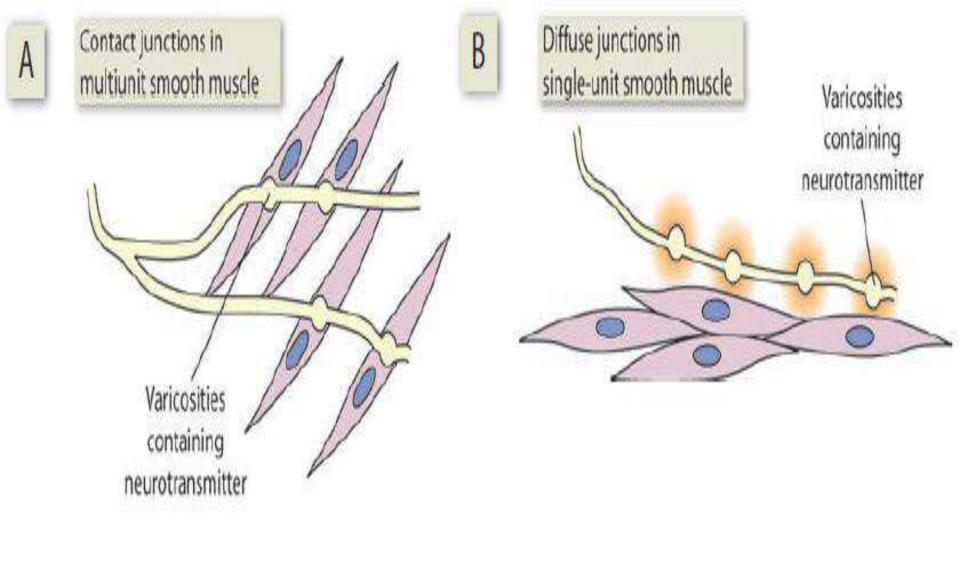
NERVES & MUSCLES PHYSIOLOGY

Lecture 7


Dr.Safaa H.Al.shammary

Objectives for this lecture

- Describe the types of smooth muscles, and the mechanism of smooth muscle contraction and relaxation.
- Explain the difference between smooth, skeletal, and cardiac muscles.

- Smooth muscle can generally be divided into two major types, the **multi-unit** and the **single unit** smooth muscle :
- Single-unit smooth muscle cells can be found in the gut and blood vessels. Because these cells are linked together by gap junctions, they are able to contract as a syncytium.
- Single-unit smooth muscle cells contract myogenically, which can be modulated by the autonomic nervous system.

- The multi-unit smooth muscle cells are nonrhythmical and found in the muscle of the eye and in the base of hair follicles.
- Multi-unit smooth muscle cells contract by being separately stimulated by nerves of the autonomic nervous system.
- As such, they allow for fine control and gradual responses, much like motor unit recruitment in skeletal muscle.

The junction between the nerve terminals and smooth muscles are either contact junction (morphologically more like skeletal muscle neuromuscular junction) as in multiunit smooth muscles or diffuse junction as in single unit smooth muscles.

In these junctions, the nerve fiber of autonomic nervous system branch diffusely on top of a sheet of muscle fiber without making an actual direct contact with single unit smooth muscle fibers as in diffuse junction or making a direct contact with multi-unit smooth muscle fibers as in contact junction.

The multiple branches of the nerve fibers are beaded with enlargements (called varicosities) from which neurotransmitter substance is released from the nerve fiber which is then diffused into the interstitial fluid and then to the smooth muscle fiber.

Modes of stimulation of smooth muscle: Smooth muscles can contract or relax as a consequence of the following factors: [1]. Action potential factor: Smooth muscle action potentials arise from membrane can be due to:

- The rhythmicity.
- Stretching the smooth muscles.
- Generation of excitatory junctional potential (EJP).
- Depolarization of the plasma membrane opens voltage-gated Ca₂₊ channels.
- Calcium ions diffuse through the Ca₂₊ channels from ECF to ICF. EJP results from the interaction between neurotransmitters from autonomic nervous system and excitatory receptors at the multiunit smooth muscle membrane lead to generation of discrete partial depolarization that look like small end-plate potentials and called excitatory junctional potentials (EJPs). The action potential does not develop.

This type of depolarization is called local depolarization or excitatory junctional potential (EJP). This local depolarization travels throughout the entire multiunit smooth muscle fiber and causes contraction. Local depolarization is developed because the multiunit smooth muscle fibers are too small to develop action potential. Smooth muscle relaxation can be result of the generation of inhibitory junctional potentials (IJPs) if

generation of inhibitory junctional potentials (IJPs) if interaction between a neurotransmitter and inhibitory receptors occurs with consequent hyperpolarization of the membrane.

[2] Non action potential factors: Smooth muscle contraction can be initiated without the generation of an action potential as a result of local tissue factors or humeral factors. Chemical substances (Humeral factors through activation of G protein) (norepinephrine, epinephrine, acetylcholine, angiotensin, vasopressin, oxytocin, serotonin, and histamine) can initiate smooth muscle contraction. cause smooth muscle contraction by increase the intracellular Ca2+ concentration.

