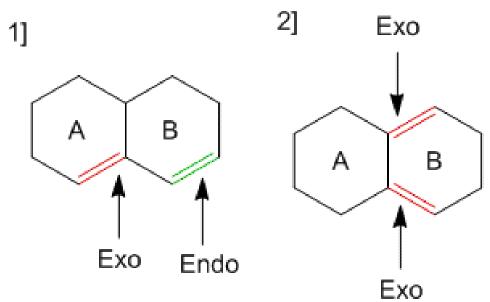
Woodward-Fieser rules a-β Unsaturated carbonyl compounds

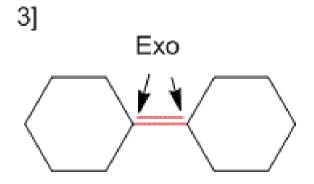




Endocyclic double bond

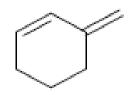

The double bond present in a ring only (inside).



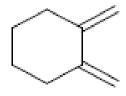


Exocyclic double bond

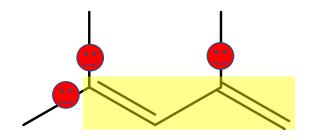
The double bond is a part of the ring (outside).

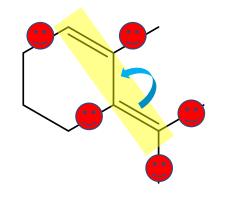


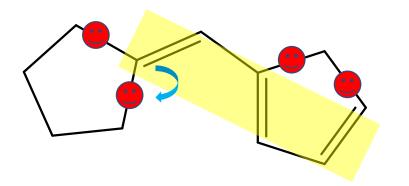
Increments:	values
For each additional conjugated double bond	+ 30 nm
For each exocyclic double bond	+ 5 nm
For each alkyl group	+ 5 nm
Auxochrome	
- OR	+ 6 nm
- O(C=O)R	0
- CI	+ 5 nm
- Br	+ 5 nm
- SR	+ 30 nm
- NR ₂	+ 60 nm
Phenyl ring	+ 60 nm



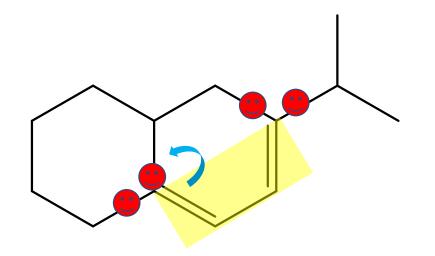
This compound has three exocyclic double bonds; the indicated bond is exocyclic to *two* rings


This is **not** a heteroannular diene; you would use the base value for an acyclic diene


Likewise, this is **not** a homooannular diene; you would use the base value for an acyclic diene

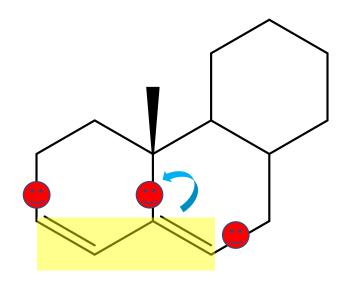


Acyclic diene	217
Alkyl subst.	3 x 5
Calculated value	232
Observed	234

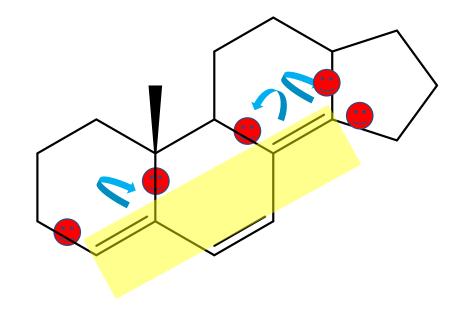


Acyclic diene	217 nm
Alkyl substitution	(5×5) nm
Exocyclic double bond	(1×5) nm
Calculated value	247 nm

Homo-annular	253 nm
Alkyl substitution	(4×5) nm
Exocyclic double bond	(1 × 5) nm
Extra-conjugation	$(1 \times 30) \text{ nm}$
Calculated value	308 nm



