Hydrolysis of Acetyl Salicylic Acid Solution in Sorenson Phosphate Buffer at pH 8

LAB 4

BY:

LECT. ZAHRAA AMER

LECT NORA ZAWAR

ntroduction

Aspirin is a weak acid .it is soluble at 20 C° in 300 parts of water .

It is unstable in aqueous solutions degrading to salicylic acid and acetic acid

Aim of Experiment

To study the effect of temperature on the hydrolysis of aspirin (S.P.B), and to calculate the shelf life of aspirin .

Shelf life of any drug :it is the time required for the drug to lose 10% of its effectiveness

Procedure: 1. Dissolve 0.695 g of aspirin in 250 ml of phosphate buffer (use a volumetric flask)

2. place 200 ml of this solution in an erlenmeyer flask , then keep the flask in a water bath for (30 min) at required temperature. the temperature that will be used are(40, 60, 80 °C)

Withdraw (1 ml) sample at the end of 30 mins , then continue withdrawing (1 ml) sample at 15 min interval for 90 min.

Add to each sample , 5 ml color developing reagent and read the absorbance at 530 nm

Tabulate your data.

Notes:

1- absorbance should increase with time

2- concentration of S.A at zero time is zero because aspirin not hydrolyzed yet , while the concentration of aspirin at zero time CO= initial concentration of aspirin 2.78 mg /ml

C0=0.695/250 ×1000= 2.78 mg/ml

- 3-S.A give violet color with color developing reagent
- 4- rate of aspirin hydrolysis follows **first order reaction**

- $-\frac{dc}{dt} \propto C$ (since conc. Of aspirin decrease with time as hydrolyzed)
- $-\frac{dc}{dt} = KC$

$$\int_{c0}^{ct} \frac{dc}{c} = -k \int_{0}^{t} dt$$

-(ln Ct - ln Co) = kt(t-0)
Ln Ct - ln Co = - kt
Ln Ct = ln Co - kt
Since ln = log × 2.303

Log Ct *2.303=log Co* 2.303-kt

Log Ct = log Co - kt/2.303

5- Sorenson phosphate buffer (pH 8)

Consist of two solutions

A-1/15 M Monopotasium phosphate KH₂PO₄

B- 1/15 M Disodium phosphate Na₂HPO₄.2H₂O

Time	Absorbance	Conc. Of S.A	Conc. Of aspirin hydrolyzed	Conc.of aspirin remained
0		Y= c+bx	*180/138	2.7- C h
30				
45				
60				

7- use the calibration curve of S .A (exp. 1) to find the conc. Of S .A Y= C+ bx

Ab= intercept + slope \times conc.

e.g. 0.65= 0.016+1.83× conc. Conc.= 0.35 mg /ml of S.A

Conc. Of ASP. Degrade = 0.35×180 M. Wt of Asp/138 M.Wt of S.A Since each mole of aspirin give 1 mole of S.A and 1 mole of A.A. Conc. Of remaining aspirin = Initial conc. Of ASP — conc. of ASP degrade

2.78-0.46 = 2.32 mg/ml

Take the log or ln conc. Remaining and plot against time in min. at each temp.

8- from the plots find the slops then K at each temp.

(draw Arrhenius plot) to find K at 25 °C.

Arrhenious equation :

Log K = log A - (Ea)/(2.303 R) * 1/T

Where A= frequency factor ,Ea = energy of activation ,T= absolute temp.

R= gas constant.

t10%= 0.105/ K_{25°C}