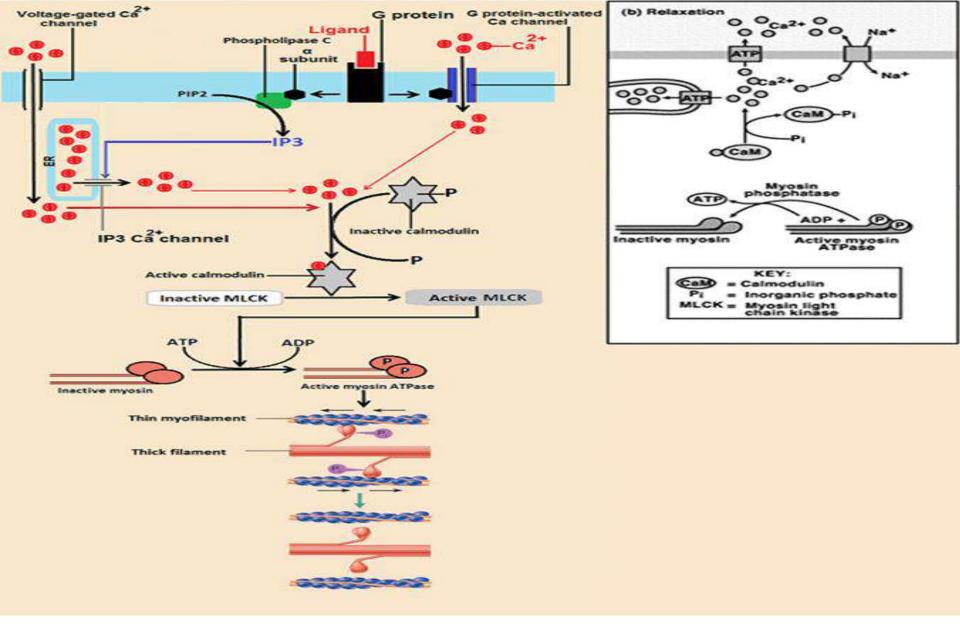
Activated excitatory receptors of **G protein** can activate **G protein-gated Ca**₂₊ **channels** at the smooth muscle cell membrane or membrane **phospholipase C**→ Release of IP3 → Activates IP3-gated Ca channels at the membrane of endoplasmic reticulum:

Local tissue factors:

The smooth muscles of the arterioles, metarterioles, and precapillary sphincters have little or no nervous supply. Yet, the smooth muscle is highly contractile, responding rapidly to change in local condition in the surrounding interstitial fluid (local tissue factors).

Some of the specific control factors are: \downarrow oxygen, \downarrow Ca++, \downarrow body temperature, \uparrow CO₂, \uparrow [H+], \uparrow Lactic acid, \uparrow [K+], \uparrow adenosine & phosphate compounds, in the local tissues all cause smooth muscle relaxation and therefore \rightarrow vasodilatation.

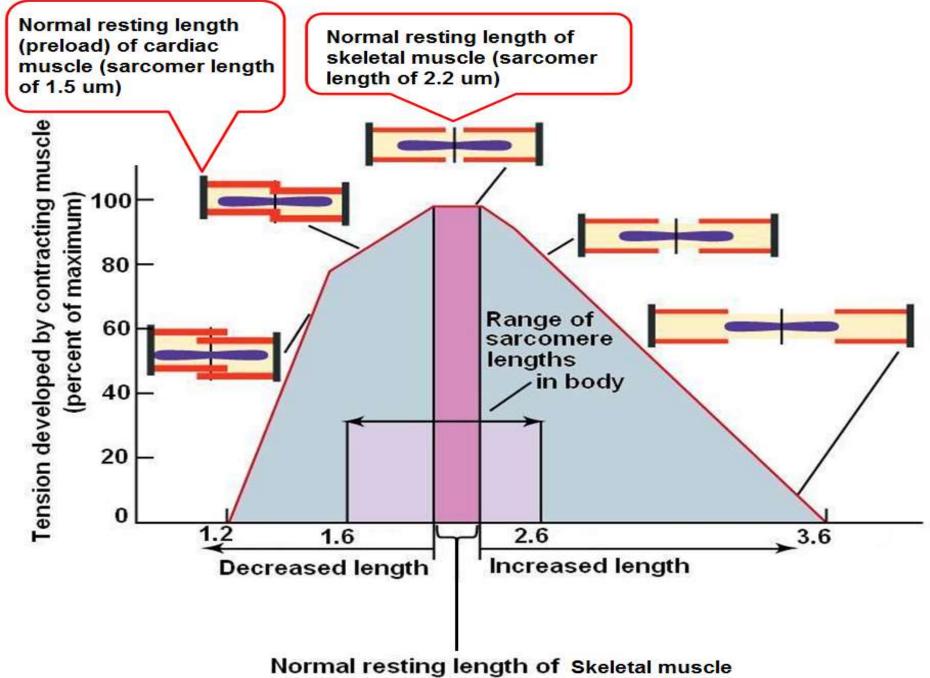
The mechanisms by which the local tissue factors excite or inhibit the smooth contraction not clear. It is possible that these factors cause change in the cell membrane potential, changes in the permeability of the membrane to Ca₂₊ ions, and/or changes in the intracellular contractile process.


