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Any reference to Commutative Algebra refer to the 2011-2012 Commutative Algebra Lecture notes.
Rings studied will be mostly commutative. We aim to prove:

Theorem (Auslander - Buschsbaum 1959). A regular local ring is a unique factorization domain.
Reason for selecting this theorem as our destination:
1. It requires sophisticated results from the theory of commutative Noetherian rings.
2. It requires methods from homological algebra. All known proofs require this.
3. At a crucial stage it helps to think in terms of non-commutative rings.

Prerequisite: MA3G6 Commutative Algebra
Topics assumed:

1. Basic properties of Noetherian rings and modules.
2. Primary decomposition
3. Technicality of localization

Definition. Let R be a commutative Noetherian local ring with 1 and unique maximal ideal M. Let
M =a R+ -+ ayR (a; € M) be chosen such that n is as minimal as possible. Construct a chain
of prime ideals M 2 P, 2 --- 2 P, (P; prime) such that r is greatest possible. Then R is regular if
r = n (note that » < n always in a Noetherian ring)

Local rings arise naturally in geometry. In algebraic geometry points correspond to local rings.

Existence of an identity is not part of our definition of a ring. For us a right, left or (two sided)
ideal is a subring (Note that in a non-commutative ring, by ideal we will mean a two sided ideal). So
for a right R-module M, m -1 = mVm € M is not a part of our definition. But whenever R has 1,
we shall assume this.



1 Chapter 1: Rings

1.1 Rings

Definition 1.1. Let R be a non-empty set which has tow law of composition defined on it. (we call
these law “addition” and “multiplication” respectively and use the familiar notation). We say that R
is a ring if the following hold:

l.a+tbe Randabe RVa,be R

2. a+b=>b+aVa,be R (Commutativity of addition)

3. a+(b+c)=(a+b)+cVa,b,c € R (Associativity of addition)

4. There exists an element 0 € R such that a+0=a foralla € R

5. Given a € R there exists an element —a € R such that a 4+ (—a) =0
6. a(bc) = (ab)c for all a,b,c € R (Associativity of multiplication)

7. a(b+c¢) = ab+ ac and (a + b)c = ac + be (Distributive Laws)

Thus a ring is an additive Abelian group on which an operation of multiplication is defined; this
operation being associative and distributive with respect to the addition.

R is called a commutative ring if it satisfies in addition ab = ba for all a,b € R . The term
non-commutative ring usually stands for “a not necessarily commutative ring”

1.2 Properties of Addition and Multiplication

The following can be deduced from the axioms for a ring:
1. The element 0 is unique
2. Given a € R, —a is uniquely
3. -(—a)=aforallae R
4. a+b=a+cif and only if b = ¢ for a,b,c € R
5

. Given a,b € R, the equation = + a = b has a unique solution z = b+ (—a)

Notation. We write a — b to mean a + (—b)
6. —(a+b)=—-a—bforalla,be R
7. —(a—b)=—-a+bforall a,b € R
8. a-0=0-a=0forallac R
9. a(—b) =(—a)b= —abforall a,b € R
10. (—a)(—=b) =abfor all a,b e R
11. a(b—c¢) = sb—ac for all a,b,c € R

Notation. 7Z, the integers. Q, the rational numbers. R, the real numbers. C, the complex numbers.
M, (R), the ring of n x n matrices whose entries are from the ring R.



1.3 Subrings and Ideals

Definition 1.2. A subset S of a ring R is called a subring of R if S itself is a ring with respect to the
laws of composition of R

Proposition 1.3. A non-empty subset S of a ring R is a subring of R if and only if a — b € S and
ab € S whenever a,b e S

Proof. If S is a subring then obviously the given condition is satisfied. Conversely, suppose that the
condition holds. Take any a € S. We have a —a € S hence 0 € S. Hence for any x € S we have
0—x € Sso—z€S. Finally, if a,b € S then by the above —b € S. Therefore a — (—=b) € S, i.e.,
a+beS. So S is closed with respect to both addition and multiplication. Thus S is a subring since
all the other axioms are automatically satisfied. O

Definition 1.4. A subset I of a ring R is called an ideal if
1. I is a subring of R
2. ForalaeI,re Rare I and ra el
If I is an ideal of R we denote this fact by I < R.

Proposition 1.5. A non-empty subset I of a ring R is an ideal of R if and only ifa —b € I,ar € I
and ra € I whenever a,b€ I andr € R

Proof. Exercise O

1.4 Cosets and Homomorphism

Definition 1.6. Let I be an ideal of a ring R and « € R . Then the set of elements {x +i:i € I} is
called the coset of z in R with respect to I. It is denoted by = + I

When dealing with cosets, it is more important to realise that, in general, a given coset can be
represented in more than one way. The next lemma shows how the coset representatives are related.

Lemma 1.7. Let R be a ring with an ideal I and z,y € R. Thenx+1=y+1 < x—yel
Proof. Exercise O

We denote the set of all cosets of R with respect to I by R/I. We can give R/I the structure of a
ring as follows: Define (x +I)+ (y+I)=(x+y)+Land (x+1)(y+I)=zy+ I for z,y € R.

The key point here is that the sum and the product of R/I are well-defined, that is, they are
independent of the coset representatives chosen. Check this and make sure that you understand why
the fact that I is an ideal is crucial to the proof.

Definition 1.8. R/I is called the residue class ring of R with respect to I

The zero element of R/Iis0+1 =i+ [ forany i € I . If S is a subset of R with S O I we denote
by S/I the subset {s+ 1 :s¢€ S} of R/I.

Proposition 1.9. Let I be an ideal of a ring R. Then

1. Every ideal of the ring R/I is of the form K/I where K < R and K O I. Also conversely,
K<R KDOI=K/I<R/I

2. There is a one to one correspondence between ideals of the ring R/I and the ideals of R containing
1

Proof. 1. If K* < R/I, define K[{x e R:x+I€ K*}. Then K<<R,K2Iand K/I = K*
2. The correspondence is given by K < K/I where K <R, K DI



Definition 1.10. A mapping 6 of a ring R into a ring S is said to be a (ring) homomorphism if
O(z +y) = 0(x) + 0(y) and O(zy) = 0(x)0(y) for all z,y € R.

0 defined by 6(r) =0 for all r € R is a homomorphism. It is called the zero homomorphism.

¢ defined by ¢(r) = r for all r € R is also a homomorphism. It is called the identity homomorphism

Let I <9 R. Then o : R — R/I defined by o(z) = « + I for all z € R is a homomorphism of R onto
R/I. This is called the natural (or canonical) homomorphism.

Proposition 1.11. Let R, S be rings and 6 : R — S a homomorphism. Then :
1. 0(0r) = 0g
2. 0(—r)=—q(r) forallr € R
3. K={x € R:ql(x) =0g} is an ideal of R
4. OR ={0(r) : r € R} is subring of S
Proof. Exercise O

K is called the kernel of 6 and OR is called the (homomorphic) image of R. The ideal K is
sometimes denoted by ker 6.

Definition 1.12. Let § be a homomorphism of a ring R into a ring S. Then 0 is called an isomorphism
if 6 is a one to one and onto map. We say that R and S are isomorphic rings and denote this by R = S.

1.5 The Isomorphism Theorems

Question: Given a ring R, what rings can occur as its homomorphic images?

The importance of the first isomorphism theorem lies in the fact that it shows the answer to lie
with R itself. It tells us that if we know all the ideals of R then we know all the homomorphic images
of R.Only the first isomorphism theorem contains new information. The other two are simply its
application.

Theorem 1.13. Let 6 be a homomorphism of a ring R into a ring S. Then OR = R/I where I = ker 6

Proof. Defined o : R/I — R by o(z + I) = 6(z) for all x € R. The map o is well defined since for
ryeR rz+I=y+I=c—-—yecl=kertd=0x—y)=0=0(z)=0(y). 0is easily seen to be the
required isomorphism. O

Theorem 1.14. Let I be an ideal and L a subring of a ring R. Then L/(LNI) = (L+1)/I

Proof. Let o be the natural homomorphism R — R/I. Restrict o to the ring L. We have oL =
(L+1I)/I. The kernel of o restricted to L is L N I. Now apply previous theorem. O

Theorem 1.15. Let I, K be ideals of a ring R such that I C K. Then (R/I)/(K/I) = R/K

Proof. K/I<R/I and so (R/I)/(K/I) is defined. Define amap v: R/I - R/K by y(z+I) =z+ K
for all x € R. The map = is easily seen to be well defined and a homomorphism onto R/K. Further,

Y+ =K <<= z+K=K
— z¢cK
— z+Ie€K/I

Therefore ker v = K/I. Now apply the first isomorphism theorem. O



1.6 Direct Sums

Definition 1.16. The internal direct sum: Let {Ix}xea be a collection of ideals of a ring R. We
define their sum to be )\, Ix={r € R: v =x1 +--- +a,2; € I,k = 1,2,3,...}. That is the
sum is the collection of finite sums of elements of the I,’s.

We say that the sum of the I\’s is direct if each element of ), _, I\ is uniquely expressible as
1+ -+ with z; € Iy,. In this case we denote this sum as ZAGA @I or 1 ®---d I, if A is finite.

Proposition 1.17. The sum 3, Ix is direct if and only if Iju N (305 cp azp In) = 0 for all p € A
Proof. Exercise O

Definition 1.18. The external direct sum: Let Ry,..., R, be rings. We define the ezternal direct
sum S to be the set of all n-tuples {(r1,...,7,) : 7 € R;}. On S we define addition and multiplication
component wise. This makes S a ring. We write S =R; ®--- ® R,,.

The set (0,...,0,R;,0,...,0) is an ideal of S. Clearly S is the internal direct sum of these ideals.
But (0,...,Rj,...0) = R;. Because of this S can be considered as a ring in which the R; are ideals
and S is their internal direct sum. Also in internal direct sum we can consider Iy @ --- @ I,, to be the
external direct sum of the rings I;. Hence, in practice, we do not need to distinguish between external
and internal direct sums.

1.7 Division Rings

Definition 1.19. Let R be a ring with 1. An element v € R is said to be a unit if there exists an
element v € R such that uv = vu = 1. The element v is called the inverse of u and is denoted by u !
A ring D with at least two elements is called a division ring (or a skew field) if D has an identity
and every non-zero element of D has an inverse in D
A division ring in which the multiplication is commutative is called a field-discriminant

Example. The Quaternions: Let D be the set of all symbols ag + a1 + asj + ask where a; € R.
Two such symbols are considered to be equal if and only if a; = b; for ¢ = 0,1,2,3. We make the
ring as follows: Addition is component-wise. Two such symbols are multiplied term by term using
the relations 32 = j2 = k> = —1 and ij = —jk = k,jk = —kj = i,ki = —ik = j. Then D is a
non-commutative ring with zero and identity. Let ag + @17 + asj + ask be a non-zero element of D.
Then not all the a; are zero. We have

(ao + a1 + asj + ask)(ag — a1i — azj — ask) = a% —l—a% —|—a§ +a§ #0

. So letting n = a3 + a? + a3 + a3, the element (ag/n) + (a1/n)i + (az/n)j + (az/n)k is the inverse
of ag + a1 + asj + ask. Thus D is a division ring. It is called the division ring of real quaternions.
Rational quaternions can be defined similarly where the coefficients are from Q.

1.8 Modules
Definition 1.20. Let R be a ring. A set M is called a right R-module if:

1. M is an additive abelian group

2. A law of composition M x R — M is defined, which satisfies for x,y € M and r1,72 € R

3. (x+y)r1 =ar; +yr

4. x(ry + 1) = ary + xry

5. x(rire) = (xr1)re
A left R-module is defined analogously. Here the product of m € M and r € R is denoted by rm.
Example. 1. R and {0} are left R-modules. They are also right R-modules.

2. Let V be a vector space over a field F'. Then V is a left F-module. The module axioms are part
of the vector space axioms



3. Any abelian group can be considered a left Z-module:

Let g € A and k € Z. We defined kg = g+---+g¢g if k > 0, 0zg = 04 and kg = —[(—k)g] if
—
k times
k < 0.

4. Let R be a ring. Then M, (R) becomes a left R-module if we define for » € R and X € M, (R)

r 0 0 0

0 r O 0
rX = 0 0 r 0 X

0 0 0 r

Clearly, we can also make M, (R) a right R-module.

The symbol Mg will denote M is a right R-module, while the symbol g M will denote M is a left
R-module. For technical reason it is sometimes easier to work with right R-modules while dealing with
non-commutative rings (when we choose to write maps on the left). We say simply say that M is a
module if the other details are clear from the context.

Proposition 1.21. Let M be a right R-module. Then:
1. Opyr =0p forallr € R
2. mOg =0y for allm € M.
3. (—m)r=m(—r)=—mr forallme M andr € R
Proof. Exercise O

Definition 1.22. Let K be a subset of a right R-module M. Then K is called a right R-submodule
(or just submodule) if K is also a right R-module under the laws of composition defined on M.

Proposition 1.23. Let K be a non-empty subset of M. Then K is a submodule of M <— z—y € K
and xr € K for allz,y € K andr € R

Proof. Exercise O

Definition 1.24. Submodules of Ry are called right ideals of R and submodules of g R are called left
ideals of R.

1.9 Factor Modules and Homomorphisms

Let K be a submodule of a right R-module M. Consider the facto group M/K. Elements of M/K
are cosets of the form m + K with m € M. We can make M/K a right R-module by defining
[m+ K]r =mr + K for all m € M and r € R. Check that this action is well defined and the module
axioms are satisfied to make M/K a right R-module.

Proposition 1.25. Let K be a submodule of Mr. Then
1. every submodule of M/K has the form A/K where A is a submodule of M and A D K.

