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Cross product
In mathematics, the cross product or vector product is a binary operation on two vectors in three-dimensional
space. It results in a vector which is perpendicular to both and therefore normal to the plane containing them. It has
many applications in mathematics, physics, and engineering.
If the vectors have the same direction or one has zero length, then their cross product is zero. More generally, the
magnitude of the product equals the area of a parallelogram with the vectors for sides; in particular for perpendicular
vectors this is a rectangle and the magnitude of the product is the product of their lengths. The cross product is
anticommutative and is distributive over addition. The space and product form an algebra over a field, which is
neither commutative nor associative, but is a Lie algebra with the cross product being the Lie bracket.
Like the dot product, it depends on the metric of Euclidean space, but unlike the dot product, it also depends on the
choice of orientation or "handedness". The product can be generalized in various ways; it can be made independent
of orientation by changing the result to pseudovector, or in arbitrary dimensions the exterior product of vectors can
be used with a bivector or two-form result. Also, using the orientation and metric structure just as for the traditional
3-dimensional cross product, one can in n dimensions take the product of n − 1 vectors to produce a vector
perpendicular to all of them. But if the product is limited to non-trivial binary products with vector results, it exists
only in three and seven dimensions.

The cross-product in respect to a right-handed
coordinate system
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Definition

Finding the direction of the cross product by the
right-hand rule

The cross product of two vectors a and b is defined only in
three-dimensional space and is denoted by a × b. In physics,
sometimes the notation a ∧ b is used, though this is avoided in
mathematics to avoid confusion with the exterior product.

The cross product a × b is defined as a vector c that is perpendicular to
both a and b, with a direction given by the right-hand rule and a
magnitude equal to the area of the parallelogram that the vectors span.

The cross product is defined by the formula

where θ is the angle between a and b in the plane containing them
(hence, it is between 0° and 180°), ‖a‖ and ‖b‖ are the magnitudes of
vectors a and b, and n is a unit vector perpendicular to the plane
containing a and b in the direction given by the right-hand rule (illustrated). If the vectors a and b are parallel (i.e.,
the angle θ between them is either 0° or 180°), by the above formula, the cross product of a and b is the zero vector
0.

The cross product a×b (vertical, in purple)
changes as the angle between the vectors a (blue)
and b (red) changes. The cross product is always
perpendicular to both vectors, and has magnitude
zero when the vectors are parallel and maximum
magnitude ‖a‖‖b‖ when they are perpendicular.

The direction of the vector n is given by the right-hand rule, where one
simply points the forefinger of the right hand in the direction of a and
the middle finger in the direction of b. Then, the vector n is coming out
of the thumb (see the picture on the right). Using this rule implies that
the cross-product is anti-commutative, i.e., b × a = −(a × b). By
pointing the forefinger toward b first, and then pointing the middle
finger toward a, the thumb will be forced in the opposite direction,
reversing the sign of the product vector.

Using the cross product requires the handedness of the coordinate
system to be taken into account (as explicit in the definition above). If
a left-handed coordinate system is used, the direction of the vector n is
given by the left-hand rule and points in the opposite direction.

This, however, creates a problem because transforming from one
arbitrary reference system to another (e.g., a mirror image
transformation from a right-handed to a left-handed coordinate
system), should not change the direction of n. The problem is clarified
by realizing that the cross-product of two vectors is not a (true) vector,

but rather a pseudovector. See cross product and handedness for more detail.
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Names

According to Sarrus' rule, the determinant of a 3×3 matrix
involves multiplications between matrix elements identified

by crossed diagonals

In 1881, Josiah Willard Gibbs, and independently Oliver
Heaviside, introduced both the dot product and the cross
product using a period (a . b) and an "x" (a x b),
respectively, to denote them.[1]

In 1877, to emphasize the fact that the result of a dot product
is a scalar while the result of a cross product is a vector,
William Kingdon Clifford coined the alternative names
scalar product and vector product for the two operations.
These alternative names are still widely used in the literature.

