

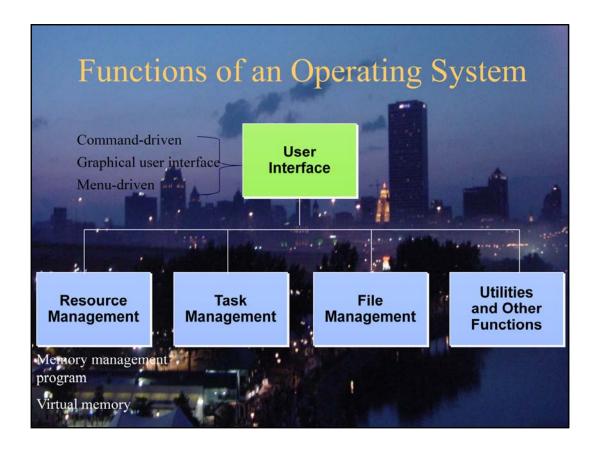
Application software & system software

System Software categories

- Two major categories
 - 1. System management programs

Programs that manage hardware, Software, network and data resources of computer systems during the execution.

System software Examples:


- Operating systems
- Network management programs
- Database management systems
- System utilities

Operating Systems

- Most important system software package for any computer
- Is an integrated system of programs that (OS Activity):
 - Manages the operations of the CPU
 - Controls the input/output and storage resources
 and activities of the computer system
 - Provides various support services as the computer executes application programs

Operating System Objective: To maximize the productivity of a computer system by operating it in the most efficient manner. To help application programs perform operation such as accessing a network, enter data, saving and retrieving data.

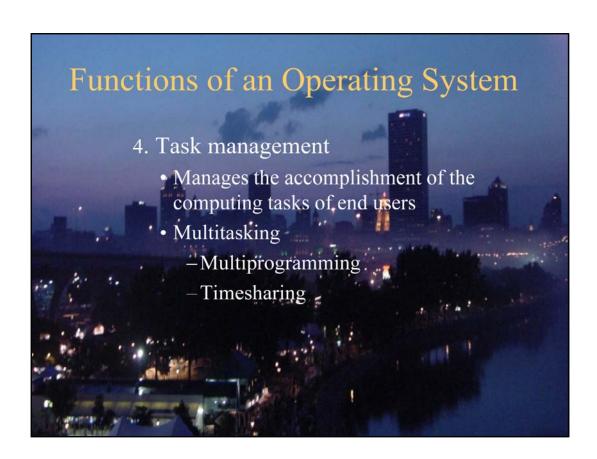
The operating system of a computer manages the operations of the CPU, controls the input/output and storage resources and activities of the computer system, and provides various support services as the computer executes the application programs of users.

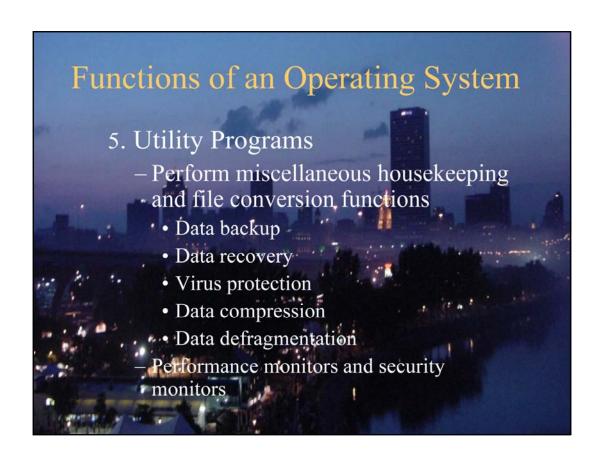
- A. The <u>user interface</u> is the part of the operating system that allows users to communicate with the computer. Interfaces types:
- 1. command-driven (the user types in command instructions through the keyboard, MS-DOS, NC)
- 2. menu-driven (the user selects commands presented on-screen with either a mouse or keyboard. Early windows)
- 3. Graphical user interface (the user selects commands that appear as icons, buttons, bars, and other images with a mouse or other pointing device, windows, Linux, Mac). Through the interface, the end user has access to the following resources:

Resource Management. These programs manage the hardware of a computer system, including its CPU, memory, secondary storage devices, and input/output peripherals.

<u>File Management</u>. Operating systems also contain file management programs that control the creation, deletion, and access to files of data and programs. File management involves keeping track of the physical location of files on magnetic disks and other secondary storage devices.

<u>Task Management</u>. Task management programs manage the computing tasks of end users. They give slices of the CPU's processing time to tasks and determine the logistics of which tasks take priority over others when more processing time is required.


Instructor's Note: The following is extra-textual material on this topic:


<u>Utilities and Other Functions</u>. Operating systems may contain additional programs (or support for them to be added later) called utilities that help maintain the integrity of the system and its interface with the system hardware. Common utilities are used to defrag a system's hard drive, compress the space programs and files need for storage, or other functions.

Discussion topic: Discuss the advantages and disadvantages of popular operating systems, e.g. Windows 2000, UNIX, LINUX, Netware, etc.

