MEASURES OF RISK

Fourth Grade 2022

By the end of this lecture you will be able to:
Describe association & risk for disease

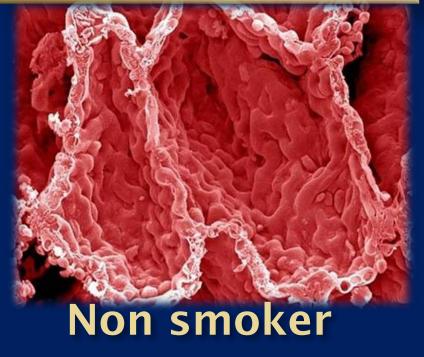
- List measures of risk
- Determine if exposure is associated with disease

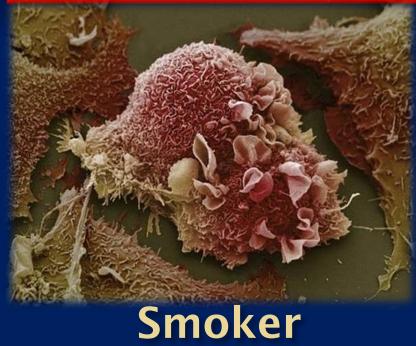
Analyze epidemiological studies to find out risk

Lecture link on You tube: https://youtu.be/_NOMPVCzsds

DEFINITIONS

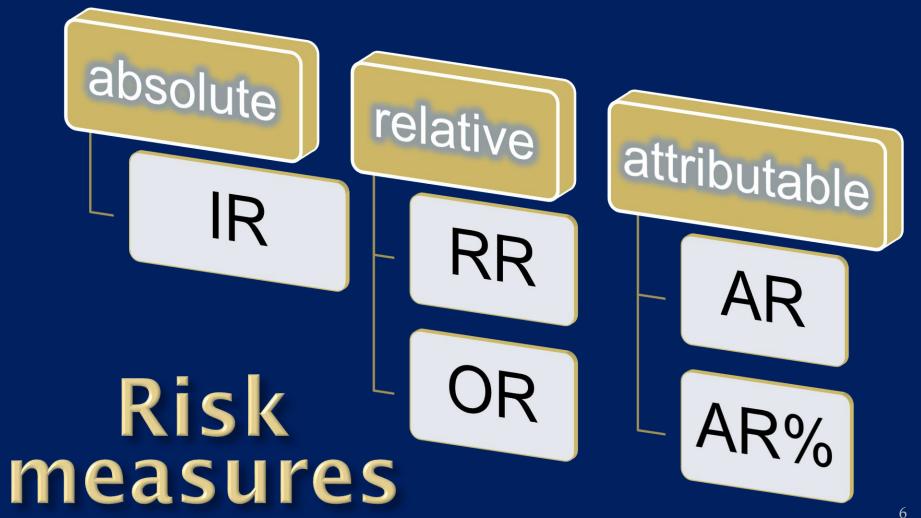
Association

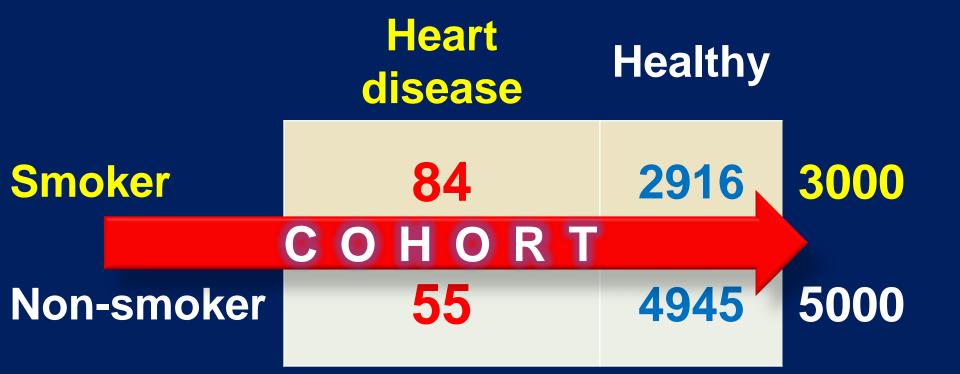

Statistical relationship between two (or more) variables.


Risk

Probability of occurrence or likelihood to develop disease (health event) in time.

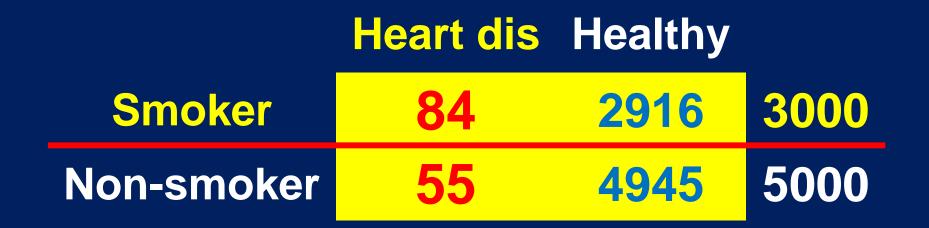
Is there risk of smoking on lung cancer?


