DM559
 Linear and Integer Programming
 Lecture 7
 Vector Spaces
 Linear Independence, Bases and Dimension

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Vector Spaces and Subspaces
2. Linear independence
3. Bases and Dimension

Outline

1. Vector Spaces and Subspaces
2. Linear independence
3. Bases and Dimension

Premise

- We move to a higher level of abstraction
- A vector space is a set with an addition and scalar multiplication that behave appropriately, that is, like \mathbb{R}^{n}
- Imagine a vector space as a class of a generic type (template) in object oriented programming, equipped with two operations.

Vector Spaces

Definition (Vector Space)

A (real) vector space V is a non-empty set equipped with an addition and a scalar multiplication operation such that for all $\alpha, \beta \in \mathbb{R}$ and all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$:

1. $\mathbf{u}+\mathbf{v} \in V$ (closure under addition)
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ (commutative law for addition)
3. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$ (associative law for addition)
4. there is a single member $\mathbf{0}$ of V, called the zero vector, such that for all $\mathbf{v} \in V, \mathbf{v}+\mathbf{0}=\mathbf{v}$
5. for every $\mathbf{v} \in V$ there is an element $\mathbf{w} \in V$, written $-\mathbf{v}$, called the negative of \mathbf{v}, such that $\mathbf{v}+\mathbf{w}=\mathbf{0}$
6. $\alpha \mathbf{v} \in V$ (closure under scalar multiplication)
7. $\alpha(\mathbf{u}+\mathbf{v})=\alpha \mathbf{u}+\alpha \mathbf{v}$ (distributive law)
8. $(\alpha+\beta) \mathbf{v}=\alpha \mathbf{v}+\beta \mathbf{v}$ (distributive law)
9. $\alpha(\beta \mathbf{v})=(\alpha \beta) \mathbf{v}$ (associative law for vector multiplication)
10. $1 \mathbf{v}=\mathbf{v}$

Examples

- set \mathbb{R}^{n}
- but the set of objects for which the vector space defined is valid are more than the vectors in \mathbb{R}^{n}.
- set of all functions $F: \mathbb{R} \rightarrow \mathbb{R}$. We can define an addition $f+g$:

$$
(f+g)(x)=f(x)+g(x)
$$

and a scalar multiplication αf :

$$
(\alpha f)(x)=\alpha f(x)
$$

- Example: $x+x^{2}$ and $2 x$. They can represent the result of the two operations.
- What is $-f$? and the zero vector?

The axioms given are minimum number needed.
Other properties can be derived:
For example:

$$
(-1) x=-x
$$

Proof:

$$
\mathbf{0}=0 \mathbf{x}=(1+(-1)) \mathbf{x}=1 \mathbf{x}+(-1) \mathbf{x}=\mathbf{x}+(-1) \mathbf{x}
$$

Adding -x on both sides:

$$
-\mathbf{x}=-\mathbf{x}+\mathbf{0}=-\mathbf{x}+\mathbf{x}+(-1) \mathbf{x}=(-1) \mathbf{x}
$$

which proves that $-\mathbf{x}=(-1) \mathbf{x}$.
Try the same with $-f$.

Examples

- $V=\{0\}$
- the set of all $m \times n$ matrices
- the set of all infinite sequences of real numbers, $\mathbf{y}=\left\{y_{1}, y_{2}, \ldots, y_{n}, \ldots,\right\}, y_{i} \in \mathbb{R}$. $\left(y=\left\{y_{n}\right\}, n \geq 1\right)$
- addition of $\mathbf{y}=\left\{y_{1}, y_{2}, \ldots, y_{n}, \ldots,\right\}$ and $\mathbf{z}=\left\{z_{1}, z_{2}, \ldots, z_{n}, \ldots,\right\}$ then:

$$
\mathbf{y}+\mathbf{z}=\left\{y_{1}+z_{1}, y_{2}+z_{2}, \ldots, y_{n}+z_{n}, \ldots,\right\}
$$

- multiplication by a scalar $\alpha \in \mathbb{R}$:

$$
\alpha \mathbf{y}=\left\{\alpha y_{1}, \alpha y_{2}, \ldots, \alpha y_{n}, \ldots,\right\}
$$

- set of all vectors in \mathbb{R}^{3} with the third entry equal to 0 (verify closure):

$$
W=\left\{\left.\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right] \right\rvert\, x, y \in \mathbb{R}\right\}
$$

Linear Combinations

Definition (Linear Combination)

For vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ in a vector space V, the vector

$$
\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\ldots+\alpha_{k} \mathbf{v}_{k}
$$

is called a linear combination of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$.
The scalars α_{i} are called coefficients.

