Dot and Cross Product

October 31, 2007 - Happy Halloween!

Dot Product (Inner product)

Definition: Let a and b be two vectors in \mathbb{R}^n , then the **dot product** of a and b is the scalar $\mathbf{a} \cdot \mathbf{b}$ given by

 $\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 + \dots + a_n b_n$

1

Properties of the Dot Product

If a, b and c are vectors in \mathbb{R}^n and c is a scalar then

1)
$$\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$$

2) $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$
3) $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$
4) $(c \mathbf{a}) \cdot \mathbf{b} = c(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (c \mathbf{b})$
5) $\mathbf{0} \cdot \mathbf{a} = \mathbf{0}$.

The angle between two vectors

Theorem: If θ is the angle between the vectors **a** and **b**, then

 $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$

NOTE: Two vectors \mathbf{a} and \mathbf{b} are orthogonal if and only if $\mathbf{a} \cdot \mathbf{b} = 0$.

Projections

Scalar projection of b onto a: $comp_{a}b = \frac{a \cdot b}{|a|}$

Vector projection of \mathbf{b} onto \mathbf{a} :

$$\text{proj}_{\mathbf{a}}\mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2}\mathbf{a}$$

Cross Product

Definition: If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then the **cross product** of \mathbf{a} and \mathbf{b} is the vector

$$\mathbf{a} \times \mathbf{b} = \langle a_2 b_3 - a_3 b_2, a_3 b_1 - a_1 b_3, a_1 b_2 - a_2 b_1 \rangle$$

NOTE: The cross product is only defined for vectors in \mathbb{R}^3 .

Angles and the Cross Product

Theorem: The vector $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b} .

Theorem: If θ is the angle between a and b, then

$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin\theta$$

Corollary: Two nonzero vectors **a** and **b** are parallel if and only if

$$\mathbf{a} \times \mathbf{b} = \mathbf{0}$$

Properties of the Cross Product

If a and b and c are vectors and c is a scalar, then

1)
$$a \times b = -b \times a$$

2) $(ca) \times b = c(a \times b) = a \times (cb)$
3) $a \times (b + c) = a \times b + a \times c$
4) $(a + b) \times c = a \times c + b \times c$
5) $a \cdot (b \times c) = (a \times b) \cdot c$
6) $a \times (b \times c) = (a \cdot c)b - (a \cdot b)c$

Area and volume the cross product

The length of the cross product $\mathbf{a} \times \mathbf{b}$ is equal to the area of the parallelogram determined by \mathbf{a} and \mathbf{b} .

The volume of the parallelepiped determined by the vectors \mathbf{a} , \mathbf{b} and \mathbf{c} is the absolute value of the scalar triple product:

$$V = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$$