
Inner Product Spaces
An inner product space is a vector space with additional structure. More specifically,
each pair of vectors is associated with a scalar quantity known as the inner product of
the vectors. The inner product is denoted as 〈., .〉.

The inner product generalizes the concept of a dot product in Euclidean space. An
inner product is defined by the following axioms:

1. 〈v + u,w〉 = 〈v,w〉 + 〈u,w〉

2. 〈αv,w〉 = α〈v,u〉

3. 〈v,w〉 = 〈w, v〉

4. 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 ⇐⇒ v = 0

Axioms 1 and 2 are called the linearity properties. Linearity holds for the first argument
of the inner product. This preserves the right-distributivity of multiplication that we see
in a ring. That is, (a+ b)c = ac+ bc. We will prove that the linearity property also holds
for the second argument.

Axiom 3 is called the symmetric property of the inner product. Intuitively, a product
should not depend on the order of the operands. Note that for complex vector spaces,
this axiom would be conjugate symmetry. That is,

〈v,w〉 = 〈w, v〉

The conjugate is used for complex vector spaces. In real valued vector spaces, the con-
jugate can be ignored.

Axiom 4 is called the positive definite property. Intuitively, the product of a vector
with itself should be greater than zero. Only the zero-vector multiplied by itself should
result in the zero-vector.

Induced Norm
An inner product defined over a vector space induces a norm on the vector space. Thus,
all inner product spaces are also normed vector spaces. This norm is,
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‖v‖ =
√
〈v, v〉

We assert that f (v) =
√
〈v, v〉 satisfies the axiom of a norm.

Proof:

Axiom 1 states that ∀v ∈ V where V is a vector space, ‖v‖ ≥ 0. We see that since
〈v, v〉 ≥ 0 and

√
c ≥ 0. It follows that f (v) ≥ 0 and thus the first axiom holds.

Axiom 2 states that ‖αv‖ = |α| ‖v‖. We see that

f (αv) =
√
〈αv, αv〉

=
√
α2〈v, v〉

= |α|
√
〈v, v〉

Thus, the second axiom holds.

Axiom 3 states ‖v + u‖ ≤ ‖v‖ + ‖u‖. We see that,

f (u + v) =
√
〈v + u, v + u〉

=
√
〈v, v〉 + 2〈v,u〉 + 〈u,u〉

≤
√
〈v, v〉 + 〈u,u〉

≤
√
〈v, v〉 +

√
〈u,u〉

= f (v) + f (u)

Thus, the third axiom holds. This establishes that f (v) is a valid norm.

�
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Properties
Left-linearity

Left-linearity also holds for inner products. We ignore complex-conjugates and assume
we are not dealing with complex values. Then,

〈v,w + u〉 = 〈v,w〉 + 〈v,u〉

and

〈v, αw〉 = α〈v,w〉

Since linearity holds for both the right and left arguments, we see that the inner product
is a linear mapping from the vector space to the field for which the scalars belong.

Proof:

First,

〈v,w + u〉 = 〈w + u, v〉

= 〈w, v〉 + 〈u, v〉

= 〈v,w〉 + 〈v,u〉

Second,

〈v, αw〉 = 〈αw, v〉

= α〈w, v〉

= α〈v,w〉

�

Inner products involving the zero-vector are zero

∀v ∈ V whereV is a vector space,

〈v, 0〉 = 0
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and

〈0, v〉 = 0

Proof:

We need only prove 〈v, 0〉 = 0 and the second claim will follow from the symmetric
property.

Assume for the sake of contradiction that 〈v, 0〉 = a where a , 0. Then,

α〈v, 0〉 = 〈v, α0〉

= 〈v, 0〉

Thus, we reach the conclusion that
αa = a

This is a contradiction if a , 0. Thus, it must be that a = 0

�

Orthogonality
Two vectors v and w in an inner product space are orthogonal if 〈v,w〉 = 0. That is,

v ⊥ w ⇐⇒ 〈v,w〉 = 0

Orthogonality is an abstraction of the concept of two vectors being perpendicular. That
is, if two vectors don’t share any “components”, they are deemed to be orthogonal. In a
Euclidean vector space, orthogonal vectors lie at right-angles to each other.
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