Homo-annular	253 nm
Alkyl substitution	(4×5) nm
Exocyclic double bond	(1×5) nm
Calculated value	278 nm
Observed value	275 nm



Hetero-annular	214 nm
Alkyl substitution	(3×5) nm
Exocyclic double bond	(1×5) nm
Calculated value	234 nm
Observed value	235 nm

Hetero-annular	214 nm
Alkyl substitution	(5 × 5) nm
Exocyclic double bond	(3×5) nm
Extra conjugation	$(1 \times 30) \text{ nm}$
Calculated value	284 nm

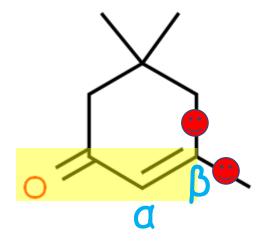
Conjugated dienes and polyenes

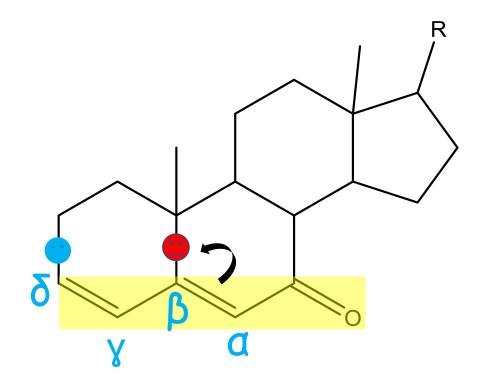
Woodward-Fieser rules a-β Unsaturated carbonyl compounds

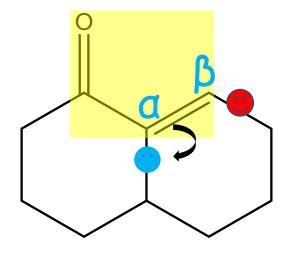
a-B unsaturated carbonyl compounds

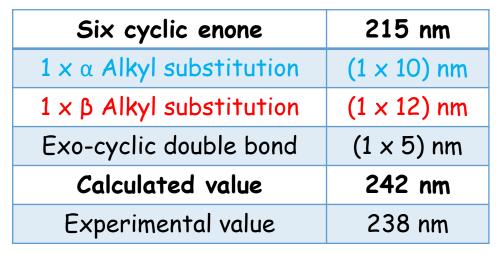
α-β unsaturated carbonyl compounds

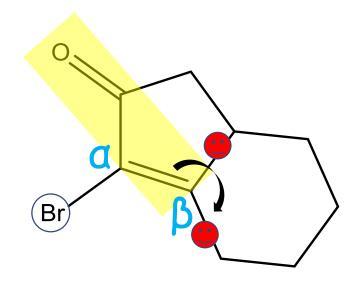
Compounds	base values
a-β unsaturated aldehydes	210 nm
a-β unsaturated (carboxylic acids & esters)	195 nm
A cyclic a-β unsaturated ketones	215 nm
Cyclic a-B unsaturated ketones (six membered)	215 nm
Cyclic a-B unsaturated ketones (five membered)	202 nm
Increments:	values
For each additional conjugated double bond	+ 30 nm
For each exocyclic double bond	+ 5 nm
Homo-annular diene	+ 39 nm



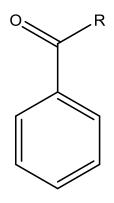

Substituent	α- position	β- position	γ- position	δ- position
Alkyl substituent or ring residue	10 nm	12 nm	18 nm	18 nm
- OH	35 nm	30 nm	50 nm	50 nm
-OAc	6 nm	6 nm	6 nm	6 nm
-OMe	35 nm	30 nm	17 nm	31 nm
-Cl	15 nm	12 nm	12 nm	12 nm
-Br	25 nm	30 nm	25 nm	25 nm
-SR	-	85 nm	-	-
-NR ₂	-	95 nm	=	=