Both the cross notation (a × b) and the name cross product
were possibly inspired by the fact that each scalar component
of a × b is computed by multiplying non-corresponding components of a and b. Conversely, a dot product a · b
involves multiplications between corresponding components of a and b. As explained below, the cross product can
be expressed in the form of a determinant of a special 3×3 matrix. According to Sarrus' rule, this involves
multiplications between matrix elements identified by crossed diagonals.

Computing the cross product

Coordinate notation

Standard basis vectors (i, j, k, also denoted e1, e2, e3) and vector components of a
(ax, ay, az, also denoted a1, a2, a3)

The standard basis vectors i, j, and k satisfy
the following equalities:

which imply, by the anticommutativity of
the cross product, that

The definition of the cross product also
implies that

(the
zero vector).

These equalities, together with the
distributivity and linearity of the cross
product (but both do not follow easily from
the definition given above), are sufficient to
determine the cross product of any two
vectors u and v. Each vector can be defined as the sum of three orthogonal components parallel to the standard basis
vectors:
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Their cross product u × v can be expanded using distributivity:

This can be interpreted as the decomposition of u × v into the sum of nine simpler cross products involving vectors
aligned with i, j, or k. Each one of these nine cross products operates on two vectors that are easy to handle as they
are either parallel or orthogonal to each other. From this decomposition, by using the above mentioned equalities and
collecting similar terms, we obtain:

meaning that the three scalar components of the resulting vector s = s1i + s2j + s3k = u × v are

Using column vectors, we can represent the same result as follows:

Matrix notation
The cross product can also be expressed as the formal[2] determinant:

This determinant can be computed using Sarrus' rule or cofactor expansion. Using Sarrus' rule, it expands to

Using cofactor expansion along the first row instead, it expands to

which gives the components of the resulting vector directly.
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Properties

Geometric meaning

Figure 1. The area of a parallelogram as a cross
product

Figure 2. Three vectors defining a parallelepiped

The magnitude of the cross product can be interpreted as
the positive area of the parallelogram having a and b as
sides (see Figure 1):

Indeed, one can also compute the volume V of a
parallelepiped having a, b and c as sides by using a
combination of a cross product and a dot product, called
scalar triple product (see Figure 2):

Since the result of the scalar triple product may be
negative, the volume of the parallelepiped is given by its
absolute value. For instance,

Because the magnitude of the cross product goes by the
sine of the angle between its arguments, the cross product
can be thought of as a measure of ‘perpendicularity’ in the
same way that the dot product is a measure of
‘parallelism’. Given two unit vectors, their cross product
has a magnitude of 1 if the two are perpendicular and a
magnitude of zero if the two are parallel. The opposite is
true for the dot product of two unit vectors.

Unit vectors enable two convenient identities: the dot
product of two unit vectors yields the cosine (which may
be positive or negative) of the angle between the two unit
vectors. The magnitude of the cross product of the two unit vectors yields the sine (which will always be positive).
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Algebraic properties

Cross product distributivity over vector addition. The vectors b and c
are resolved into parallel and perpendicular components to a: parallel
components vanish in the cross product, perpendicular ones remain.
The planes indicate the axial vectors normal to those planes, and are

not bivectors.

• If the cross product of two vectors is the zero vector,
(a × b = 0), then either of them is the zero vector, (a
= 0, or b = 0) or both of them are zero vectors, (a =
b = 0), or else they are parallel or antiparallel, (a ||
b), so that the sine of the angle between them is
zero, (θ = 0° or θ = 180° and sinθ = 0).

• The self cross product of a vector is the zero vector,
i.e., a × a = 0.

• The cross product is anticommutative,

• distributive over addition,

•• and compatible with scalar multiplication so that

• It is not associative, but satisfies the Jacobi identity:

Distributivity, linearity and Jacobi identity show that the R3 vector space together with vector addition and the cross
product forms a Lie algebra, the Lie algebra of the real orthogonal group in 3 dimensions, SO(3).
• The cross product does not obey the cancellation law: a × b = a × c with non-zero a does not imply that b = c.