2. There is a one to one correspondence between the submodules of M /K and the submodules of M
containing K

Definition 1.26. Let M and M’ be right R-modules. A mapping 6 : M — M’ is called an R-
homomorphism if:

1. 0(z+y) =6(x)+0(y) for all x,y € M
2. O(xr) =0(x)r forall z € M and r € R



If K is a submodule of Mp then the map o : M — M /K defined by o(m) =m+ K for all m € M
is an R-homomorphism of M onto M /K. It is called the canonical R-homomorphism

Proposition 1.27. Let 6 : Mr — My, be an R-homomorphism. Then:
1. 0(0p7) = 0y
2. K={x e M:0(x)=0p} is a submodule of M
3. M = {6(m) : m € M} is a submodule of M’
Proof. Exercise O

K is called the kernel of 8 and 0M is called the image of 6. 0 is a one to one correspondence map
if and only if kerf =0

Definition 1.28. Let 6 : Mr — M}, be an R-homomorphism. Then § is called an R-isomorphism if
it is in addition a one to one correspondence and onto map. In this case we write M = M’

1.10 The Isomorphism Theorem
There are similar to those for rings

Theorem 1.29. Let M and M’ be right R-modules and 0 : M — M’ and R-homomorphism. Then
OM = M/K where K = ker

Theorem 1.30. Let L, K be submodules of Mr. Then (L+ K)/K = L/(LNK)

Theorem 1.31. If K, L are submodules of Mg and K C L then L/K is a submodule of M/K and
(M/K)/(L/K)= M/L.

The proofs of these theorems are similar to those for rings

1.11 Direct Sums of Modules

Let M, ..., M, be right R-modules. The set of n-tuples {(m1,...,my,) : m; € M;} becomes a right
R-modules if we define (mq,...,my)+(m},...,m.) = (mi+mi,...,m,+ml) and (mq,...,my)r =
(mar,...,m,r). This is the external direct sum of the M; and is denoted Y1 | ®M; or My ®---® M,

Let {Mx}xea be a collection of submodules of a right R-modules M. We define their sum ), .\ My
to be {my, +---+my, : my, € My, for all possible subsets {A1,..., Ax} of A}. Thus ).\ M, is the
set of all finite sums of elements of the M)’s. It is easy to see that this is a submodule of M.

> xea My is said to be direct if each ), , My has a unique expression as my, + --- + my, for
some my, € M),. Asin 1.6 we can show that > ), My is direct <= M, N {3 \cp 1z, M} = {0}
for all € A. If 37, .\ My is direct, we denote it by >, .\ @My or My @ --- @© M, if A is a finite set.
As explained for rings in 1.6, there is no real difference between (finite) external and internal direct
sums of modules.

Definition 1.32. Let R be a ring with 1. A module My, is said to be unital if m1 = m for allm € M

We shall assume that all modules considered are unital whenever R is a ring with identity.

1.12 Products of subsets

Let M be a right R-module. Let K, .S be non-empty subsets of M and R respectively. We defined their
products KS to be {d°1" | kisilk; € K,s; € S;i = 1,2,...}. Thus KS consists of all possible finite
sums of elements of the type ks with k € K and s € S. If K is a non-empty subset of M and S is a
right ideal of R then KS is a submodule of M. (Check that we require finite sums in our definition to
make this work)

The above definition applies, in particular, when M = R. Thus if S is a non-empty subset of R
then S? = {3°1" | sit; : si,t; € S;n =1,2,...}. Extending inductively, S"consist of all finite sums of
elements of the type x> ... 2, with z; € S.

Note that if S is a right ideal of R then so is S™



1.13 A construction

Let R be a ring with an ideal I and M a right R-module. In general, M need not be a right R/I-
module. However, we can give M a right R/I-module structure if MI = 0. In this case we define
mr = m[r+ I] for all m € R and r € R. It can be checked that this is well-defined right R/I-module
action. Further, under this action the R and R/I submodules of M coincide.

In particular, I/I? is naturally a right (and left) R-module. This fact will be used repeatedly. In
general same for 1" /["F1,

1.14 Zorn’s Lemma, Well-ordering Principle, The Axiom of Choice

Definition 1.33. 1. A non-empty set . is said to be partially ordered if there exists a binary
relation < in .¥ which is defined for certain pairs of elements in .¥ and satisfies:

(b) a
(c) a

2. Let . be a partially ordered set. A non-empty subset 7 is said to be totally ordered if for every
pair a,b € 7 we have either a <bor b<a

ININ A

a
bo<c=a<c
bb<a=a=0»b

3. Let . be a partially ordered set. An elements x € . is called a mazimal element if x <y with
y € ¥ = x =y. Similarly, for a minimal element

4. Let 7 be a totally ordered subset of a partially ordered set .. We say that 7 has an upper bound
in . if there exists ¢ € . such that © < ¢ for all x € 7.

Zorn’s Lemma (Axiom). If a partially ordered set .7 has the property that every totally ordered
subset of % has an upper bound in ., then ./ contains a mazximal element.

A non-empty set . is said to be well-ordered if it is totally ordered and every non-empty subset
of . has a minimal element.

The Well ordering Principle. Any non-empty set can be well-ordered.

Axiom (The Axiom of Choice). Given a class of sets, there ezists a “choice function”, i.e., a function
which assigns to each of these sets one of its elements.

It can be shown that Axiom of Choice is logically equivalent to Zorn’s Lemma which is logically
equivalent to the Well-ordering Principle.

10



2 Chapter 2: The Jacobson Radical

All rings considered in this chapter are assumed to have an identity.

2.1 Quasi-regularity
Definition 2.1. Let M be a right ideal of R. M is said to be a maximal right ideal if M # R and

M' > M with M’ <, R= M' = R.
Similar definition is applied for a maximal two-sided ideal, and maximal left ideal.

Proposition 2.2. Let I # R be a right ideal of a ring R. Then there exists a maximal right ideal M
of R such that M D I.

c.f. Commutative Algebra, Theorem 1.4. By Zorn’s Lemma. Let .% be the set of all proper right ideals
of R containing I. Partially order . by inclusion. Let {7}, }oea be a totally ordered subset of .7. Let
T = UaeprTn. Then T < R and T O I. Moreover T is proper since T =R =1€T =1 ¢ T, for
some o € A=T,=R. ThusT# RandsoT € .. ThusT # RandsoT € .%¥. Now T O T, for
all @ € A. Hence Zorn’s Lemma applies and . contains a maximal element, say M. Clearly M is a
maximal right ideal and M D I. O

Corollary 2.3. A ring with identity contains a mazimal right ideal.
Proof. Take I =0 in the above theorem. O
Remark. This is not true for rings without 1

Definition 2.4. The intersection of all maximal right ideals of a ring R is called its Jacobson radical.
It is usually denoted by J(R) (or simply J)

Remark. Strictly speaking the above definition was for the right Jacobson radical. However we shall
show that this is the same as the left Jacobson radical.

Theorem 2.5 (Crucial Lemma). Let M be a mazimal right ideal of a ring R and let a € R. Define
K={reR:are€ M}. Then K <, R and:

1. ifae M then K =R
2. ifa ¢ M then K is also a mazimal right ideal.

Proof. Clear that K <, R, Now assume that a ¢ M so that M + aR = R (x). Define an R-module
homomorphism 6 : R — R/M by r — ar + M Vr € R. Check that this is a homomorphism of right
R-modules. By (%), 6 is an onto map. So by the isomorphism theorem for modules: R/M = R/ker § =
R/K. It follows that K is a maximal right ideal. O

Theorem 2.6. J < R

Proof. Clearly J <1, R. Now let j € J and a € R and suppose aj ¢ J. Then by definition there exists
a right ideal M such that aj ¢ M. Define K = {r € R : ar € M}. By the previous theorem K is a
maximal right ideal. But j ¢ K since aj ¢ M hence j ¢ J. This is a contradiction. Hence aj € J for
all j € J and r € R. Thus J < R. O

Definition 2.7. Let = be an element of a ring R. We say that « is a right quasi-regular (rqr) if 1 —x
has a right inverse, i.e., if 3y € R such that (1 —2)y =1

A subset S of R is called right quasi-regular if every elements of S is rqr

Left quasi-regular (lqr) is defined analogously

We call an element or set quasi-regular if it is both lqr and rqr.

Lemma 2.8. Let I be a rqr right ideal of R. Then I C J

Proof. Let M be a maximal right ideal of R. If I ¢ M then I + M = R, so 1 = x 4+ m for some = € I
and m € M. Hence 1 — 2z € M, now there exits y € R such that (1 —z)y =1, so 1 € M hence M = R.
A contradiction, thus I C J as required. O

11



Lemma 2.9. Let R be a ring, J(R) is a right quasi-reqular ideal.

Proof. Let j € J. Suppose that 1 — j has no right inverse. Then (1 — j)R # R so by Theorem 2.2
there exists a maximal right ideal M such that (1 — j)R C M. But j € M by definition of J(R) so
1=1—j4j € M, hence M = R. This is a contradiction, hence 1 — j has a right inverse for all j € J.
So J is a rqr. O

Lemma 2.10. Let I be an ideal of a ring R. Then I rqr if and only if I Ilqr.

Proof. Suppose that I is rqr. Let 2 € I, then there exists a« € R such that (1 —2)(1 —a) = 1. So
a =za—1z € I since I <, R. Hence there exists t € R such that (1—a)(1—¢t)=1,s01—z=(1—2)1 =
(I1-z)1—a)(l—t)=1(1—-t)=1—t. Hence (1 —a)(1 —x) =1, thus z is Ilqr. By symmetry we can
run the converse argument. O

Theorem 2.11. The (right) Jacobson radical is a qr ideal and contains all the rqr right ideals.
Proof. This is what we have proved above. O

Corollary 2.12. The Jacobson radical of a ring R is left right symmetric, i.e., left Jacobson radical
J; is equal to the right Jacobson radical J,

Proof. J; is a qr ideal by the left hand version of the theorem, so J; C J,.. Similarly J. C J;, hence
Jr = J. O

Theorem 2.13. Let R be a ring with Jacobson radical J. Then J(R/J) =0

Proof. The maximal right ideals of the right R/.J are precisely the right ideals of the form M/.J where
M is a maximal right ideal of R O

Remark. The theory can be adjusted to deal with rings without an identity.

2.2 Commutative Local Rings

Definition 2.14. Let R be a commutative ring, R is said to be a local ring if R has a unique maximal
ideal

Note. This terminology is slightly different from Kaplansky’s

Let R be a commutative local ring with 1. Let M be the maximal ideal of R, then:
1. M is the Jacobson radical of R

2. R/M is a field

3. If x € R, x ¢ M then z is a unit of R.

Example. Let R = {%|a, bezZ, bodd}
Check that R is a local ring. Find its unique maximal ideal. In fact R = Z(y), i.e., the ring Z
localised at the prime ideal 27

Remark. There exists a non-commutative ring with unique maximal ideal (in fact the only proper
non-zero ideal) which is not its Jacobson radical.

12



3 Chapter 3: Chain conditions

Rings need not have 1 in this chapter

3.1 Finitely Generated Modules

Definition 3.1. Let The a subset of Mg. The “smallest” submodule of M containing T is called the
submodule of M generated by T, i.e., it is the intersection of all submodules of M containing T'.
By convention we take {0} to be the submodule generated by the empty set 0.

Of particular importance is the case when 7' consists of a singles element a € M. In general the
submodule generated by a is {ar + Aa|r € R, A € Z}. This equals aR when R has 1 and M is unital.

Definition 3.2. If My is generated by a single element then we say that M is a cyclic module

A right R-module M is said to be finitely generated (f.g.) if it is the module generated by a
finite subset. If R has 1 and M is a finitely generated module then Jaq,...,a, € M such that
M=a1R+ - -+a,R.

Cyclic submodules of Rr [gR)] are called principle right (left) ideals.

3.2 Finiteness Assumption

Definition 3.3. Let ./ be a non-empty collection of submodules of a right R-module M.

1. An element K € .#is said to be mazimal in .7 if AK’ € .# such that K’ D K.

Similarly for a minimal element of .7

2. A is said to have the ascending chain condition (ACC) for submodules in . if every chain of
submodules A; C A5 C ... with A; € . has equal terms after a finite number of terms.

3. M is said to have the mazimum condition on submodules in .# if every non-empty collection of
submodules in .¥ has a submodules maximal in this collection.

The descending chain condition (DCC) and minimum condition are defined analogously.

Proposition 3.4. Let . be a non-empty collection of submodules of Mg then the following are
equivalent:

1. M has ACC [DCC] on submodules in .
2. M has the mazimum [minimum/] condition on submodules in ./
Proof. Exercise O

Particularly important is the case when .% consists of all submodules in Mp. The abbreviation
“M has ACC” will mean that M has ACC on the set of all submodules of M. Similarly for the other
conditions.

Proposition 3.5. The following are equivalent for a right R-module M.

1. M has ACC

2. M has the mazimal condition

3. Every submodule of M 1is finitely generated.
Proof. This is Commutative Algebra Proposition 5.1 O
Example. Zz has ACC since every ideal is principle (this follows from the Euclidean Algorithm)

Remark. 1. ACC does not imply the existence of an integer n such that all chains stop after n steps.
This is easily checked on Z

2. Similarly with DCC. Examples are harder but they do exists.
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3. However if My has both ACC and DCC then such an integer does exists. This follows from the
theory of composition series.

Lemma 3.6 (Dedekind Modular Law). Let A, B,C be submodules of Mp such that A D B. Then
AN(B+C)=B+(ANCQC).

Proof. Elementary O

Proposition 3.7 (Commutative Algebra 5.4). Suppose that K is a submodule of Mg. Then M has
ACC [DCCY] if and only if both K and M /K have ACC [DCC]

Proof. =: Straightforward

«<: Let M; C M> C ... be an ascending chain of submodules of M. Consider the chains M; N
K C MynK C ... and M| + K C My + K C .... The first chain stops since it consists of
submodules of K. So there exists k > 1 such that My N K = My,; N K for all ¢ > 1. The second
chain stops since it consists of submodules of M which are in 1 to 1 correspondence with those of
M/K. So there exists an [ such that M; + K = M;;; + K for all ¢ > 1. Let n = max{k,l}. Then
Myri = My N (Myyi + K) = My 0 (M, + K) = M,, + (M,,+; N K) by the Modular Law (since
My+i 2 My,). And M, + (My4; + K) = M, + M,, N K = M, and this is true Vi > 1. So Mg has
ACC

Similarly for DCC O

This important proposition has many consequences

Corollary 3.8 (Commutative Algebra 5.5 ). Let M, ..., M, be submodules of a right R-modules M.
If each M; has ACC [DDC] then so does their sum My +---+ M, = K.