Mechanism of smooth muscle contraction:

As the ICF Ca2+ concentration increases, it binds with a regulatory protein called calmodulin (instead of troponin that present in skeletal muscle). This calmodulin-Ca₂₊ complex activate a phosphorylating enzyme called myosin light chain kinase (MLCK), which leads to phosphorylation of myosin head. This phosphorylation of the head of the cross-bridge will bring about the interaction between the head of myosin with the actin filament and preceding the same as occurs for skeletal muscle, thus causing muscle contraction.

When the Ca2+ ion concentration falls below a critical level, all aforementioned processes reverse and the presence of an enzyme myosin phosphatase is required to dephosphorylate the head of the cross-bridge and consequently disengagement of the head from the actin filament (relaxation).

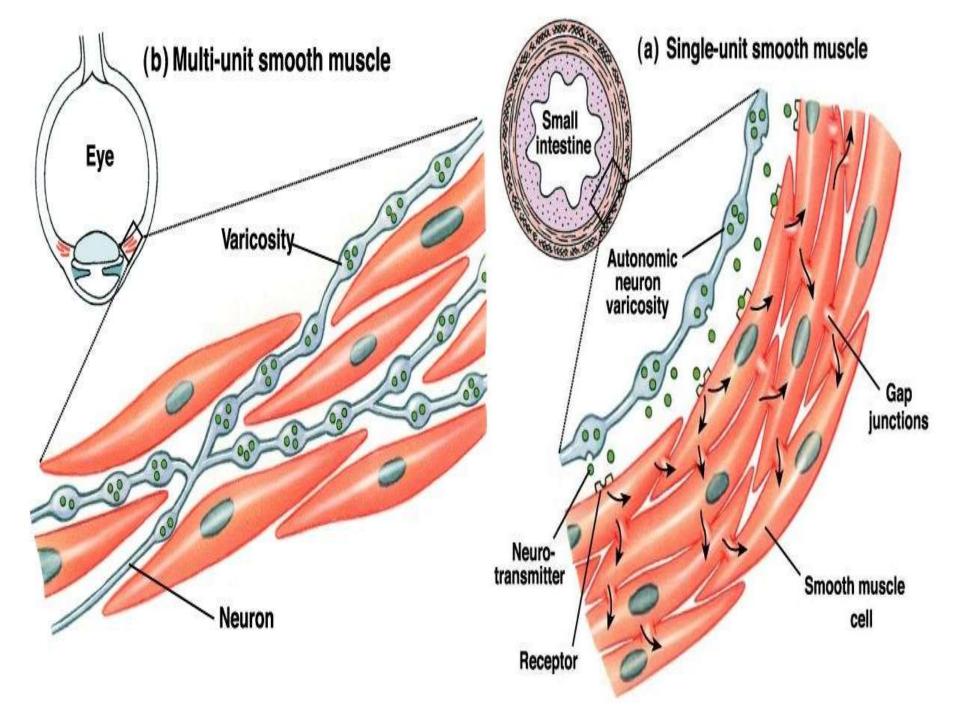
However, myosin dephosphorylation does not necessarily lead to immediate smooth muscle relaxation due to the presence of latch bridge mechanism by which the dephosphorylated myosin cross-bridges remain attached to actin for some time after the cytoplasmic Ca₂₊ ion concentration falls.


This produce sustained contraction with little expenditure of energy.

Mechanism of smooth muscle excitation and relaxation.

Drugs such as nifedipine and related newer compounds are calcium channel blockers. These drugs block Ca2+ channels in the membrane of smooth muscle cells within the walls of blood vessels, causing the muscles to relax and the vessels to dilate. This effect, called vasodilation, may be helpful in treating some cases of hypertension (high blood pressure).

Calcium-channel-blocking drugs are also used when spasm of the coronary arteries (vasospasm) produces angina pectoris, which is pain caused by insufficient blood flow to the heart.


Normal resting length of Skeletal muscle Sarcomere length of 2.2 µm

At sarcomere length 2.2 µ there is optimum overlap of thick and thin filament ----maximum numbers of cross bridges --- maximum force.

At sarcomere length >2.2 μ the overlap between thick and thin filament is decreased ---- decrease force.