- To find the coefficients that given a set of vertices express by linear combination a given vector, we solve a system of linear equations.
- If F is the vector space of functions from \mathbb{R} to \mathbb{R} then the function $f: x \mapsto 2 x^{2}+3 x+4$ can be expressed as a linear combination of: $g: x \mapsto x^{2}, h: x \mapsto x, k: x \mapsto 1$ that is:

$$
f=2 g+3 h+4 k
$$

- Given two vectors \mathbf{v}_{1} and \mathbf{v}_{2}, is it possible to represent any point in the Cartesian plane?

Subspaces

Definition (Subspace)
A subspace W of a vector space V is a non-empty subset of V that is itself a vector space under the same operations of addition and scalar multiplication as V.

Theorem

Let V be a vector space. Then a non-empty subset W of V is a subspace if and only if both the following hold:

- for all $\mathbf{u}, \mathbf{v} \in W, \mathbf{u}+\mathbf{v} \in W$ (W is closed under addition)
- for all $\mathbf{v} \in W$ and $\alpha \in \mathbb{R}, \alpha \mathbf{v} \in W$ (W is closed under scalar multiplication)
ie, all other axioms can be derived to hold true

Example

- The set of all vectors in \mathbb{R}^{3} with the third entry equal to 0 .
- The set $\{\mathbf{0}\}$ is not empty, it is a subspace since $\mathbf{0}+\mathbf{0}=\mathbf{0}$ and $\alpha \mathbf{0}=\mathbf{0}$ for any $\alpha \in \mathbb{R}$.

Example

In \mathbb{R}^{2}, the lines $y=2 x$ and $y=2 x+1$ can be defined as the sets of vectors:

$$
\begin{array}{ll}
S=\left\{\left.\left[\begin{array}{l}
x \\
y
\end{array}\right] \right\rvert\, y=2 x, x \in \mathbb{R}\right\} & U=\left\{\left.\left[\begin{array}{l}
x \\
y
\end{array}\right] \right\rvert\, y=2 x+1, x \in \mathbb{R}\right\} \\
S=\{\mathbf{x} \mid \mathbf{x}=t \mathbf{v}, t \in \mathbb{R}\} & U=\{\mathbf{x} \mid \mathbf{x}=\mathbf{p}+t \mathbf{v}, t \in \mathbb{R}\} \\
& \mathbf{v}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \mathbf{p}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{array}
$$

Example (cntd)

1. The set S is non-empty, since $\mathbf{0}=0 \mathbf{v} \in S$.
2. closure under addition:

$$
\begin{aligned}
\mathbf{u} & =s\left[\begin{array}{l}
1 \\
2
\end{array}\right] \in S, \quad \mathbf{w}=t\left[\begin{array}{l}
1 \\
2
\end{array}\right] \in S, \quad \text { for some } s, t \in \mathbb{R} \\
\mathbf{u}+\mathbf{w} & =s \mathbf{v}+t \mathbf{v}=(s+t) \mathbf{v} \in S \text { since } s+t \in \mathbb{R}
\end{aligned}
$$

3. closure under scalar multiplication:

$$
\begin{aligned}
\mathbf{u}=s\left[\begin{array}{l}
1 \\
2
\end{array}\right] \in S \quad \text { for some } s \in \mathbb{R}, \quad \alpha \in \mathbb{R} \\
\alpha \mathbf{u}=\alpha(s(\mathbf{v}))=(\alpha s) \mathbf{v} \in S \text { since } \alpha s \in \mathbb{R}
\end{aligned}
$$

Note that:

