DM559 Linear and Integer Programming

## Lecture 7 Vector Spaces Linear Independence, Bases and Dimension

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark



Vector Spaces and Subspaces Linear independence Bases and Dimension

1. Vector Spaces and Subspaces

2. Linear independence

3. Bases and Dimension

## Outline

Vector Spaces and Subspaces Linear independence Bases and Dimension

1. Vector Spaces and Subspaces

2. Linear independence

3. Bases and Dimension

- We move to a higher level of abstraction
- A vector space is a set with an addition and scalar multiplication that behave appropriately, that is, like  $\mathbb{R}^n$
- Imagine a vector space as a class of a generic type (template) in object oriented programming, equipped with two operations.

# Vector Spaces

## Definition (Vector Space)

Vector Spaces and Subspaces Linear independence Bases and Dimension

A (real) vector space V is a non-empty set equipped with an addition and a scalar multiplication operation such that for all  $\alpha, \beta \in \mathbb{R}$  and all  $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ :

- 1.  $\mathbf{u} + \mathbf{v} \in V$  (closure under addition)
- 2.  $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$  (commutative law for addition)
- 3.  $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$  (associative law for addition)
- 4. there is a single member **0** of V, called the zero vector, such that for all  $\mathbf{v} \in V, \mathbf{v} + \mathbf{0} = \mathbf{v}$
- 5. for every  $\mathbf{v} \in V$  there is an element  $\mathbf{w} \in V$ , written  $-\mathbf{v}$ , called the negative of  $\mathbf{v}$ , such that  $\mathbf{v} + \mathbf{w} = \mathbf{0}$
- 6.  $\alpha \mathbf{v} \in V$  (closure under scalar multiplication)
- 7.  $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$  (distributive law)
- 8.  $(\alpha + \beta)\mathbf{v} = \alpha \mathbf{v} + \beta \mathbf{v}$  (distributive law)
- 9.  $\alpha(\beta \mathbf{v}) = (\alpha \beta) \mathbf{v}$  (associative law for vector multiplication)

**10**. 1**v** = **v** 

- set  $\mathbb{R}^n$
- but the set of objects for which the vector space defined is valid are more than the vectors in  $\mathbb{R}^n$ .
- set of all functions  $F : \mathbb{R} \to \mathbb{R}$ . We can define an addition f + g:

(f+g)(x) = f(x) + g(x)

and a scalar multiplication  $\alpha f$ :

 $(\alpha f)(x) = \alpha f(x)$ 

- Example:  $x + x^2$  and 2x. They can represent the result of the two operations.
- What is -f? and the zero vector?

The axioms given are minimum number needed. Other properties can be derived: For example:

 $(-1)\mathbf{x} = -\mathbf{x}$ 

Proof:

$$\mathbf{0} = 0\mathbf{x} = (1 + (-1))\mathbf{x} = 1\mathbf{x} + (-1)\mathbf{x} = \mathbf{x} + (-1)\mathbf{x}$$

Adding -x on both sides:

-x = -x + 0 = -x + x + (-1)x = (-1)x

which proves that  $-\mathbf{x} = (-1)\mathbf{x}$ .

Try the same with -f.

- $V = \{0\}$
- the set of all  $m \times n$  matrices
- the set of all infinite sequences of real numbers,  $\mathbf{y} = \{y_1, y_2, \dots, y_n, \dots, \}, y_i \in \mathbb{R}$ . ( $\mathbf{y} = \{y_n\}, n \ge 1$ )
  - addition of  $\mathbf{y} = \{y_1, y_2, \dots, y_n, \dots, \}$  and  $\mathbf{z} = \{z_1, z_2, \dots, z_n, \dots, \}$  then:

$$\mathbf{y} + \mathbf{z} = \{y_1 + z_1, y_2 + z_2, \dots, y_n + z_n, \dots, \}$$

– multiplication by a scalar  $\alpha \in \mathbb{R}$ :

 $\alpha \mathbf{y} = \{\alpha y_1, \alpha y_2, \dots, \alpha y_n, \dots, \}$ 

• set of all vectors in  $\mathbb{R}^3$  with the third entry equal to 0 (verify closure):

$$W = \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \middle| x, y \in \mathbb{R} \right\}$$

# Linear Combinations

Definition (Linear Combination)

For vectors  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$  in a vector space V, the vector

 $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k$ 

is called a linear combination of the vectors  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ . The scalars  $\alpha_i$  are called coefficients.