Instead if a × b = a × c:

If neither a nor b − c is zero then from the definition of the cross product the angle between them must be zero and
they must be parallel. They are related by a scale factor, so one of b or c can be expressed in terms of the other, for
example

for some scalar t.
• If a · b = a · c and a × b = a × c, for non-zero vector a, then b = c, as

and

so b − c is both parallel and perpendicular to the non-zero vector a, something that is only possible if b − c = 0 so
they are identical.
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• From the geometrical definition the cross product is invariant under rotations about the axis defined by a × b.
More generally the cross product obeys the following identity under matrix transformations:

where is a 3 by 3 matrix and is the transpose of the inverse
• The cross product of two vectors in 3-D always lies in the null space of the matrix with the vectors as rows:

•• For the sum of two cross products, the following identity holds:

Differentiation
The product rule applies to the cross product in a similar manner:

This identity can be easily proved using the matrix multiplication representation.

Triple product expansion
The cross product is used in both forms of the triple product. The scalar triple product of three vectors is defined as

It is the signed volume of the parallelepiped with edges a, b and c and as such the vectors can be used in any order
that's an even permutation of the above ordering. The following therefore are equal:

The vector triple product is the cross product of a vector with the result of another cross product, and is related to the
dot product by the following formula

The mnemonic "BAC minus CAB" is used to remember the order of the vectors in the right hand member. This
formula is used in physics to simplify vector calculations. A special case, regarding gradients and useful in vector
calculus, is

where ∇2 is the vector Laplacian operator.
Another identity relates the cross product to the scalar triple product:

Alternative formulation
The cross product and the dot product are related by:

The right-hand side is the Gram determinant of a and b, the square of the area of the parallelogram defined by the
vectors. This condition determines the magnitude of the cross product. Namely, since the dot product is defined, in
terms of the angle θ between the two vectors, as:

the above given relationship can be rewritten as follows:
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Invoking the Pythagorean trigonometric identity one obtains:

which is the magnitude of the cross product expressed in terms of θ, equal to the area of the parallelogram defined by
a and b (see definition above).
The combination of this requirement and the property that the cross product be orthogonal to its constituents a and b
provides an alternative definition of the cross product.

Lagrange's identity
The relation:

can be compared with another relation involving the right-hand side, namely Lagrange's identity expressed as:

where a and b may be n-dimensional vectors. This also shows that the Riemannian volume form for surfaces is
exactly the surface element from vector calculus. In the case n=3, combining these two equations results in the
expression for the magnitude of the cross product in terms of its components:

The same result is found directly using the components of the cross-product found from:

In R3 Lagrange's equation is a special case of the multiplicativity |vw| = |v||w| of the norm in the quaternion algebra.
It is a special case of another formula, also sometimes called Lagrange's identity, which is the three dimensional case
of the Binet-Cauchy identity:[3]

If a = c and b = d this simplifies to the formula above.

Alternative ways to compute the cross product

Conversion to matrix multiplication
The vector cross product also can be expressed as the product of a skew-symmetric matrix and a vector:

where superscript T refers to the transpose operation, and [a]× is defined by:
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Also, if a is itself a cross product:

then

Proof by substitution

Evaluation of the cross product gives

Hence, the left hand side equals

Now, for the right hand side,

And its transpose is

Evaluation of the right hand side gives

Comparison shows that the left hand side equals the right hand side.