Proof. Take K1 = M; + M. We have K;/M; = Mﬂf‘@ = M%"}V[Z. So % has ACC [DCC] since

M1M021\/12 is a factor modules of My and My has ACC. Also M; has by assumption ACC [DCC]. So by

the proposition 3.7, K7 has ACC [DCC].
This can easily be extended by induction. O

Corollary 3.9. Let R be a ring with 1. Suppose that R has ACC [DCC] on right ideals. Let Mg be
a finitely generated unital right R-module. Then Mg has ACC [DCC] on submodules.

Proof. Since My is finitely generated and unital, there exists my,...,my such that M = m R +
...mR. So by Corollary 3.8 it is enough to show that each m;R has ACC [DCC]. The map r — m;r
for all » € R is an R-homomorphism of Rz onto m;R. So m;R is isomorphic to a factor of Rr. So
m; R has ACC [DCC] on submodules. O

Remark. If R does not have 1, the ACC part of the corollary still holds but the DCC part is false!
This is because (m;) = {m;r + Am;|r € R, A € Z} and Z has ACC but not DCC

Definition 3.10. A modules with ACC on submodules is called a Noetherian module. A modules
with DCC on submodules is called an Artinian module

A ring with ACC on right ideals is called a right Noetherian ring. A ring with ACC on left ideals
is called a left Noetherian ring.

A ring with 1 and DCC on right ideals is called a right Artinian ring. A ring with 1 and DCC on
left ideals is called a left Artinian ring.

3.3 Nil and Nilpotent Ideals

Definition 3.11. Let S be non-empty subset of a ring R. S is said to be nil if given any s € S there
exists an integer k > 1 (which depends on s) such that s* = 0. S is said to be nilpotent if there exists
an integer k > 1 such that S* =0

If S consists of a single element, there is no difference between nil and nilpotent and we normally
say that the element is nilpotent.

Proposition 3.12. Let R be a ring with 1. Every nil one sided ideal of R is inside J(R).
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Proof. Let I be a nil right ideal and = € I. Then x¥ = 0 for some k > 1. We have (1 — z)(1 + = +
st a2k =150 xisr.qr. sox € J(R). Thus I C J(R). O

Remark. This is also true without 1.

Lemma 3.13. Let R be a ring:
1. If I and K are nilpotent right ideals then so are I + K and RI
2. Every nilpotent right ideal lies inside a nilpotent ideal.

Proof. Suppose that I* = 0 and K' = 0, k,1 > 1. Then (I + K)**'~! = 0 since every term in the
expansion lies in either I* or K' and hence is zero. So I + K is nilpotent. (RI)* = (RI)(RI)...(RI) C
R(IR)*='I C RI* = 0. So RI is nilpotent.

Suppose that I is a nilpotent right ideal. Then I C I 4+ RI. Now I + RI <« R and is nilpotent by
the first part. O

Definition 3.14. The sum of all nilpotent ideals of R is called the Nilpotent radical (or the Wedderburn
radical). It is usually denoted by N(R).

Note. N(R) C J(R) always.

It follows from Lemma 3.13 that N(R) = _ nilpotent right ideals = > nilpotent left ideals. Clearly
N(R) is a nil ideal. It is in general not itself nilpotent.

Example (Zassenhaus’s Example). Let F be a field, I the open interval (0,1) and R a vector space
over F' with basis {z;|i € I'}. Define a multiplication on F' by extending the following product of basis
ZL’iJrj lfl + ] < ].
0 ifi+j>1
> icr aix; where a; € F and a; = 0 for all except a finite number of 4. Check that N(R) = R but R is
not nilpotent.

elements z;r; = . Thus every element of R can be written uniquely in the form

Proposition 3.15. Let R be a commutative ring. Then N(R) equals the set of all nilpotent elements
of R.

Proof. Let n be a nilpotent element. This implies that the principle ideal generated by n is nilpotent.
(Prove!) O

Example. The above is false for non-commutative rings. e.g, let R be the ring of 2 x 2 matrices over

2
Q. Then R has only two ideals 0 and R. So N(R) = 0 but (8 (1)> =0.
Definition 3.16. An ideal P of a ring R is said to be a prime ideal if AB C P, A, B < R implies
A C Por BC P. We exclude R itself from the set of prime ideals.

Proposition 3.17. Let R be a commutative ring and P < R. Then P is a prime ideal if and only if
(a,b € R) we have abe P =a € P orbec P.

Proof. Trivial if R has 1. Not so trivial but still true if R does not have 1. O

Proposition 3.18 (Commutative Algebra 1.10 ). Let R be a ring. The intersection of all prime ideals
of R is a mil ideal.

Proof. We shall show that if € R is not nilpotent then there exists a prime ideal excluding it.
Suppose that € R is not nilpotent. Let .% be the set of ideals which contains no power of z. . # 0
since {0} € . . Check that Zorn’s lemma applies. So .# contains a maximal element, say P. Claim:
P is a prime ideal. If not then 3 ideals A and B of R such that AB C P but A ¢ P and B C P.
Then A+ P 2 Pand B+ P 2 P. Soz¥ € A+ P and 2! € B + P for some integers k,l. But
then z**! € (A + P)(B + P) C P which is a contradiction. Thus P is a prime ideal proving the
proposition. O

Corollary 3.19. In a commutative ring N(R) equals the intersection of all prime ideals of R.
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Proof. This follows from Theorem 3.15 and the previous theorem. O

Corollary 3.20. In a commutative ring with 1 a finitely generated nil ideal is nilpotent. In particular
when R is Noetherian N(R) is nilpotent.

Proof. Let K be a finitely generated ideal of R. Let K = kiR + -+ + ks R with k; € K. Each k; is
nilpotent hence so is the ideal. The result follows by 3.13. When R is Noetherian N(R) is finitely
generated and so nilpotent by above. O

3.4 Nakayama’s Lemma and an Application

Definition 3.21. Let I <, R. We say that a1, ..., a, is minimal generated set for I if:
1. ay,...,a, generate 1
2. No proper subset of {ay,...,a,} generates I.

Nakayama’s Lemma. Let R be a ring with 1 and Mg a finitely generated module. Let I be a subset
of J(R) Then MI =M = M = 0.

Proof. Let MI = M. Then we have MJ = M. Suppose that M # 0. Let aq,...,a, be a minimal
generated set for M. We have M = a1 R+---+a,Rsothat MJ = a1 J+---+a,J. Nowa; € M = MJ
80 a1 = a1z + - - -+ apx, for some z; € J. Now a1(1l —z) = aswo+ -+ anzy, (a1(1—21) =0if n =1).
So a; = asze(1 —x1) '+ -+ + apz,(1 — 1)~ (a1 = 0 if n = 1). This contradicts the minimality of
n. Hence M =0 ]

Remark. This is also valid for rings without 1.

Let R be a commutative local ring with 1 with unique maximal ideal J. Then R/J is a field. So
J/J? is an R/J-module, i.e., J/J? is a vector space over the field R/J. If x € R let T denote the coset
r+J% SoT € R/J%

Lemma 3.22 (Commutative Algebra 2.17). Let R be a commutative local ring with 1. Let J be the
mazximal ideal of R. Suppose that J is finitely generated and x1, ...,z € J. Then x1,...,x) generate
J (as an R-module) <= T7,..., Ty is a set which spans the vector space J/J?* (over the field R/.J)

Proof. =) Z1,...,Tk generate J/J? as an R-module so 77, ..., T generate J/J? as an R/J-module,
i.e., they span the vector space J/J2.

<) Let I = xR+ -+ xR Then I C J, ZT7,...,Tf generates J/J2 as an R-module, hence
I+ J? = J. This implies that (J/I)J = J/I where J/I is considered as an R-module. So J/I =0 by
Nakayama’s lemma, so J C I. Hence J = xR+ -+ - + z1 R. O

Corollary 3.23. In the above ring x1,...,, T is a minimal generated set for J < T1,...,T is a
basis for the vector space J/J? over R/J.

Proof. Follows from above O

Theorem 3.24. Let R be a commutative Noetherian local ring with 1. Let J be the maximal ideal of
R. Then any two minimal generating set of J contain the same number of elements.

Proof. This is a direct consequence of the corollary O

Notation. We shall denote this common number by V(R). Thus V(R) = dim J/.J? as a vector space
over the field R/J.
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4 Commutative Noetherian Rings

All rings considered in this chapter are assumed to be commutative rings 1.

4.1 Primary Decomposition

Definition 4.1. An ideal Q is said to be primary if ab € @Q (a,b € R) implies that a € Q or b™ € Q
for some integer n.

Clearly a prime ideal is primary.
Definition 4.2. R is called a primary ring if 0 is a primary ideal.
Clearly an ideal @ is primary if and only if R/Q is a primary ring.

Definition 4.3. We say that R has primary decomposition if every ideal of R is expressible as a finite
intersection of primary ideals.

Definition 4.4. An ideal is said to be meet-irreducible if ] = ANB, A, B<RimpliesI = Aor I = B.

Note. The two different definitions: Mp is irreducible if {0} and M are the only submodules. I < R
is meet-irreducible if = AN B implies I = Aor I = B

Lemma 4.5 (Commutative Algebra 6.18). Let R be a Noetherian ring. Then every ideal of R is
expressible as a finite intersection of meet-irreducible ideals.

Proof. Suppose not. Let A < R be a maximal counterexample. Then A is not meet-irreducible. So
A=BnNnC,B,C<R, B2 A C 2 A By maximality of A, both B and C are finite intersection of
meet-irreducible ideals. Hence so is A. Contradiction hence the result holds. O

Notation. Let M be a subset of Mp. The annihilator of S in R is ann(S) = {r € R|Sr = 0}. For R
is non-commutative ann(S) <, R. If S is a submodule then typically S is a subset of R.

Theorem 4.6 ((Noether) Commutative Algebra 6.20). A Noetherian ring has primary decomposition

Proof. By the previous lemma it is enough to show that a meet-irreducible ideal is primary. Without
loss of generality assume 0 to be meet-irreducible. Suppose that ab =0, a,b € R.

Claim: There exists an integer n > 1 such that "R N ann(b™) = 0.

Since the chain ann(b) C ann(b?) C ...stops there is an integer n > 1 such that ann(b") = ann(b>").
Now z € b"RNann(b") = z = b"t for some ¢t € R and b* = 0. So b*"t =0 = b"t =0 =z = 0. Since 0
is meet-irreducible either " R = 0 or ann(b™) = 0. Thus " =0 or a = 0 and 0 is a primary ideal [

Definition 4.7. Let @) be a primary ideal. Let P/Q be the nilpotent radical of the ring R/Q. P is
called the radical of ) and we say that Q is P-primary.

Notation. We denote the radical of Q by /Q.

Recall that for a commutative ring R, N(R) =set of all nilpotent elements of R.
Proposition 4.8. Let Q be a primary ideal and let P = \/Q. Then:

1. P is a prime ideal

2. If further R is Noetherian, then P* C Q for some k > 1.

Proof. 1. Let ab € P with a,b € R. Then (ab)™ € @ for some n > 1 so a™b" € Q. If @ ¢ P then
a™ ¢ @ so (b")* € Q for some s > 1 by definition of primary. Hence b € P. Thus P is a prime
ideal/

2. P/Q is a nil ideal of R/Q. If R/Q is Noetherian, P/Q is nilpotent (by Proposition 3.13 ?(check
reference maybe)). Hence Pk C @ for some k > 1.
O

Theorem 4.9 (Commutative Algebra 6.24). Let R be a commutative Noetherian ring. Then NS, J" =
0 where J = J(R).
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Proof. Let X =N ,J". Let XJ = Q1 N---NQ, be a primary decomposition for X. Fix i and let
P, =/Q;, it X ¢ Q; then J C P;. So Jk C Q; for some k; > 1 by the previous proposition. Thus
X CQior J¥ CQ;. So X CQ;foralli=1... ninany case. Hence X C X.J. So X = XJ hence
by Nakayama’s lemma X = 0. O

This is a surprisingly useful result.

Remark. For a right Noetherian ring this is false (Proven by Herstein in 1965). While for left and right
Noetherian rings the result is still an open problem.

Definition 4.10. A ring is called an integral domain if the product of any two non-zero elements of
the ring is non-zero.

Theorem 4.11. Let R be a commutative, local, Noetherian ring. Suppose that J = J(R) is a principle
ideal. Then every non-zero ideal of R is a power of J. In particular, R is a principal ideal ring.

Proof. Let 0# I <R, I # R. Then I C J. Since N2 ;J™ = 0 there exists an integer k£ > 1 such that
ICJEbut I ¢ J*L Let J =aR (a € J), then J™ = a™RVm > 1. Now there exists an element x
such that = € I but = ¢ a** 'R (). Since x € a*R we have x = a”t for some t € R. Now t ¢ J = aR
by (*). So t must be a unit of R. So a* = 2t~! € I. Hence J* = a*R C I. It follows that [ = J*
proving the theorem. O

Corollary 4.12. Let R be a commutative, local, Noetherian ring.
1. If J is not nilpotent then R is an integral domain and 0 and J are the only prime ideals of R.
2. If J is nilpotent then R is Artinian and J is the only prime ideal of R.

Proof. Exercise. (Note that in 2. J* = 0 for some s > 1so R,.J, J%,...,J* = 0 are the only ideals. [

4.2 Decomposition of 0

Definition 4.13. Let I = Q1 N---NQ, be a primary decomposition for an ideal I. Suppose that Q;
are P;-primary. We say the decomposition is normal [Commutative Algebra: minimal] if

1. No @Q; is superfluous
2. P, # P;foralli#j
Given that I has a primary decomposition, we can arrange a normal decomposition for I by:
1. Removing any superfluous primary ideals and
2. By applying the following:
Lemma 4.14. If Q1 and Q2 are P-primary ideals then so is Q1 N Q2

Proof. Let ab € Q1N Q2, a,b € R. If a ¢ Q1 N Q2 then a ¢ Q; say. Then b"™ € Q; for some n > 1. So
b € P. Hence b® € @y for some s > 1 since Qy is P-primary. Let k = max(n, s) then b¥ € Q1 N Q.
Now p € P implies pt € Q1 N Q> for sufficiently large ¢t > 1. Hence P C +/Q1 N Q2. But Q1 NQ2 C Q1
SO\/leQQg\/@:P,thUSP:\/leQQ. O

Thus whenever necessary we shall assume that the primary decomposition being considered is normal.