At sarcomere length <2.2 µ: ends of 2 actine filaments overlap --- decreased numbers of the cross bridge ---- **decrease force.**

Table 4.4: Comparison between red and pale muscles.	
Red (slow twitch) muscles	Pale (fast twitch) muscle
Example: Back muscles and gastrocnemius	Examples: Hand muscles and ocular muscles
muscles	
Type I fibers are more → Twitch contraction is	Type II fibers are more → Twitch contraction is
long → designed for sustained contraction	short → designed for short contraction
More Myoglobin content, so it is red, More blood vessels, More mitochondria → aerobic glycolysis for ATP production → less liable to fatigue.	Less myoglobin content, so it is pale, Less blood vessels, Less mitochondria → anaerobic glycolysis for ATP production → more liable to fatigue.
Sarcoplasmic reticulum is less extensive >	Sarcoplasmic reticulum is more extensive >
Contraction is less powerful	Contraction is more powerful
Response is slow with long latent period	Response is rapid with short latent period

Smooth Muscle Contraction & Relaxation

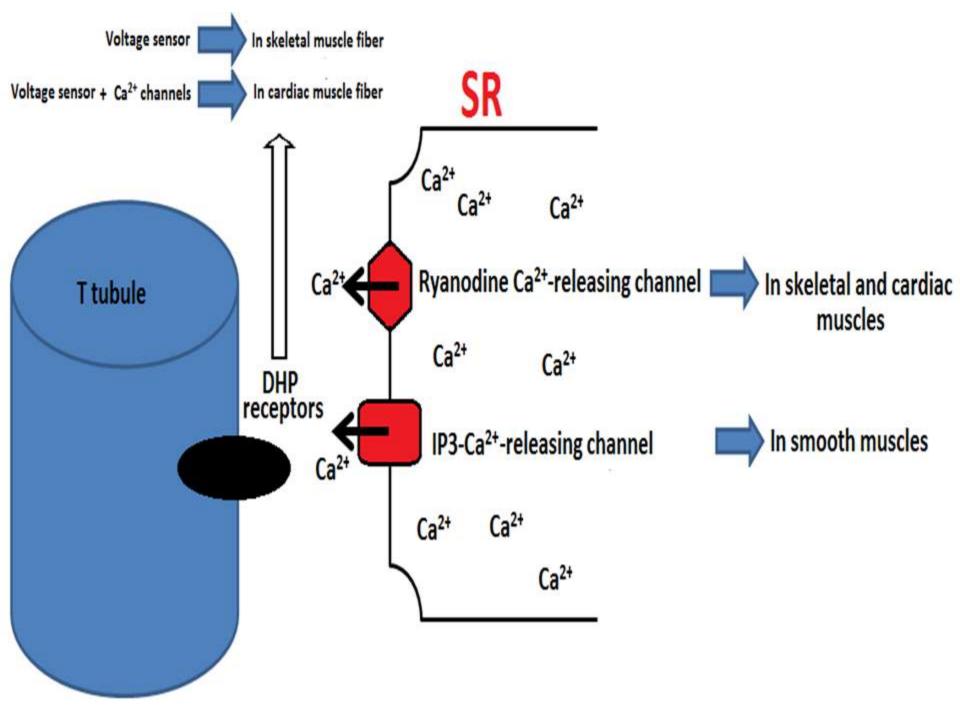
Smooth muscles can contract or relax as a consequence of the increase or decrease the intracellular Ca²⁺ concentration. This is achieved by the following factors:

- Action potential-induced contraction → open of the membrane voltage-gated Ca²⁺ channels → Influx of Ca²⁺ → Muscle contraction.
- Rhythmicity
- Stretching
- Excitatory junctional potential (EJP)

