MATH 304 Linear Algebra

Lecture 30: The Gram-Schmidt process (continued).

Orthogonal sets

Let V be a vector space with an inner product.

Definition. Nonzero vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$ form an **orthogonal set** if they are orthogonal to each other: $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = 0$ for $i \neq j$.

If, in addition, all vectors are of unit norm, $\|\mathbf{v}_i\| = 1$, then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ is called an **orthonormal set**.

Theorem Any orthogonal set is linearly independent.

Orthogonal projection

Let V be an inner product space. Let $\mathbf{x}, \mathbf{v} \in V$, $\mathbf{v} \neq \mathbf{0}$. Then $\mathbf{p} = \frac{\langle \mathbf{x}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v}$ is the

orthogonal projection of the vector **x** onto the vector **v**. That is, the remainder $\mathbf{o} = \mathbf{x} - \mathbf{p}$ is orthogonal to **v**.

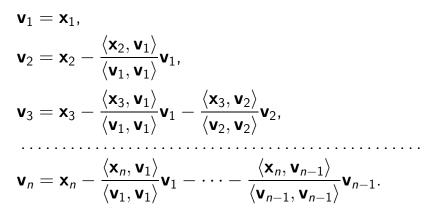
If
$$\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$$
 is an orthogonal set of vectors then

$$\mathbf{p} = \frac{\langle \mathbf{x}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{x}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 + \dots + \frac{\langle \mathbf{x}, \mathbf{v}_n \rangle}{\langle \mathbf{v}_n, \mathbf{v}_n \rangle} \mathbf{v}_n$$

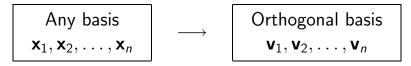
is the **orthogonal projection** of the vector **x** onto the subspace spanned by $\mathbf{v}_1, \ldots, \mathbf{v}_n$. That is, the remainder $\mathbf{o} = \mathbf{x} - \mathbf{p}$ is orthogonal to $\mathbf{v}_1, \ldots, \mathbf{v}_n$.

The Gram-Schmidt orthogonalization process

Let V be a vector space with an inner product. Suppose $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is a basis for V. Let



Then $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ is an orthogonal basis for V.



Properties of the Gram-Schmidt process:

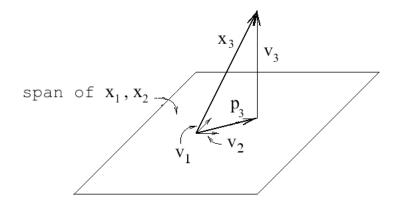
•
$$\mathbf{v}_k = \mathbf{x}_k - (\alpha_1 \mathbf{x}_1 + \dots + \alpha_{k-1} \mathbf{x}_{k-1}), \ 1 \le k \le n;$$

• the span of $\mathbf{v}_1, \ldots, \mathbf{v}_k$ is the same as the span of $\mathbf{x}_1, \ldots, \mathbf{x}_k$;

• \mathbf{v}_k is orthogonal to $\mathbf{x}_1, \ldots, \mathbf{x}_{k-1}$;

• $\mathbf{v}_k = \mathbf{x}_k - \mathbf{p}_k$, where \mathbf{p}_k is the orthogonal projection of the vector \mathbf{x}_k on the subspace spanned by $\mathbf{x}_1, \ldots, \mathbf{x}_{k-1}$;

• $\|\mathbf{v}_k\|$ is the distance from \mathbf{x}_k to the subspace spanned by $\mathbf{x}_1, \ldots, \mathbf{x}_{k-1}$.



Problem. Let Π be the plane in R³ spanned by vectors x₁ = (1,2,2) and x₂ = (-1,0,2).
(i) Find an orthonormal basis for Π.
(ii) Extend it to an orthonormal basis for R³.

 $\mathbf{x}_1, \mathbf{x}_2$ is a basis for the plane Π . We can extend it to a basis for \mathbb{R}^3 by adding one vector from the standard basis. For instance, vectors $\mathbf{x}_1, \mathbf{x}_2$, and $\mathbf{x}_3 = (0, 0, 1)$ form a basis for \mathbb{R}^3 because

$$\begin{vmatrix} 1 & 2 & 2 \\ -1 & 0 & 2 \\ 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ -1 & 0 \end{vmatrix} = 2 \neq 0$$