- To find the coefficients that given a set of vertices express by linear combination a given vector, we solve a system of linear equations.
- If F is the vector space of functions from ℝ to ℝ then the function f : x → 2x<sup>2</sup> + 3x + 4 can be expressed as a linear combination of:
   g : x → x<sup>2</sup>, h : x → x, k : x → 1 that is:

f = 2g + 3h + 4k

• Given two vectors  $\mathbf{v}_1$  and  $\mathbf{v}_2$ , is it possible to represent any point in the Cartesian plane?

# **Subspaces**

## Definition (Subspace)

A subspace W of a vector space V is a non-empty subset of V that is itself a vector space under the same operations of addition and scalar multiplication as V.

#### Theorem

Let V be a vector space. Then a non-empty subset W of V is a subspace if and only if both the following hold:

- for all u, v ∈ W, u + v ∈ W (W is closed under addition)
- for all v ∈ W and α ∈ ℝ, αv ∈ W (W is closed under scalar multiplication)

ie, all other axioms can be derived to hold true

- The set of all vectors in  $\mathbb{R}^3$  with the third entry equal to 0.
- The set  $\{0\}$  is not empty, it is a subspace since 0 + 0 = 0 and  $\alpha 0 = 0$  for any  $\alpha \in \mathbb{R}$ .

#### Example

In  $\mathbb{R}^2$ , the lines y = 2x and y = 2x + 1 can be defined as the sets of vectors:

$$S = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| y = 2x, x \in \mathbb{R} \right\}$$
  $U = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| y = 2x + 1, x \in \mathbb{R} \right\}$ 

$$S = \{ \mathbf{x} \mid \mathbf{x} = t\mathbf{v}, t \in \mathbb{R} \}$$
  $U = \{ \mathbf{x} \mid \mathbf{x} = \mathbf{p} + t\mathbf{v}, t \in \mathbb{R} \}$ 

$$\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \ \mathbf{p} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

## Example (cntd)

- 1. The set S is non-empty, since  $\mathbf{0} = \mathbf{0}\mathbf{v} \in S$ .
- 2. closure under addition:

$$\mathbf{u} = s \begin{bmatrix} 1 \\ 2 \end{bmatrix} \in S, \quad \mathbf{w} = t \begin{bmatrix} 1 \\ 2 \end{bmatrix} \in S, \quad \text{for some } s, t \in \mathbb{R}$$

 $\mathbf{u} + \mathbf{w} = s\mathbf{v} + t\mathbf{v} = (s+t)\mathbf{v} \in S$  since  $s+t \in \mathbb{R}$ 

3. closure under scalar multiplication:

$$\mathbf{u} = s \begin{bmatrix} 1 \\ 2 \end{bmatrix} \in S$$
 for some  $s \in \mathbb{R}$ ,  $\alpha \in \mathbb{R}$ 

 $\alpha \mathbf{u} = \alpha(s(\mathbf{v})) = (\alpha s)\mathbf{v} \in S \text{ since } \alpha s \in \mathbb{R}$ 

Note that:

•  $\mathbf{u}, \mathbf{w}$  and  $\alpha \in \mathbb{R}$  must be arbitrary

## Example (cntd)

**1**. **0** ∉ *U* 

2. U is not closed under addition:

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} \in U, \begin{bmatrix} 1 \\ 3 \end{bmatrix} \in U$$
 but  $\begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix} 
otin U$ 