This result can be generalized to higher dimensions using geometric algebra. In particular in any dimension bivectors
can be identified with skew-symmetric matrices, so the product between a skew-symmetric matrix and vector is
equivalent to the grade-1 part of the product of a bivector and vector.[citation needed] In three dimensions bivectors are
dual to vectors so the product is equivalent to the cross product, with the bivector instead of its vector dual. In higher
dimensions the product can still be calculated but bivectors have more degrees of freedom and are not equivalent to
vectors.[citation needed]

This notation is also often much easier to work with, for example, in epipolar geometry.
From the general properties of the cross product follows immediately that

   and   
and from fact that [a]× is skew-symmetric it follows that

The above-mentioned triple product expansion (bac-cab rule) can be easily proven using this notation.[citation needed]

The above definition of [a]× means that there is a one-to-one mapping between the set of 3×3 skew-symmetric
matrices, also known as the Lie algebra of SO(3), and the operation of taking the cross product with some vector
a.[citation needed]
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Index notation for tensors
The cross product can alternatively be defined in terms of the Levi-Civita symbol εijk and a dot product ηmi (= δmi for
an orthonormal basis), which are useful in converting vector notation for tensor applications:

where the indices correspond to vector components. This characterization of the cross product is often
expressed more compactly using the Einstein summation convention as

in which repeated indices are summed over the values 1 to 3. Note that this representation is another form of the
skew-symmetric representation of the cross product:

In classical mechanics: representing the cross-product with the Levi-Civita symbol can cause mechanical symmetries
to be obvious when physical systems are isotropic. (Quick example: consider a particle in a Hooke's Law potential in
three-space, free to oscillate in three dimensions; none of these dimensions are "special" in any sense, so symmetries
lie in the cross-product-represented angular momentum, which are made clear by the abovementioned Levi-Civita
representation).[citation needed]

Mnemonic
The word "xyzzy" can be used to remember the definition of the cross product.
If

where:

then:

The second and third equations can be obtained from the first by simply vertically rotating the subscripts, x → y → z
→ x. The problem, of course, is how to remember the first equation, and two options are available for this purpose:
either to remember the relevant two diagonals of Sarrus's scheme (those containing i), or to remember the xyzzy
sequence.
Since the first diagonal in Sarrus's scheme is just the main diagonal of the above-mentioned matrix, the first
three letters of the word xyzzy can be very easily remembered.
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Cross visualization
Similarly to the mnemonic device above, a "cross" or X can be visualized between the two vectors in the equation.
This may help you to remember the correct cross product formula.
If

then:

If we want to obtain the formula for we simply drop the and from the formula, and take the next two
components down -

It should be noted that when doing this for the next two elements down should "wrap around" the matrix so that
after the z component comes the x component. For clarity, when performing this operation for , the next two
components should be z and x (in that order). While for the next two components should be taken as x and y.

For then, if we visualize the cross operator as pointing from an element on the left to an element on the right, we
can take the first element on the left and simply multiply by the element that the cross points to in the right hand
matrix. We then subtract the next element down on the left, multiplied by the element that the cross points to here as
well. This results in our formula -

We can do this in the same way for and to construct their associated formulas.

Applications

Computational geometry
The cross product can be used to calculate the normal for a triangle or polygon, an operation frequently performed in
computer graphics. For example, the winding of a polygon (clockwise or anticlockwise) about a point within the
polygon can be calculated by triangulating the polygon (like spoking a wheel) and summing the angles (between the
spokes) using the cross product to keep track of the sign of each angle.
In computational geometry of the plane, the cross product is used to determine the sign of the acute angle defined by
three points , and . It corresponds to the direction of the cross product of the two
coplanar vectors defined by the pairs of points and , i.e., by the sign of the expression

. In the "right-handed" coordinate system, if the result is 0, the points are
collinear; if it is positive, the three points constitute a positive angle of rotation around from to , otherwise a
negative angle. From another point of view, the sign of tells whether lies to the left or to the right of line .
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Mechanics
Moment of a force applied at point B around point A is given as:

Other
The cross product occurs in the formula for the vector operator curl. It is also used to describe the Lorentz force
experienced by a moving electrical charge in a magnetic field. The definitions of torque and angular momentum also
involve the cross product.
The trick of rewriting a cross product in terms of a matrix multiplication appears frequently in epipolar and
multi-view geometry, in particular when deriving matching constraints.