Remark. We may still have \/Q); 2 1/Q; with a normal primary decomposition [Commutative Algebra,
example before 6.8]

Definition 4.15. Let R be a ring. We say that a prime ideal P is a minimal prime ideal of R if
Q C P with @ prime implies Q = P.

Lemma 4.16. Let R be a commutative Noetherian ring. Suppose that 0 = Q1 N---NQ, be a primary
decomposition of 0. Let P; = \/Q; and suppose (after possible renumbering) that P, . .., Py, are minimal
in the set {Py,...,P,}. Then Py,..., Py are precisely the minimal primes of R.
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Proof. It is enough to show that if P is a prime ideal of R then P O P; for some 1 < j < k. By
Theorem 4.6 (? check reference) there exists integers k; > 1 such that P C Q; for i = 1,...,n. Then
PlklPQ’€2 ...Pt CQin---NQ, = 0. In particular, Plk1 ... Pk C P hence P,, C P for some m with
1 < m < n. But since Py, ..., P, are minimal in the set {Py,..., P,} we have P; C P, for some j,
1 <7 <m. Thus P D P; with 1 < j <m as required. O

Definition 4.17. Let ¢ € R, we say that cis reqular if ct =0,z € R=x =0
An element which is not regular is called a zero-divisor.

Notation. Let I < R. Write € (I) = {z € R|z + I is regular in the ring R/}

Clearly ¢ (0) = {regular elements of R}. If P is a prime ideal, in a commutative ring then

%(P) =R\ P.

Proposition 4.18. Let R be a Noetherian ring and 0 = Q1N - -NQ,, a normal primary decomposition.
Let P, = \/Q; and suppose that Py, ..., Py are the minimal primes of R. Then:

1. N(R)=PiN---NPg.
2. €(0) = R\ U™, P,
3. ¢(N)=R\U, P,

Proof. 1. Clearly NC PiN---NFP,. Now PLN---NP, CP;forall 1 <j <n. By Proposition 4.8
there exists an integer t; such that (P N---NPg)% C Q;. Let t = max{t;}, then (PyN---NPg)t C
QiN---NQ,=0. Thus PPN---NP, CNandso PN---NP, =N.

2. Let c€ R\ U P;. Then cx =0,z € R= z € @, for all i 1 <4 < n, since ¢ belong to no P;.
Hencez € Q1 N---NQ, =0,s0 ce €(0).

Now Pini C @Q; for some n;. So le[Ql N NQi—1 NQit1 ﬂ"'ﬂQn] cgiN---NQ, =0.
Now Q1 N---NQi—1 NQiy1 N---NQyp # 0 since our decomposition is normal. So P; is does
not contain a regular elements and hence U} ; P; does not contain a regular element. Hence
%¢(0) =R\ U P,

3. Exercise
O

Lemma 4.19. Let R be a commutative ring. Let Py, ..., P, be ideals of R, at least n — 2 of which are
prime. Let S be a subring of R. Suppose that S C U} | P;, then S C Py for some k, 1 <k <mn.

Remark. Note that S does not (necessarily) contain 1, since our definition of rings did not include 1

Proof. Proof by induction on n. For n = 1, result is trivial.

Forn =2if S ¢ P and S ¢ P, then choose 1,22 € S such that 1 ¢ P, and 2o ¢ P;. Then
x1+ a0 € Sbut xy +29 ¢ Ppyi=1,2.

Now assume n > 2 and that the result holds for values < n.

Clearly any selection of n — 1 of the P, at most 2 will be non-prime. Suppose that S C U, P; but
S ¢ P foranyi(i=1,2,...,n). Then S€ PyU---UP;_1UPy1 U---UP, by induction hypothesis
(as k varies). Now choose x € S such that o, ¢ PyU---UPy_q U Pgq U---UP,. Thus zy € Py.
Since n > 2 at least of the P; must be prime, say P;. Let y = 1 + 22...2,, then y ¢ P; for any
i =1,...,n. This is a contradiction. This completes the induction. O

Proposition 4.20. Let R be a commutative Noetherian ring. Let I < R, then I contains a regular
element if and only if ann I = 0.

Proof. =: Trivial

<: Suppose that every element of I is a zero divisor. Then by the Proposition 4.18 part 2)
I C U P, (where the P; are as in Proposition 4.18. So I C P;, for some j, 1 < j < n. We have
ann/ D ann P; # 0. This completes the proof. O

Proposition 4.21. Let R be a commutative Noetherian ring and I < R. Suppose that I contains a
reqular element. Then I = ciR+ - - - + ¢, R where each c; is reqular.
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Proof. Let K be the right ideal generated by the regular elements in I. So I\ K is either empty or
consists of zero divisors. Let Pj,..., P, be the primes associated with a primary decomposition of 0
(as in Proposition 4.18). So I\ K C Py U---U P, by Proposition 4.18 part 2, so I C KUP,U---UP,.
Hence I C K or I C P; for some i (by Lemma 4.19). But I ¢ P; for any ¢ since I contains a regular
element but all P; contains zero-divisors. Hence I C K and so I = K. Since R is Noetherian it follows
that we can find a finite generating set consisting of regular elements. O

4.3 Localisation [Commutative Algebra Section 3]

Definition 4.22. Let S be a non-empty subset of a ring R. We say that S is multiplicatively closed
if S1,82 € S = s189 € S.

Typical example: € (P) = R\ P where P is a prime ideal in a commutative ring. We shall always
assume 0 ¢ S and 1 € S.

Define an equivalence relation ~ on R x S as follows: (a, s) ~ (b,t) if there exists s’ € S such that
(at — bs)s’ = 0 (where (a, s), (b,t) € R x S)

Let 2 be the equivalence class of (a,b) and let Rg denote the set of all such equivalence classes.
For %,%ERSdeﬁne%—i—%:Mandgx b— ab

st s t st”’
Check that this is well-defined and that Rg is a ring. We have a natural ring homomorphism

¢: R — Rg given by ¢(r) = { forall r € R

Definition 4.23. Rg constructed above is called a localizations of R at S
Let A, B be rings with 1 and ¢ : A — B a homomorphism of rings. In this context we shall always
assume ¢(14) = 1p

The Universal Mapping Property.

| N

B<--A
<’¢ S

Let A, B be rings and S a multiplicatively closed subset of A. Suppose that ¢ : A — B is a ring homo-
morphism such that ¢(s) is a unit in B for all s € S. Then there exists a unique ring homomorphism
Y : As — B such that ¢ = 0

Proof. See Commutative Algebra 3.2-point O
The ring homomorphism 6 : R — Rg has the following properties:
1. s € S implies 6(s) is a unit in Rg
2. Given a € R,0(a) =0 if and only if as = 0 for some s € S
3. Every element of Rg is expressible as 6(a)[0(s)] ™! for some a € R, s € S.
These three properties determine Rg to within isomorphism.

Theorem 4.24. Let A, B be rings and S a multiplicatively closed subset of A. Suppose that o : A — B
is a ring homomorphism such that:

1. s € S implies a(s) is a unit of B
2. a(a) =0 implies as =0 for some s € S
3. Every element of B is expressible as a(a)[a(s)]™1 for some a € A,s € S.

Then there exists a unique isomorphism v : As — B such that o = 8, where 0 is the natural map

A—)As.
| N

B aETe Ag
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Proof. By the universal mapping property there is a unique homomorphism ¢ : Ag — B such that
a = 1, where 1 is given by ¥ (as™!) = a(a)[a(s)] ! (used property 1.) Then use property 2 and 3 to
check that v is an isomorphism. O

a a 1 1

In view of this we speak of the localization of R at S. Also since ¢ = ¢ - ¢ we usually write as™
rather than ¢ for elements of Rs.

Particularly important is the case when elements of S are regular, in this case the natural map
R — Rg is a monomorphism. We identity R with its image in Rg. Thus we may assume that R is a
subring of Rg, we write 7 instead of { for elements of R. In particular when R is an integral domain
and S = R\ {0} then Rg is just the field of fractions of R.

Lemma 4.25. Let R be a ring and S a multiplicatively closed subset such that S C €(0). Then:
1. if ISR = IRg <1 Rg and every element of IRg is expressible as xd~* for somex € I andd € S.
2. KadRs=KNR<R and (KNR)Rs =K.

Proof. We are assuming that R is a subring of Rg. So a typical element of IRg is xlrlcfl 4+ -+
Tprpc,t for some x; € I,r; € Rand ¢; € S. Let d = cica...¢, and d; = c1¢2...¢i—1Ci41 - .. C, then
1‘11"101_1 + ot aprpe,t = (wridy + o+ wprpdy)d™ = 2d7 where © = xyrdy + -+ + 2prpd, € 1.

The rest is an exercise. O

Remark. If I < R we have IR N R O I but we do not have equality in general. E.g. R = Z and

Rs = Q.
However, see Lemma 4.27 part 2 below.

Corollary 4.26. If R is a Noetherian ring then so is the ring Rg.

Proof. Clear from the previous lemma (part 2) O

Lemma 4.27. Let R be a ring and S a multiplicatively closes subset. Suppose that the elements of S
are reqular. Then

1. If 11 is a prime ideal of Rg then IIN R is a prime ideal of R
2. If P is a prime ideal of R and PN S = () then PRgs is a prime ideal of Rs and PRsN R =P
Proof. 1. Easy

2. We shall first need to show that PRg N R = P. Clearly PRsN R 2 P. Let z € PRg N R, then
2z =ps~! for some p € P and s € S Lemma 4.25 part 1. So zs =p € P with z,s € R. Now z € P
since s ¢ P and P is prime. Thus PRs N R = P. Now let af € PRg with o, 8 € Rg. Then
a=ac ! and f = bd~! where a,b € R, ¢,d € S. So abc™'d~! € PRg hence ab € PR N R = P.
So o € PRg or 8 € PRg, hence PRg is a prime ideal of Rg. (Note: PRgs # Rg since P # R)

O

Theorem 4.28. Let R, S be as above. Then there is a one to one order preserving correspondence
between the prime ideals of R which do not intersect S and the prime ideals of Rs

Proof. This follows from the previous lemma. The correspondence is P <> PRg. O
Remark. Theorems analogous to the above hold even when the elements of S are not assumed to be
regular.

Notation. Of special importance is the case when P is a prime ideal and S = R\ P = ¢(P). In this
case it is customary to write Rp instead of Re(p) or Rp\p-

Proposition 4.29. Let P be a prime ideal of a ring R and suppose that the elements of € (P) are
reqular. Then PRp is the unique maximal ideal of Rp and thus Rp is a local ring.

Proof. Let [ <Rp, I # Rp. Then I does not contain a unit of Rp. [[NR|NE(P) =0, ie,INRC P.
So I = (I NR)Rp C PRp, since PNE(P) =0, PRp # Rp. It follows that PRp is the unique
maximal ideal of Rp. O

Remark. Hence the name “localization”

Example. R =Z,P = 2Z, then Z) = {%¢|a,b € Z,bodd }
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4.4 Localisation of a Module [Commutative Algebra 3.1]

Let M be an R-module and S a multiplicatively closed subset of R such that 0 ¢ S, 1 € S. Define an
equivalence relation on M x S as follows: (m, s) ~ (m/, ') if there exists ¢ € S such that (ms’—m/s)t =
0. Check that ~ is an equivalence relation. Denote equivalence class of (m, s) by m/s. Let Mg be the
collection of all such equivalence classes. Define

m m  ms +m's m mr

r
ng?:T,;~¥:g,m,m/GM,s,s',tES,TGR

Check that this turns Mg into an Rg-module. Uniqueness corresponding to Theorem 4.24 can also be
proved. We call Mg the localization of M at S.

Note that if A is an Rg-module then A can be considered an R-module via the action a - r =
a-7Va € A;r € R. In this case A = Ag as Rg-module [Check that ¢ — a - % is an isomorphism
AS — S]

4.5 Symbolic Powers

Let P be a prime ideal. Then the powers of P need not be P-primary [Commutative Algebra Example
after 6.3]
P = {2 € R|zc € P™ for some ¢ € €(P}. Check that P(") < R.

Definition 4.30. P is called the n™ symbolic power of P
Clearly P(Y) = P and P(™ C P for all n.
Lemma 4.31. P™ is P-primary

Proof. Let ab € P a,b € R. Then abc € P" for some ¢ € €(P). If no power of b lies in P("™) then
b¢ P, ie.,bec %(P), We have a(bc) € P with bc € €(P). Hence a € P™ and P™ is primary. It is
easy to see that vV P(n) = P O

Lemma 4.32. Let P be a prime ideal and suppose that elements of € (P) are reqular. Then fro every
n>1:

1. (PRp)" = P"Rp
2. PPRpN R = P™
3. P"Rp = P"Rp
Proof. 1. (PRp)" = P"R% = P"Rp

2. x € PW= z¢c e P for some ¢ € % (P). So xcRp C P"Rp = xRp C P"Rp since c is a unit of
Rp. Hence x € P"Rp N R.

Conversely: ¢ € P"Rp N R = q = pc~! with p € P" and ¢ € €(P). Hence qc = p € P", so
q € P and noting that ¢ € R, we haveP™ = P"RpN R

3. Exercise

4.6 The Rank of a Prime Ideal

Definition 4.33. A prime ideal P is said to have rank r (or height r) if there exists a chain of prime
ideals P C P» C --- C P, C P but none longer. If there does not exists a maximal finite chain of
primes then we say rk P = oo. If P contains no other primes, we define rk P = 0

Note that rk P = 0 if and only if P is a minimal prime.

Definition 4.34. Let aq,...,a, € R, we say that prime P is minimal over ai,...,a, if P/(a1R +
-+ 4+ a,R) is a minimal prime of the ring R/(a1 R+ - - + a, R).
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Lemma 4.35. Let R be a Noetherian ring, A<\R. Suppose that R/A is an Artinian ring. Then R/A™
is Artinian for all n > 1.