3. U is not closed under scalar multiplication

$$\begin{bmatrix} 0\\1\end{bmatrix}\in U, 2\in\mathbb{R}$$
 but  $2\begin{bmatrix} 0\\1\end{bmatrix}=\begin{bmatrix} 0\\2\end{bmatrix}
ot\in U$ 

Note that:

- proving just one of the above couterexamples is enough to show that U is not a subspace
- it is sufficient to make them fail for particular choices
- a good place to start is checking whether  $0 \in S$ . If not then S is not a subspace

#### Theorem

A non-empty subset W of a vector space is a subspace if and only if for all  $\mathbf{u}, \mathbf{v} \in W$  and all  $\alpha, \beta \in \mathbb{R}$ , we have  $\alpha \mathbf{u} + \beta \mathbf{v} \in W$ . That is, W is closed under linear combination.

Vector Spaces and Subspaces Linear independence Bases and Dimension

Geometric interpretation:



 $\rightarrow$  The line y = 2x + 1 is an affine subset, a "translation" of a subspace

# Null space of a Matrix is a Subspace

#### Theorem

For any  $m \times n$  matrix A, N(A), ie, the solutions of  $A\mathbf{x} = \mathbf{0}$ , is a subspace of  $\mathbb{R}^n$ 

#### Proof

- **1**.  $A\mathbf{0} = \mathbf{0} \implies \mathbf{0} \in N(A)$
- 2. Suppose  $\mathbf{u}, \mathbf{v} \in N(A)$ , then  $\mathbf{u} + \mathbf{v} \in N(A)$ :

 $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v} = \mathbf{0} + \mathbf{0} = \mathbf{0}$ 

3. Suppose  $\mathbf{u} \in \mathcal{N}(\mathcal{A})$  and  $\alpha \in \mathbb{R}$ , then  $\alpha \mathbf{u} \in \mathcal{N}(\mathcal{A})$ :

 $A(\alpha \mathbf{u}) = A(\alpha \mathbf{u}) = \alpha A \mathbf{u} = \alpha \mathbf{0} = \mathbf{0}$ 

The set of solutions S to a general system  $A\mathbf{x} = \mathbf{b}$  is not a subspace of  $\mathbb{R}^n$  because  $\mathbf{0} \notin S$ 

# Affine subsets

## Definition (Affine subset)

If W is a subspace of a vector space V and  $x \in V$ , then the set x + W defined by

 $\mathbf{x} + \mathcal{W} = \{\mathbf{x} + \mathbf{w} \mid \mathbf{w} \in \mathcal{W}\}$ 

## is said to be an affine subset of V.

The set of solutions S to a general system  $A\mathbf{x} = \mathbf{b}$  is an affine **subspace**, indeed recall that if  $\mathbf{x}_0$  is any solution of the system

 $S = \{\mathbf{x}_0 + \mathbf{z} \mid \mathbf{z} \in N(A)\}$ 

# Range of a Matrix is a Subspace

#### Theorem

For any  $m \times n$  matrix A,  $R(A) = \{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\}$  is a subspace of  $\mathbb{R}^m$ 

#### <u>Proof</u>

- **1**.  $A\mathbf{0} = \mathbf{0} \implies \mathbf{0} \in R(A)$
- 2. Suppose  $\mathbf{u}, \mathbf{v} \in R(A)$ , then  $\mathbf{u} + \mathbf{v} \in R(A)$ :
- **3**. Suppose  $\mathbf{u} \in R(A)$  and  $\alpha \in \mathbb{R}$ , then  $\alpha \mathbf{u} \in R(A)$ :

• • •

...

# Linear Span

- If  $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k$  and  $\mathbf{w} = \beta_1 \mathbf{v}_1 + \beta_2 \mathbf{v}_2 + \ldots + \beta_k \mathbf{v}_k$ , then  $\mathbf{v} + \mathbf{w}$  and  $s\mathbf{v}, s \in \mathbb{R}$  are also linear combinations of the vectors  $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ .
- The set of all linear combinations of a given set of vectors of a **vector space** V forms a **subspace**:

## Definition (Linear span)

Let V be a vector space and  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$ . The linear span of  $X = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k}$  is the set of all linear combinations of the vectors  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ , denoted by Lin(X), that is:

$$\mathsf{Lin}(\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}) = \{\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k \mid \alpha_1, \alpha_2, \dots, \alpha_k \in \mathbb{R}\}$$

#### Theorem

If  $X = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k}$  is a set of vectors of a vector space V, then Lin(X) is a subspace of V and is also called the subspace spanned by X. It is the smallest subspace containing the vectors  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ .

- $\operatorname{Lin}({\mathbf{v}}) = {\alpha \mathbf{v} \mid \alpha \in \mathbb{R}}$  defines a line in  $\mathbb{R}^n$ .
- Recall that a plane in  $\mathbb{R}^3$  has two equivalent representations:

ax + by + cz = d and  $\mathbf{x} = \mathbf{p} + s\mathbf{v} + t\mathbf{w}, s, t \in \mathbb{R}$ 

where **v** and **w** are non parallel.

```
- If d = 0 and \mathbf{p} = \mathbf{0}, then
```

 $\{\mathbf{x} \mid \mathbf{x} = s\mathbf{v} + t\mathbf{w}, s, t, \in \mathbb{R}\} = \text{Lin}(\{\mathbf{v}, \mathbf{w}\})$ 

and hence a **subspace** of  $\mathbb{R}^n$ .

- If  $d \neq 0$ , then the plane is not a subspace. It is an affine subset, a translation of a subspace. (recall that one can also show directly that a subset is a subspace or not)

# Spanning Sets of a Matrix

### Definition (Column space)

If A is an  $m \times n$  matrix, and if  $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$  denote the columns of A, then the column space or range of A is

 $CS(A) = R(A) = Lin(\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k\})$ 

and is a **subspace** of  $\mathbb{R}^m$ .

#### Definition (Row space)

If A is an  $m \times n$  matrix, and if  $\overrightarrow{a}_1, \overrightarrow{a}_2, \ldots, \overrightarrow{a}_k$  denote the rows of A, then the row space of A is

 $RS(A) = Lin(\{\overrightarrow{a}_1, \overrightarrow{a}_2, \dots, \overrightarrow{a}_k\})$ 

and is a **subspace** of  $\mathbb{R}^n$ .

If A is an m×n matrix, then for any r ∈ RS(A) and any x ∈ N(A), (r, x) = 0; that is, r and x are orthogonal, RS(A) ⊥ N(A).
 (hint: look at Ax = 0)

# Summary

We have seen:

- Definition of vector space and subspace
- Linear combinations as the main way to work with vector spaces
- Proofs that a given set is a vector space
- Proofs that a given subset of a vector space is a subspace or not
- Definition of linear span of set of vectors
- Definition of row and column spaces of a matrix CS(A) = R(A) and  $RS(A) \perp N(A)$



Vector Spaces and Subspaces Linear independence Bases and Dimension

1. Vector Spaces and Subspaces

#### 2. Linear independence

3. Bases and Dimension

# Linear Independence

### Definition (Linear Independence)

Let V be a vector space and  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$ . Then  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$  are linearly independent (or form a linearly independent set) if and only if the vector equation

 $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k = \mathbf{0}$ 

has the unique solution

 $\alpha_1 = \alpha_2 = \cdots = \alpha_k = 0$ 

#### Definition (Linear Dependence)

Let V be a vector space and  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$ . Then  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$  are linearly dependent (or form a linearly dependent set) if and only if there are real numbers  $\alpha_1, \alpha_2, \dots, \alpha_k$ , not all zero, such that

 $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k = \mathbf{0}$ 

In  $\mathbb{R}^2$ , the vectors

$$\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 and  $\mathbf{w} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ 

are linearly independent. Indeed:

$$\alpha \begin{bmatrix} 1\\ 2 \end{bmatrix} + \beta \begin{bmatrix} 1\\ -1 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix} \implies \qquad \begin{cases} \alpha + \beta = 0\\ 2\alpha - \beta = 0 \end{cases}$$

The homogeneous linear system has only the trivial solution,  $\alpha=0,\beta=$ 0, so linear independence.

