
Inner Product Spaces and Orthogonality

week 13-14 Fall 2006

1 Dot product of Rn

The inner product or dot product of Rn is a function 〈 , 〉 defined by

〈u,v〉 = a1b1 + a2b2 + · · ·+ anbn for u = [a1, a2, . . . , an]T , v = [b1, b2, . . . , bn]T ∈ Rn.

The inner product 〈 , 〉 satisfies the following properties:

(1) Linearity: 〈au + bv,w〉 = a〈u,w〉+ b〈v,w〉.
(2) Symmetric Property: 〈u,v〉 = 〈v,u〉.
(3) Positive Definite Property: For any u ∈ V , 〈u,u〉 ≥ 0; and 〈u,u〉 = 0 if and only if u = 0.

With the dot product we have geometric concepts such as the length of a vector, the angle between two
vectors, orthogonality, etc. We shall push these concepts to abstract vector spaces so that geometric concepts
can be applied to describe abstract vectors.

2 Inner product spaces

Definition 2.1. An inner product of a real vector space V is an assignment that for any two vectors
u, v ∈ V , there is a real number 〈u,v〉, satisfying the following properties:

(1) Linearity: 〈au + bv,w〉 = a〈u,w〉+ b〈v,w〉.
(2) Symmetric Property: 〈u,v〉 = 〈v,u〉.
(3) Positive Definite Property: For any u ∈ V , 〈u,u〉 ≥ 0; and 〈u,u〉 = 0 if and only if u = 0.

The vector space V with an inner product is called a (real) inner product space.

Example 2.1. For x =
[

x1
x2

]
, y =

[
y1
y2

]
∈ R2, define

〈x,y〉 = 2x1y1 − x1y2 − x2y1 + 5x2y2.

Then 〈 , 〉 is an inner product on R2. It is easy to see the linearity and the symmetric property. As for the
positive definite property, note that

〈x,x〉 = 2x2
1 − 2x1x2 + 5x2

2

= (x1 + x2)2 + (x1 − 2x2)2 ≥ 0.

Moreover, 〈x,x〉 = 0 if and only if
x + x2 = 0, x1 − 2x2 = 0,

which implies x1 = x2 = 0, i.e., x = 0. This inner product on R2 is different from the dot product of R2.
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For each vector u ∈ V , the norm (also called the length) of u is defined as the number

‖u‖ :=
√
〈u,u〉.

If ‖u‖ = 1, we call u a unit vector and u is said to be normalized. For any nonzero vector v ∈ V , we
have the unit vector

v̂ =
1
‖v‖v.

This process is called normalizing v.
Let B =

{
u1,u2, . . . ,un

}
be a basis of an n-dimensional inner product space V . For vectors u,v ∈ V ,

write
u = x1u1 + x2u2 + · · ·+ xnun,

v = y1u1 + y2u2 + · · ·+ ynun.

The linearity implies

〈u,v〉 =

〈
n∑

i=1

xiui,
n∑

j=1

yjuj

〉

=
n∑

i=1

n∑

j=1

xiyj〈ui,uj〉.

We call the n× n matrix

A =




〈u1,u1〉 〈u1,u2〉 · · · 〈u1,un〉
〈u2,u1〉 〈u2,u2〉 · · · 〈u2,un〉

...
...

. . .
...

〈un,u1〉 〈un,u2〉 · · · 〈un,un〉




the matrix of the inner product 〈 , 〉 relative to the basis B. Thus, using coordinate vectors

[u]B = [x1, x2, . . . , xn]T , [v]B = [y1, y2, . . . , yn]T ,

we have
〈u,v〉 = [u]TBA[v]B.

3 Examples of inner product spaces

Example 3.1. The vector space Rn with the dot product

u · v = a1b1 + a2b2 + · · ·+ anbn,

where u = [a1, a2, . . . , an]T , v = [b1, b2, . . . , bn]T ∈ Rn, is an inner product space. The vector space Rn with
this special inner product (dot product) is called the Euclidean n-space, and the dot product is called the
standard inner product on Rn.

Example 3.2. The vector space C[a, b] of all real-valued continuous functions on a closed interval [a, b] is
an inner product space, whose inner product is defined by

〈
f, g

〉
=

∫ b

a

f(t)g(t)dt, f, g ∈ C[a, b].

Example 3.3. The vector space Mm,n of all m× n real matrices can be made into an inner product space
under the inner product

〈A,B〉 = tr(BT A),

where A,B ∈ Mm,n.
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For instance, when m = 3, n = 2, and for

A =




a11 a12

a21 a22

a31 a32


 , B =




b11 b12

b21 b22

b31 b32


 ,

we have

BT A =
[

b11a11 + b21a21 + b31a31 b11a12 + b21a22 + b31a32

b12a11 + b22a21 + b32a31 b12a12 + b22a22 + b32a32

]
.

Thus

〈A,B〉 = b11a11 + b21a21 + b31a31

+b12a12 + b22a22 + b32a32

=
3∑

i=1

3∑

j=1

aijbij .

This means that the inner product space
(
M3,2, 〈, 〉

)
is isomorphic to the Euclidean space

(
R3×2, ·).

4 Representation of inner product

Theorem 4.1. Let V be an n-dimensional vector space with an inner product 〈, 〉, and let A be the matrix
of 〈, 〉 relative to a basis B. Then for any vectors u,v ∈ V ,

〈u,v〉 = xT Ay.

where x and y are the coordinate vectors of u and v, respectively, i.e., x = [u]B and y = [v]B.

Example 4.1. For the inner product of R3 defined by

〈x,y〉 = 2x1y1 − x1y2 − x2y1 + 5x2y2,

where x =
[

x1
x2

]
,y =

[
y1
y2

] ∈ R2, its matrix relative to the standard basis E =
{
e1, e2

}
is

A =
[ 〈e1, e1〉 〈e1, e2〉
〈e2, e1〉 〈e2, e2〉

]
=

[
2 −1

−1 5

]
.

The inner product can be written as

〈x,y〉 = xT Ay = [x1, x2]
[

2 −1
−1 5

] [
y1

y2

]
.

