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The Dot and Cross Products 
 

Two common operations involving vectors are the dot product and the cross product. 

Let two vectors � = 〈��, ��, ��〉 and 
 = 〈��, ��, ��〉 be given. 

 

• The Dot Product 
 

The dot product of � and 
 is written � ∙ 
 and is defined two ways: 

 

1. � ∙ 
 = ���� + ���� + ����. 

2. � ∙ 
 = |�||
| cos �, where � is the angle formed by � and 
. 

 

The two definitions are the same. They are related to one another by the Law of Cosines. 

The first method of calculation is easier because it is the sum of the products of 

corresponding components. The second method of calculation can be used if we know the 

angle � formed by � and 
. 

 

It is important to note that the dot product always results in a scalar value. Furthermore, 

the dot symbol “⋅” always refers to a dot product of two vectors, not traditional 

multiplication of two scalars as we have previously known. To avoid confusion, pay 

attention to the context in which the dot symbol is used. In this book, the product of two 

scalars x and y will be written as xy, and the scalar multiple k of a vector 
 will be written �
. Thus, statements like � ∙ 
 are syntactically incorrect and do not have any meaning. 

 

Example: Find � ∙ 
, where � = 〈3,−4,1〉 and 
 = 〈5,2, −6〉, then find the angle � 

formed by � and 
. 

 

Solution: Using the first method of calculation, we have 

 � ∙ 
 = �3��5� + �−4��2� + �1��−6� = 15 + �−8� + �−6� = 1. 
 

To find �, we use the second method of calculation and solve for �, using a calculator in 

degree mode for the last step. 

 

� = cos��  � ∙ 
|�||
|! = cos�� " 1
√26√65$ ≈ 88.61°. 
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• Some Properties of the Dot Product 
 

The dot product of two vectors � and 
 has the following properties: 

 

1) The dot product is commutative. That is, � ∙ 
 = 
 ∙ �. 

 

2) � ∙ � = |�|�. That is, the dot product of a vector with itself is the square of the 

magnitude of the vector. This formula relates the dot product of a vector with the 

vector’s magnitude. 

 

3) The dot product of the zero vector ' with any other vector results in the scalar 

value 0. That is, ' ∙ 
 = 
 ∙ ' = 0. It is possible that two non-zero vectors may 

results in a dot product of 0. This is discussed below. 

 

4) The sign of the dot product indicates whether the angle between the two vectors is 

acute, obtuse, or zero. Assume that � and 
 are two non-zero vectors. 

 

o If � ∙ 
 > 0, that is, � ∙ 
 is positive, then the angle formed by the vectors 

is acute. 

o If � ∙ 
 < 0, that is, � ∙ 
 is negative, then the angle formed by the vectors 

is obtuse. 

o If � ∙ 
 = 0, that is, � ∙ 
 is zero, then the angle formed by the vectors is 

90 degrees (or + 2⁄  radians). In this case, the vectors are perpendicular to 

one another. Two vectors that have this property are said to be 

orthogonal. 

 

Speaking in broadest terms, if the dot product of two non-zero vectors is positive, 

then the two vectors point in the same general direction, meaning less than 90 

degrees. If the dot product is negative, then the two vectors point in opposite 

directions, or above 90 and less than or equal to 180 degrees. Later, when we 

discuss line and surface integrals, this notion of pointing in the “same” or 

“opposite” direction will have significant meaning in understanding the effect of a 

flow on a particle or through a porous membrane. 

 

The actual numerical value of the dot product does not indicate the size of the 

angle. At this stage, we are only interested in the sign of the dot product, not 

necessarily its numerical value. Later, we can place conditions on the vectors so 

that the numerical value of the dot product has meaning. 
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• Orthogonal Projections 
 

The orthogonal projection (or simply, the projection) of one vector onto another is 

facilitated by the dot product.  For example, the projection of � onto 
 is given by: 

 

proj
	� = 1
 ∙ �
 ∙ 
2 
 

 

Viewing � as the hypotenuse of a triangle and its projection onto 
 as the adjacent leg, 

then the opposite leg is called the normal to the projection of � onto 
, written norm
	�, with the relationship that 

 proj
� + norm
� = � 
 

Here is a pictorial way to view a vector � projected onto 
: 

 

 
 

Remember, the statement  

 proj
� + norm
� = � 
 

is a sum of two vectors. The magnitudes of the vectors are related by the Pythagorean 

Formula: 

 |proj
�|� + |norm
�|� = |�|�. 
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• The Cross Product 
 

The cross product of � and 
 is defined and best memorized as the expansion of a 3 by 3 

determinant: 

 

� × 
 = 6 7 8 9�� �� ���� �� ��6 = :�� ���� ��: 7 − :�� ���� ��: 8 + :�� ���� ��: 9. 
 

The cross product of � and 
 is a vector, with the property that it is orthogonal to the two 

vectors � and 
. Thus, if we take the dot product of � × 
 with � and then � × 
 with 
, 

we get zero both times: 

 �� × 
� ∙ � = 0, and �� × 
� ∙ 
 = 0. 

 

This check should always be performed to ensure that the cross product is correct. 