- \mathbf{u}, \mathbf{w} and $\alpha \in \mathbb{R}$ must be arbitrary

Example (cntd)

1. $0 \notin U$
2. U is not closed under addition:

$$
\left[\begin{array}{l}
0 \\
1
\end{array}\right] \in U,\left[\begin{array}{l}
1 \\
3
\end{array}\right] \in U \quad \text { but } \quad\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
1 \\
4
\end{array}\right] \notin U
$$

3. U is not closed under scalar multiplication

$$
\left[\begin{array}{l}
0 \\
1
\end{array}\right] \in U, 2 \in \mathbb{R} \quad \text { but } \quad 2\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
2
\end{array}\right] \notin U
$$

Note that:

- proving just one of the above couterexamples is enough to show that U is not a subspace
- it is sufficient to make them fail for particular choices
- a good place to start is checking whether $\mathbf{0} \in S$. If not then S is not a subspace

Theorem

A non-empty subset W of a vector space is a subspace if and only if for all $\mathbf{u}, \mathbf{v} \in W$ and all $\alpha, \beta \in \mathbb{R}$, we have $\alpha \mathbf{u}+\beta \mathbf{v} \in W$.
That is, W is closed under linear combination.

Geometric interpretation:

\rightsquigarrow The line $y=2 x+1$ is an affine subset, a ,translation" of a subspace

Null space of a Matrix is a Subspace

Theorem

For any $m \times n$ matrix $A, N(A)$, ie, the solutions of $A \mathbf{x}=0$, is a subspace of \mathbb{R}^{n}
Proof

1. $A 0=0 \quad \Longrightarrow \quad 0 \in N(A)$
2. Suppose $\mathbf{u}, \mathbf{v} \in N(A)$, then $\mathbf{u}+\mathbf{v} \in N(A)$:

$$
A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}=\mathbf{0}+\mathbf{0}=\mathbf{0}
$$

3. Suppose $\mathbf{u} \in N(A)$ and $\alpha \in \mathbb{R}$, then $\alpha \mathbf{u} \in N(A)$:

$$
A(\alpha \mathbf{u})=A(\alpha \mathbf{u})=\alpha A \mathbf{u}=\alpha \mathbf{0}=\mathbf{0}
$$

The set of solutions S to a general system $A \mathbf{x}=\mathbf{b}$ is not a subspace of \mathbb{R}^{n} because $\mathbf{0} \notin S$

Affine subsets

Definition (Affine subset)
If W is a subspace of a vector space V and $\mathbf{x} \in V$, then the set $\mathbf{x}+W$ defined by

$$
\mathbf{x}+W=\{\mathbf{x}+\mathbf{w} \mid \mathbf{w} \in W\}
$$

is said to be an affine subset of V.
The set of solutions S to a general system $A \mathbf{x}=\mathbf{b}$ is an affine subspace, indeed recall that if \mathbf{x}_{0} is any solution of the system

$$
S=\left\{\mathbf{x}_{0}+\mathbf{z} \mid \mathbf{z} \in N(A)\right\}
$$

Range of a Matrix is a Subspace

Theorem
For any $m \times n$ matrix $A, R(A)=\left\{A \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^{n}\right\}$ is a subspace of \mathbb{R}^{m}
Proof

1. $A 0=0 \quad \Longrightarrow \quad 0 \in R(A)$
2. Suppose $\mathbf{u}, \mathbf{v} \in R(A)$, then $\mathbf{u}+\mathbf{v} \in R(A)$:
3. Suppose $\mathbf{u} \in R(A)$ and $\alpha \in \mathbb{R}$, then $\alpha \mathbf{u} \in R(A)$:

Linear Span

- If $\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\ldots+\alpha_{k} \mathbf{v}_{k}$ and $\mathbf{w}=\beta_{1} \mathbf{v}_{1}+\beta_{2} \mathbf{v}_{2}+\ldots+\beta_{k} \mathbf{v}_{k}$, then $\mathbf{v}+\mathbf{w}$ and $s \mathbf{v}, s \in \mathbb{R}$ are also linear combinations of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$.
- The set of all linear combinations of a given set of vectors of a vector space V forms a subspace:

Definition (Linear span)
Let V be a vector space and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in V$. The linear span of $X=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is the set of all linear combinations of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$, denoted by $\operatorname{Lin}(X)$, that is:

$$
\operatorname{Lin}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}\right)=\left\{\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\ldots+\alpha_{k} \mathbf{v}_{k} \mid \alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in \mathbb{R}\right\}
$$

Theorem

If $X=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is a set of vectors of a vector space V, then $\operatorname{Lin}(X)$ is a subspace of V and is also called the subspace spanned by X.
It is the smallest subspace containing the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$.