We may change variables so the the inner product takes a simple form. For instance, let
{

x1 = (2/3)x′1 + (1/3)x′2
x2 = (1/3)x′1 − (1/3)x′2

,

{
y1 = (2/3)y′1 + (1/3)y′2
y2 = (1/3)y′1 − (1/3)y′2

.

We have

〈x,y〉 = 2
(

2
3
x′1 +

1
3
x′2

)(
2
3
y′1 +

1
3
y′2

)

−
(

2
3
x′1 +

1
3
x′2

)(
1
3
y′1 −

1
3
y′2

)

−
(

1
3
x′1 −

1
3
x′2

)(
1
3
y′1 −

1
3
y′2

)

+5
(

1
3
x′1 −

1
3
x′2

)(
1
3
y′1 −

1
3
y′2

)

= x′1y
′
1 + x′2y

′
2 = x′T y′.
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This is equivalent to choosing a new basis so that the matrix of the inner product relative to the new basis
is the identity matrix.

In fact, the matrix of the inner product relative to the basis

B =
{

u1 =
[

2/3
1/3

]
,u2 =

[
1/3

−1/3

]}

is the identity matrix, i.e., [ 〈u1,u1〉 〈u2,u1〉
〈u1,u2〉 〈u2,u2〉

]
=

[
1 0
0 1

]

Let P be the transition matrix from the standard basis {e1, e2} to the basis {u1,u2}, i.e.,

[u1,u2] = [e1, e2]P = [e1, e2]
[

2/3 1/3
1/3 −1/3

]
.

Let x′ be the coordinate vector of the vector x relative the basis B. (The coordinate vector of x relative to
the standard basis is itself x.) Then

x = [e1, e2]x = [u1,u2]x′ = [e1, e2]Px′.

It follows that
x = Px′.

Similarly, let y′ be the coordinate vector of y relative to B. Then

y = Py′.

Note that xT = x′T PT . Thus, on the one hand by Theorem,

〈x,y〉 = x′T Iny′ = x′T y′.

On the other hand,
〈x,y〉 = xT Ay = x′T PT APy′.

Theorem 4.2. Let V be a finite-dimensional inner product space. Let A,B be matrices of the inner product
relative to bases B,B′ of V , respectively. If P is the transition matrix from B to B′. Then

B = PT AP.

5 Cauchy-Schwarz inequality

Theorem 5.1 (Cauchy-Schwarz Inequality). For any vectors u,v in an inner product space V ,

〈u,v〉2 ≤ 〈u,u〉〈v,v〉.
Equivalently, ∣∣〈u,v〉∣∣ ≤ ‖u‖ ‖v‖.
Proof. Consider the function

y = y(t) := 〈u + tv,u + tv〉, t ∈ R.

Then y(t) ≥ 0 by the third property of inner product. Note that y(t) is a quadratic function of t. In fact,

y(t) = 〈u,u + tv〉+ 〈tv,u + tv〉
= 〈u,u〉+ 2〈u,v〉t + 〈v,v〉t2.

Thus the quadratic equation
〈u,u〉+ 2〈u,v〉t + 〈v,v〉t2 = 0

has at most one solution as y(t) ≥ 0. This implies that its discriminant must be less or equal to zero, i.e.,
(
2〈u,v〉)2 − 4〈u,u〉〈v,v〉 ≤ 0.

The Cauchy-Schwarz inequality follows.
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Theorem 5.2. The norm in an inner product space V satisfies the following properties:

(N1) ‖v‖ ≥ 0; and ‖v‖ = 0 if and only if v = 0.

(N2) ‖cv‖ = |c| ‖v‖.
(N3) ‖u + v‖ ≤ ‖u‖+ ‖v‖.
For nonzero vectors u,v ∈ V , the Cauchy-Schwarz inequality implies

−1 ≤ 〈u,v〉
‖u‖ ‖v‖ ≤ 1.

The angle θ between u and v is defined by

cos θ =
〈u,v〉
‖u‖ ‖v‖ .

The angle exists and is unique.

6 Orthogonality

Let V be an inner product space. Two vectors u,v ∈ V are said to be orthogonal if

〈u,v〉 = 0.

Example 6.1. For inner product space C[−π, π], the functions sin t and cos t are orthogonal as

〈sin t, cos t〉 =
∫ π

−π

sin t cos t dt

=
1
2

sin2 t
∣∣∣
π

−π
= 0− 0 = 0.

Example 6.2. Let u = [a1, a2, . . . , an]T ∈ Rn. The set of all vector of the Euclidean n-space Rn that are
orthogonal to u is a subspace of Rn. In fact, it is the solution space of the single linear equation

〈u,x〉 = a1x1 + a2x2 + · · ·+ anxn = 0.

Example 6.3. Let u = [1, 2, 3, 4, 5]T , v = [2, 3, 4, 5, 6]T , and w = [1, 2, 3, 3, 2]T ∈ R5. The set of all vectors
of R5 that are orthogonal to u,v,w is a subspace of R5. In fact, it is the solution space of the linear system





x1 + 2x2 + 3x3 + 4x4 + 5x5 = 0
2x1 + 3x2 + 4x3 + 5x4 + 6x5 = 0
x1 + 2x2 + 3x3 + 3x4 + 2x5 = 0

Let S be a nonempty subset of an inner product space V . We denote by S⊥ the set of all vectors of V
that are orthogonal to every vector of S, called the orthogonal complement of S in V . In notation,

S⊥ :=
{

v ∈ V
∣∣ 〈v,u〉 = 0 for all u ∈ S

}
.

If S contains only one vector u, we write

u⊥ =
{

v ∈ V
∣∣ 〈v,u〉 = 0

}
.

Proposition 6.1. Let S be a nonempty subset of an inner product space V . Then the orthogonal complement
S⊥ is a subspace of V .
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Proof. To show that S⊥ is a subspace. We need to show that S⊥ is closed under addition and scalar
multiplication. Let u,v ∈ S⊥ and c ∈ R. Since 〈u,w〉 = 0 and 〈v,w〉 = 0 for all w ∈ S, then

〈u + v,w〉 = 〈u,w〉+ 〈v,w〉 = 0,

〈cu,w〉 = c〈u,w〉 = 0

for all w ∈ S. So u + v, cu ∈ S⊥. Hence S⊥ is a subspace of Rn.