HEALTHY LUNG LUNG CANCER



Comparing disease incidence

- Incidence of lung cancer among smokers tells us how much smokers are <u>at risk</u> of getting ca.
- This is <u>absolute</u> measure of risk, not giving us real idea about risk of smoking itself.
- If we compare it with the incidence among nonsmokers:
- → A study found it to be 9 times more.
- → smokers are 9 times more likely to get lung cancer than non-smokers.



How to measure risk? 8000 healthy government employers were asked about smoking status: → 3000 were smokers The sample was medically followed up for 5 years: → 84 smokers & 55 non-smokers developed heart disease.

$I_e = (84/3000) \times 1000 = 28/10^3$ $I_o = (55/5000) \times 1000 = 11/10^3$

Relative risk (risk ratio) Indicates likelihood of developing disease in exposed group relative to unexposed. Measures strength (magnitude) of association, which is important in causation & prevention policy. RR = IR exposed / IR non-exposed $RR = I_{e} / I_{o}$

I_e=28/10³ RR= I_e / I_o I_o=11/10³ RR= 28 /11= 2.5 → smokers are 2.5 times more at risk of getting heart disease than non-smokers

Relative risk

RR= I _e / I _o	Association with exposure	
More than One	Positive association (Positive effect of exposure)	
One	No association (no effect of exposure)	
Less than one	Negative association (preventive effect of exposure)	

Attributable risk (Excess risk or risk difference)

Unxposed

Exposed

Attributable risk AR = IR exposed – IR non-exposed $AR = I_e - I_o$

$AR = I_e - I_o$	Risk of exposure	
Positive	Exposure increases disease	
Zero	Exposure gives no added disease risk	
Negative	Exposure is protective for disease (Disease prevented by exposure)	

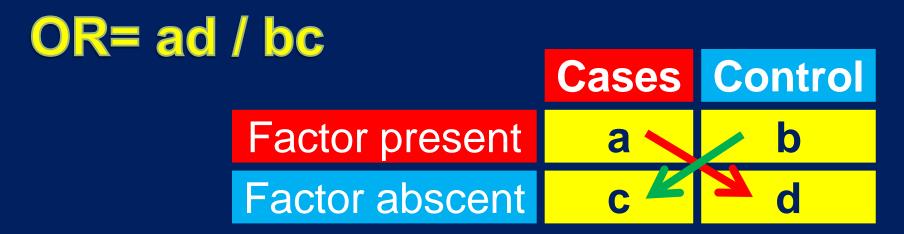
	Heart dis	Healthy	
Smoker	84	2916	3000
Non-smoker	55	4945	5000
l _e =28/10 ³	AR= I _e - I	2	

I_o=11/10³ AR= $28/10^3$ -11/10³ AR= $17/10^3$ → 17 cases/10³ in exposed population is attributed to smoking

Attributable risk %

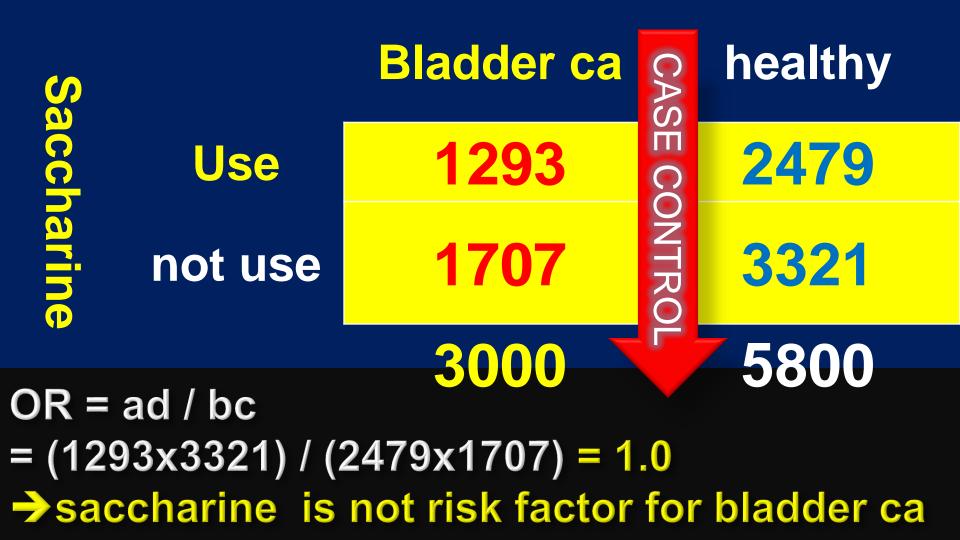
Proportion of disease in exposed population that can be prevented if exposure is removed (by application of prevention program)

→ AR% = (AR / IR exposed) %
→ AR% = (AR / I_e) x100
→ AR% = (I_e - I_o) / I_e x100


Heart dis Healthy Smoker 84 2916 3000 Non-smoker 55 4945 5000

 $I_{e}=28/10^{3} AR\% = AR / I_{e}$ $I_{o}=11/10^{3} AR\% = (17/10^{3}) / (28 / 10^{3})$ AR% = 60.7 % → 61% of disease can be prevented by antismoking program

Odds ratio


In case control study we can't get incidence, → we can not find out RR directly.

→ We can measure risk by Odd's Ratio (OR):

Odds ratio

OR = ad / bc	Exposure risk
More than One	Exposure increases disease risk (risk factor)
One	Particular exposure isn't a risk factor
Less than one	Exposure reduces disease risk (protective factor)