Example

- $\operatorname{Lin}(\{\mathbf{v}\})=\{\alpha \mathbf{v} \mid \alpha \in \mathbb{R}\}$ defines a line in \mathbb{R}^{n}.
- Recall that a plane in \mathbb{R}^{3} has two equivalent representations:

$$
a x+b y+c z=d \quad \text { and } \quad \mathbf{x}=\mathbf{p}+s \mathbf{v}+t \mathbf{w}, \quad s, t \in \mathbb{R}
$$

where \mathbf{v} and \mathbf{w} are non parallel.

- If $d=0$ and $\mathbf{p}=0$, then

$$
\{\mathbf{x} \mid \mathbf{x}=s \mathbf{v}+t \mathbf{w}, s, t, \in \mathbb{R}\}=\operatorname{Lin}(\{\mathbf{v}, \mathbf{w}\})
$$

and hence a subspace of \mathbb{R}^{n}.

- If $d \neq 0$, then the plane is not a subspace. It is an affine subset, a translation of a subspace. (recall that one can also show directly that a subset is a subspace or not)

Spanning Sets of a Matrix

Definition (Column space)
If A is an $m \times n$ matrix, and if $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{k}$ denote the columns of A, then the column space or range of A is

$$
\operatorname{CS}(A)=R(A)=\operatorname{Lin}\left(\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{k}\right\}\right)
$$

and is a subspace of \mathbb{R}^{m}.
Definition (Row space)
If A is an $m \times n$ matrix, and if $\overrightarrow{\mathbf{a}}_{1}, \overrightarrow{\mathbf{a}}_{2}, \ldots, \overrightarrow{\mathbf{a}}_{k}$ denote the rows of A, then the row space of A is

$$
R S(A)=\operatorname{Lin}\left(\left\{\overrightarrow{\mathbf{a}}_{1}, \overrightarrow{\mathbf{a}}_{2}, \ldots, \overrightarrow{\mathbf{a}}_{k}\right\}\right)
$$

and is a subspace of \mathbb{R}^{n}.

- If A is an $m \times n$ matrix, then for any $\mathbf{r} \in R S(A)$ and any $\mathbf{x} \in N(A),\langle\mathbf{r}, \mathbf{x}\rangle=0$; that is, \mathbf{r} and \mathbf{x} are orthogonal, $R S(A) \perp N(A)$.
(hint: look at $A \mathrm{x}=0$)

Summary

We have seen:

- Definition of vector space and subspace
- Linear combinations as the main way to work with vector spaces
- Proofs that a given set is a vector space
- Proofs that a given subset of a vector space is a subspace or not
- Definition of linear span of set of vectors
- Definition of row and column spaces of a matrix

$$
C S(A)=R(A) \text { and } R S(A) \perp N(A)
$$

Outline

1. Vector Spaces and Subspaces
2. Linear independence
3. Bases and Dimension

Linear Independence

Definition (Linear Independence)
Let V be a vector space and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in V$. Then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent (or form a linearly independent set) if and only if the vector equation

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{k} \mathbf{v}_{k}=\mathbf{0}
$$

has the unique solution

$$
\alpha_{1}=\alpha_{2}=\cdots=\alpha_{k}=0
$$

Definition (Linear Dependence)
Let V be a vector space and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in V$. Then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly dependent (or form a linearly dependent set) if and only if there are real numbers $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}$, not all zero, such that

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{k} \mathbf{v}_{k}=\mathbf{0}
$$

Example

In \mathbb{R}^{2}, the vectors

$$
\mathbf{v}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad \text { and } \quad \mathbf{w}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

are linearly independent. Indeed:

$$
\alpha\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\beta\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \Longrightarrow \quad\left\{\begin{array}{r}
\alpha+\beta=0 \\
2 \alpha-\beta=0
\end{array}\right.
$$

The homogeneous linear system has only the trivial solution, $\alpha=0, \beta=0$, so linear independence.