Action Potential Generation

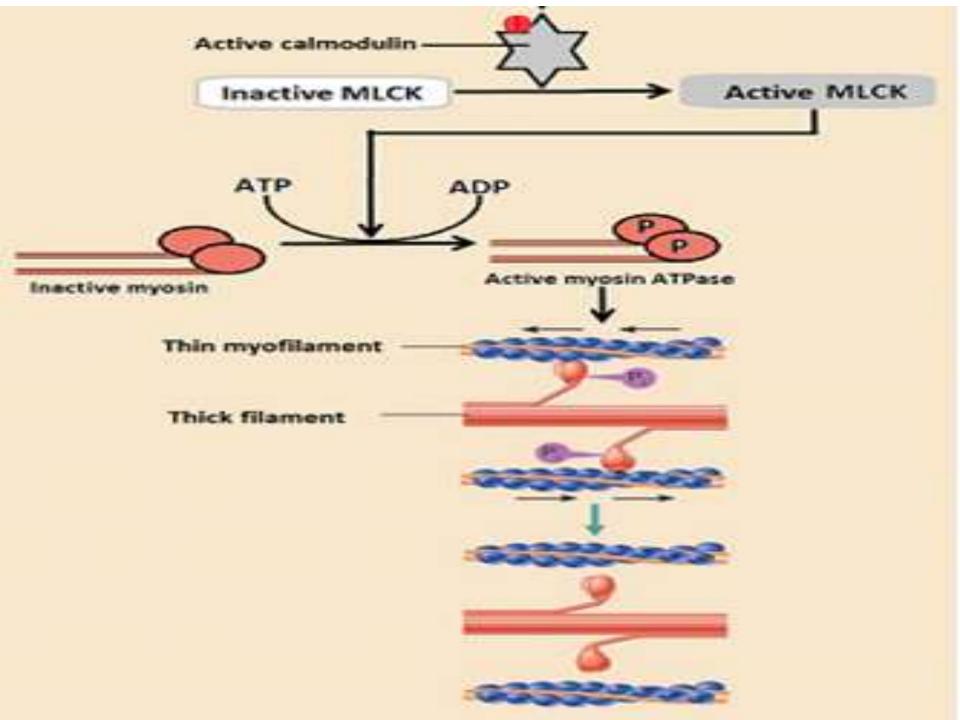
Smooth Muscle Contraction & Relaxation

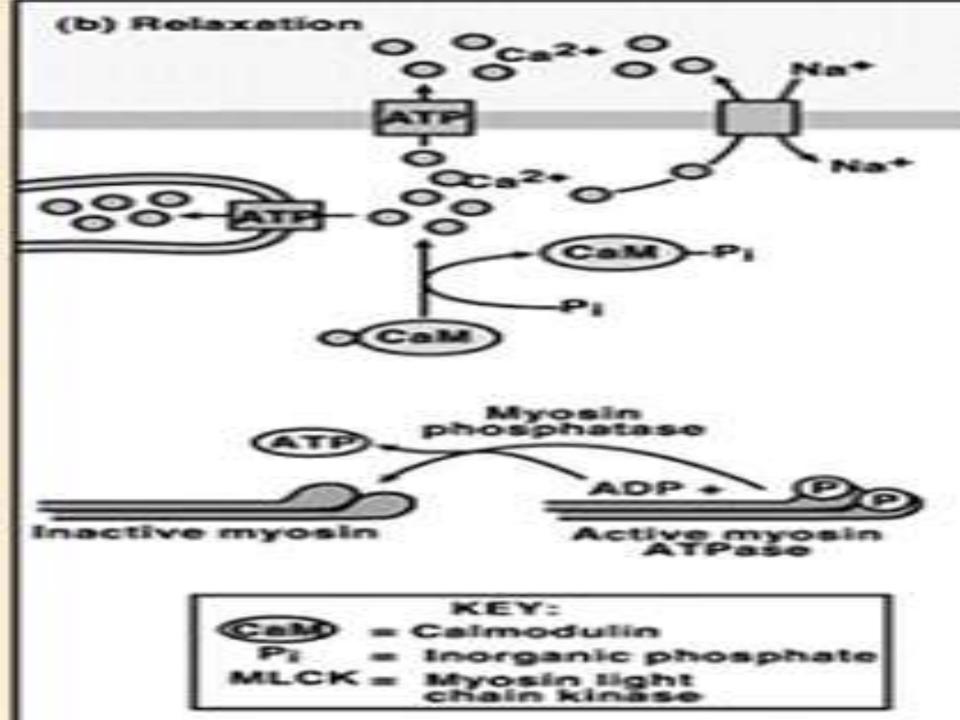
Smooth muscles can contract or relax as a consequence of the increase or decrease the intracellular Ca²⁺ concentration. This is achieved by the following factors:



Non-action potential-induced contraction

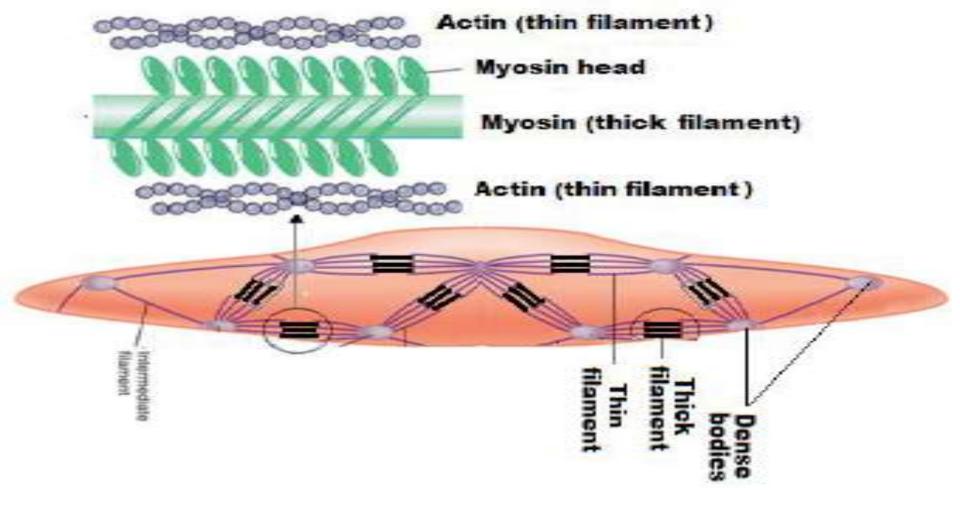
- Humoral factors


 Increase intracellular Ca²⁺ concentration through activation of G protein, which in turn activates:
- G protein-gated Ca²⁺ channels at the smooth muscle cell membrane or
- Membrane phospholipase C \rightarrow Release of IP3 \rightarrow Activates IP3-gated Ca²⁺ channels at the membrane of endoplasmic reticulum \rightarrow Ca²⁺ release from endoplasmic reticulum to cytosol.