In  $\mathbb{R}^3$ , the following vectors are linearly dependent:

$$\mathbf{v}_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \qquad \mathbf{v}_2 = \begin{bmatrix} 2\\1\\5 \end{bmatrix}, \qquad \mathbf{v}_3 = \begin{bmatrix} 4\\5\\11 \end{bmatrix}$$

Indeed:  $2v_1 + v_2 + v_3 = 0$ 

#### Theorem

The set  $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\} \subseteq V$  is linearly dependent if and only if at least one vector  $\mathbf{v}_i$  is a linear combination of the other vectors.

#### <u>Proof</u>

#### $\implies$

If  $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$  are linearly dependent then

 $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k = \mathbf{0}$ 

has a solution with some  $\alpha_i \neq 0$ , then:

$$\mathbf{v}_{i} = -\frac{\alpha_{1}}{\alpha_{i}}\mathbf{v}_{1} - \frac{\alpha_{2}}{\alpha_{i}}\mathbf{v}_{2} - \dots - \frac{\alpha_{i-1}}{\alpha_{i}}\mathbf{v}_{i-1} - \frac{\alpha_{i+1}}{\alpha_{i}}\mathbf{v}_{i+1} + \dots - \frac{\alpha_{k}}{\alpha_{i}}\mathbf{v}_{k}$$

which is a linear combination of the other vectors

If  $\mathbf{v}_i$  is a lin combination of the other vectors, eg,

$$\mathbf{v}_i = \beta_1 \mathbf{v}_1 + \dots + \beta_{i-1} \mathbf{v}_{i-1} + \beta_{i+1} \mathbf{v}_{i+1} + \dots + \beta_k \mathbf{v}_k$$

then

 $\leftarrow$ 

$$\beta_1 \mathbf{v}_1 + \dots + \beta_{i-1} \mathbf{v}_{i-1} - \mathbf{v}_i + \beta_{i+1} \mathbf{v}_{i+1} + \dots + \beta_k \mathbf{v}_k = \mathbf{0}$$

#### Corollary

Two vectors are linearly dependent if and only if at least one vector is a scalar multiple of the other.

#### Example

$$\mathbf{v}_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \qquad \mathbf{v}_2 = \begin{bmatrix} 2\\1\\5 \end{bmatrix}$$

are linearly independent

#### Theorem

In a vector space V, a non-empty set of vectors that contains the zero vector is linearly dependent.

Proof:

 $\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k\}\subset V$ 

 $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k, \mathbf{0}\}$ 

 $0\mathbf{v}_1 + 0\mathbf{v}_2 + \ldots + 0\mathbf{v}_k + a\mathbf{0} = \mathbf{0}, \qquad a \neq 0$ 

# Uniqueness of linear combinations

#### Theorem

If  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$  are linearly independent vectors in V and if

 $a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \ldots + a_k\mathbf{v}_k = b_1\mathbf{v}_1 + b_2\mathbf{v}_2 + \ldots + b_k\mathbf{v}_k$ 

then

$$a_1 = b_1, \quad a_2 = b_2, \quad \dots \quad a_k = b_k.$$

• If a vector **x** can be expressed as a linear combination of linearly independent vectors, then this can be done in only one way

 $\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k$ 

# Testing for Linear Independence in $\mathbb{R}^n$

Vector Spaces and Subspaces Linear independence Bases and Dimension

For k vectors  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in \mathbb{R}^n$ 

 $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k$ 

is equivalent to

#### Ax

where A is the  $n \times k$  matrix whose columns are the vectors  $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$  and  $\mathbf{x} = [\alpha_1, \alpha_2, \ldots, \alpha_k]^T$ :

#### Theorem

The vectors  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$  in  $\mathbb{R}^n$  are linearly dependent if and only if the linear system  $A\mathbf{x} = \mathbf{0}$ , where A is the matrix  $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_k]$ , has a solution other than  $\mathbf{x} = \mathbf{0}$ . Equivalently, the vectors are linearly independent precisely when the only solution to the system is  $\mathbf{x} = \mathbf{0}$ .