Example
In \mathbb{R}^{3}, the following vectors are linearly dependent:

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
2 \\
1 \\
5
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
4 \\
5 \\
11
\end{array}\right]
$$

Indeed: $2 \mathbf{v}_{1}+\mathbf{v}_{\mathbf{2}}+\mathbf{v}_{3}=\mathbf{0}$

Theorem

The set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\} \subseteq V$ is linearly dependent if and only if at least one vector \mathbf{v}_{i} is a linear combination of the other vectors.

Proof

If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ are linearly dependent then

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{k} \mathbf{v}_{k}=\mathbf{0}
$$

has a solution with some $\alpha_{i} \neq 0$, then:

$$
\mathbf{v}_{i}=-\frac{\alpha_{1}}{\alpha_{i}} \mathbf{v}_{1}-\frac{\alpha_{2}}{\alpha_{i}} \mathbf{v}_{2}-\cdots-\frac{\alpha_{i-1}}{\alpha_{i}} \mathbf{v}_{i-1}-\frac{\alpha_{i+1}}{\alpha_{i}} \mathbf{v}_{i+1}+\cdots-\frac{\alpha_{k}}{\alpha_{i}} \mathbf{v}_{k}
$$

which is a linear combination of the other vectors
\qquad
If \mathbf{v}_{i} is a lin combination of the other vectors, eg,

$$
\mathbf{v}_{i}=\beta_{1} \mathbf{v}_{1}+\cdots+\beta_{i-1} \mathbf{v}_{i-1}+\beta_{i+1} \mathbf{v}_{i+1}+\cdots+\beta_{k} \mathbf{v}_{k}
$$

then

$$
\beta_{1} \mathbf{v}_{1}+\cdots+\beta_{i-1} \mathbf{v}_{i-1}-\mathbf{v}_{i}+\beta_{i+1} \mathbf{v}_{i+1}+\cdots+\beta_{k} \mathbf{v}_{k}=\mathbf{0}
$$

Corollary
Two vectors are linearly dependent if and only if at least one vector is a scalar multiple of the other.

Example

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
2 \\
1 \\
5
\end{array}\right]
$$

are linearly independent

Theorem

In a vector space V, a non-empty set of vectors that contains the zero vector is linearly dependent.
Proof:

$$
\begin{aligned}
& \left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\} \subset V \\
& \left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}, \mathbf{0}\right\} \\
& 0 \mathbf{v}_{1}+0 \mathbf{v}_{2}+\ldots+0 \mathbf{v}_{k}+a \mathbf{0}=\mathbf{0}, \quad a \neq 0
\end{aligned}
$$

Uniqueness of linear combinations

Theorem

If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent vectors in V and if

$$
a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\ldots+a_{k} \mathbf{v}_{k}=b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2}+\ldots+b_{k} \mathbf{v}_{k}
$$

then

$$
a_{1}=b_{1}, \quad a_{2}=b_{2}, \quad \ldots \quad a_{k}=b_{k}
$$

- If a vector x can be expressed as a linear combination of linearly independent vectors, then this can be done in only one way

$$
\mathbf{x}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{k} \mathbf{v}_{k}
$$

Testing for Linear Independence in \mathbb{R}^{n}

For k vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in \mathbb{R}^{n}$

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{k} \mathbf{v}_{k}
$$

is equivalent to

Ax

where A is the $n \times k$ matrix whose columns are the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ and $\mathbf{x}=\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right]^{T}$:

Theorem

The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ in \mathbb{R}^{n} are linearly dependent if and only if the linear system $A \mathbf{x}=\mathbf{0}$, where A is the matrix $A=\left[\mathbf{v}_{1} \mathbf{v}_{2} \cdots \mathbf{v}_{k}\right]$, has a solution other than $\mathbf{x}=\mathbf{0}$.
Equivalently, the vectors are linearly independent precisely when the only solution to the system is $\mathrm{x}=0$.