Cross product as an exterior product

The cross product in relation to the exterior
product. In red are the orthogonal unit vector, and

the "parallel" unit bivector.

The cross product can be viewed in terms of the exterior product. This
view allows for a natural geometric interpretation of the cross product.
In exterior algebra the exterior product (or wedge product) of two
vectors is a bivector. A bivector is an oriented plane element, in much
the same way that a vector is an oriented line element. Given two
vectors a and b, one can view the bivector a ∧ b as the oriented
parallelogram spanned by a and b. The cross product is then obtained
by taking the Hodge dual of the bivector a ∧ b, mapping 2-vectors to
vectors:

This can be thought of as the oriented multi-dimensional element
"perpendicular" to the bivector. Only in three dimensions is the result
an oriented line element – a vector – whereas, for example, in 4
dimensions the Hodge dual of a bivector is two-dimensional – another
oriented plane element. So, only in three dimensions is the cross product of a and b the vector dual to the bivector a
∧ b: it is perpendicular to the bivector, with orientation dependent on the coordinate system's handedness, and has
the same magnitude relative to the unit normal vector as a ∧ b has relative to the unit bivector; precisely the
properties described above.

Cross product and handedness
When measurable quantities involve cross products, the handedness of the coordinate systems used cannot be
arbitrary. However, when physics laws are written as equations, it should be possible to make an arbitrary choice of
the coordinate system (including handedness). To avoid problems, one should be careful to never write down an
equation where the two sides do not behave equally under all transformations that need to be considered. For
example, if one side of the equation is a cross product of two vectors, one must take into account that when the
handedness of the coordinate system is not fixed a priori, the result is not a (true) vector but a pseudovector.
Therefore, for consistency, the other side must also be a pseudovector.[citation needed]

More generally, the result of a cross product may be either a vector or a pseudovector, depending on the type of its
operands (vectors or pseudovectors). Namely, vectors and pseudovectors are interrelated in the following ways under
application of the cross product:
•• vector × vector = pseudovector
•• pseudovector × pseudovector = pseudovector
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•• vector × pseudovector = vector
•• pseudovector × vector = vector.
So by the above relationships, the unit basis vectors i, j and k of an orthonormal, right-handed (Cartesian) coordinate
frame must all be pseudovectors (if a basis of mixed vector types is disallowed, as it normally is) since i × j = k, j ×
k = i and k × i = j.
Because the cross product may also be a (true) vector, it may not change direction with a mirror image
transformation. This happens, according to the above relationships, if one of the operands is a (true) vector and the
other one is a pseudovector (e.g., the cross product of two vectors). For instance, a vector triple product involving
three (true) vectors is a (true) vector.
A handedness-free approach is possible using exterior algebra.

Generalizations
There are several ways to generalize the cross product to the higher dimensions.

Lie algebra
The cross product can be seen as one of the simplest Lie products, and is thus generalized by Lie algebras, which are
axiomatized as binary products satisfying the axioms of multilinearity, skew-symmetry, and the Jacobi identity.
Many Lie algebras exist, and their study is a major field of mathematics, called Lie theory.
For example, the Heisenberg algebra gives another Lie algebra structure on In the basis the product is

Quaternions
The cross product can also be described in terms of quaternions, and this is why the letters i, j, k are a convention for
the standard basis on R3. The unit vectors i, j, k correspond to "binary" (180 deg) rotations about their respective
axes (Altmann, S. L., 1986, Ch. 12), said rotations being represented by "pure" quaternions (zero scalar part) with
unit norms.
For instance, the above given cross product relations among i, j, and k agree with the multiplicative relations among
the quaternions i, j, and k. In general, if a vector [a1, a2, a3] is represented as the quaternion a1i + a2j + a3k, the cross
product of two vectors can be obtained by taking their product as quaternions and deleting the real part of the result.
The real part will be the negative of the dot product of the two vectors.
Alternatively, using the above identification of the 'purely imaginary' quaternions with R3, the cross product may be
thought of as half of the commutator of two quaternions.