Six cyclic enone	215 nm
2 x β Alkyl substitution	$(2 \times 12) \text{ nm}$
Calculated value	239 nm
Experimental value	238 nm

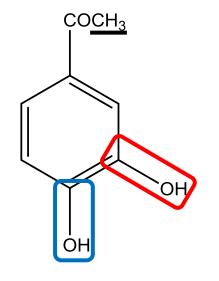



Six cyclic enone	215 nm
Extra-conjugation	$(1 \times 30) \text{ nm}$
$1 \times \beta$ Alkyl substitution	$(1 \times 12) \text{ nm}$
1 x δ Alkyl substitution	(1×18) nm
Exo-cyclic double bond	$(1 \times 5) \text{ nm}$
Calculated value	280 nm

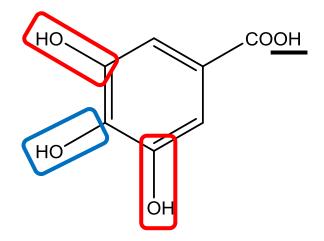
Five cyclic enone	202 nm
$1 \times \alpha$ (Br) substitution	$(1 \times 25) \text{ nm}$
$2 \times \beta$ Alkyl substitution	$(2 \times 12) \text{ nm}$
Exo-cyclic double bond	(1 × 5) nm
Calculated value	256 nm

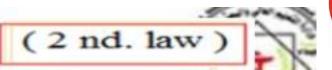

Conjugated dienes and polyenes

Woodward-Fieser rules a-β Unsaturated carbonyl compounds



Parent chromophore	Basic value
R = alkyl or ring residue	246 nm
R = H	250 nm
R = OH or O-Alkyl	230 nm

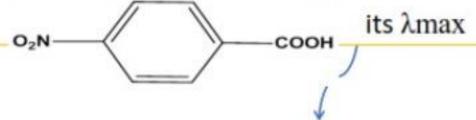

Substituent	o- position	m- position	p- position
Alkyl or ring residue	3 nm	3 nm	10 nm
- OH, -OR, O-ring	7 nm	7 nm	25 nm
-Cl	0 nm	0 nm	10 nm
-Br	2 nm	2 nm	15 nm
-NH ₂	13 nm	13 nm	58 nm
-NH(CO)CH ₃	20 nm	20 nm	45 nm
-NHCH ₃	-	-	73 nm
-NR ₂	20 nm	20 nm	85 nm


Base value of aromatic ketone	246 nm	
Hydroxy group at m-position	7 nm	
Hydroxy group at p-position	25 nm	
Experimental value	278 nm	

Base value of Ar-COOH	230 nm	
Hydroxy group at m-position	(2×7) nm	
Hydroxy group at p-position	25 nm	
Experimental value	269 nm	

- When auxochromic gr.s appear on the same ring as the chromophore, both groups (gr.s) influence the absorption.
- For predicting λmax of the primary band of substituted benzene the following rules are used. (in case of disubtituted benzene)

-	Table XXV:	substituent	<u>shift</u>	:	substiotuent	<u>shift</u>
		- CH3	3		-NH2	26.5
		- CHO	46		- OH	7.0
		- COCH3	42		- OCH3	13.5
		- CO2H	25.5		- NO2	65.0


Base value is (203.5 nm) for 1° band ($\pi \rightarrow \pi^*$ interact)

A- For Para substitution

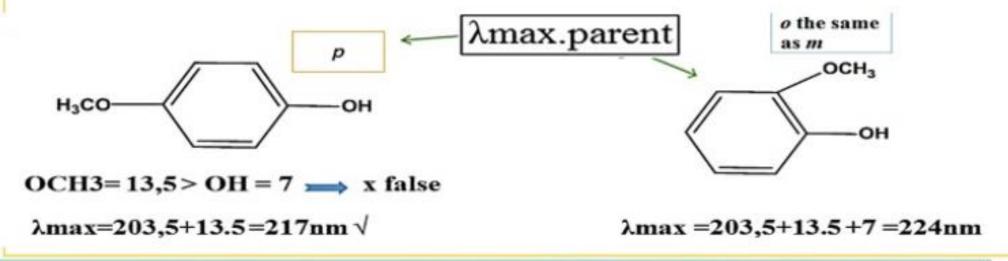
1- Both groups are e. donating EDG or e with drawing EWG: only the effect of the group causing the larger shift is used (so it is similar to monosubstituted benzene)