(Norepinephrine, Epinephrine, Acetylcholine, Angiotensin, Vasopressin, Oxytocin, Serotonin, and Histamine)

Action potential induced by:

The rhythmicity, Stretching the smooth muscles, or generation of Excitatory junctional potential (EJP). Non-action potential smooth muscle contraction Voltage-gated Ca channel G protein-activated Ca channel G protein Ligand Phospholipase C a subunit IP3 Ca channel Inactive calmodulin Active calmoduling Active MLCK Inactive MLCK ADP Active myosin ATPase Inactive myosin



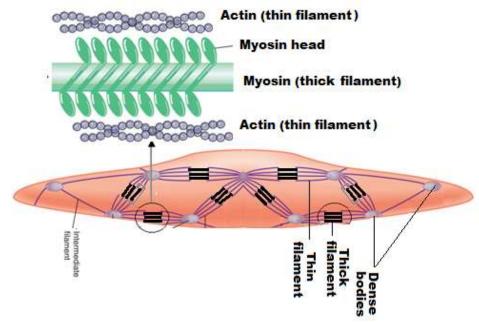
The difference between smooth, skeletal, and cardiac muscles:

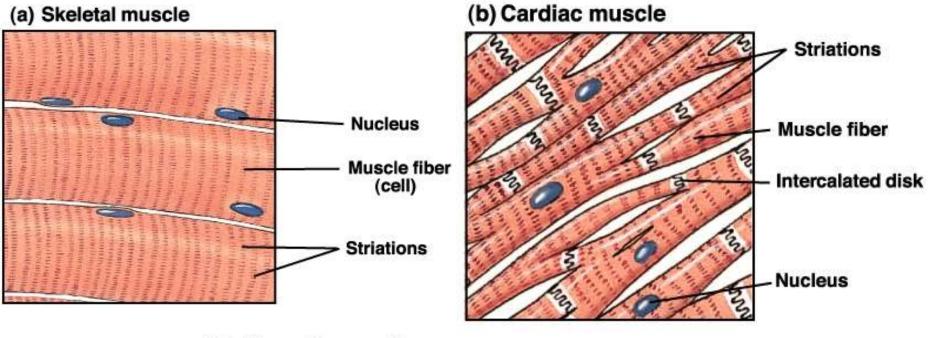
1. Histological differences:

- Smooth muscle cells are small, no striations seen in smooth muscle cells (absence of sarcomeres).
- No T-tubules.
- -No troponin (except cardiac muscles).
- -The thick and thin filaments are dispersed throughout the cell. Thin filaments (actin) are anchored into dense bodies (a Z-line equivalent) which are either anchored to the cell membrane but most of them float within the cytoplasm and hold together by intermediate filaments.
- -The junction between the nerve terminal (**somatic nerve fiber**) and skeletal muscle fiber is called **neuromuscular junction** while those between the nerve terminals (**autonomic nervous system**) and smooth muscles are called **contact** or **diffuse junction**.
- The neurotransmitter at the neuromuscular junction of skeletal muscle is only acetylcholine; while of smooth muscle is acetylcholine or norepinephrine. Smooth muscle is innervated by the **autonomic and enteric nervous systems** while skeletal muscles are innervated by somatic sensory and motor neurons.

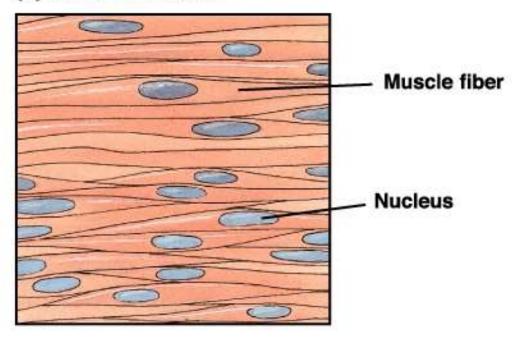
Smooth muscle and its contractile apparatus.