Octonions
A cross product for 7-dimensional vectors can be obtained in the same way by using the octonions instead of the
quaternions. The nonexistence of nontrivial vector-valued cross products of two vectors in other dimensions is
related to the result from Hurwitz's theorem that the only normed division algebras are the ones with dimension 1, 2,
4, and 8.

Wedge product
In general dimension, there is no direct analogue of the binary cross product that yields specifically a vector. There is 
however the wedge product, which has similar properties, except that the wedge product of two vectors is now a 
2-vector instead of an ordinary vector. As mentioned above, the cross product can be interpreted as the wedge 
product in three dimensions by using the Hodge dual to map 2-vectors to vectors. The Hodge dual of the wedge
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product yields an (n−2)-vector, which is a natural generalization of the cross product in any number of dimensions.
The wedge product and dot product can be combined (through summation) to form the geometric product.

Multilinear algebra
In the context of multilinear algebra, the cross product can be seen as the (1,2)-tensor (a mixed tensor, specifically a
bilinear map) obtained from the 3-dimensional volume form,[4] a (0,3)-tensor, by raising an index.
In detail, the 3-dimensional volume form defines a product by taking the determinant of the matrix
given by these 3 vectors. By duality, this is equivalent to a function (fixing any two inputs gives a
function by evaluating on the third input) and in the presence of an inner product (such as the dot product;
more generally, a non-degenerate bilinear form), we have an isomorphism and thus this yields a map

which is the cross product: a (0,3)-tensor (3 vector inputs, scalar output) has been transformed into a
(1,2)-tensor (2 vector inputs, 1 vector output) by "raising an index".
Translating the above algebra into geometry, the function "volume of the parallelepiped defined by " (where
the first two vectors are fixed and the last is an input), which defines a function , can be represented uniquely
as the dot product with a vector: this vector is the cross product From this perspective, the cross product is
defined by the scalar triple product, 
In the same way, in higher dimensions one may define generalized cross products by raising indices of the
n-dimensional volume form, which is a -tensor. The most direct generalizations of the cross product are to
define either:
• a -tensor, which takes as input vectors, and gives as output 1 vector – an -ary vector-valued

product, or
• a -tensor, which takes as input 2 vectors and gives as output skew-symmetric tensor of rank n−2 – a

binary product with rank n−2 tensor values. One can also define -tensors for other k.

These products are all multilinear and skew-symmetric, and can be defined in terms of the determinant and parity.
The -ary product can be described as follows: given vectors in define their generalized
cross product as:
• perpendicular to the hyperplane defined by the 
• magnitude is the volume of the parallelotope defined by the which can be computed as the Gram determinant

of the 
• oriented so that is positively oriented.
This is the unique multilinear, alternating product which evaluates to , and so forth
for cyclic permutations of indices.
In coordinates, one can give a formula for this -ary analogue of the cross product in Rn by:

This formula is identical in structure to the determinant formula for the normal cross product in R3 except that the 
row of basis vectors is the last row in the determinant rather than the first. The reason for this is to ensure that the 
ordered vectors (v1,...,vn-1,Λ(v1,...,vn-1)) have a positive orientation with respect to (e1,...,en). If n is odd, this 
modification leaves the value unchanged, so this convention agrees with the normal definition of the binary product. 
In the case that n is even, however, the distinction must be kept. This -ary form enjoys many of the same 
properties as the vector cross product: it is alternating and linear in its arguments, it is perpendicular to each 
argument, and its magnitude gives the hypervolume of the region bounded by the arguments. And just like the vector
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cross product, it can be defined in a coordinate independent way as the Hodge dual of the wedge product of the
arguments.