i.e P- nitrobenzenic acid

Would be expected to be the same as that of nitro-benzene

Why? because
$$\lambda$$
max parent cpd. = 203.5 nm

So if both the groups are electron-donating then the observed spectrum is closer to monosubstituted benzene. The group with stronger effect determines the extent of shifting of primary band.



B/Meta and ortho: if the two gr.s are o- or m- to one another the effect is usually the sum of the two individual effects (the shift effect are additive (meta: no resonance....ortho steric effect)

So: by Uv: we can diff . between p & (-o,-m) derivetave..... no resonance

Note: -o,-m can not diff . between them by Uv

Applications of Ultraviolet and Visible Spectroscopy

	A few functional groups (chromophores) may be detected by the UV-visible spectroscopy, but
	it is especially useful for detecting the presence and elucidating the nature of conjugated
	systems including aromatic rings.
	In the application of the electronic spectroscopy for structural analysis, only the region above
	200 nm is really useful and the region below 200 nm is hardly useful for this purpose.
So	me important applications of UV and visible spectroscopy to organic chemistry are

1. Detection of a Functional Group (Chromophore)

summarized as follows.

- The presence or absence of a particular chromophore may be indicated by the presence or absence of an absorption band in the expected wavelength region.
- For example, the presence of a low intensity band in the region 270-300 nm indicates the presence of an aldehydic or ketonic carbonyl group. If the spectrum is transparent above 200 nm, it shows the absence of
 - (a) an aldehydic or ketonic carbonyl group.

- (b) a conjugated-system.
- (c) an aromatic ring.
- (d) a bromine or iodine atom in the molecule.

2. Detection of Conjugation and Elucidation of Its Nature

- © Compounds containing a conjugated system including aromatics are characterized by their absorptions above 200 nm.
- \hat{R} The longer the conjugated system, the higher the λ_{max} and ϵ_{max} values
- Substitutions on a conjugated system generally cause bathochromic and hyperchromic effects.
- Thus, we can elucidate the nature of conjugation by comparing the values of λ_{max} and ϵ_{max} for the compound under study with that of a probable analogous compound.

3. Study of Extent of Conjugation

- The values of λ_{max} and ϵ_{max} increase as the number of conjugated multiple bonds increases, thus the extent of conjugation can be estimated.
- It has been found that the absorption occurs in the visible region if a polyene has eight or more conjugated double bonds.

4. Distinction Between Conjugated and Unconjugated Compounds

5. Study of Strain

- In molecules like 2-substituted biphenyls, there is steric strain which forces the rings out of coplanarity resulting in the loss of conjugation.
- This causes hypsochromic and hypochromic effects which are measures of steric strain in such molecules, i.e., the larger are these effects, the greater will be the steric strain.

6. Determination of Configurations of Geometrical Isomers

- It is possible when there is loss of coplanarity of one isomer due to steric hindrance resulting in the loss of conjugation accompanied by hypsochromic and hypochromic effects.
- Obviously, this isomer is the cis-isomer in which groups are closer to each other to cause steric strain and to force the groups out of coplanarity. Thus, cis-isomers absorb at shorter wavelengths and have lower intensity than the trans-isomers

7. Study of Tautomerism

8. Confirmation of Suspected Phenols and Aromatic Amines

- The spectral characteristic of phenols and aromatic amines change with the change of pH of the solution.
- Thus, suspected phenols and aniline derivatives may be confirmed by comparison of UV spectra recorded in neutral and alkaline or acid solutions.

9. Study of Structural Features in Different Solvents