The difference between smooth muscle and skeletal muscles


1. Histological differences


- ❖ Smooth muscle cells are small
- ❖ No striations (absence of sarcomeres)
- ❖ No T-tubules

❖ The thick and thin filaments are dispersed throughout the cell. Thin filaments (actin) are anchored into dense bodies (a Z-line equivalent) which are either anchored to the cell membrane but most of them float within the cytoplasm and hold together by Intermediate


filaments

❖No Troponin

(c) Smooth muscle

2. Differences in muscle contraction:

In smooth muscles are **rhythmical** tissues, **the contraction time is longer**, **less energy** is required to sustain the same tension of contraction relative to skeletal muscles, **can be shorten a far greater percentage of its length** compare to skeletal muscle.

In addition, the maximum force of smooth muscle contraction per cm cross-sectional area is greater than the skeletal muscle contraction. However, the cross-bridge cycle in smooth muscle is considerably slower than in skeletal muscle, which allows for a longer contraction time and higher maximal force of contraction. An important characteristic of visceral smooth muscle is its ability to contract in response to stretch.

3. Differences in membrane potential:

In normal resting state, the membrane potential of smooth muscle is less negative than in skeletal muscle and some of them have no fixed value but actually have a **slow wave potential**. The **action potentials** of visceral smooth muscle occur in two different forms: (1) Spike potential as those seen in skeletal muscle and (2) Action potential with plateau. The smooth muscle cell membrane has far more voltage-gated Ca₂₊ channels and few voltage-gated Na₊ channels than skeletal muscle fiber. Therefore, Naparticipates little in the generation of the action potential in most smooth muscle.

Instead, the flow of Ca₂₊ ions to the interior of the fiber is mainly responsible for the action potential and the initiation of the smooth muscle contraction.

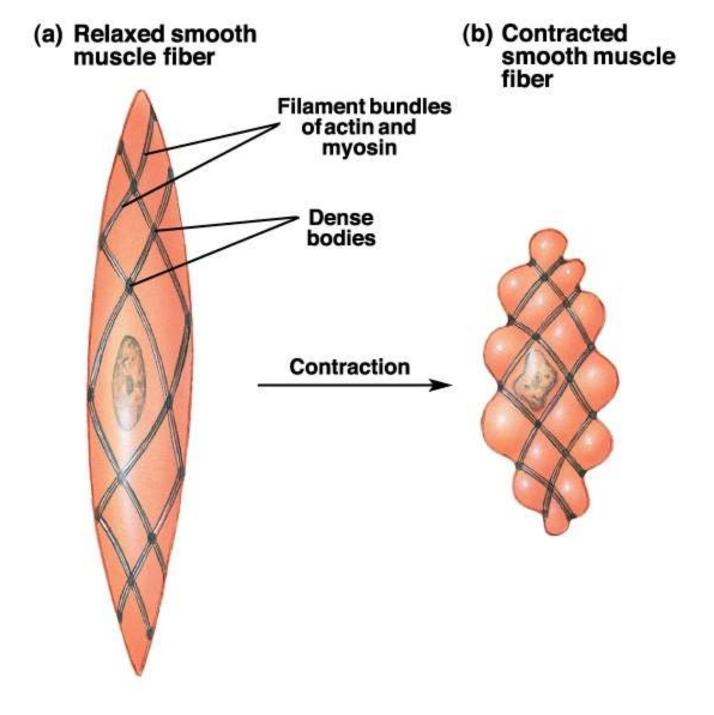
Cardiac muscle: Cardiac muscle physiology can best be understood through reviewing the differences with skeletal muscles.

- 1. Histological differences: Cardiac muscle is striated like skeletal muscle but otherwise differs from it in many structural and physiological ways. Cardiac myocytes (muscle cells), or cardiocytes, are relatively **short**, **thick**, **branched cells**. They usually have one centrally placed nucleus (but it can be more) (skeletal muscle cell is multinucleated). The sarcoplasmic reticulum (SR) lacks terminal cisternae (it has footlike sacs associated with the T tubules). The cardiac muscles are made up of many cardiac muscle cells connected in series with each other at the intercalated discs, which are the cell membranes that separate individual cardiac muscle cell from each other. At the intercalated disc free diffusion of ions and action potential from one cardiac cell to another occurs through gap junctions. It also has especially large mitochondria, which fill about 25% of the myocyte; skeletal muscle fibers, by comparison, have much smaller mitochondria that occupy only 2% of the fiber. **2. The action potentials** of the cardiac muscle fibers (atria, ventricles and Purkinje
- **2. The action potentials** of the cardiac muscle fibers (atria, ventricles and Purkinje fibers) characterized by the **presence of plateau**, which causes the prolongation of action potential in the cardiac muscle. The myocytes contract as long as the action potential is in its plateau.

The duration of cardiac action potential is much longer (calcium influx prolongs the duration of the action potential and produces a characteristic plateau phase) than in nerve or skeletal muscle fiber. In a typical nerve, the action potential duration is about 1 ms.