Proposition 6.2. Let S be a subset of an inner product space V . Then every vector of S⊥ is orthogonal to
every vector of Span (S), i.e.,

〈u,v〉 = 0, for all u ∈ Span (S), v ∈ S⊥.

Proof. For any u ∈ Span (S), the vector u must be a linear combination of some vectors in S, say,

u = a1u1 + a2u2 + · · ·+ akuk.

Then for any v ∈ S⊥,
〈u,v〉 = a1〈u1,v〉+ a2〈u2,v〉+ · · ·+ an〈un,v〉 = 0.

Example 6.4. Let A be an m×n real matrix. Then NulA and Row A are orthogonal complements of each
other in Rn, i.e.,

NulA =
(
Row A

)⊥
,

(
NulA

)⊥ = Row A.

7 Orthogonal sets and bases

Let V be an inner product space. A subset S =
{
u1,u2, . . . ,uk

}
of nonzero vectors of V is called an

orthogonal set if every pair of vectors are orthogonal, i.e.,

〈ui,uj〉 = 0, 1 ≤ i < j ≤ k.

An orthogonal set S =
{
u1,u2, . . . ,uk

}
is called an orthonormal set if we further have

‖ui‖ = 1, 1 ≤ i ≤ k.

An orthonormal basis of V is a basis which is also an orthonormal set.

Theorem 7.1 (Pythagoras). Let v1,v2, . . . ,vk be mutually orthogonal vectors. Then

‖v1 + v2 + · · ·+ vk‖2 = ‖v1‖2 + ‖v2‖2 + · · ·+ ‖vk‖2.

Proof. For simplicity, we assume k = 2. If u and v are orthogonal, i.e., 〈u,v〉 = 0, then

‖u + v‖2 = 〈u + v,u + v〉
= 〈u,u〉+ 〈v,v〉
= ‖u‖2 + ‖v‖2.

Example 7.1. The three vectors

v1 = [1, 2, 1]T , v2 = [2, 1,−4]T , v3 = [3,−2, 1]T

are mutually orthogonal. Express the the vector v = [7, 1, 9]T as a linear combination of v1,v2,v3.
Set

x1v1 + x2v2 + x3v3 = v.
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There are two ways to find x1, x2, x3.
Method 1: Solving the linear system by performing row operations to its augmented matrix

[
v1,v2,v3 | v

]
,

we obtain x1 = 3, x2 = −1, x3 = 2. So v = 3v1 − v2 + 2v3.
Method 2: Since vi ⊥ vj for i 6= j, we have

〈v,vi〉 = 〈x1v1 + x2v2 + x3v3,vi〉 = xi〈vi,vi〉,

where i = 1, 2, 3. Then

xi =
〈v,vi〉
〈vi,vi〉 , i = 1, 2, 3.

We then have

x1 =
7 + 2 + 9
1 + 4 + 1

=
18
6

= 3,

x2 =
14 + 1− 36
4 + 1 + 16

=
−21
21

= −1,

x3 =
21− 2 + 9
9 + 4 + 1

=
28
14

= 2.

Theorem 7.2. Let v1,v2, . . . ,vk be an orthogonal basis of a subspace W . Then for any w ∈ W ,

w =
〈v1,w〉
〈v1,v1〉v1 +

〈v2,w〉
〈v2,v2〉v2 + · · ·+ 〈vk,w〉

〈vk,vk〉vk.

Proof. Trivial.

8 Orthogonal projection

Let V be an inner product space. Let v be a nonzero vector of V . We want to decompose an arbitrary
vector y into the form

y = αv + z, where z ∈ v⊥.

Since z ⊥ v, we have
〈v,y〉 = 〈αv,v〉 = α〈v,v〉.

This implies that

α =
〈v,y〉
〈v,v〉 .

We define the vector

Projv(y) =
〈v,y〉
〈v,v〉v,

called the orthogonal projection of y along v. The linear transformation Proju : V → V is called the
orthogonal projection of V onto the direction v.

Proposition 8.1. Let v be a nonzero vector of the Euclidean n-space Rn. Then the orthogonal projection
Proju : Rn → Rn is given by

Projv(y) =
1

v · vvvT y;

and the orthogonal projection Projv⊥ : Rn → Rn is given by

Projv⊥(y) =
(

I − 1
v · vvvT

)
y.
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Write the vector v as v = [a1, a2, . . . , an]T . The for any scalar c,

cv =




ca1

ca2

...
can


 =




a1c
a2c
...

anc


 = v[c],

where [c] is the 1× 1 matrix with the only entry c. Note that

[v · y] = vT y.

Then the orthogonal projection Projv can be written as

Projv(y) =
(

1
v · v

)
(v · y)v

=
(

1
v · v

)
v[v · y]

=
(

1
v · v

)
vvT y.

This means that the standard matrix of Projv is
(

1
v · v

)
vvT .

Indeed, v is an n× 1 matrix and vT is a 1× n matrix, the product vvT is an n× n matrix.
The orthogonal projection Projv⊥ : Rn → Rn is given by

Projv⊥(y) = y − Projv(y) =
(

I − 1
v · vvvT

)
y.

This means that the standard matrix of Projv⊥ is

I −
(

1
v · v

)
vvT .

Example 8.1. Find the linear mapping from R3 to R3 that is a the orthogonal projection of R3 ont the
plane x1 + x2 + x3 = 0.

To find the orthogonal projection of R3 onto the subspace v⊥, where v = [1, 1, 1]T , we find the following
orthogonal projection

Projv(y) =
(v · y

v · v
)

v =
y1 + y2 + y3

3




1
1
1




=
1
3




1 1 1
1 1 1
1 1 1







y1

y2

y3


 .

