Dot and Cross Product

October 31, 2007 - Happy Halloween!

Dot Product (Inner product)

Definition: Let \mathbf{a} and b be two vectors in \mathbb{R}^{n}, then the dot product of \mathbf{a} and \mathbf{b} is the scalar a•b given by

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}+\cdots+a_{n} b_{n}
$$

Properties of the Dot Product

If \mathbf{a}, \mathbf{b} and \mathbf{c} are vectors in \mathbb{R}^{n} and c is a scalar then

1) $\mathbf{a} \cdot \mathbf{a}=|\mathbf{a}|^{2}$
2) $a \cdot b=b \cdot a$
3) $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}$
4) $(c \mathbf{a}) \cdot \mathbf{b}=c(\mathbf{a} \cdot \mathbf{b})=\mathbf{a} \cdot(c \mathbf{b})$
5) $0 \cdot a=0$.

The angle between two vectors

Theorem: If θ is the angle between the vectors a and b, then

$$
\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta
$$

NOTE: Two vectors a and b are orthogonal if and only if $\mathbf{a} \cdot \mathbf{b}=0$.

Projections

Scalar projection of b onto a :

$$
\operatorname{comp}_{\mathrm{a}} \mathrm{~b}=\frac{\mathrm{a} \cdot \mathrm{~b}}{|\mathrm{a}|}
$$

Vector projection of b onto a :

$$
\operatorname{proj}_{\mathrm{a}} \mathrm{~b}=\frac{\mathrm{a} \cdot \mathrm{~b}}{|\mathrm{a}|^{2}} \mathrm{a}
$$

Cross Product

Definition: If $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=$ $\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, then the cross product of a and b is the vector
$\mathbf{a} \times \mathbf{b}=\left\langle a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right\rangle$

NOTE: The cross product is only defined for vectors in \mathbb{R}^{3}.

Angles and the Cross Product

Theorem: The vector $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b}.

Theorem: If θ is the angle between a and b, then

$$
|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta
$$

Corollary: Two nonzero vectors \mathbf{a} and \mathbf{b} are parallel if and only if

$$
a \times b=0
$$

Properties of the Cross Product

If \mathbf{a} and \mathbf{b} and \mathbf{c} are vectors and c is a scalar, then

1) $\mathbf{a} \times \mathrm{b}=-\mathrm{b} \times \mathrm{a}$
2) $(c \mathbf{a}) \times \mathbf{b}=c(\mathbf{a} \times \mathbf{b})=\mathbf{a} \times(c \mathbf{b})$
3) $a \times(b+c)=a \times b+a \times c$
4) $(a+b) \times c=a \times c+b \times c$
5) $\mathbf{a} \cdot(\mathrm{b} \times \mathrm{c})=(\mathrm{a} \times \mathrm{b}) \cdot \mathrm{c}$
6) $\mathbf{a} \times(\mathrm{b} \times \mathrm{c})=(\mathrm{a} \cdot \mathrm{c}) \mathrm{b}-(\mathrm{a} \cdot \mathrm{b}) \mathrm{c}$

Area and volume the cross product

The length of the cross product $\mathbf{a} \times \mathbf{b}$ is equal to the area of the parallelogram determined by \mathbf{a} and \mathbf{b}.

The volume of the parallelepiped determined by the vectors \mathbf{a}, \mathbf{b} and \mathbf{c} is the absolute value of the scalar triple product:

$$
V=|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})|
$$