Proof. RJ/A = %ﬁz (by the third isomorphism theorem). Note A/A? is finitely generated as an R/A-

module, so by Corollary 3.9 A/A? is Artinian. Since R/A and A/A? are Artinian, it follows from
Proposition 3.7 that R/A? is Artinian. The proof then extends by induction. O

Krull’s Principal Ideal Theorem. Let R be a Noetherian Ring. Let a € R be a non-unit, suppose
that P is a prime ideal minimal over a. Then rk P < 1.

Proof. We shall first deal with the case when P is the unique maximal ideal of R, i.e., when R is a
local ring with Jacobson radical P. Suppose we have Q1 C @ C P. Factoring out by (1 we may
without loss of generality assume that R is an integral domain. In the ring R/aR, P/aR is both the
unique maximal ideal and a minimal prime. Hence by Proposition 4.18 we have P/aR = N(R/aR).
By Proposition 3.20(Check this reference) there exists an integer n > 1n such that P C aR.

Now R/P is a field so by Lemma 4.35 R/P™ is Artinian. Hence R/aR is an Artinian ring. Hence
there exists k > 1 such that Q®) 4+ aR = Q¥+t 4 aR. So Q®) C Q¥+ 4 ¢R. Let x € Q)| then
x = y+at for some y € Q*+Y) t € R. Hence at =z —y € Q™). Now a ¢ Q since P is minimal over a.
Sot € Q™) thus Q) C Q¥+ + aQ™®). Hence Q) = Q-+ + aQ™*) (since the other containment

. .. (k) (k) L
is true trivially). Hence [Q%H)] = [Q%H)] aR where [] is viewed as an R-module.
()

So % = 0 by Nakayama’s Lemma since aR C J(R), so Q) = Q*+1). Now localize at Q.
So QW Ry = QD Ry and QFRg = Q"' Rg by Lemma 4.32 part 3. So (QRg)* = (QRg)*+* by
Lemma 4.32 part 1. So (QRg)* = 0 by Nakayama’s Lemma since QR = J(Rg). Hence Q* = 0 and
hence @ = 0 since R is a domain.

Now in the general case again suppose that @1 C Q C P. Factor out ; and assume that R is an
integral domain. Now localize at P. Factor out J; and assume that R is an integral domain. Now
localise at P, by Theorem 4.28, there exists an inclusion preserving one to one correspondence between
primes of R lying inside P and primes of the ring Rp. Use this and the first part of the proof applied
to the ring Rp to finish the proof. O

The Generalised Principal Ideal Theorem. Let R be a commutative Noetherian ring. Suppose
that P is a prime ideal minimal over the elements x1,...,x. € R. Thentk P < r.

Proof. We prove this by induction

For » = 1 we use Krull’s Principal Ideal Theorem.

Now assume the result is true for primes minimal over < r —1 elements. Suppose that P is minimal
over z1,...,x, and suppose that we can construct a chain of primes P = Py D P, 2 --- 2 Pryq. If
x1 € P, then in the ring R/x1 R we have a chain of primes Py/x1R 2 Py /x1R 2D --- 2 P./x1 R (x) But
Py/x1 R is minimal over the images of xs,...,x, in the ring R/xz1 R. So (*) contradicts the induction.
So x1 ¢ P,.

Let k be such that x1 € P, but z1 ¢ Pyy1. So we have Py/Pyyp D 2208 5 Pyy /Py, By
Krull’s Principal Ideal Theorem Py/Pyi2 can not be minimal over [z7 + Pgyo]| (since otherwise we
have Py/Pyi2 2 Pyi1/Pry2 2 Prya/Pri2). So there exists a prime ideal Pj ; such that P, 2 P, 2
Pyy2+x1R 2 Pyya. Proceeding this way we can build a new chain P=Py 2 P2 -2 P, 2 P/, 2
-+ 2 P/ D P,11. Now we have 1 € P! and this leads to a contradiction as in (x). O

Definition 4.36. Let R be a commutative ring. We define the Krull dimension of R by K dim(R) =
Supp prime rk P.

Note. K dim can be infinite in a Noetherian ring even thought the rank of each prime ideal is finite.

Proposition 4.37. Let R be a commutative Noetherian local ring with Jacobson radical J. Then
K dim(R) =1k J < 0.

Proof. Since R is local, K dim(R) = rk J, and rk J < oo by the Generalised Principal Ideal Theorem
as it is minimal over its generators. O

Lemma 4.38. Let R be a commutative Noetherian local ring with K dim(R) = n. Then K dim(R/cR) >
n — 1. Further, if c is reqular then equality holds.
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Proof. Let J be the maximal ideal of R. Then rkJ = n, so there exists a chain of primes J = Py 2
P; 2 -+ 2 P,. Asin the Generalised Principal Ideal Theorem we can construct a new chain of primes,
J=Qp2Q12 2 Qu_1 with c € Q,_1. Hence tk(J/cR) > n —1 (x).

Now assume that c is regular. If J/cR = Ty/cR 2 -+ 2 T /cR is a chain of primes in R/cR then
J=Ty 2Ty 2--- 2T} is a chain of primes in R. Since c is regular by Proposition 4.18 T}, can not be
a minimal prime of R since ¢ € T,. So n =rkJ > rkJ/er + 1. Hence rkJ/cR =n — 1 from (x) when

c is regular. O

4.7 Regular Local Ring

Let R be a Noetherian local ring with Jacobson radical J. We have V(R) = dim .J/.J? as a vector space
over the field R/J. So V(R) =the number of elements in a minimal generator set for J by Corollary
3.23. By The Generalised Principal Ideal Theorem we have rkJ < V(R)

Definition 4.39. A Noetherian local ring is called a regular local ring if tk(J) = V(R).
A local principal ideal domain is regular by Theorem 4.12

Lemma 4.40. Let R be a Noetherian local ring with Jacobson radical J (R not a field). Suppose that
reJ\J? let R* = R/xR. Then V(R*) =V (R) — 1.

Proof. Note that R* is a Noetherian local ring with Jacobson radical J* = J/zR. Let v5,...,y;
be a minimal generating set for J*. Choose yi,...,yr € J such that y; — y; under the natural
homomorphism R — R/xR. Claim z,y1,...,yr is a minimal generating set for J. We shall now
show that the homomorphic images of z,y1, ..., yx in the vector space J/J? are linearly independent.
Suppose that zr+y171+- - -+ ygrk € J? (x). So yiri+---+yir; € (J*)? where r} are the homomorphic
images of r; under R — R/zR. It follows that r} € J* since y7,...,y; is a minimal generating set for
J* and dim J*/(J*)? = k. So r; € J for all i. It follows from (*) that zr € J? since r;,y; € J. So
r € J since x ¢ J2. (Note that J? is J-primary check!) This completes the proof. O

Theorem 4.41. Let R be a regular local ring with Jacobson radical J. Suppose that x € J\ J?. Then
the ring R* = R/xR is also regular local.

Proof.
V(R)—1=V(R") by the previous lemma
>k J* where J* = J/zR by the General Principal Ideal Theorem
>rkJ—1 by Theorem 4.38
=V(R)—1
So V(R*) =rk J*. Thus R* is a regular local ring O

Remark. We have also shown that rk J* =rkJ — 1.

Lemma 4.42. Let R be a Noetherian local ring which is not an integral domain. Let P = pR (p € P)
be a prime ideal. Then rk P = 0.

Proof. Suppose that @ C P where @Q is a prime ideal. Then p ¢ Q. Now ¢ € Q implies ¢ = pt for
some t € R. Hence pt € Q =t € Q since p ¢ Q. So q € pQ C P? C p?R. Preceding this way we have
QCPrforalln>1,s0 Q <Ny P" C N>, J where J = J(R). But by Theorem 4.9 N5, J" =0,
so (Q = 0 which is a contradiction since R is not a domain. Hence rk P = 0 O

Theorem 4.43. A regular local ring is an integral domain.

Proof. By induction on K dim R =1k J. If rkJ = 0 then R must be a field.

Suppose now that tkJ = n > 0 and assume result for rings of Kdim < n. Since J # J?
by Nakayama’s lemma choose x € J \ J2. By Theorem 4.41, R* = R/xR is regular local. Also
K dim R* = K dim R — 1. By induction hypothesis R* is an integral domain, i.e., xR is a prime ideal.
Suppose that R is not an integral domain, then by Lemma 4.42 xR is a minimal prime. Let P;,..., Px
be the minimal primes of R. We have show that J\ J2C P,U---UP;. So J C J?UP,U---UPs. So
J C P; for some j by Lemma 4.19 hence J = P;. So rk.J = 0, which is a contradiction. So R is an
integral domain. O
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5 Projective Modules

All rings in this chapter are assumed to have 1 but need not be commutative.
Suppose R is regular local and P prime. How about the ring Rp?

5.1 Free Modules
Definition 5.1. A right R-module M is said to be free if:
1. M is generated by a subset S C M
2. > finite @7 = 0 if and only if r; = 0Vr; € R,a; € S.
Then S is called a free basis for M.
Remark. 1. Rpg is free with free basis 1

2. In a free module not every minimal generating set is a free basis. e.g: in the ring of 2 x 2 matrices

over Q, <é 8) and <8 (1)> is a minimal generating set but not a free basis.

3. By convention, 0 is considered to be a free module on the empty free basis.

Lemma 5.2. Let R be a commutative ring, then any two free basis of a free R-module have the same
cardinality.

Proof. By Theorem 2.2, R contains a maximal ideal, M say. Then R/M is a field. Let A be a free
R-module with a free basis {zx},c,. We claim: f;ﬁ ~ & (as R and hence as R/M-modules). To see
this, define 6 : R — ;;—ﬁ by 6(r) = xxr + x M. Then 0 is an R-homomorphism and ker§ O M. But
M is maximal, so ker(6) = M, proving our claim.

Write By = ;jﬁ, since By & R/M each B, is a 1-dimensional vector space over the field R/M.
From the external direct sum ), , ®Bx. Now A/AM is an R/M-module. (see Section 1.11). We
have A/AM = 3, _, ®Bx (as R-modules and hence also as R/M-modules). Hence dimension of
A/AM as a vector space is |A|. The dimension of A/AM is invariant by vector space theory, hence

the result. m

Remark. Over a non-commutative ring it is possible to have R = R @ R as right R-modules.

The Free Module F4. Let A be a set indexed by A. We define F)4 to be the set of all symbols
STaxry with ay € A,ry € R, A € A, where all but a finite number of r) are zero. We further require
these expression to satisfy > axry = > axsy <= 7 = sy VA € A. We can make F4 a right R-module
by defining > axry + > axsa =D ax(ra +sx) and (O axra)r = > ax(rar) (for all ry, sy, r € R)

A is a free basis for F4 (identifying a € A with a-1 € Fjy)

Proposition 5.3. Every right R-module is a homomorphism image of a free right R-module

Proof. Let M be a right R-module. Index the elements of M and form the free right R-module
Fyr. Elements of Fiy are formal sums of the form > (m;)r;, m; € M,r; € R. Define Fj)y — M by
S (my)r — > myr; € M. This map is well-defined and is an R-homomorphism by the definition of
Fy. O

5.2 Exact Sequences

Let M; be right R-modules and f; R-homomorphism of M; into M; ;. The sequence (which maybe

finite or infinite) --- Jitz My firt M; Ji M;_4 i is said to be ezact if im f;11 = ker f;
for all 3.
A short exact sequence (s.e.s.) is an exact sequence of the form 0 M L 0

. Note that since 0 —= M’ I M is exact we have ker(f) = 0, i.e., f is a monomorphism. Similarly

we have M —2= M" —= 0 is exact so M" = im(g), i,e, g is an epimorphism. We have M’ = f(M’),
i.e., M’ is isomorphic to a submodule of M. Also M" = M/ker(g) = M/f(M').
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Given modules B C A, we can construct the short exact sequence 0 B-—>A-% A /B 0

where 7 is the inclusion map and 7 the canonical homomorphism.

Proposition 5.4 (c.f. Graduate Algebra Theorem 5.3). Given a short exact sequence 0 — A _~ B _ ~ C—=0,

5
the following conditions are equivalent.

1. im« is a direct summand of B
2. There exists a homomorphism v : C — B such that By = 1¢
3. There exists a homomorphism 6 : B — A such that da =14

Proof. 1. = 2.) Let B = im(a) + By = ker 8 + B;. Let 81 be the restriction of 8 to B;. We have
BB = 1By = C, so 51 is an epimorphism. Also ker #; C ima N By = 0. Hence 3; is an isomorphism
and C = B;. Define v : C — B to be the inverse of 8;. It follows that

2. = 1.) Weshall show that B = a(A)+v8(B) = ker +~v3(B). Let b € B, then b = (b—~/3b)+~/3b.
Now b — vf3b € ker 3 since S(b— v5b) = Bb— BvBb = b — 1¢pb = pb—pb=0. If z € ker BN ySB
means z = y0b for some b € B and $(z) = 0. This means 0 = (z) = 8vy8b = b = = = 0. Thus

B = kex(8) & ~8(B)
Similarly we can show 1 <= 3. O

Definition 5.5. We say that the short exact sequence split if any (and hence all) of the above condition
holds.

Note that if the above short exact sequence split then we have B = ima @ B; =2 A @ C (external
direct sum)

Definition 5.6. A right R-module P is said to be projective if every diagram of the from

P
lu
A-T> B—>( exact

can be embedded in he diagram
P

_ /
¥
A-">B—-0
in such a way that 7z = p. (“the diagram commutes”)
Lemma 5.7. A free module is projective.

Proof. Let F be a free right module with a free basis {e,}. Consider

F
7/
o lu
},ﬂ'
A — B — 0 exact

Let b, = peq. As mis an epimorphism, we can choose a, € A such that ma, = b,. Now define 1 :
F — Aby a(>"eara) = aaTa, roa € R. Then fi is an R-homomorphism F — A and 70(> " eqrq) =
7O aara) =Y. T(aa)ra = D baTa = Y f(€a)rTa = 1D earq). Therefore = p. O

A projective module need not be free. To be shown later.