Then the orthogonal projection of y onto v⊥ is given by

Projv⊥y = y − Projv(y) =
(

I − 1
v · vvvT

)
y

=
1
3




2 −1 −1
−1 2 −1
−1 −1 2







y1

y2

y3


 .
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Let W be a subspace of V , and let v1,v2, . . . ,vk be an orthogonal basis of W . We want to decompose
an arbitrary vector y ∈ V into the form

y = w + z

with w ∈ W and z ∈ W⊥. Then there exist scalars α1, α2, . . . , αk such that

ŷ = α1v1 + α2v2 + · · ·+ αkvk.

Since z ⊥ v1, z ⊥ v2, . . ., z ⊥ vk, we have

〈vi,y〉 = 〈vi, α1v1 + · · ·+ αrvk + z〉 = αi〈vi,vi〉.
Then

αi =
〈vi,y〉
〈vi,vi〉 , 1 ≤ i ≤ k.

We thus define

ProjW (y) =
〈v1,y〉
〈v1,v1〉v1 +

〈v2,y〉
〈v2,v2〉v2 + · · ·+ 〈vk,y〉

〈vk,vk〉vk,

called the orthogonal projection of v along W . The linear transformation

ProjW : V → V

is called the orthogonal projection of V onto W .

Theorem 8.2. Let V be an n-dimensional inner product space. Let W be a subspace with an orthogonal
basis B =

{
v1,v2, . . . ,vk

}
. Then for any v ∈ V ,

ProjW (y) =
〈v1,y〉
〈v1,v1〉v1 +

〈v2,y〉
〈v2,v2〉v2 + · · ·+ 〈vk,y〉

〈vk,vk〉vk,

ProjW⊥(y) = y − ProjW (y).

In particular, if B is an orthonormal basis of W , then

ProjW (y) = 〈v1,y〉v1 + 〈v2,y〉v2 + · · ·+ 〈vk,y〉vk.

Proposition 8.3. Let W be a subspace of Rn. Let U =
[
u1,u2, . . . ,uk

]
be an n× k matrix, whose columns

form an orthonormal basis of W . Then the orthogonal projection ProjW : Rn → Rn is given by

ProjW (y) = UUT y.

Proof. For any y ∈ Rn, we have

ProjW (y) = (u1 · y)u1 + (u2 · y)u2 + · · ·+ (uk · y)uk.

Note that

UT y =




uT
1

uT
2
...

uT
k


y =




uT
1 y

uT
2 y
...

uT
k y


 =




u1 · y
u2 · y

...
uk · y


 .

Then

UUT y =
[
u1,u2, . . . ,uk

]



u1 · y
u2 · y

...
uk · y




= ProjW (y).
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Example 8.2. Find the orthogonal projection

ProjW : R3 → R3,

where W is the plane x1 + x2 + x3 = 0.

By inspection, the following two vectors

v1 =




1
−1

0


 and v2 =




1
1

−2




form an orthogonal basis of W . Then

ProjW (y) =
(

v1 · y
v1 · v1

)
v1 +

(
v2 · y
v2 · v2

)
v2

=
y1 − y2

2




1
−1

0




+
y1 + y2 − 2y3

6




1
1

−2




=
1
3




2 −1 −1
−1 2 −1
−1 −1 2







y1

y2

y3


 .

Example 8.3. Find the matrix of the orthogonal projection

ProjW : R3 → R3,

where

W = Span








1
1
1


 ,




1
−1

0






 .

The following two vectors

u1 =




1/
√

3
1/
√

3
1/
√

3


 , u2 =




1/
√

2
−1/

√
2
0




form an orthonormal basis of W . Then the standard matrix of ProjW is the product



1/
√

3 1/
√

2
1/
√

3 −1/
√

2
1/
√

3 0




[
1/
√

3 1/
√

3 1/
√

3
1/
√

2 −1/
√

2 0

]
,

which results the matrix 


5/6 −1/6 1/3
−1/6 5/6 1/3

1/3 1/3 1/3


 .

Alternatively, the matrix can be found by computing the orthogonal projection:

ProjW (y) =
y1 + y2 + y3

3




1
1
1


 +

y1 − y2

2




1
−1

0




=
1
6




5y1 − y2 + 2y3

−y1 + 5y2 + 2y3

2y1 + 2y2 + 2y3




=




5/6 −1/6 1/3
−1/6 5/6 1/3

1/3 1/3 1/3







y1

y2

y3


 .
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9 Gram-Schmidt process

Let W be a subspace of an inner product space V . Let B =
{
v1,v2, . . . ,vk

}
be a basis of W , not necessarily

orthogonal. An orthogonal basis B′ =
{
w1,w2, . . . ,wk

}
may be constructed from B as follows:

w1 = v1, W1 = Span
{
w1

}
,

w2 = v2 − ProjW1
(v2), W2 = Span {w1,w2},

w3 = v3 − ProjW2
(v3), W3 = Span {w1,w2,w3},

...
wk−1 = vk−1 − ProjWk−1

(vk−1), Wk−1 = Span {w1, . . . ,wk−1},
wk = vk − ProjWk−1

(vk).

More precisely,

w1 = v1,

w2 = v2 − 〈w1,v2〉
〈w1,w1〉w1,

w3 = v3 − 〈w1,v3〉
〈w1,w1〉w1 − 〈w2,v3〉

〈w2,w2〉w2,

...

wk = vk − 〈w1,vk〉
〈w1,w1〉w1 − 〈w2,vk〉

〈w2,w2〉w2 − · · · − 〈wk−1,vk〉
〈wk−1,wk−1〉wk−1.

The method of constructing the orthogonal vector w1,w2, . . . ,wk is known as the Gram-Schmidt process.
Clearly, the vector w1,w2, . . . ,wk are linear combinations of v1,v2, . . . ,vk. Conversely, the vectors

v1,v2, . . . ,vk are also linear combinations of w1,w2, . . . ,wk:

v1 = w1,

v2 =
〈w1,v2〉
〈w1,w1〉w1 + w2,

v3 =
〈w1,v3〉
〈w1,w1〉w1 +

〈w2,v3〉
〈w2,w2〉w2 + w3,

...

vk =
〈w1,vk〉
〈w1,w1〉w1 +

〈w2,vk〉
〈w2,w2〉w2 + · · ·+ 〈wk−1,vk〉

〈wk−1,wk−1〉wk−1 + wk.