 

Example: Find � × 
, where � = 〈3,−4,1〉 and 
 = 〈5,2, −6〉. 
 

Solution: We have 

 

� × 
 = 67 8 93 −4 15 2 −66 = :−4 12 −6: 7 − :3 15 −6: 8 + :3 −45 2 : 9 

 = 227 − �−23�8 + 269, or	〈22, 23, 26〉. 
 

Now we check:  

 �� × 
� ∙ � = 〈22, 23, 26〉 ∙ 〈3, −4,1〉 = �22��3� + �23��−4� + �26��1� = 66 − 92 + 26 = 0.	 
 �� × 
� ∙ 
 = 〈22, 23, 26〉 ∙ 〈5,2, −6〉 = �22��5� + �23��2� + �26��−6� = 110 + 46 − 156 = 0. 
 

Since both cases produce 0, we are confident that the cross product is correct. 
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• Some Properties of the Cross Product 
 

The cross product of two vectors � and 
 has the following properties: 

 

1) Reversing the order of � and 
 results in a negated cross product. That is, 
 × � = −�� × 
�. 
 

Visually, think of � and 
 as lying in a common plane. Their cross product � × 
 

is a vector that is orthogonal to both � and 
, so it is orthogonal to the plane in 

which � and 
 lie. If we cross 
 and �, we get −�� × 
�, which is also a vector 

orthogonal to the plane in which � and 
 lie. 

 

2) The magnitude of the cross product is |� × 
| = |�||
| sin �. This is equal to the 

area of the parallelogram formed by � and 
.  Half of this value is the area of a 

triangle formed by � and 
.   
 

3) If � × 
 = ' (the zero vector), then � and 
 are parallel vectors. 

 

• Physical Interpretations of the Dot and Cross Products 

 

The dot product is often used to find the work, W, performed by a force F (in Newtons, 

N) acting on an object, moving it a distance D in meters. That is, = = > ∙ ?. Note that 

work W is a scalar. Often, the force is applied at an angle to the direction that the object is 

moving. Furthermore, the force and distance are stated as scalar values and the angle � is 

given, so that when finding > ∙ ?, we often use the formula |>||?| cos �. 

 

The cross product is used to find the torque, denoted @ (the Greek letter tau), formed by 

the combined action of two vectors � and 
. We can think of a force � “pushing” against 

a vector 
, where 
’s foot acts as a pivot, much like the hinges of a door. In a broad 

sense, vectors � and 
 combine to form a “twisting” action at a point. This twisting is 

torque and is calculated by the cross product. 

 

For example, if two vectors are parallel, then their cross product is 0. No torque is being 

applied in this case. Imagine a door is represented by a vector 
, with its foot being the 

hinge of the door. Would you open or close the door by applying a force parallel to 
? It 

makes more sense to apply a force orthogonal to the door to achieve torque.  
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• Practice 
 

Let � = 〈1,4, −5〉, 
 = 〈−4,3, −1〉 and A = 〈7,−2, −3〉.  Classify each expression below 

as a vector, a scalar, or not defined. If it’s a vector or scalar, find the result. If it’s not 

defined, explain why. Note: the dot symbol always refers to the dot product. 

 

1. � ∙ A 

2. �� ∙ A�
 

3. �� ∙ A� ∙ 
 

4. �� × A� ∙ 
 

5. �� × A� × 
 

6. �� × A�
 

7. �� ∙ A� × 
 

8. �� × A� × � 

9. �� × A� ∙ �
 × A� 
10. �� × A� × �
 × A� 
11. �� ∙ A� × �
 ∙ A� 
12. �� ∙ A��
 ∙ A� 

 

13. You start walking from the origin in the direction of 〈3,1〉, with the intention of 

ending at point �7,1�.  You are allowed one right-angle turn.  Find (a) the point at 

which you make this turn, (b) how far you walked in the 〈3,1〉 direction, and (c) 

how far you walked orthogonal to the 〈3,1〉 direction. 

14. Given three points C = �1,3,1�, D = �2,5, −3�, E = �−4,1,8�.  Find (a) the angle in 

degrees at vertex A, and (b) find the area within the triangle formed by the three 

points. 

 

Answers: 

 

1. 14 

2. 〈−52, 39,−13〉 
3. Not defined. � ∙ A form a scalar, but 

then the dot product of a scalar with 

a vector is not defined. 

4. 22 

5. 〈122,98, −194〉 
6. Not defined. The expression �� × A�
 indicates a scalar multiple 

of 
, but � ×A is a vector, not a 

scalar. 

7. Not defined. The expression � ∙ A 

forms a scalar, but then the cross 

product of a scalar with a vector is 

not defined. 

8. 〈280,−140,−56〉 
9. 1240 

10. 〈−154, 44, 66〉 
11. Not defined. The operations inside 

the parentheses form scalars, but the 

cross product of two scalars is not 

defined. 

12. –434  

13. (a) (6.6, 2.2); (b) √48.4 ≈ 6.957; (c) √1.6 ≈ 1.2649 

14. (a) � = cos���−37 √1638⁄ � ≈156.09°; (b) 
�
�√269 ≈ 8.2 

 