Using the Gram-Schmidt process, we orthogonalize the basis $\mathbf{x}_1 = (1, 2, 2)$, $\mathbf{x}_2 = (-1, 0, 2)$, $\mathbf{x}_3 = (0, 0, 1)$: $\mathbf{v}_1 = \mathbf{x}_1 = (1, 2, 2).$ $\mathbf{v}_2 = \mathbf{x}_2 - \frac{\langle \mathbf{x}_2, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 = (-1, 0, 2) - \frac{3}{9} (1, 2, 2)$ =(-4/3, -2/3, 4/3). $\mathbf{v}_3 = \mathbf{x}_3 - \frac{\langle \mathbf{x}_3, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 - \frac{\langle \mathbf{x}_3, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2$ $=(0,0,1)-\frac{2}{0}(1,2,2)-\frac{4/3}{4}(-4/3,-2/3,4/3)$ = (2/9, -2/9, 1/9).

Now $\mathbf{v}_1 = (1, 2, 2)$, $\mathbf{v}_2 = (-4/3, -2/3, 4/3)$, $\mathbf{v}_3 = (2/9, -2/9, 1/9)$ is an orthogonal basis for \mathbb{R}^3 while $\mathbf{v}_1, \mathbf{v}_2$ is an orthogonal basis for Π . It remains to normalize these vectors.

 $\mathbf{w}_1, \mathbf{w}_2$ is an orthonormal basis for Π . $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$ is an orthonormal basis for \mathbb{R}^3 . **Problem.** Find the distance from the point $\mathbf{y} = (0, 0, 0, 1)$ to the subspace $\Pi \subset \mathbb{R}^4$ spanned by vectors $\mathbf{x}_1 = (1, -1, 1, -1)$, $\mathbf{x}_2 = (1, 1, 3, -1)$, and $\mathbf{x}_3 = (-3, 7, 1, 3)$.

Let us apply the Gram-Schmidt process to vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{y}$. We should obtain an orthogonal system $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$. The desired distance will be $|\mathbf{v}_4|$.

$$egin{aligned} \mathbf{x}_1 &= (1, -1, 1, -1), \ \mathbf{x}_2 &= (1, 1, 3, -1), \ \mathbf{x}_3 &= (-3, 7, 1, 3), \ \mathbf{y} &= (0, 0, 0, 1). \end{aligned}$$

$$\begin{aligned} \mathbf{v}_1 &= \mathbf{x}_1 = (1, -1, 1, -1), \\ \mathbf{v}_2 &= \mathbf{x}_2 - \frac{\langle \mathbf{x}_2, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 = (1, 1, 3, -1) - \frac{4}{4} (1, -1, 1, -1) \\ &= (0, 2, 2, 0), \\ \mathbf{v}_3 &= \mathbf{x}_3 - \frac{\langle \mathbf{x}_3, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 - \frac{\langle \mathbf{x}_3, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 \\ &= (-3, 7, 1, 3) - \frac{-12}{4} (1, -1, 1, -1) - \frac{16}{8} (0, 2, 2, 0) \\ &= (0, 0, 0, 0). \end{aligned}$$

The Gram-Schmidt process can be used to check linear independence of vectors!

The vector \mathbf{x}_3 is a linear combination of \mathbf{x}_1 and \mathbf{x}_2 . Π is a plane, not a 3-dimensional subspace. We should orthogonalize vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{y}$.

$$\begin{aligned} \mathbf{v}_4 &= \mathbf{y} - \frac{\langle \mathbf{y}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 - \frac{\langle \mathbf{y}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 \\ &= (0, 0, 0, 1) - \frac{-1}{4} (1, -1, 1, -1) - \frac{0}{8} (0, 2, 2, 0) \\ &= (1/4, -1/4, 1/4, 3/4). \\ \mathbf{v}_4 &| = \left| \left(\frac{1}{4}, -\frac{1}{4}, \frac{1}{4}, \frac{3}{4} \right) \right| = \frac{1}{4} \left| (1, -1, 1, 3) \right| = \frac{\sqrt{12}}{4} = \frac{\sqrt{3}}{2}. \end{aligned}$$

Problem. Find the distance from the point $\mathbf{z} = (0, 0, 1, 0)$ to the plane Π that passes through the point $\mathbf{x}_0 = (1, 0, 0, 0)$ and is parallel to the vectors $\mathbf{v}_1 = (1, -1, 1, -1)$ and $\mathbf{v}_2 = (0, 2, 2, 0)$.

The plane Π is not a subspace of \mathbb{R}^4 as it does not pass through the origin. Let $\Pi_0 = \operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2)$. Then $\Pi = \Pi_0 + \mathbf{x}_0$.