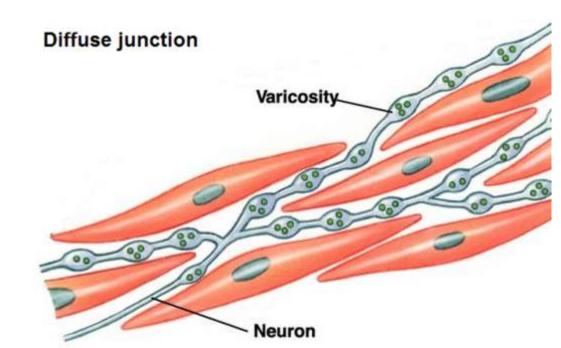
In skeletal muscle cells, the action potential duration is approximately 2-5 ms. In contrast, the duration of cardiac action potentials range from 200 to 400 ms. In nerve and muscle cells, the depolarization phase of the action potential is caused by an opening of sodium channels. This also occurs in non-pacemaker cardiac cells (atrial and ventricular muscles). However, in cardiac pacemaker cells (sinoatrial and atrio-venticular nodes), calcium ions are involved in the initial depolarization phase of the action potential.

- **3. The cardiac muscle is absolutely refractory** during most of the action potential. Therefore, tetanization of the type seen in skeletal muscle cannot occur. An electrical stimulus can sometimes initiate a new spike at the very end of the action potential, i.e. at the relative refractory period.
- **4. The strength of cardiac contraction** depends on the concentration of Ca₂₊ ions in the ECF that pass through T-tubules and on the Ca₂₊ released from endoplasmic reticulum. In contrast, the strength of skeletal muscle contraction is hardly affected by the ECF Ca₂₊ concentration because its contraction is caused almost entirely by Ca₂₊ ions released from sarcoplasmic reticulum inside the skeletal muscle fiber itself.



Force of ventricular heart muscle contraction, showing also duration of the refractory period and relative refractory period, plus the effect of premature contraction. Note that premature contractions do not cause wave summation, as occurs in skeletal.

- **5. Metabolism of cardiac muscle:** Cardiac muscle **depends almost exclusively on aerobic respiration** to make ATP. It is very rich in
- myoglobin (a short-term source of stored oxygen for aerobic respiration) and glycogen (stored energy).
- Cardiac muscle, therefore, is more vulnerable to an oxygen deficiency.
- Because it makes little use of anaerobic fermentation or the oxygen debt mechanism, it is not prone to fatigue.


2- Muscle contraction differences

- **❖**Long single twitch contraction time
- ❖Less energy is required to sustain the same tension of contraction
- ❖ Able to shorten a far greater percentage of its length
- ❖ the maximum force of smooth muscle contraction per cm cross-sectional area is greater than the skeletal muscle contraction
- ❖ Contraction can be initiated by nerve impulses or by hormones and other factors
- ❖Both contraction and relaxation are due to the presence of excitatory and inhibitory receptors at their membranes
- ❖Some smooth muscle is self-excitatory
- ❖Tonic contraction of smooth muscle caused mainly by local tissue factors or circulating hormones such as angiotensin, vasopressin, or norepinephrine and to less extent by nervous and action potential stimulating factors
- ❖The main source of Ca ions that initiate the contraction process in smooth muscle is from sarcoplasmic reticulum and/or ECF

3-The membrane potential differences

- ❖The resting membrane potential of smooth muscle is usually about -50 to -60 mv
- ❖The action potentials of visceral smooth muscle occur in two different forms
- ❖The smooth muscle cell membrane has far more voltage-gated Ca channels and few voltage-gated Na channels than skeletal muscle fiber
- ❖The junction between the nerve terminals and smooth muscles are called diffuse junction
- ❖The neurotransmitter at the neuromuscular junction of skeletal muscle is only acetylcholine, while of smooth muscle are acetylcholine or norepinephrine
- Stress-relaxation of smooth muscle

Cardiac muscle

- 1. Histological differences
- 2. The action potentials
- 3. The cardiac muscle is absolutely refractory
- 4. The strength of cardiac contraction depends on the concentration of Ca²⁺ ions
- 5. Metabolism of cardiac muscle: Cardiac muscle depends almost exclusively on aerobic respiration to make ATP.

Table 4.2: summary of the differences among the three types of muscles **Skeletal muscles Cardiac muscles Smooth muscles** Striated; actin and myosin Not striated; no sarcomeres, Striated; actin and myosin actin anchored into dense arranged arranged in sarcomeres bodies and cell membrane in sarcomeres **Autonomic nervous Autonomic nervous** Somatic nervous system **Innervation**

system

Control

Yes

Yes

Under involuntary

From ECF and from

Troponin in thin

filaments

Yes

Yes

sarcoplasmic reticulum

system

control

No

No

Under involuntary

From ECF and from

Myosin in thick

filaments

muscle

No

sarcoplasmic reticulum

Yes in single-unit smooth

(alpha motor neurons)

Under voluntary control

Yes

Yes

Sarcoplasmic

Troponin in thin

Yes but limited

reticulum

filaments

No

Level of Control

Presence of T Tubules

Source of Increased

Cytosolic Ca²⁺