Functions of an Operating System 2. Resource management • Manages the hardware and networking resources of the system • Virtual memory capability 3. File management • Controls the creation, deletion, and access of files of data and programs • Keeps track of the physical location of files

s of Programmin	g Languages
High Level Languages Use brief statements	Markup Languages Use embedded control codes
Compute $X = Y + Z$	<h1>First heading <!--ELEMENT Product (#Item manuf)--></h1>
Fourth Generation Languages Use natural statements	Object-Oriented <u>Languages</u> Define objects that contain data and actions
SUM THE FOLLOWING NUMBERS	Document.write ("Hi There")
	High Level Languages Use brief statements Compute X = Y + Z Fourth Generation Languages Use natural statements SUM THE FOLLOWING

A programming language allows a programmer or end user to develop the set of instructions that constitute a computer program. Each programming language has its own unique vocabulary, grammar, and uses. The major categories of programming languages are identified on the slide and described below:

<u>Machine Languages</u>. Machine languages (or first-generation languages) are the most basic level of programming languages. These use binary codes unique to the computer, requiring programmers to have a detailed knowledge of the specific CPU they wish to write software for.

<u>Assembler Languages</u>. Assembler languages (or second-generation languages) reduce the difficulties in writing language code by using translator programs (assemblers) that convert the symbolic language of the code into machine language.

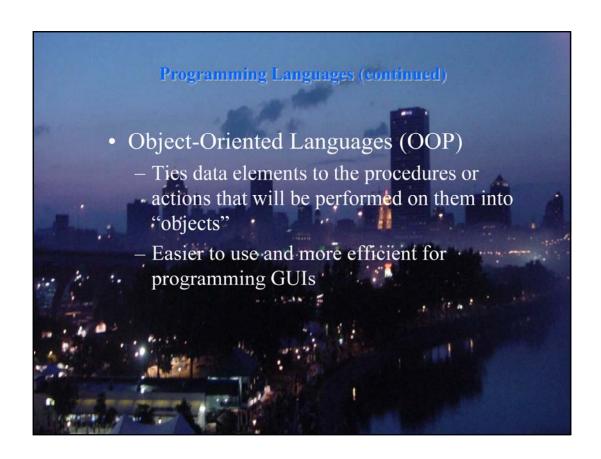
<u>High-Level Languages</u>. High-level languages (or third-generation languages) use instructions, called statements that closely resemble human language or the standard notation of mathematics. They are translated into machine language by compilers or interpreters.

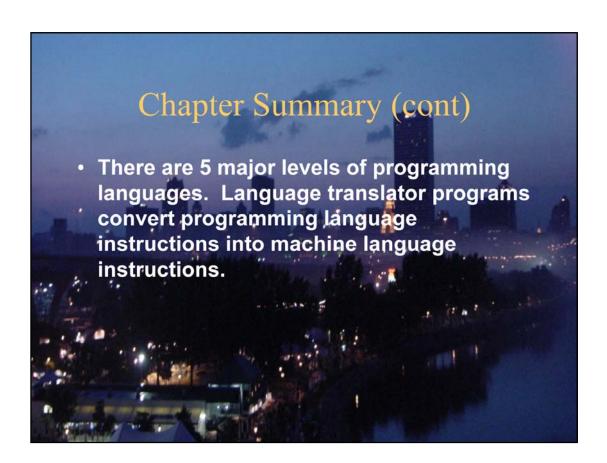
<u>Fourth-Generation Languages</u>. Fourth-generation languages describe a variety of programming languages that are more nonprocedural and conversational than previous languages. Nonprocedural languages have programmers specify the results they want while the program works with the computer to determine the sequence of instructions that will accomplish those results.

Object-Oriented Languages. Object-oriented programming (OOP) ties data and instructions together into objects that can be combined in many different ways with other objects to create programs. Unlike procedural languages, OO systems objects tell other objects to perform actions on themselves. Thus, objects are more efficient and can be reused to create new programs. Java is an example of an OOP, which is specifically designed for real-time, interactive, web-based network applications. What makes Java so special is that it is computing platform independent. This means that any computer and any operating system anywhere in a network can execute Java programs.

<u>HTML</u>. Is a page description language that creates hypertext or hypermedia web documents. HTML embeds control codes, or tags, in the ASCII text of a document. These tags are used to designate titles, headings, graphics, multimedia components, as well as hyperlinks within the document.

XML. Unlike HTML, XML describes the content of web pages by applying identifying tags or © 2002 McGraw-Hill Companies and the data in web documents. By classifying data in this way, an XML website's information is more searchable, sortable, and easier to analyze.


Programming Language Assembly/machine language FORTRAN, COBOL, Pascal, Basic C/C++ (the code behind Unix & Linux) Visual Basic SQL (for database development) HTML, XML (web pages) Java Script (adds programming power to web pages) 4GLs - A.I. & non-procedural/natural languages



Chapter Summary.

- Computer software consists of two major types of programs: application software that directs the performance of a particular end user task, and system software that controls and supports the operations of a computer system.
- Application software includes a variety of programs that can be segregated into general-purpose and application-specific categories.

Chapter Summary (cont)

- System software can be subdivided into system management programs and system development programs. The former is used to manage hardware, software, networks, and data resources. The latter is used by IS specialists to develop computer programs.
- An operating system is an integrated system of programs that supervises the operations of the CPU.