Hence the distance from the point z to the plane Π is the same as the distance from the point $z - x_0$ to the plane Π_0 .

We shall apply the Gram-Schmidt process to vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{z} - \mathbf{x}_0$. This will yield an orthogonal system $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$. The desired distance will be $|\mathbf{w}_3|$.

$${f v}_1=(1,-1,1,-1)$$
, ${f v}_2=(0,2,2,0)$, ${f z}-{f x}_0=(-1,0,1,0)$.

$$\begin{split} \mathbf{w}_1 &= \mathbf{v}_1 = (1, -1, 1, -1), \\ \mathbf{w}_2 &= \mathbf{v}_2 - \frac{\langle \mathbf{v}_2, \mathbf{w}_1 \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle} \mathbf{w}_1 = \mathbf{v}_2 = (0, 2, 2, 0) \text{ as } \mathbf{v}_2 \perp \mathbf{v}_1. \\ \mathbf{w}_3 &= (\mathbf{z} - \mathbf{x}_0) - \frac{\langle \mathbf{z} - \mathbf{x}_0, \mathbf{w}_1 \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle} \mathbf{w}_1 - \frac{\langle \mathbf{z} - \mathbf{x}_0, \mathbf{w}_2 \rangle}{\langle \mathbf{w}_2, \mathbf{w}_2 \rangle} \mathbf{w}_2 \\ &= (-1, 0, 1, 0) - \frac{0}{4} (1, -1, 1, -1) - \frac{2}{8} (0, 2, 2, 0) \\ &= (-1, -1/2, 1/2, 0). \end{split}$$

$$|\mathbf{w}_3| = \left| \left(-1, -\frac{1}{2}, \frac{1}{2}, 0 \right) \right| = \frac{1}{2} \left| \left(-2, -1, 1, 0 \right) \right| = \frac{\sqrt{6}}{2} = \sqrt{\frac{3}{2}}.$$

Modifications of the Gram-Schmidt process

The first modification combines orthogonalization with normalization. Suppose $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is a basis for an inner product space V. Let

 $v_1 = x_1, \quad w_1 = \frac{v_1}{\|v_1\|},$ $\mathbf{v}_2 = \mathbf{x}_2 - \langle \mathbf{x}_2, \mathbf{w}_1
angle \mathbf{w}_1$, $\mathbf{w}_2 = rac{\mathbf{v}_2}{\|\mathbf{v}_2\|}$, $\mathbf{v}_3 = \mathbf{x}_3 - \langle \mathbf{x}_3, \mathbf{w}_1
angle \mathbf{w}_1 - \langle \mathbf{x}_3, \mathbf{w}_2
angle \mathbf{w}_2$, $\mathbf{w}_3 = rac{\mathbf{v}_3}{\|\mathbf{v}_3\|}$, $\mathbf{v}_n = \mathbf{x}_n - \langle \mathbf{x}_n, \mathbf{w}_1 \rangle \mathbf{w}_1 - \cdots - \langle \mathbf{x}_n, \mathbf{w}_{n-1} \rangle \mathbf{w}_{n-1},$ $\mathbf{w}_n = \frac{\mathbf{v}_n}{\|\mathbf{v}_n\|}.$ Then $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_n$ is an orthonormal basis for V.

Modifications of the Gram-Schmidt process

Another modification is a recursive process which is more stable to roundoff errors than the original process. Suppose $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ is a basis for an inner product space V. Let

$$\mathbf{w}_{1} = \frac{\mathbf{x}_{1}}{\|\mathbf{x}_{1}\|},$$
$$\mathbf{v}_{2} = \mathbf{x}_{2} - \langle \mathbf{x}_{2}, \mathbf{w}_{1} \rangle \mathbf{w}_{1},$$
$$\mathbf{v}_{3} = \mathbf{x}_{3} - \langle \mathbf{x}_{3}, \mathbf{w}_{1} \rangle \mathbf{w}_{1},$$
$$\dots$$
$$\mathbf{v}_{n} = \mathbf{x}_{n} - \langle \mathbf{x}_{n}, \mathbf{w}_{1} \rangle \mathbf{w}_{1}.$$

Then $\mathbf{w}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is a basis for V, $\|\mathbf{w}_1\| = 1$, and \mathbf{w}_1 is orthogonal to $\mathbf{v}_2, \dots, \mathbf{v}_n$. Now repeat the process with vectors $\mathbf{v}_2, \dots, \mathbf{v}_n$, and so on.