Hence
Span

{
v1,v2, . . . ,vk

}
= Span

{
w1,w2, . . . ,wk

}
.

Since B = {v1,v2, . . . ,vk

}
is a basis for W , so is the set B′ =

{
w1,w2, . . . ,wk

}
.

Theorem 9.1. The basis
{
w1,w2, . . . ,wk

}
constructed by the Gram-Schmidt process is an orthogonal basis

of W . Moreover,
[
v1,v2,v3, . . . ,vk

]
=

[
w1,w2,w3, . . . ,wk

]
R,

where R is the k × k upper triangular matrix



1 〈w1,v2〉
〈w1,w1〉

〈w1,v3〉
〈w1,w1〉 · · · 〈w1,vk〉

〈w1,w1〉

0 1 〈w2,v3〉
〈w2,w2〉 · · · 〈w2,vk〉

〈w2,w2〉

0 0 1 · · · 〈w3,vk〉
〈w3,w3〉

...
...

...
. . .

...

0 0 0 · · · 1




.
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Example 9.1. Let W be the subspace of R4 spanned by

v1 =




1
1
1
1


 , v2 =




1
1
1
0


 , v2 =




1
1
0
0


 .

Construct an orthogonal basis for W .

Set w1 = v1. Let W1 = Span {w1}. To find a vector w2 in W that is orthogonal to W1, set

w2 = v2 − ProjW1
v2 = v2 − 〈w1,v2〉

〈w1,w1〉w1

=




1
1
1
0


−

3
4




1
1
1
1


 =

1
4




1
1
1

−3


 .

Let W2 = Span {w1,w2}. To find a vector w3 in W that is orthogonal to W2, set

w3 = v3 − ProjW2
v3

= v3 − 〈w1,v3〉
〈w1,w1〉w1 − 〈w2,v3〉

〈w2,w2〉w2

=




1
1
0
0


−

1
2




1
1
1
1


−

2
4
12
16

· 1
4




1
1
1

−3




=




1/3
1/3
−2/3

0


 .

Then the set {w1,w2,w3} is an orthogonal basis for W .

Theorem 9.2. Any m× n real matrix A can be written as

A = QR,

called a QR-decomposition, where Q is an m × n matrix whose columns are mutually orthogonal, and R
is an n× n upper triangular matrix whose diagonal entries are 1.

Example 9.2. Find a QR-decomposition of the matrix

A =




1 1 2 0
0 1 1 1
1 0 1 1


 .

Let v1,v2,v3,v4 be the column vectors of A. Set

w1 = v1 =




1
0
1


 .
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Then v1 = w1. Set

w2 = v2 − 〈w1,v2〉
〈w1,w1〉w1

=




1
1
0


− 1

2




1
0
1


 =




1/2
1

−1/2


 .

Then v2 = (1/2)w1 + w2. Set

w3 = v3 − 〈w1,v3〉
〈w1,w1〉w1 − 〈w2,v3〉

〈w2,w2〉w2

=




2
1
1


− 3

2




1
0
1


−




1/2
1

−1/2


 = 0.

Then v3 = (3/2)w1 + w2 + w3. Set

w4 = v4 − 〈w1,v4〉
〈w1,w1〉w1 − 〈w2,v4〉

〈w2,w2〉w2

=




0
1
1


− 1

2




1
0
1


− 1

3




1/2
1

−1/2




=



−2/3

2/3
2/3


 .

Then v4 = (1/2)w1 + (1/3)w2 + w4. Thus matrixes Q and R for QR-decomposition of A are as follows:

Q =




1 1/2 0 −2/3
0 1 0 2/3
1 −1/2 0 2/3


 ,

R =




1 1/2 3/2 1/2
0 1 1 1/3
0 0 1 0
0 0 0 1


 .

10 Orthogonal matrix

Let V be an n-dimensional inner product space. A linear transformation T : V → V is called an isometry
if for any v ∈ V ,

‖T (v)‖ = ‖v‖.
Example 10.1. For the Euclidean n-space Rn with the dot product, rotations and reflections are isometries.

Theorem 10.1. A linear transformation T : V → V is an isometry if and only if T preserving inner
product, i.e., for u,v ∈ V ,

〈T (u), T (v)〉 = 〈u,v〉.
Proof. Note that for vectors u,v ∈ V ,

‖T (u + v)‖2 = 〈T (u + v), T (u + v)〉 = 〈T (u), T (u)〉+ 〈T (v), T (v)〉+ 2〈T (u), T (v)〉
= ‖T (u)‖2 + ‖T (v)‖2 + 2〈T (u), T (v)〉,

‖u + v‖2 = 〈u + v,u + v〉 = 〈u,u〉+ 〈v,v〉+ 2〈u,v〉 = ‖u‖2 + ‖v‖2 + 2〈u,v〉.
It is clear that the length preserving is equivalent to the inner product preserving.
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An n× n matrix Q is called orthogonal if QQT = I, i.e.,

Q−1 = QT .

Theorem 10.2. Let Q be an n× n matrix. The following are equivalent.

(a) Q is orthogonal.

(b) QT is orthogonal.

(c) The column vectors of Q are orthonormal.

(d) The row vectors of Q are orthonormal.

Proof. “(a) ⇔ (b)”: If QQT = I, then Q−1 = QT . So QT (QT )T QT Q = I. This means that QT is orthogonal.
“(a) ⇔ (c)”: Let Q = [u1,u2, . . . ,un]. Note that

QT Q =




uT
1

uT
2
...

uT
n


 [u1,u2, . . . ,un] =




uT
1 u1 uT

1 u2 · · · uT
1 un

uT
2 u1 uT

2 u2 · · · uT
2 un

...
...

. . .
...

uT
nu1 uT

nu2 · · · uT
nun


 .