If vectors are linearly dependent, then any solution $\mathbf{x} \neq \mathbf{0}, \mathbf{x}=\left[\alpha_{1}, \alpha_{2} \ldots, \alpha_{k}\right]^{T}$ of $\boldsymbol{A} \mathbf{x}=\mathbf{0}$ gives a non-trivial linear combination $\boldsymbol{A} \mathbf{x}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\ldots+\alpha_{k} \mathbf{v}_{k}=\mathbf{0}$

Example

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
2 \\
-5
\end{array}\right]
$$

are linearly dependent.
We solve $A \mathbf{x}=\mathbf{0}$

$$
A=\left[\begin{array}{ccc}
1 & 1 & 2 \\
2 & -1 & -5
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 3
\end{array}\right]
$$

The general solution is

$$
\mathbf{v}=\left[\begin{array}{c}
t \\
-3 t \\
t
\end{array}\right]
$$

and $A \mathbf{x}=t \mathbf{v}_{1}-3 t \mathbf{v}_{2}+t \mathbf{v}_{3}=\mathbf{0}$
Hence, for $t=1$ we have:

$$
1\left[\begin{array}{l}
1 \\
2
\end{array}\right]-3\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+\left[\begin{array}{c}
2 \\
-5
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Recall that $A \mathbf{x}=\mathbf{0}$ has precisely one solution $\mathbf{x}=\mathbf{0}$ iff the $n \times k$ matrix is row equiv. to a row echelon matrix with k leading ones, ie, iff $\operatorname{rank}(A)=k$

Theorem
Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in \mathbb{R}^{n}$. The set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is linearly independent iff the $n \times k$ matrix $A=\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \ldots & \mathbf{v}_{k}\end{array}\right]$ has rank k.

Theorem
The maximum size of a linearly independent set of vectors in \mathbb{R}^{n} is n.

- $\operatorname{rank}(A) \leq \min \{n, k\}$, hence $\operatorname{rank}(A) \leq n \Rightarrow$ when lin. indep. $k \leq n$.
- we exhibit an example that has exactly n independent vectors in \mathbb{R}^{n} (there are infinite examples):

$$
\mathbf{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right], \quad \ldots, \quad \mathbf{e}_{n}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]
$$

This is known as the standard basis of \mathbb{R}^{n}.

Example

$$
\begin{aligned}
& L_{1}=\left\{\left[\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
9 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
3 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
5 \\
9 \\
1
\end{array}\right]\right\} \text { lin. dep. since } 5>n=4 \\
& L_{2}=\left\{\left[\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
9 \\
2
\end{array}\right]\right\} \\
& L_{3}=\left\{\left[\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
9 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
3 \\
1
\end{array}\right]\right\} \quad \text { lin. indep. } \\
& L_{4}=\left\{\left[\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
9 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
3 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]\right\} \quad \text { lin. dep. since } \operatorname{rank}(A)=2
\end{aligned}
$$

Linear Independence and Span in \mathbb{R}^{n}

Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ be a set of vectors in \mathbb{R}^{n}.
What are the conditions for S to span \mathbb{R}^{n} and be linearly independent?
Let A be the $n \times k$ matrix whose columns are the vectors from S.

- S spans \mathbb{R}^{n} if for any $v \in \mathbb{R}^{n}$ the linear system $A \mathbf{x}=\mathbf{v}$ is consistent for all $\mathbf{v} \in \mathbb{R}^{n}$. This happens when $\operatorname{rank}(A)=n$, hence $k \geq n$
- S is linearly independent iff the linear system $A \mathbf{x}=0$ has a unique solution. This happens when $\operatorname{rank}(A)=k$, Hence $k \leq n$

Hence, to span \mathbb{R}^{n} and to be linearly independent, the set S must have exactly n vectors and the square matrix A must have $\operatorname{det}(A) \neq 0$

Example

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
2 \\
1 \\
5
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
4 \\
5 \\
1
\end{array}\right] \quad|A|=\left|\begin{array}{lll}
1 & 2 & 4 \\
2 & 1 & 5 \\
3 & 5 & 1
\end{array}\right|=30 \neq 0
$$

Outline

1. Vector Spaces and Subspaces
2. Linear independence
3. Bases and Dimension

Bases

Definition (Basis)
Let V be a vector space. Then the subset $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ of V is said to be a basis for V if:

1. B is a linearly independent set of vectors, and
2. B spans V; that is, $V=\operatorname{Lin}(B)$

Theorem

If V is a vector space, then a smallest spanning set is a basis of V.