If vectors are linearly dependent, then any solution  $\mathbf{x} \neq \mathbf{0}$ ,  $\mathbf{x} = [\alpha_1, \alpha_2, \dots, \alpha_k]^T$  of  $A\mathbf{x} = \mathbf{0}$  gives a non-trivial linear combination  $A\mathbf{x} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \mathbf{0}$ 

$$\mathbf{v}_1 = \begin{bmatrix} 1\\2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1\\-1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 2\\-5 \end{bmatrix}$$

are linearly dependent. We solve  $A\mathbf{x} = \mathbf{0}$ 

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & -1 & -5 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \end{bmatrix}$$

The general solution is

$$\mathbf{v} = \begin{bmatrix} t \\ -3t \\ t \end{bmatrix}$$

and 
$$A\mathbf{x} = t\mathbf{v}_1 - 3t\mathbf{v}_2 + t\mathbf{v}_3 = \mathbf{0}$$
  
Hence, for  $t = 1$  we have:  $1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} - 3 \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 2 \\ -5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 

Recall that  $A\mathbf{x} = \mathbf{0}$  has precisely one solution  $\mathbf{x} = \mathbf{0}$  iff the  $n \times k$  matrix is row equiv. to a row echelon matrix with k leading ones, ie, iff rank(A) = k

#### Theorem

Let  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in \mathbb{R}^n$ . The set  $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$  is linearly independent iff the  $n \times k$  matrix  $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \dots \ \mathbf{v}_k]$  has rank k.

#### Theorem

The maximum size of a linearly independent set of vectors in  $\mathbb{R}^n$  is n.

- rank(A)  $\leq \min\{n, k\}$ , hence rank(A)  $\leq n \Rightarrow$  when lin. indep.  $k \leq n$ .
- we exhibit an example that has exactly n independent vectors in  $\mathbb{R}^n$  (there are infinite examples):

$$\mathbf{e}_{1} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \qquad \mathbf{e}_{2} = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \qquad \dots, \qquad \mathbf{e}_{n} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

This is known as the standard basis of  $\mathbb{R}^n$ .

5 > n = 4

rank(A) = 2

 $L_3 \subseteq L_4$ 

# Linear Independence and Span in $\mathbb{R}^n$

Let  $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k}$  be a set of vectors in  $\mathbb{R}^n$ . What are the conditions for S to span  $\mathbb{R}^n$  and be linearly independent?

Let A be the  $n \times k$  matrix whose columns are the vectors from S.

- S spans ℝ<sup>n</sup> if for any v ∈ ℝ<sup>n</sup> the linear system Ax = v is consistent for all v ∈ ℝ<sup>n</sup>. This happens when rank(A) = n, hence k ≥ n
- S is linearly independent iff the linear system  $A\mathbf{x} = \mathbf{0}$  has a unique solution. This happens when rank(A) = k, Hence  $k \leq n$

Hence, to span  $\mathbb{R}^n$  and to be linearly independent, the set S must have exactly n vectors and the square matrix A must have  $det(A) \neq 0$ 

### Example

$$\mathbf{v}_{1} = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}, \ \mathbf{v}_{2} = \begin{bmatrix} 2\\ 1\\ 5 \end{bmatrix}, \ \mathbf{v}_{3} = \begin{bmatrix} 4\\ 5\\ 1 \end{bmatrix} \qquad |A| = \begin{vmatrix} 1 & 2 & 4\\ 2 & 1 & 5\\ 3 & 5 & 1 \end{vmatrix} = 30 \neq 0$$



Vector Spaces and Subspaces Linear independence Bases and Dimension

1. Vector Spaces and Subspaces

2. Linear independence

3. Bases and Dimension

## Bases

## Definition (Basis)

Let V be a vector space. Then the subset  $B = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$  of V is said to be a basis for V if:

- 1. B is a linearly independent set of vectors, and
- 2. B spans V; that is, V = Lin(B)

#### Theorem

If V is a vector space, then a smallest spanning set is a basis of V.