Thus QT Q = I is equivalent to uT
i uj = 1 for i = j and uT

i uj = 0 for i 6= j. This means that Q is orthogonal
if and only if {u1,u2, . . . ,un} is an orthonormal basis of V .

Theorem 10.3. Let V be an n-dimensional inner product space with an orthonormal basis B =
{
u1,u2, . . . ,un

}
.

Let P be an n× n real matrix, and
[
v1,v2, . . . ,vn

]
=

[
u1,u2, . . . ,un

]
P.

Then B′ =
{
v1,v2, . . . ,vn

}
is an orthonormal basis if and only if P is an orthogonal matrix.

Proof. For simplicity, we assume n = 3. Since
[
v1,v2,v3

]
=

[
u1,u2,u3

]
P, i.e.,

v1 = p11u1 + p21u2 + p31u3,

v2 = p12u1 + p22u2 + p32u3,

v3 = p13u1 + p23u2 + p33u3.

We then have

〈vi,vj〉 = 〈p1iu1 + p2iu2 + p3iu3, p1ju1 + p2ju2 + p3ju3〉
= p1ip1j + p2ip2j + p3ip3j .

Note that B′ is an orthonormal basis is equivalent to

〈vi,vj〉 = δij ,

and P is an orthogonal matrix if and only if

p1ip1j + p2ip2j + p3ip3j = δij .

The proof is finished.

Theorem 10.4. Let V be an n-dimensional inner product space with an orthonormal basis B =
{
u1,u2, . . . ,un

}
.

Let T : V → V be a linear transformation. Then T is an isometry if and only if the matrix of T relative to
B is an orthogonal matrix.
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Proof. Let A be the matrix of T relative to the basis B. Then

[T (u1), T (u2), . . . , T (un)] = [u1,u2, . . . ,un]A.

Note that T is an isometry if and only if {T (u1), T (u2), . . . , T (un)} is an orthonormal basis of V , and that
{T (u1), T (u2), . . . , T (un)} is an orthonormal basis if and only the transition matrix A is an orthogonal
matrix.

Example 10.2. The matrix A =




1 −1 1
1 1 1
1 0 −2


 is not an orthogonal matrix. The set

B =








1
1
1


 ,



−1

1
0


 ,




1
1

−2








of the column vectors of A is an orthogonal basis of R3. However, the set of the row vectors of A is not an
orthogonal set.

The matrix

U =




1/
√

3 −1/
√

2 1/
√

6
1/
√

3 1/
√

2 1/
√

6
1/
√

3 0 −2/
√

6




is an orthogonal matrix. For the vector v = [3, 0, 4]T , we have

Uv =




1/
√

3 −1/
√

2 1/
√

6
1/
√

3 1/
√

2 1/
√

6
1/
√

3 0 −2/
√

6







3
0
4


 =



√

3 + 4/
√

6√
3 + 4/

√
6√

3− 8/
√

6


 .

The length of v is
‖v‖ =

√
32 + 02 + 42 =

√
25 = 5

and the length of Uv is

‖Uv‖ =

√
2
(√

3 + 4/
√

6
)2

+
(√

3− 8/
√

6
)2

= 5.

11 Diagonalizing real symmetric matrices

Let V be an n-dimensional real inner product space. A linear mapping T : V → V is said to be symmetric
if

〈T (u),v〉 = 〈u, T (v)〉 for all u,v ∈ V.

Example 11.1. Let A be a real symmetric n×n matrix. Let T : Rn → Rn be defined by T (x) = Ax. Then
T is symmetric for the Euclidean n-space. In fact, for u,v ∈ Rn, we have

T (u) · v = (Au) · v = (Au)T v = uT AT v

= uT Av = u ·Av = u · T (v).

Proposition 11.1. Let V be an n-dimensional real inner product space with an orthonormal basis B =
{u1, u2, . . . , un}. Let T : V → V be a linear mapping whose matrix relative to B is A. Then T is symmetric
if and only the matrix A is symmetric.

Proof. Note that

[
T (u1), T (u2), . . . , T (un)

]
=

[
u1,u2, . . . ,un

]



a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann


 .
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Alternatively,

T (uj) =
n∑

i=1

aijui, 1 ≤ j ≤ n.

If T is symmetric, then
aij = 〈ui, T (uj)〉 = 〈T (ui),uj〉 = aji.

So A is symmetric.
Conversely, if A is symmetric, then for vectors u =

∑n
i=1 aiui, v =

∑n
i=1 biui, we have

〈T (u),v〉 =
n∑

i,j=1

aibj〈T (ui),uj〉 =
n∑

i,j=1

aibjaji

=
n∑

i,j=1

aibjaij =
n∑

i,j=1

aibj〈ui, T (uj)〉

= 〈u, T (v)〉.
So T is symmetric.

Theorem 11.2. The roots of characteristic polynomial of a real symmetric matrix A are all real numbers.

Proof. Let λ be a (possible complex) root of the characteristic polynomial of A, and let v be a (possible
complex) eigenvector for the eigenvalue λ. Then

Av = λv.

Note that

λ‖v‖2 = λv · v̄ = (Av) · v̄ = (Av)T v̄ = vT AT v̄

= vT Av̄ = vT Āv̄ = vT Av = vT λv

= vT (λ̄v̄) = λ̄vT v̄ = λ̄v · v̄ = λ̄‖v‖2.
Thus

(λ− λ̄)‖v‖2 = 0.

Since ‖v‖ 6= 0, it follows that λ = λ̄. So λ is a real number.

Theorem 11.3. Let λ and µ be distinct eigenvalues of a symmetric linear transformation T : V → V . Then
eigenvectors for λ are orthogonal to eigenvectors for µ.

Proof. Let u be an eigenvector for λ, and let v be an eigenvectors for µ, i.e., T (u) = λu, T (v) = µv. Then

λ〈u,v〉 = 〈λu,v〉 = 〈T (u),v〉
= 〈u, T (v)〉 = 〈u, µv〉 = µ〈u,v〉.

Thus
(λ− µ)〈u,v〉 = 0.