Theorem

$B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of V if and only if any $\mathbf{v} \in V$ is a unique linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$

Example
$\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ is the standard basis of \mathbb{R}^{n}.
the vectors are linearly independent and for any $\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T} \in \mathbb{R}^{n}$, $\mathbf{x}=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+\ldots+x_{n} \mathbf{e}_{n}$, ie,

$$
\mathbf{x}=x_{1}\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right]+\ldots+x_{n}\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]
$$

Example

The set below is a basis of \mathbb{R}^{2} :

$$
S=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right\}
$$

- any vector $\mathbf{b} \in \mathbb{R}^{2}$ is a linear combination of the two vectors in S $\rightsquigarrow A \mathbf{x}=\mathbf{b}$ is consistent for any \mathbf{b}.
- S spans \mathbb{R}^{2} and is linearly independent

Example

Find a basis of the subspace of \mathbb{R}^{3} given by

$$
\begin{aligned}
& W=\left\{\left.\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \right\rvert\, x+y-3 z=0\right\} . \\
& \mathbf{x}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
x \\
-x+3 z \\
z
\end{array}\right]=x\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]+z\left[\begin{array}{l}
0 \\
3 \\
1
\end{array}\right]=x \mathbf{v}+z \mathbf{w}, \quad \forall x, z \in \mathbb{R}
\end{aligned}
$$

The set $\{\mathbf{v}, \mathbf{w}\}$ spans W. The set is also independent:

$$
\alpha \mathbf{v}+\beta \mathbf{w}=\mathbf{0} \Longrightarrow \alpha=0, \beta=0
$$

Coordinates

Definition (Coordinates)

If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of a vector space V, then any vector $\mathbf{v} \in V$ can be expressed uniquely as $\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\ldots+\alpha_{n} \mathbf{v}_{n}$ then the real numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are the coordinates of v with respect to the basis S.
We use the notation

$$
[\mathbf{v}]_{S}=\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right]_{S}
$$

to denote the coordinate vector of v in the basis S.

- We assume the order of the vectors in the basis to be fixed: aka, ordered basis
- Note that $[\mathbf{v}]_{S}$ is a vector in \mathbb{R}^{n} : Coordinate mapping creates a one-to-one correspondence between a general vector space V and the fmailiar vector space \mathbb{R}^{n}.

Example

Consider the two basis of \mathbb{R}^{2} :

$$
\begin{array}{ll}
B=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\} & S=\left\{\left[\begin{array}{c}
1 \\
2
\end{array}\right],\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right\} \\
{[\mathbf{v}]_{B}=\left[\begin{array}{c}
2 \\
-5
\end{array}\right]_{B}} & {[\mathbf{v}]_{S}=\left[\begin{array}{c}
-1 \\
3
\end{array}\right]_{S}}
\end{array}
$$

In the standard basis the coordinates of \mathbf{v} are precisely the components of the vector \mathbf{v}. In the basis S, they are such that

$$
\mathbf{v}=-1\left[\begin{array}{l}
1 \\
2
\end{array}\right]+3\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
2 \\
-5
\end{array}\right]
$$

Extension of the main theorem

Theorem

If A is an $n \times n$ matrix, then the following statements are equivalent:

1. A is invertible
2. $A \mathbf{x}=\mathbf{b}$ has a unique solution for any $\mathbf{b} \in \mathbb{R}$
3. $A \mathbf{x}=\mathbf{0}$ has only the trivial solution, $\mathbf{x}=\mathbf{0}$
4. the reduced row echelon form of A is I.
5. $|A| \neq 0$
6. The rank of A is n
7. The column vectors of A are a basis of \mathbb{R}^{n}
8. The rows of A (written as vectors) are a basis of \mathbb{R}^{n}
(The last statement derives from $\left|A^{T}\right|=|A|$.)
Hence, simply calculating the determinant can inform on all the above facts.