History
In 1773, the Italian mathematician Joseph Louis Lagrange, (born Giuseppe Luigi Lagrancia), introduced the
component form of both the dot and cross products in order to study the tetrahedron in three dimensions. In 1843 the
Irish mathematical physicist Sir William Rowan Hamilton introduced the quaternion product, and with it the terms
"vector" and "scalar". Given two quaternions [0, u] and [0, v], where u and v are vectors in R3, their quaternion
product can be summarized as [−u·v, u×v]. James Clerk Maxwell used Hamilton's quaternion tools to develop his
famous electromagnetism equations, and for this and other reasons quaternions for a time were an essential part of
physics education.
In 1878 William Kingdon Clifford published his Elements of Dynamic which was an advanced text for its time. He
defined the product of two vectors[5] to have magnitude equal to the area of the parallelogram of which they are two
sides, and direction perpendicular to their plane.
Oliver Heaviside in England and Josiah Willard Gibbs, a professor at Yale University in Connecticut, also felt that
quaternion methods were too cumbersome, often requiring the scalar or vector part of a result to be extracted. Thus,
about forty years after the quaternion product, the dot product and cross product were introduced—to heated
opposition. Pivotal to (eventual) acceptance was the efficiency of the new approach, allowing Heaviside to reduce
the equations of electromagnetism from Maxwell's original 20 to the four commonly seen today.
Largely independent of this development, and largely unappreciated at the time, Hermann Grassmann created a
geometric algebra not tied to dimension two or three, with the exterior product playing a central role. William
Kingdon Clifford combined the algebras of Hamilton and Grassmann to produce Clifford algebra, where in the case
of three-dimensional vectors the bivector produced from two vectors dualizes to a vector, thus reproducing the cross
product.
The cross notation and the name "cross product" began with Gibbs. Originally they appeared in privately published
notes for his students in 1881 as Elements of Vector Analysis. The utility for mechanics was noted by Aleksandr
Kotelnikov. Gibbs's notation and the name "cross product" later reached a wide audience through Vector Analysis, a
textbook by Edwin Bidwell Wilson, a former student. Wilson rearranged material from Gibbs's lectures, together
with material from publications by Heaviside, Föpps, and Hamilton. He divided vector analysis into three parts:

First, that which concerns addition and the scalar and vector products of vectors. Second, that which
concerns the differential and integral calculus in its relations to scalar and vector functions. Third, that
which contains the theory of the linear vector function.

Two main kinds of vector multiplications were defined, and they were called as follows:
• The direct, scalar, or dot product of two vectors
• The skew, vector, or cross product of two vectors
Several kinds of triple products and products of more than three vectors were also examined. The above mentioned
triple product expansion was also included.
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Notes
[1] A History of Vector Analysis by Michael J. Crowe (https:/ / www. math. ucdavis. edu/ ~temple/ MAT21D/ SUPPLEMENTARY-ARTICLES/

Crowe_History-of-Vectors. pdf), Math. UC Davis
[2] Here, “formal" means that this notation has the form of a determinant, but does not strictly adhere to the definition; it is a mnemonic used to

remember the expansion of the cross product.
[3][3] by
[4] By a volume form one means a function that takes in n vectors and gives out a scalar, the volume of the parallelotope defined by the vectors:

UNIQ-math-0-dac4378e69196191-QINU This is an n-ary multilinear skew-symmetric form. In the presence of a basis, such as on
UNIQ-math-1-dac4378e69196191-QINU this is given by the determinant, but in an abstract vector space, this is added structure. In terms of
G-structures, a volume form is an UNIQ-math-2-dac4378e69196191-QINU -structure.

[5] William Kingdon Clifford (1878) Elements of Dynamic (http:/ / dlxs2. library. cornell. edu/ cgi/ t/ text/
text-idx?c=math;cc=math;view=toc;subview=short;idno=04370002), Part I, page 95, London: MacMillan & Co; online presentation by
Cornell University Historical Mathematical Monographs
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