Lemma 5.8. Let P, (o € A) be right R-modules. Then )\ ®P, is projective if and only if all P,
are projective
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Proof. Let i, be the injection map P, — ZaEA ®P, and let p, be the projection map ZQGA ®P, —
P,

= Consider the diagram
> OPs
lf
A—">B 0
Restrict f to P, flp, = fo say. Then f, = fi,. Since each P, is projective, there exists

maps fo : Po — A such that 7f, = fo. Define f =3\ fapa- Then 7f =3\ T fapa =
Y oaeh faPa =D aen fiaPa = f- S0 Y cn © Py is projective.

= For any 8 € A consider

Pg
lfﬁ
A-I-B—>0

This gives rise to
> oF,

/ lfﬁpﬁ

A—"-B 0

So there exists f : > aen DPa — A such that nf = fspp. Hence wfig = fappip = fs and
fig maps pg — A.

O
Proposition 5.9. The following conditions are equivalent:
1. P is a projective right R-module
2. P is a direct summand of a free module
3. Every short exact sequence 0 M’ M P 0 splits.
Proof. 3 =2 Consider the short exact sequence 0 Kp F, P 0 where Kp is the

kernel of the map Fp — P. Since this sequence splits, Fp = P ® Kp
2=1 Follows from Lemma 5.7 and Lemma 5.8

1=3 Consider

j2
7/
% llp
¥

0—=M Lo 2op_op

Since P is projective, there exists i : P — M such that g = 1p. Thus the short exact
sequence splits.
O

Example. Projective does not imply Free. Let R = Z/6Z, A = 27./67 and B = 3Z/67Z, then A, B<R
and R = A® B. A being a direct summand of R is projective, but is not free since it has fewer elements
than R

Theorem 5.10. Over a commutative local ring, finitely generated projective modules are free.
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Proof. Let R be a commutative local ring with unique maximal ideal J. Let M be a finitely gen-

erated R-module. Let {a1,...,a,} be a minimal set of generators for M. Then there exists a free
module with a free basis {x1,...,z,} and an R-homomorphism ¢ : F °M° M such that o(z;) = a;
(See note on page 25, Question 1 on Exercise sheet 6 or Commutative Algebra). Thus we have

0—>K—>F—% M—>0 where K = ker(¢).

Claim: K C FJ. If not there exists an element k = x171 + -+ + 2,1, (r; € R) of F such that
k € K but r; ¢ J for some i. Say r1 ¢ J. Since R is local, 71 must be a unit. Since k € ker ¢,
a1r1+ -+ aprn, =0. So a; = —rfl(agrg + -+ ayry,) contradiction the fact that {ay,...,a,} was a
minimal generating set. Thus K C FJ.

Now since M is projective, the above short exact sequence split. So F' = K @& M’ where M’ = M.
Hence FJ=KJ@M'J. So K =FJNK =KnN(KJ®M'J)=KJ®(KNM'J) by the modular law.
But KNM'JCKNM =0,s0 K=KJ. Now K is finitely generated (check this!). By Nakayama’s
Lemma K = 0, thus M’ and hence M is free. O

Remark. Kaplansky has shown that the result is true even without the finitely generated assumption.

The Dual Basis Lemma

Let R be a commutative integral domain with a field of fraction K. Let 0 # A < R and define
A*={ke€ K : kA C R}. Then A* is an R-module.

Lemma 5.11. Let R, K, A be as above. Let 6 : A — R be an R-homomorphism. Then there exists
q € A* such that 0(x) = qx for all x € A.

Proof. AK = K. So a typical element of K is expressible as ac™! with a,c € R, ¢ # 0. Now 6 can be
extended to a K-homomorphism, §* : K — K by 6*(ac™!) = 6(a)c™!. Check that * is well defined
and K-homomorphism. Let §*(1) = ¢ € K. Then for x € A, 0(x) = 0*(z) = 6*(1x) = 0*(1)z = qz.
Clearly ¢ € A*. O

Proposition 5.12 (The Dual Basis Lemma - Special Case). With the notation as above: Apg is
projective if and only if 1 = x1q1 + -+ + Tpqy for some x; € A, q; € A*. (Or equivalently A*A = R)

Proof. =) Let F be a free module with an R-homomorphism ¢ : F' — A. Since A is projective,
there exists an R-homomorphism v : A — F such that ¢ip =14
@
F_"A
P

Let {f.} be a free basis for F. Then for each y € A, we have ¢(y) = fir1+- - -+ fnr, uniquely
for some f; € {f,} and r; € R. So for each i, y — r; is an R-homomorphism A — R. So by
the previous lemma, there exists ¢; € A* such that ¥(y) = fiqry + -+ + fugny. So

y = ¢(y)
= o(frquy + -+ faqny)
= o(f)qy + - + ¢(fn)gnysince ¢y € R
So1=9¢(fi)qr + -+ ¢(fn)gn = T1q1 + -+ - + TnGn, Where z; = ¢(f;) € A.

<) Definety: A— R®---® R by ¥(z) = (q1z,...,q,x) for all z € A.
n—times
%w
A 7¢R€B--~@R

Note that ¢z € R since q; € A*. Define ¢ : R --- @R — A b ) =
ote that ¢ since ¢ efine ¢ DD y ¢(r1 Th) = 171 +

n—times

<o+ xpTy, 7 € RThen ¢ is an R-homomorphism and for any y € A

Y(y) = o(qy,. - qy)
= 211y + -+ Tpqny
=y
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So ¢ = 14, hence Ap is projective.
O

Proposition 5.13. Let R be a commutative Noetherian integral domain and I <R. Suppose that IRy
is a projective Ryr-module for each mazimal ideal M of R. Then I is projective.

Proof. I =0 is trivial so assume I # 0.

Proof. Let F be the field of fractions of R. Then F' is also the field of fractions of each Rjps (check!).
Consider a maximal ideal M. Since I R); is Rps-projective by the Dual Basis Lemma, there exists some
x; € IRy and g; € F such that 1 = 21q1 + -+ + 2,¢, and ¢;I C Ryr. Now g1 is a finitely generated
R-module. So ¢;I = z1R+ -+ z; R with z; € Rps. Let a € R be a common denominator of the 7,
let b € R be a common denominator of the z;. Let d = ab, then d € €(M), d = z1(q1b) + - - - + 2, (¢nb)
where z; = zfa € I and ¢;bI C R (}).

Now I*I < R, by (t) I*INE (M) # 0. This is true for all maximal ideal M. Hence I*I = R. Thus
1 € I'"I and so Iy is projective by the dual basis lemma. O

O

Remark. This is a special case of a standard result. If A is a finitely generated module over a com-
mutative Noetherian ring R then Ag is projective if and only if Aj; is a projective Rj;-module for all
maximal ideal M. See:

e Marsumura: Commutative ring Theory Theorem 7.12

e Rotman: Intro to homological algebra Exercise 9.22 p258

5.3 Projective Resolutions and Projective Dimension

Definition 5.14. If A is a right R-module, and exact sequence

0, On—1 o
.—=P,—% P, :

Py—=A 0

where each P; is projective is called a projective resolution for A. (This sequence may be finite or
infinite)

Construction of a Projective Resolution
Let A be a right R-module. A is a homomorphic image of a free module, say Fy (by Proposition

5.3). So we have the exact sequence 0 Ky—>F,—2> A 0, where « is the homomorphism
Fy - A and K = ker o and 7 =inclusion map. If K| is projective the above is a projective resolution.
Even if Ky is not projective it is still a homomorphic image of a free module, say Fj. So we have

the exact sequence 0 K Fi ’ Ky 0 where K1 = ker 8. Let ¢ = . Thus v maps

F} — Fy and we have kera = Ky = im 8 = im~. So we have the exact sequence

0 Kl F1 FO A 0

Here F} and F|, are free and hence projective. If K is not projective the procedure can be repeated.
It may happen that after a finite number of steps we get an exact sequence

0 K, F, Fo_1 F E A 0

where the K, are projective and all the F; are free.

Definition 5.15. A right R-module A is said to have finite projective dimension if there exists an

exact sequence
OHPk%Pkfl P1 PO A 0

where each P; is projective. k is called the length of this sequence.
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Further, we say that A has projective dimension n if n is the least integer for which there exists a
projective resolution

0‘>Pn‘>Pn,1 P1 PO A 0

We denote the projective dimension of A by pdg(A) (or simply pd(A)) If A does not have finite
projective dimension we write pd A = co. If A =0 we take pd A = —1 conventionally.

It is clear that pd A = 0 if and only if A is projective.

Schanuel’s Lemma. Let M be a right R-module and let

0o—sKdoadom—~0 0K -2y M—s0

be two short exact sequence. If X and Y are projective then X $ K' =Y & K.
Proof. Define L = {(z,y)|z € X,y € Y such that f(x) = g(y)}. Then L is a submodule of X &Y.

X

/
.,
¥

Y LM —-0

Since X is projective there exists an R homomorphism « : X — Y such that f = ga. Define
0: XK' — XY by 0(z, k') = (z,a(x)+g(k') withz € X, k' € K’. 6 is clearly an R-homomorphism,
also g(a(z) +g(k)) = ga(z) + gg(k') = f(z) + 0. Thus 6 is an R-homomorphism X ¢ K’ — L. Now
O(z,k')=0=2=0and g(k') =0= 2 =0 and &' = 0. Thus 6 is a monomorphism.

Finally if (z,y) € L then f(z) = g(y), so ga(z) = g(y). So g[—a(z) + y] = 0. Hence —a(z) +y €
ker g = im(g) = g(K'). Hence there exists k] € K’ such that g(k]) = —a(x) +y. Thus 0(z, k') = (z,y)
and 6 is an epimorphism.

So we have X @ K’ 2 L and Y & K = L and we are done. O

Corollary 5.16. In the above situation K is projective if and only if K’ is projective.
Remark. For free modules the result corresponding to Schanuel’s Lemma does not work.

Generalised Schanuel’s Lemma. Suppose that A is a right R-module and we have two exact se-
quences of R-modules

0 K, P, P, e Py Py A 0

0—>K —>P — P | o oP o P A =0

Py n odd

~ K' ¢ P, ®
P} n even

with Pj, P} projective for j = 1,2,...,n. Then K, ® P, ® P, 1 ®--- ® {

P} n odd

P .- .
n-l {.P() n even

Proof. By induction on n. If n = 0 this is just Schanuel’s lemma.
So assume the result forn =j—1,ie, K; 1®Pj_®... 2 K] ;®Pj_1®... where K; = ker of
map P, - P,_; and K| = ker of map P/ — P/_;. So we have the exact sequences

0 Kj Pj Kj—l 0

we obtain

OHKj%Pj@P]{_lEBPj,QGB...‘) jfl@PJ{_l@Pj,Q@...%O
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OHKJI%PJI@P]_l @P;fZEB...H-Kjl;l@Pj_l@P;72€B...%-O
In both these sequences the middle terms are projective and the right hand side terms are isomorphic

by induction assumption. So by Schanuel’s lemma K; ® P; @ P;j_1®... = K;® P;® P]_; ®.... This
completes the proof. O

Corollary 5.17. With the above notation we have K,, projective if and only if K, is projective.

Corollary 5.18. If pd Ag = m and

0—>K—>P, Py - P P, A—>0

is an exact short sequence with P;’s projective. Then K 1is projective.

Example. A module with infinite projective dimension.
Consider Z/2Z as a module over the ring Z/47Z defined by [z + 2Z][a + 4Z] = [za + 2Z], z,a € Z.

Look at
dy

7L —" 77
el N el
97.,/4Z 97./4Z

0/ 0/ \0

where € : [a 4+ 4Z] — [a+ 27Z] and d; : [a + 4Z] — [2a + 4Z] for all i. The kernel at each stage is 2Z/47Z
and thus cannot be projective (why?).

Z)A7 ——=7.)27 0

Proposition 5.19. Let {A\},., be a family of right R-modules. Thenpd (3., ®Ax) = supyep pd Ax

Proof. We shall do this for the direct sum of two modules, the general case just involves more notation.
Let

Qp Qp—1 Qa2 [e %) [e75)

Pn Pnfl A 0

P P,

ﬂ’” /8'”‘7 ﬁ ﬂ B
o Qp = Qn = Q) > Qo =B 0

be projective resolution for A and B. Consider

0, 0 0
P, 0Q, — n—l®Qn—14>---4>P1@Q141>P0@Q040>A@B4>0

where 0,,(pn, qn) = (@nPn, Bndn); Pn € Pn,qn € Q. This is an exact sequence and each P; ® Q; is
projective. It follows pd(A @ B) < sup(pd 4, pd B)
Suppose that pd(A @ B) = m < oo. Consider

0771— 1

OHTm%mel@melﬁHPOEBQOLA:@B 0

where 6; are the maps defined above, since pd(A®B) & m. But T,,, = ker6,,,_1 = ker a,,—1 Dker Sy, —1.
This implies pd A < pd(A @ B) and pd(B) < pd(A ® B).

The above argument shows that if either pd A or pd B = oo then pd(A & B) = co and conversely.
This completes the proof. O

Lemma 5.20. Suppose that
0 K P A 0

is an ezact sequence with P projective and A not projective. Then pd K < oo if and only if pd A < oo
and we have in this case 1 + pd K = pd A.

Proof. Follows from definition of projective dimension and generalised Schanuel’s Lemma. O
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Recall how build our projective resolution for M
0 \ / ’
Ky
N
Py Py
S ~N S
KQ KO
/ 0 / \ 0

Theorem 5.21. Let 0 - B — A — C — 0 be a short exact sequence. If the projective dimension of
any two module is the short exact sequence is finite then so is the third. Furthermore we have

Py M 0

0

1. if pd A > pd B then pdC =pd A
2. ifpd A< pdB thenpdC =pdB+1
3. if pd A=pdB then pdC < pdA+ 1.

Proof. To prove the first part we induct on n the sum of the finite projective dimension. If n = 0
then both modules must be projective. If one of these is C' then the short exact sequence splits. So
by Lemma 5.8 if one of A or B is projective then so is the other. On the other hand if A and B are
projective then pd C' < 1.