Example

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
2 \\
1 \\
5
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
4 \\
5 \\
11
\end{array}\right]
$$

This set is linearly dependent since $\mathbf{v}_{3}=2 \mathbf{v}_{1}+\mathbf{v}_{2}$
so $\mathbf{v}_{3} \in \operatorname{Lin}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\right)$ and $\operatorname{Lin}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\right)=\operatorname{Lin}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}\right)$.
The linear span of $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ in \mathbb{R}^{3} is a plane:

$$
\mathbf{x}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=s \mathbf{v}_{1}+t \mathbf{v}_{2}=s\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+t\left[\begin{array}{l}
2 \\
1 \\
5
\end{array}\right]
$$

The vector \mathbf{x} belongs to the subspace iff it can be expressed as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}$, that is, if $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{x}$ are linearly dependent or:

$$
|A|=\left|\begin{array}{lll}
1 & 2 & x \\
2 & 1 & y \\
3 & 5 & z
\end{array}\right|=0 \quad \Longrightarrow \quad|A|=7 x+y-3 z=0
$$

Dimension

Theorem

Let V be a vector space with a basis

$$
B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}
$$

of n vectors. Then any set of $n+1$ vectors is linearly dependent.
Proof:
Omitted (choose an arbitrary set of $n+1$ vectors in V and show that since any of them is spanned by the basis then the set must be linearly dependent.)

It follows that:
Theorem
Let a vector space V have a finite basis consisting of r vectors. Then any basis of V consists of exactly r vectors.

Definition (Dimension)
The number of k vectors in a finite basis of a vector space V is the dimension of V and is denoted by $\operatorname{dim}(V)$.
The vector space $V=\{0\}$ is defined to have dimension 0 .

- a plane in \mathbb{R}^{2} is a two-dimensional subspace
- a line in \mathbb{R}^{n} is a one-dimensional subspace
- a hyperplane in \mathbb{R}^{n} is an $(n-1)$-dimensional subspace of \mathbb{R}^{n}
- the vector space F of real functions is an infinite-dimensional vector space
- the vector space of real-valued sequences is an infinite-dimensional vector space.

Dimension and bases of Subspaces

Example
The plane W in \mathbb{R}^{3}

$$
W=\{\mathbf{x} \mid x+y-3 z=0\}
$$

has a basis consisting of the vectors $\mathbf{v}_{1}=[1,2,1]^{T}$ and $\mathbf{v}_{2}=[3,0,1]^{T}$.
Let \mathbf{v}_{3} be any vector $\notin W$, eg, $\mathbf{v}_{3}=[1,0,0]^{T}$. Then the set $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a basis of \mathbb{R}^{3}.

Basis of a Linear Space

If we are given k vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ in \mathbb{R}^{n}, how can we find a basis for $\operatorname{Lin}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}\right)$?

We can:

- create an $n \times k$ matrix (vectors as columns) and find a basis for the column space by putting the matrix in reduced row echelon form

Definition (Rank and nullity)
The rank of a matrix A is
The nullity of a matrix A is

$$
\operatorname{nullity}(A)=\operatorname{dim}(N(A))
$$

Although subspaces of possibly different Euclidean spaces:

Theorem
If A is an $m \times n$ matrix, then

$$
\operatorname{dim}(R S(A))=\operatorname{dim}(C S(A))=\operatorname{rank}(A)
$$

Theorem (Rank-nullity theorem)
For an $m \times n$ matrix A

$$
\operatorname{rank}(A)+\operatorname{nullity}(A)=n
$$

$$
(\operatorname{dim}(R(A))+\operatorname{dim}(N(A))=n)
$$

Summary

- Linear dependence and independence
- Determine linear dependency of a set of vectors, ie, find non-trivial lin. combination that equal zero
- Basis
- Find a basis for a linear space
- Dimension (finite, infinite)