#### Theorem

 $B = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$  is a basis of V if and only if any  $\mathbf{v} \in V$  is a unique linear combination of  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ 

 $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$  is the standard basis of  $\mathbb{R}^n$ . the vectors are linearly independent and for any  $\mathbf{x} = [x_1, x_2, \dots, x_n]^T \in \mathbb{R}^n$ ,  $\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \ldots + x_n \mathbf{e}_n$ , ie,

$$\mathbf{x} = x_1 \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix} + x_2 \begin{bmatrix} 0\\1\\\vdots\\0 \end{bmatrix} + \ldots + x_n \begin{bmatrix} 0\\0\\\vdots\\1 \end{bmatrix}$$

## Example

The set below is a basis of  $\mathbb{R}^2$ :

 $S = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} 
ight\}$ 

- any vector b ∈ ℝ<sup>2</sup> is a linear combination of the two vectors in S
   → Ax = b is consistent for any b.
- S spans  $\mathbb{R}^2$  and is linearly independent

Find a basis of the subspace of  $\mathbb{R}^3$  given by

$$W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \middle| x + y - 3z = 0 \right\}.$$

$$\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ -x + 3z \\ z \end{bmatrix} = x \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + z \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix} = x\mathbf{v} + z\mathbf{w}, \quad \forall x, z \in \mathbb{R}$$

The set  $\{\mathbf{v}, \mathbf{w}\}$  spans W. The set is also independent:

$$\alpha \mathbf{v} + \beta \mathbf{w} = \mathbf{0} \implies \alpha = \mathbf{0}, \beta = \mathbf{0}$$

# Coordinates

### Definition (Coordinates)

If  $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$  is a basis of a vector space V, then any vector  $\mathbf{v} \in V$  can be expressed uniquely as  $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n$  then the real numbers  $\alpha_1, \alpha_2, \dots, \alpha_n$  are the coordinates of  $\mathbf{v}$  with respect to the basis S. We use the notation

 $[\mathbf{v}]_{S} = \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n} \end{bmatrix}_{S}$ 

to denote the coordinate vector of  $\mathbf{v}$  in the basis S.

- We assume the order of the vectors in the basis to be fixed: aka, ordered basis
- Note that [v]<sub>S</sub> is a vector in ℝ<sup>n</sup>: Coordinate mapping creates a one-to-one correspondence between a general vector space V and the fmailiar vector space ℝ<sup>n</sup>.

Consider the two basis of  $\mathbb{R}^2$ :

$$B = \left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$$
$$S = \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \right\}$$
$$[\mathbf{v}]_B = \begin{bmatrix} 2\\-5 \end{bmatrix}_B$$
$$[\mathbf{v}]_S = \begin{bmatrix} -1\\3 \end{bmatrix}_S$$

In the standard basis the coordinates of **v** are precisely the components of the vector **v**. In the basis S, they are such that

$$\mathbf{v} = -1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 3 \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$$

# Extension of the main theorem

#### Theorem

If A is an  $n \times n$  matrix, then the following statements are equivalent:

- 1. A is invertible
- 2. Ax = b has a unique solution for any b  $\in \mathbb{R}$
- 3.  $A\mathbf{x} = \mathbf{0}$  has only the trivial solution,  $\mathbf{x} = \mathbf{0}$
- 4. the reduced row echelon form of A is I.
- **5**.  $|A| \neq 0$
- 6. The rank of A is n
- 7. The column vectors of A are a basis of  $\mathbb{R}^n$
- 8. The rows of A (written as vectors) are a basis of  $\mathbb{R}^n$

(The last statement derives from  $|A^{T}| = |A|$ .) Hence, simply calculating the determinant can inform on all the above facts.

$$\mathbf{v}_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 2\\1\\5 \end{bmatrix}, \ \mathbf{v}_3 = \begin{bmatrix} 4\\5\\11 \end{bmatrix}$$