Since λ− µ 6= 0, it follows that 〈u,v〉 = 0.

Theorem 11.4. Let V be an n-dimensional real inner product space. Let T : V → V be a symmetric linear
mapping. Then V has an orthonormal basis of eigenvectors of T .

Proof. We proceed by induction on n. For n = 1, it is obviously true. Let λ1 be an eigenvalue of T , and let
u1 be a unit eigenvector of T for the eigenvalue λ1. Let W := u⊥1 . For any w ∈ W ,

〈T (w),u1〉 = 〈w, T (u1)〉 = 〈w, λ1u1〉
= λ1〈w,u1〉 = 0.

This means that T (w) ∈ W . Thus the restriction T |W : W → W is a symmetric linear transformation.
Since dimW = n − 1, by induction hypothesis, W has an orthonormal basis {u2, . . . ,un} of eigenvectors
of T |W . Clearly, B = {u1,u2, . . . ,un} is an orthonormal basis of V , and u1,u2, . . . ,un are eigenvectors of
T .

16



Theorem 11.5 (Real Spectral Theorem). Any real symmetric matrix A can be diagonalized by an
orthogonal matrix. More specifically, there exists an orthonormal basis B = {u1,u2, . . . ,un} of Rn such that

Aui = λiui, 1 ≤ i ≤ n,

Q−1AQ = QT AQ = Diag
[
λ1, λ2, . . . , λn

]
,

where Q =
[
u1,u2, . . . ,un

]
; and spectral decomposition

A = λ1u1u
T
1 + λ2u2u

T
2 + · · ·+ λnunuT

n .

Proof. Let T : Rn → Rn be defined by T (x) = Ax. For vectors u,v ∈ Rn,

T (u) · v = (Au) · v = (Au)T v = uT AT v

= uT Av = u · (Av) = u · T (v).

Then T is symmetric. Thus Rn has an orthonormal basis B = {u1,u2, . . . ,un} of eigenvectors of T . Let

T (ui) = λiui, 1 ≤ i ≤ n;

and Q =
[
u1,u2, . . . ,un

]
. Then

Q−1AQ = QT AQ = Diag
[
λ1, λ2, . . . , λn

]
= D.

Alternatively,

A = QDQ−1 = QDQT

=
[
u1,u2, . . . ,un

]



λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · ·λn







uT
1

uT
2
...

uT
n




= [λ1u1, λu2, . . . , λnun]




uT
1

uT
2
...

uT
n




= λ1u1u
T
1 + λ2u2u

T
2 + · · ·+ λnunuT

n .

Note. It is clear that if a real square matrix A is orthogonally diagonalizable, then A is symmetric.

Example 11.2. Is the matrix A =




1 3 3
3 1 3
3 3 1


 orthogonally diagonalizable?

The characteristic polynomial of A is

∆(t) = (t + 2)2(t− 7).

There are eigenvalues λ1 = −2 and λ2 = 7.
For λ1 = −2, there are two independent eigenvectors

v1 = [−1, 1, 0]T , v2 = [−1, 0, 1]T .

Set w1 = v1,
w2 = v2 − v2 ·w1

w1 ·w1
w1 = [−1/2, 1/2, 1]T .
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Then

u1 =



−1/

√
2

1/
√

2
0


 , u2 =



−1/

√
6

−1/
√

6
2/
√

6




form an orthonormal basis of Eλ1 .
For λ2 = −7, there is one independent eigenvector

v3 = [1, 1, 1]T .

The orthonormal basis of Eλ2 is

u3 =




1/
√

3
1/
√

3
1/
√

3


 .

Then the orthogonal matrix

Q =



−1/

√
2 −1/

√
6 1/

√
3

1/
√

2 −1/
√

6 1/
√

3
0 2/

√
6 1/

√
3




diagonalizes the symmetric matrix A.

An n× n real symmetric matrix A is called positive definite if, for any nonzero vector u ∈ Rn,

〈u, Au〉 = uT Au > 0.

Theorem 11.6. Let A be an n× n real symmetric matrix. Let 〈 , 〉 be defined by

〈u,v〉 = uT Av, u,v ∈ Rn.

Then 〈 , 〉 is an inner product on Rn if and only if the matrix A is positive definite.

Theorem 11.7. Let A be the matrix of an n-dimensional inner product space V relative to a basis B. Then
for u,v ∈ V ,

〈u,v〉 = [u]TBA[v]B.

Moreover, A is positive definite.

12 Complex inner product spaces

Definition 12.1. Let V be a complex vector space. An inner product of V is a function 〈 , 〉 : V ×V → C
satisfying the following properties:

(1) Linearity: 〈au + bv, w〉 = a〈u,w〉+ b〈v,w〉.
(2) Conjugate Symmetric Property: 〈u,v〉 = 〈v,u〉.
(3) Positive Definite Property: For any u ∈ V , 〈u,u〉 ≥ 0; and 〈u,u〉 = 0 if and only if u = 0.

The complex vector space V with an inner product is called a complex inner product space.

Note that the Conjugate Symmetric Property implies that

〈u, av + bw〉 = ā〈u,v〉+ b̄〈u,w〉.

For any u ∈ V , since 〈u,u〉 is a nonnegative real number, we define the length of u to be the real
number

‖u‖ =
√
〈u,u〉.
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Theorem 12.2 (Cauchy-Schwarz Inequality). Let V be a complex inner product space. Then for any
u,v ∈ V , ∣∣〈u,v〉

∣∣ ≤ ‖u‖ ‖v‖.
Like real inner product space, one can similarly define orthogonality, the angle between two vectors,

orthogonal set, orthonormal basis, orthogonal projection, and Gram-Schmidt process, etc.
Two vectors u,v in a complex inner product space V are called orthogonal if

〈u,v〉 = 0.

When both u,v ∈ V are nonzero, the angle θ between u and v is defined by

cos θ =
〈u,v〉
‖u‖ ‖v‖ .

A set
{
v1,v2, . . . ,vk

}
of nonzero vectors of V is called an orthogonal set if the vectors v1,v2, . . . ,vk are

mutually orthogonal. A basis of V is called an orthogonal basis if their vectors are mutually orthogonal;
a basis Bis called an orthonormal basis if B is an orthogonal basis and every vector of B has unit length.