Now suppose that n > 0 and the result is true when the sum of the two projective dimension
is < n. We may also assume that neither A nor C' is projective. Now there exists a projective P
such that 0 - D — P — A — 0 is exact (x¥). So A = P/D. Hence there exists a submodule E
with P D F 2 D such that B & E/D, moreover C = A/B = (P/D)/(E/D) = P/D (by the third
isomorphism theorem). Thus we have short exact sequences

0—>E—>P—>C—>0 (f)

0—>D—>E—>B—>0 (1)

Now (*) and (f) give pdD = pdA — 1 if pdA < o0 and pdE = pdC — 1 if pdC < oo (by the
previous lemma). So by induction hypothesis (f) gives that if any two of D, E, B have finite projective
dimension then so does the third. Hence the same is true for A, B and C.

Now assume that all the projective dimension are finite. We prove the second part by induction
on the sum of all three projective dimension. If n = 0, nothing to prove (see the base case of the first
part of the proof)

Let n > 0. If either A or C' is projective, then the result holds. So assume that neither is projective.
Induction hypothesis applied to (1) gives:

ilf pd E>pdD then pd B=pdFE

ii if pd E < pdD then pd B=pdD +1

iii if pd E=pdD then pd B<pdD+1
In terms of A, B and C these gives

a If pdC >pdAthen pdB=pdC -1

b If pdC < pd A then pd B=pd A

¢ If pdC = pd A then pd B < A.
It can be seen (check!) that a. b. and c. are logically equivalent to 1. 2. and 3. of the theorem. [

Theorem 5.22 (Auslander). Let M be a right R-module, I a non-empty well-ordered set and {M;}
a family of submodules such that:

el
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1. M; CM; ifi<j

2. M = UjerM;

3. pd(M;/M]) < n where M = U;;M;
then pd M <n

Proof. By induction on n. If n = 0 then for all ¢ € I, pd(M;/M]) < 0 so M;/M] is projective. So each
short exact sequence 0 — M/ — M; — M,;/M] — 0 splits. So there exists submodules C; of M; such
that M; = M & C; where C; = M,;/M]. So each C; is projective.

We claim that M = .., ®C. The sum is direct for suppose ¢;, + ¢;, +--- + ¢;,, = 0 where
ci; € Oy, and iy < dg < - <ip, then —¢;, = ¢, +---+¢;,, € M] NCp =0. So ¢;,, =0 and
similarly ¢;, = ¢;, = -+ = ¢;,,_, = 0. Suppose now that M # >, ; ©Cj;, so there exists i € I such
that M; ¢ > icr Ci. Suppose that j is the least index such that M; g > icr Pci. So there exists
m € M; such that m ¢ >, ., ®C;. Now M; = M @ Cj, so m = b+ c for some b € M}, c € Cj. But
b€, ®C; by the minimality of j (b € Mysome k < j). Som € Y, ; ®C; a contradiction. Thus
M =3 ,.; ®C; as required. Hence pd M < 0 since M is a direct sum of projective modules.

Now assume the result for n — 1. We are given that pd(M;/M/) < n for all i € I. Let F (= Fy)
be the free module with free basis M, let F; be the free module with free basis M; and let F] be
the free module with free basis MZ’ . We have FF D F; D Fi' so we have the short exact sequence
0—- K —F— M — 0. Define K; = F; N K and K] = F/ N K. From the relations M; > M/, F; D F]
and the short exact sequences 0 — K; — F; — M; — 0, it follows that the sequences

0—K,;/K| — F,/F| — M;/M! —0

are exact. |Note that (K; + F;)/F] = K,;/(K; N F!) by the third isomorphism theorem. But this is
K;/(K;NF,NF])=K,;/K[. | Each F;/F] is free since F; has a set of generators, a subset of which
generates F;. Hence F;/F] is projective so by Lemma 5.20 pd K;/K! < n — 1. It can be checked that:

ii<j,i4,j€limplies K; C K;
ii K = UieIKi and K; = Uj<in.
So by Lemma 5.20, we have pd M < 1+ pd K < n. This completes our proof. O

Definition 5.23. Let R be a ring. We define D(R) = supyyy PAd M where M ranges over all right
modules of R. D(R) is called the right global dimension of R.

Lemma 5.24. Let M be a cyclic module over a ring R. Then M = R/I where I is a right ideal of R.
Proof. Exercise sheet 2. Q4 i) O
Theorem 5.25. Let R be a ring. We have

1. D(R) = supy gy pd B where B runs over all cyclic right R-modules

2. D(R) = supyy pd R/I where I runs over all right ideals of R

8. Further if D(R) # 0 then D(R) = 1+ supy,y pd I where I runs over all right ideals of R.

Proof. The equivalence of 1 and 2 follows from the previous lemma. The equivalence of 2 and 3 is
clear from Lemma 5.20 using the short exact sequence 0 — I — R — R/I — 0. So we prove 1.

Let M be aright R-module. Well order the elements z; of M (i € I) and denote by M; [respectively
by M]] the submodule of M generated by all x;, j < ¢ [respectively j < ¢]. Then M;/M] is either 0
or generated by a single element x;. So pd(M;/M/) < n where n = supypy pd B where B ranges over
all cyclic right R-modules. Since the family {M; };cs satisfies the hypothesis of Theorem 5.22, we have
pd M < n, hence D(R) < n. But by definition D(R) > n, hence D(R) = n = sup;p, pd B. O

Remark. Auslander has shown that for a (left and right) Noetherian ring R, left global dimension of
R is the same as the right global dimension of R
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5.4 Localization and Global Dimension

All rings are commutative in this section.
S multiplicative subset of R, 0 ¢ S, 1 € S. Let M, K be R-modules and ¢ : M — K and R-

m

homomorphism. Then we can define a corresponding Rg-homomorphism ¢* : Mg — Kg by ¢* (?) =

¢m) with m € M,s € S. (Check details, c.f. Commutative Algebra). If ¢ is an epimorphism, so is ¢*.

S

0 ¢

Lemma 5.26. If 0 A B C 0 is an exact sequence of R-modules then
0 Ag o Bg ¢ Cs 0 is an exact sequence of R*-modules.
Proof. See Commutative Algebra 3.3 O

Lemma 5.27. If P is a projective R-module, then Ps is a projective Rgs-module.
Proof. Routine from first principle O
Lemma 5.28. D(Rg) < D(R)

Proof. If D(R) = oo there is nothing to prove.
So assumeD(R) < oo. Let A be an Rg-module. View A as an R-module. Since Ag = A (see
section 4.4) using Lemma 5.26 and 5.27 we get pdp, A < pdy A. It follows that D(Rs) < D(R) O

Example. D(Z) = 1, D(Z/AZ) = co. D(Z2)) = 1, D(Z2)/4Z3)) = o0
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6 Global Dimension of Regular Local Rings

6.1 Change of Rings Theorems

Theorem 6.1. Let R be a commutative ring and suppose that x is a regular element of R. Denote
the ring R/xR by R*. Let M be a non-zero R*-module with pdp. M =n < oco. Thenpdyg M =n+1

Proof. By induction on n.

Suppose that n = 0, i.e., M is R*-projective, so there exists a free module F such that F = M & M’
(for some submodule M’ of F). Now 0 — 2R — R — R* — 0 is exact as R-modules. xR = Rpg, so
xR is R-projective. Hence pdg(R*) < 1. By Proposition 5.19, it follows that

pdp F < 1(x)

So pdp M < 1. Now x does not annihilate any non-zero elements of R. So x does not annihilate any
non-zero elements of a free R-module and hence of a projective R-module. But Mz = 0, so it follows
that Mg cannot be projective. Thus pd M = 1.

So now let n > 0 and assume the result for integers less than n. Now there exists a free R*-module
G such that 0 - K — G — M — 0 is exact. Since M is not R*-projective, pdg.(K) = n — 1. Hence
pdg(K) = n by induction hypothesis. Also pdp(G) <1 as in (x). So by Theorem5.21pdpy M =n + 1
ifn#1, and pdpg M <2if n =1.

In the first case we are done, so now we deal with the case n = 1 and we must rule out the possibility
that pdp M < 1 when pdgr. M = 1. So assume that pdr M < 1 and pdg- M = 1. So there exists a
free R-module H such that

0T —H— M — 0(xx)

is exact. So T is projective since pdy M < 1. Also Hx C T since Mx = 0. Therefore (xx) induces the
exact sequence
0—T/Hr—> H/Hx — M —0

Now H/Hzx is R*-free (check!) and pdp. M = 1. Thus T/Hz is R*-projective. But by the third

isomorphism theorem HT 1{ /T;x ~ T/Hx as R*-modules. Hence Hz/Tz is a direct summand of T'/T'z.

Since T is R-projective, T//Tz is R*-projective. [If n }? =T@®K then F/Fx =T/Tz ® K/Kzx].
—free R* —free

Hence Hxz/Tx is R*-projective. But Hx/Tx = H/T since x is regular. But H/T = M, so M is
R-projective, contradiction. So we have proved that pdz. M =1 implies pdp M = 2 O

Corollary 6.2. In the above situation if D(R*) =n < oo, then D(R) > n+1

Theorem 6.3. Let R be a commutative ring. Let M be a right R-module. Suppose that x is a
regular element of R such that x annihilates no non-zero elements of M. Write R* = R/xR. Then
pdgs (M/Mz) < pdp M.

Proof. If pd Mr = oo then nothing to prove. So assume pdp M = n < co. We prove the result by
induction on n.

Suppose n = 0. If F' is R-free then F/Fx is R*-free. Hence if M is a direct summand of an R-free
module, then M/Mz is a direct summand of R*-free module. (This argument was used before). Thus
M/Mz is R*-projective, as required.

Now suppose that n > 0 and the result holds for integers smaller than n. There exists a R-module
F such that

0 K F M 0 (%)

is exact, so pdp(K) =n — 1. Hence pdg.(K/Kz) < n — 1 by induction hypothesis. From () we get
the exact sequence:

0— &2 - FP/Fy —s M/Mz—0

so we have

0—> i —>F/Fx —> M/Mz—=0
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is exact. We claim K NFx = Kz, clearly Ko C KN Fz. Suppose that k = fo € KNFx, where k € K,
f € F. But z is not a zero divisor on F/K = M. Thus we have the exact sequence of R*-modules

0— K/Ke— F/Fx — M/Mx —0

Since pdp. (K/Kz) <n —1, it follows that pdz.(M/Mz) < n. This completes the proof O
We get equality if R is Noetherian and z lies in the Jacobson Radical of R.

Lemma 6.4. Let R be a commutative Noetherian ring. Let M be a finitely generated module and
suppose that x is a reqular element lying in J(R). Suppose that x does not annihilate any non-zero
elements of M. Write R* = R/xR.

Then M /Mzx is R*-projective implies that M is R-projective.

Proof. First suppose that M/Muz is R*-free. Let vq,...,v, be a free basis of M/Mz. Let uq,...,up
be elements of M mapping onto vy, ..., v, under the natural homomorphism M — M/Mz.

Claim: M is R-free with basis uq, ..., uy,.

Let C be the submodule of M generated by uq,...,u,. Then clearly, C + Mx = M. This gives
[M/C|Rx = [M/C], so M/C = 0 by Nakayama’s lemma. Thus M = C and uy,...,u, generate M.

Suppose that uq,...,u, is not a free basis for M. Then (after possible renumbering) there exists
non-zero ri,...,7Tx € R such that uiry + -+ +ugrg = 0, k < n (x). Thus vyry + -+ + vpry € M.
Hence r; € xR for all i since vy, ..., vy is part of a free basis of an R*-module. Say r; = xs; for s; € R.

We claim R C spR. Clearly R C s R and rp R = si R would imply si = 7t for some ¢, € R, i.e.,
sk = xSkt and so sk(1 — zty) = 0. Hence xp, = 0 since 1 — xty, is a unit since z € J(R). But is s, =0
then rp = 0 contrary to our assumption. Now cancelling out z, () gives uys; + -+ + upsy = 0 with
s, # 0 since rj, # 0. We can write this symbolically as u1 (2) + ... u, (%) = 0. Repeating the above
process we get an ascending chain of ideals

r r
reR C (l)RQ (—’;)Rg
X A
This is a contradiction since R is a Noetherian ring. Hence u, ..., u, is a free basis for M as claimed.

So M is R-free.
Next suppose that M/Max is R*-projective. Then there exists a free module F' such that

0 K F M 0

is exact. As before this induces the exact sequence of R*-modules
0— K/Ke—> F/Fx —> M/Mx —0 ()

Now write B = M @ K (% x )(external direct sum). Then Bx = Mz @ Kz. This gives B/Bx =
M/Mz & K/Kx. Since M/Mz is R*-projective, (xx) splits so F/Fz =2 M/Mxz & K/Kx = B/Bu.
Therefore B/Bx is R*-free and by earlier part of the proof B is R-free. Hence from (x * %) we have
that M is R-projective. O

Theorem 6.5. Let R be a commutative Noetherian ring, Mg a finitely generated module. Suppose
that © € R is a regular element such that x € J(R). Suppose also that x does not annihilate any
non-zero elements of M. Write R* = R/xR. Then pdg.(M/Mz) = pdr(M)

Proof. Let pdg.(M/Mx) = n.
If pdp. (M/Mz) = 0o then pdg (M) = oo by Theorem 6.3
So assume that n < co. We induct on n. For n = 0 the result is proved by previous Lemma.
Assume that n > 0 and the result for values smaller than n. There exists a free module F' such
that the sequence
0 K F M 0

is exact. As before this induces the short exact sequence

0— K/Ket — F/Fx — M/Mx —0 (%)
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Since F/Fx is R*-free we have that pdg.(K/Kz) = n — 1. Since R is Noetherian and M is finitely
generated we have K is finitely generated. Clearly x annihilates no non-zero elements of K. Now
pdg(K) = n — 1 by induction hypothesis. So (x) gives pdg M = n (unless pdz(M) = 0 but in this
case pdp« (M/Mz) = 0 by Theorem 6.3) This completes the proof. O

Corollary 6.6. Let R be a commutative Noetherian ring. Let x € J(R) be regular and let R* /xR. If
D(R*) =n < oo then D(R) =n+ 1.