This set is linearly dependent since  $\mathbf{v}_3 = 2\mathbf{v}_1 + \mathbf{v}_2$ so  $\mathbf{v}_3 \in \text{Lin}(\{\mathbf{v}_1, \mathbf{v}_2\})$  and  $\text{Lin}(\{\mathbf{v}_1, \mathbf{v}_2\}) = \text{Lin}(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\})$ . The linear span of  $\{\mathbf{v}_1, \mathbf{v}_2\}$  in  $\mathbb{R}^3$  is a plane:

$$\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = s\mathbf{v}_1 + t\mathbf{v}_2 = s \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + t \begin{bmatrix} 2 \\ 1 \\ 5 \end{bmatrix}$$

The vector **x** belongs to the **subspace** iff it can be expressed as a linear combination of  $v_1, v_2$ , that is, if  $v_1, v_2, x$  are linearly dependent or:

$$|A| = \begin{vmatrix} 1 & 2 & x \\ 2 & 1 & y \\ 3 & 5 & z \end{vmatrix} = 0 \implies |A| = 7x + y - 3z = 0$$

# Dimension

#### Theorem

#### Let V be a vector space with a basis

 $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ 

of *n* vectors. Then any set of n + 1 vectors is linearly dependent.

<u>Proof</u>:

Omitted (choose an arbitrary set of n + 1 vectors in V and show that since any of them is spanned by the basis then the set must be linearly dependent.)

It follows that:

#### Theorem

Let a **vector space** V have a finite basis consisting of r vectors. Then any basis of V consists of exactly r vectors.

## Definition (Dimension)

The number of k vectors in a finite basis of a **vector space** V is the dimension of V and is denoted by  $\dim(V)$ . The **vector space**  $V = \{\mathbf{0}\}$  is defined to have dimension 0.

- a plane in  $\mathbb{R}^2$  is a two-dimensional subspace
- a line in  $\mathbb{R}^n$  is a one-dimensional **subspace**
- a hyperplane in  $\mathbb{R}^n$  is an (n-1)-dimensional **subspace** of  $\mathbb{R}^n$
- the vector space F of real functions is an infinite-dimensional vector space
- the vector space of real-valued sequences is an infinite-dimensional vector space.

The plane W in  $\mathbb{R}^3$ 

 $W = \{\mathbf{x} \mid x + y - 3z = 0\}$ 

has a basis consisting of the vectors  $\mathbf{v}_1 = [1, 2, 1]^T$  and  $\mathbf{v}_2 = [3, 0, 1]^T$ .

Let  $\mathbf{v}_3$  be any vector  $\notin W$ , eg,  $\mathbf{v}_3 = [1, 0, 0]^T$ . Then the set  $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$  is a basis of  $\mathbb{R}^3$ .

If we are given k vectors  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$  in  $\mathbb{R}^n$ , how can we find a basis for  $\text{Lin}(\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\})$ ?

We can:

• create an  $n \times k$  matrix (vectors as columns) and find a basis for the column space by putting the matrix in reduced row echelon form

Definition (Rank and nullity) The rank of a matrix A is

The nullity of a matrix A is

 $\operatorname{rank}(A) = \dim(R(A))$ 

 $\operatorname{nullity}(A) = \dim(N(A))$ 

Although subspaces of possibly different Euclidean spaces:

Theorem

If A is an  $m \times n$  matrix, then

 $\dim(RS(A)) = \dim(CS(A)) = \operatorname{rank}(A)$ 

Theorem (Rank-nullity theorem) For an  $m \times n$  matrix A

 $\operatorname{rank}(A) + \operatorname{nullity}(A) = n$ 

 $(\dim(R(A)) + \dim(N(A)) = n)$ 



Vector Spaces and Subspaces Linear independence Bases and Dimension

- Linear dependence and independence
- Determine linear dependency of a set of vectors, ie, find non-trivial lin. combination that equal zero
- Basis
- Find a basis for a linear space
- Dimension (finite, infinite)