Example 12.1 (Complex Euclidean space Cn). For vectors u = [z1, . . . , zn]T , , v = [w1, . . . , wn]T ∈ Cn,
define

〈u,v〉 = uT v̄ = z1w̄1 + z2w̄2 + · · ·+ znw̄n.

Then 〈 , 〉 is an inner product of Cn, called the standard inner product on Cn. The vector space Cn with
the standard inner product is called the complex Euclidean n-space.

Theorem 12.3. Let B =
{
v1,v2, . . . ,vn

}
be an orthogonal basis of an inner product space V . Then for any

v ∈ V ,

v =
〈v,v1〉
〈v1,v1〉v1 +

〈v,v2〉
〈v2,v2〉v2 + · · ·+ 〈v,vn〉

〈vn,vn〉vn.

Let W be a subspace of V with an orthogonal basis {u1,u2, . . . ,uk}. Then the orthogonal projection
ProjW : V → V is given by

ProjW (v) =
〈v,u1〉
〈u1,u1〉u1 +

〈v,u2〉
〈u2,u2〉u2 + · · ·+ 〈v,uk〉

〈uk,uk〉uk.

In particular, if V = Cn and {u1,u2, . . . ,uk} is an orthonormal basis of W , then the standard matrix of the
linear mapping ProjW is UŪT , i.e.,

ProjW (x) = UŪT x,

where U = [u1,u2, . . . ,uk] is an n× k complex matrix.

Theorem 12.4. Let B =
{
v1,v2, . . . ,vn

}
be basis of an inner product space V . Let A be the matrix of the

inner product of V , i.e., A = [aij ], where aij = 〈vi,vj〉. Then for u,v ∈ V ,

〈u,v〉 = [u]T A ¯[v],

where [u] and [v] are the B-coordinate vectors of u and v, respectively.

A complex square matrix A is called Hermitian if

A∗ = A,

where
A∗ := ĀT .

A complex square matrix A is called positive definite if for any x ∈ Cn,

xT Ax ≥ 0.
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Theorem 12.5. Let A be an n×n complex matrix. Then A is the matrix of an n-dimensional inner product
complex vector space relative to a basis if and only if A is Hermitian and positive definite.

A complex square matrix A is called unitary if

A∗ = A−1,

or equivalently,
AA∗ = A∗A = I.

Let A = [aij ]. Then A is unitary means that

a1iā1j + a2iā2j + · · ·+ aniānj =
{

1 if i = j
0 if i 6= j

.

Theorem 12.6. Let A be a complex square matrix. Then the following statements are equivalent:

(a) A is unitary.

(b) The rows of A form an orthonormal set.

(c) The columns of A form an orthonormal set.

Theorem 12.7. Let V be an n-dimensional complex inner product space with an orthonormal basis B ={
u1,u2, . . . ,un

}
. Let U be an n× n real matrix, and

[
v1,v2, . . . ,vn

]
=

[
u1,u2, . . . ,un

]
A.

Then B′ =
{
v1,v2, . . . ,vn

}
is an orthonormal basis if and only if A is a unitary matrix.

Proof. For simplicity, we assume n = 3. Since
[
v1,v2,v3

]
=

[
u1,u2,u3

]
A,

i.e.,
v1 = a11u1 + a21u2 + a31u3,

v2 = a12u1 + a22u2 + a32u3,

v3 = a13u1 + a23u2 + a33u3.

We then have

〈vi,vj〉 = 〈a1iu1 + a2iu2 + a3iu3,

a1ju1 + a2ju2 + a3ju3〉
= a1iā1j + a2iā2j + a3iā3j .

Note that B′ is an orthonormal basis is equivalent to

〈vi,vj〉 = δij ,

and A is an unitary matrix if and only if

a1iā1j + a2iā2j + a3iā3j = δij .

The proof is finished.

Let V be an n-dimensional complex inner product space. A linear mapping T : V → V is a called an
isometry of V if T preserves length of vector, i.e., for any v ∈ V ,

‖T (v)‖ = ‖v‖.
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Theorem 12.8. Let V be an n-dimensional inner product space, and let T : V → V be a linear transforma-
tion. The following statements are equivalent:

(a) T preserves length, i.e., for any v ∈ V ,

‖T (v)‖ = ‖v‖.

(b) T preserves inner product, i.e., for u,v ∈ V ,

〈T (u), T (v)〉 = 〈v,v〉.

(c) T preserves orthogonality, i.e., for u,v ∈ V ,

〈T (u), T (v)〉 = 0 ⇐⇒ 〈u,v〉 = 0.

Proof. note that if T preserves inner product, of course it preserves length.
Now for vectors u,v ∈ V , we have

‖T (u + v)‖2 = 〈T (u + v), T (u + v)〉
= 〈T (u), T (u)〉+ 〈T (v), T (v)〉+ 〈T (u), T (v)〉+ 〈T (v), T (u)〉
= ‖T (u)‖2 + ‖T (v)‖2 + 2<〈T (u), T (v)〉;

∥∥T
(
u +

√−1v
)∥∥2 =

‖T (u)‖2 + ‖T (v)‖2 + 2=〈T (u), T (v)〉.

On the other hand,
‖u + v‖2 = ‖u‖2 + ‖v‖2 + 2<〈u,v〉;

∥∥u +
√−1v

∥∥2 = ‖u‖2 + ‖v‖2 + 2=〈u,v〉.
If T preserves length, then

‖T (u)‖2 = ‖u‖2, ‖T (v)‖2 = ‖v‖2,
‖T (u + v)‖2 = ‖u + v‖2,

∥∥T
(
u +

√−1v
)∥∥2 =

∥∥u +
√−1v

∥∥2
.

It follows that
<〈T (u), T (v)〉 = <〈u,v〉, =〈T (u), T (v)〉 = =〈u,v〉.

Equivalently,
〈T (u), T (v)〉 = 〈u,v〉.
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