Proof. We have D(R) > n + 1 by Corollary 6.2. Now let M be a finitely generated R-module. Let
pdr M = k. We shall not show that £ < n + 1. This is clear if K = 0 , so assume that M is not
R-projective. So there exists a free R-module F' such that

0 K F M 0

is exact. We have pdp K = k = 1. Since R is Noetherian and F finitely generated, we have K is
finitely generated. Also since K C F', x does not annihilate any non-zero elements of K. So by the
previous theorem pdp K = pdp.(K/Kz) <n. SopdrM =1+ pdy K < n+1. But by Theorem
5.25 D(R) = supypy,, 1.4} PA M. Hence D(R) < n+ 1. Thus D(R) =n + 1. O

6.2 Regular Local Ring
Lemma 6.7. Let R be a regular local ring of Krull dimension n. Then D(R) = n.

Proof. By induction on n. Let J be the Jacobson radical of R. If n = 0 we have J = 0, i.e., Ris a
field and the result is true.

Let n > 0 and assume the result holds for regular local ring of K dim <n — 1. Sincen >0, J #0
and so J # J? by Nakayama’s lemma. Let x1,...,, be a minimal generating set for J. Then there
exists x; such that z; ¢ J?. Write z; = x. Since R is an integral domain, x is regular. Let R* = R/zR.
By Lemma 4.38 K dim R* = n — 1. Clearly the images of z1,x2,...,2;-1,%;y1,...,2, are a minimal
generating set for J/xzR. Thus R* is a regular local ring, hence D(R*) = n—1 by induction hypothesis.
Therefore D(R) = n by Corollary 6.6. This completes the proof. O

Lemma 6.8. Let R be a Noetherian commutative local ring. Suppose that AnnJ # 0 (where J =
J(R)). Then pd M =0 or co.

Proof. If pd M # 0 or oo then there exists a module B such that pd B = 1. Now consider

0 K F B 0

where F'is free and K C F'J (as in Theorem5.10). So Ann K # 0. But since pd B = 1, K is projective
and hence free. This is a contradiction since a free module cannot have a non-zero annihilator. O

Lemma 6.9. Let R be a regular local ring with Jacobson radical J. Let x € R be regular such that
x € J but x ¢ J2. Then J/xR is isomorphic to a direct summand of J/xJ.

Proof. Since z ¢ J? we can choose a minimal generating set x, 1, ...,y, of J. Write S = aJ +y; R+
--++y,.R. Then clearly S+xR = J. We claim that SNxR = xJ, clearly zJ C SNxR. Let z € SNzR.
Then z = z; + w151 + - + Y5, = xt for some h € J,s; € R,t € R. So 2t — y1851 — -+ — YrSy € J?,
since x,y1,...,Yy, is a minimal generating set, for J, we have t € J, proving the claim.

Hence we have J/xJ = S/xJ ® xR/xJ (check!). Now J/xzR JJR//IJJJ >~ §/xJ which is a direct
summand of J/zJ. O

Proposition 6.10. Let R be a Noetherian local ring with Jacobian radical J. If pd J = m < oo then
R is a regular local ring of Krull dimension m + 1

Proof. If J =0 then R is a field, pd J = —1 and K dim R = 0, so the result is true.

We now deal with the case m = 0. We can assume J # 0. Since J is projective it is free (Theorem
5.10). So J is a principal ideal generated by a regular element, so by Theorem 4.12, vk J = K dim R =1
and the result holds.

We now prove the result by induction on k, the Krull dimension of R.
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If £ =0 then J is the unique minimal prime of R. Hence ann J # 0 (see Proposition 4.18). Then
by Lemma 6.8 pd J = 0 and this is dealt with above (we get J = 0)

So suppose that £ > 0 and that the result holds for rings of smaller Krull dimension. Clearly we
may also assume m > 0. We have 0 < m < oo. So by 6.8 ann.J = 0. So by Proposition 4.20, J
contains a regular element, say x. By Proposition 4.21, we may choose z such that z ¢ J2. Write
R* = R/xR, J* = R/zR. Since x is regular by Lemma 4.38 we have K dim R* = k — 1.

Claim: pdg. J* =m —1. We have pdg.(J/xJ) < pdg J by Theorem 6.3, but by Lemma 6.9 J* is
a direct summand of J/x.J, so pd J* < oo. Since m > 1, applying Theorem 5.21 to

0 TR J J* 0

we have pdp J* = pdp J = m, so by Theorem 6.1 pdgz. J" =m — 1.

So by induction hypothesis R* is a regular local ring of Krull dimension m. Hence K dim R = m+1
and R is regular local. (J* is generating by m elements so J is generated by m + 1 elements. But
tkJ=m+1) O

Collecting these results together we have

Theorem 6.11 (Serre). Let R be a commutative Noetherian local ring. Then R is regular local ring
of Krull dimension of n if and only if D(R) = n.

Corollary 6.12. If P is a prime ideal of a regular local ring R then the ring Rp is also regular local

Proof. Rp is a Noetherian local ring, by the previous theorem D(R) < oco. Hence D(Rp) < oo by
Lemma 5.28. R is regular local by the previous Theorem O

In fact, if S is a multiplicatively closed subset of R and D(R) < oo then D(Rg) < D(R) < oc.
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7 Unique Factorization

All rings are commutative with 1

7.1 Unique Factorization Domain

Definition 7.1. An element 0 # p € R is said to be a prime element if pR is a prime ideal.
Note. If p is a prime element, then so is up where w is a unit.

Definition 7.2. The ring R is called a unique factorisation domain (UFD) if R is an integral domain
and every non-zero element a € R is expressible as a = up; ...p, where u is a unit and the p; are
prime elements.

Proposition 7.3. If an element of an integral domain is expressible as py...p, where the p; are
primes, then this expression is unique up to a permutation of the p;’s and multiplication by a unit.

Proof. Algebra II course. (Or Hartley and Hawkes: Rings, Modules and Linear Algebra; Theorem
4.10) O

Definition 7.4. Let R be an integral domain and a,b € R. We say that a divides b and write a|b if
there exists ¢ € R such that b = ac.

Proposition 7.5. Let R be a commutative Noetherian integral domain. Then R is a UFD if and only
if every rank 1 prime ideal of R is principal.

Proof. = Let P be a rank 1 prime ideal of R. Let a € P. Then a must be a non-unit, so
a = upy ...py, where u is a unit and the p; are primes. Hence p; € P for some ¢ and so
P = p;R since P is a rank 1 prime ideal and p; R is a non-zero prime ideal.

<=: Let S be the set of all elements of R which are expressible in the form up; ...p, with u a
unit and each p; is prime.

We shall first show that if @ ¢ S then aR NS = 0. Suppose not. Let b € R such that
ab = upy ...p, and n is the least possible, where v is a unit and the p; are primes. (Note:
ab cannot be a unit since a is not a unit). Now p; 1 b for any i since if p;|b = b = p;t; for
some t; € R. Hence at;p; = up1...p, = at; = up1...pi—1Di+1 - - - Pn Which contradicts the
choice of n. Now p1]ab so p1|a. Let a = p1a; where a; € R. Then pja;b = up; ...p, and so
a1b = ups ...p,. Again pala; since ps 1 b. Proceeding this way we obtain that b is a unit of
R. Therefore a = b~ ups ... p,, a contradiction since a ¢ S.

Now suppose that R is not a UFD. Then there exists a non-zero element a € R such that
a ¢ S. By the above aRN S = . Choose P D aR to be an ideal maximal with respect to
PNS=0. Then P is a prime ideal (check!). However, P will contain a rank 1 prime ideal
and hence, by assumption, a prime element. This is a contradiction since P NS = ). Thus
R must be a UFD.

O

Lemma 7.6. Let s be a non-zero prime element of a Noetherian local domain R. Let A be a prime
ideal with s ¢ A. Let S = {s™}. If ARg is a principal ideal of Rg then A is a principal ideal of R

Proof. Let ARg = bRgs. We may assume that b € A (why?). By Lemma 4.9 N32;s"R = 0. So there
exists k > 0 such that b € s*R but b ¢ s*"1R. Let b = s*a where a € R. Then a ¢ sR. We have
ARg = bRs = as*Rgs = aRgs. Also as® € A gives a € A since s ¢ A and A is prime

Claim: A =aR

Let € A. Then x € aRg. So x = ars™™ for some m, suppose m > 1. Hence zs™ = ar.
Since a ¢ sR, r € sR since sR is prime. So r = sr; for some r; € R. Hence xs™ = asr; and so
xs™ 1 = ar € sRif m —1 > 0. Proceeding as above we finally obtain € aR. Thus A = aR as
required. O
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7.2 Stably Free Modules

Let A, B be n x n matrices over a commutative integral domain. Then |AB| = |A| - |B| where | |
denotes the determinant of the matrix
Notation. Let R be a ring. We write R™ (or sometimes R) for R®---® R

—_——

n times
Theorem 7.7 (Kaplansky ). Let R be a commutative integral domain and A a (non-zero) ideal of R
such that A@® R~ ' = R" as R-modules. Then A is a principal ideal of R.

Proof. The isomorphism shows that A@® R" ! has a free basis consisting of n elements, say A1,. .., A,.
Each ); is an n-tuple, so let A\; = (a1, B2, - -, Bnj) Where aq; € A and §;; € R. Let

Q11 Q12 ... Oip
P21 B2 Bon
A= . )
6n1 5n2 5nn
Then A € M, (R), note that |A| € A. Now consider
I I ... 1
R R R
X =
R R R
Then X <, My (R). Let
a1 a2 e A1n
b21 b22 b2n
. . eX
bnl bn2 bnn

where a1; € A and b;; € R for 2 <14 < n. Writing the elements of A® R® ---® R as columns we have

a1j a1l Q12 6577
bi; Ba1 Baz Ban
. = e .82+ . | 5nj
bnj Bnl 5n2 ﬂnn
=1 =2 =An
with s;; € R since A1,..., A, is a free basis for A ® R". In the matrix from these can be written
aip a2 ... Qin Q11 @12 ... Qln S11 S12 ... Sin
ba1  ba2 ban P21 Baz Bon 21 S22 Son
bp1 bno bnn ﬁnl ﬂn2 5nn Snl  Sn2 Snn

Thus X C AM,(R), but AM,(R) C X since X <R. Hence X = AM, (R). Now let © € A and consider

X

0 1
so by above there exists B € M, (R) such that

T
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Take determinants, we have x = |A| - |B|. Thus A C |A|R, but |A|R C A since A< R. Thus A = |A|R
and A is principal. O

Definition 7.8. My, is said to have a finite free resolution if there exists an exact sequence 0 — F,, —
F,_1—---— Fy — M — 0 with each Fj is free.

Clearly, over a regular local ring each finitely generated module has a finite free resolution

Lemma 7.9. Let S be a multiplicatively closed subset of a commutative ring R. If Mg has finite free
resolution then so does the Rg-module Mg

Proof. Exercise O

Definition 7.10. An R-module M is called stably free if there exists finitely generated free modules
F and G such that G M = F.

Clearly a stably free module is projective. A stably free module is a finitely generated projective
module with a finitely generated free complement

Lemma 7.11. Let R be a commutative ring. A projective R-module with finite free resolution is stably
free

Proof. We prove this by induction on the length of the finite free resolution. Let M be a finite free
resolution module.

For n =1 we have 0 — F; — Fy — M — 0. M is projective. So this splits, so Fy = F; & M and
M is stably free.

Now suppose we have

0 F, M 0

) F,
\K e
0/ \o

We have Fjy = Ky@ M since M is projective. K has finite free resolution of length n—1 . By induction
hypothesis there exists a finitely free module G such that Ko ® G is free. Hence Fy @G =2 Ko GH M
with both Fy & G and Ky ® G free. O

If R is a Noetherian domain and 0 # A < R such that A is stably free then A @ R™ = R". In this
case m =n — 1 (Q4 on exercise sheet 7)

Theorem 7.12 (Auslander - Buchsbaum 1959). A regular local ring is a UFD.

Proof. Let R be a regular local ring of dimension n. We prove the theorem by induction on the (Krull)
dimension n.

If n =0 then R is a field and there is nothing to prove.

Assume result for regular local rings of dimension less than n. Let J = J(R), choose p € J\ J2. By
Theorem 4.41 R/pR is regular local. By Theorem 4.43 pR is a prime ideal and p is a prime element.
Let S = {p"}, then clearly K dim Rg < K dim R.

Now let T be a rank 1 prime of Rg. Let M be a maximal ideal of Rg . Then either T'(Rs)y = TRs
or T(Rg)n is a rank 1 prime ideal of (Rg)p. By induction hypothesis (Rg)y is a UFD. So by
Proposition 7.5 T(Rg) is principal and hence a projective (free) (Rg)a-module. So by Proposition
5.13 T is a projective Rg-module. Now let A be a rank 1 prime of R. By above ARg is a projective
Rg-module. Since every finitely generated module over Rg has finite free resolution by the previous
lemma, ARg is stably free. So by Theorem 7.7 ARg is free. Thus ARg is a principal ideal. So by
Lemma 7.6 A is a principal ideal if p ¢ A. However if p € A then pR = A since rank A is 1. So by
Proposition 7.5 R is a UFD O

Key point. Rg is not local.
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Beyond the Course

Theorem 7.13. Let R be a commutative Noetherian integral domain. The following are equivalent:
1. Every ideal of R is a product of prime ideals
2. Ry is a PID for each mazimal ideal M
3. R is integrally closed and K dim R =1

(There are various other characterisation) Such a ring is called Dedekind Domain.

Recall that if R is a commutative integral domain, I < R, F the field of fraction, then I* = {q €
Fl¢gI CR}. Then I*I C R, I*I < R.

I is said to be invertible if I*I = R. By the dual basis lemma [ invertible is the same as Igr
projective. So we can add:

4. Every non-zero ideal of R is invertible
5. Every ideal of R is projective.

Proof. 5) = 2), Mg projective implies M Ry; projective. So M Ry is free by Theorem 5.10. Thus
M Ry, is principal, hence by Theorem 4.11 Ry, is a PID.

2) = 5). Let I < R, then IR, is principal. So for each maximal ideal M of R. So each IR/ is
Rps-projective. Hence by Proposition 5.13 Iy is projective. O

Thus a Dedekind domain is a Noetherian domain R with D(R) = 1.
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