4 Span and subspace

4.1 Linear combination

Let $\mathbf{x}_{1}=[2,-1,3]^{T}$ and let $\mathbf{x}_{2}=[4,2,1]^{T}$, both vectors in the \mathbf{R}^{3}. We are interested in which other vectors in \mathbf{R}^{3} we can get by just scaling these two vectors and adding the results. We can get, for instance,

$$
3 \mathbf{x}_{1}+4 \mathbf{x}_{2}=3\left[\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right]+4\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
22 \\
5 \\
13
\end{array}\right]
$$

and also

$$
2 \mathbf{x}_{1}+(-3) \mathbf{x}_{2}=2\left[\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right]+(-3)\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
-8 \\
-8 \\
3
\end{array}\right] .
$$

Each of these is an example of a "linear combination" of the vectors \mathbf{x}_{1} and \mathbf{x}_{2}.

Linear combination.

Let $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{s}$ be vectors in \mathbf{R}^{n}. A linear combination of $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{s}$ is an expression of the form

$$
\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}+\cdots+\alpha_{s} \mathbf{x}_{s}
$$

with $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s} \in \mathbf{R}$.

Note that a linear combination is a single vector; it is the result of scaling the given vectors and adding them together. For instance, the linear combination $3 \mathbf{x}_{1}+4 \mathbf{x}_{2}$ is the single vector $[22,5,13]^{T}$.

4.2 Span

Let \mathbf{x}_{1} and \mathbf{x}_{2} be two vectors in \mathbf{R}^{3}. The "span" of the set $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ (denoted $\left.\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}\right)$ is the set of all possible linear combinations of \mathbf{x}_{1} and \mathbf{x}_{2} :

$$
\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}=\left\{\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2} \mid \alpha_{1}, \alpha_{2} \in \mathbf{R}\right\}
$$

If \mathbf{x}_{1} and \mathbf{x}_{2} are not parallel, then one can show that $\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ is the plane determined by \mathbf{x}_{1} and \mathbf{x}_{2}. This seems reasonable, since every vector in the this plane appears to be expressible in the form $\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}$ for suitable scalars α_{1} and α_{2} :

4.2.1 Example Let $\mathbf{x}_{1}=[2,-1,3]^{T}$ and $\mathbf{x}_{2}=[4,2,1]^{T}$.
(a) Determine whether $[2,-5,8]^{T}$ is in $\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$.
(b) Determine whether $[-2,9,0]^{T}$ is in $\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$.

Solution

(a) We are wondering whether there exist numbers α_{1} and α_{2} such that $[2,-5,8]^{T}=\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}$, that is,

$$
\left[\begin{array}{c}
2 \\
-5 \\
8
\end{array}\right]=\alpha_{1}\left[\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right]+\alpha_{2}\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
2 \alpha_{1}+4 \alpha_{2} \\
-\alpha_{1}+2 \alpha_{2} \\
3 \alpha_{1}+\alpha_{2}
\end{array}\right] .
$$

Equating components leads to a system of equations with augmented matrix

$$
\left.\left.\begin{array}{rl}
{\left[\begin{array}{cc|c|cc}
2 & 4 & 2 \\
-1 & 2 & -5 \\
3 & 1 & 8
\end{array}\right]} & -3 \\
2 & 2
\end{array}\right) \quad \sim\left[\begin{array}{cc|c}
2 & 4 & 2 \\
0 & 8 & -8 \\
0 & -10 & 10
\end{array}\right] \frac{1}{8} \frac{1}{10},\left[\begin{array}{cc|c}
2 & 4 & 2 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right] 1\right) .
$$

Since there is no pivot in the augmented column, we know that a solution exists. Therefore, $[2,-5,8]^{T}$ is in $\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$.
(b) Arguing as above, we are led to a system with augmented matrix

$$
\begin{aligned}
{\left.\left[\begin{array}{cc|c}
2 & 4 & -2 \\
-1 & 2 & 9 \\
3 & 1 & 0
\end{array}\right] \begin{array}{cc}
1 & -3 \\
2 & \\
& 2
\end{array}\right) } & \sim\left[\begin{array}{cc|c}
2 & 4 & 1 \\
0 & 8 & 16 \\
0 & -10 & 6
\end{array}\right] \frac{1}{8} \\
& \left.\sim\left[\begin{array}{cc|c}
2 & 4 & 2 \\
0 & 1 & 2 \\
0 & -10 & 6
\end{array}\right] 10\right) \\
& \sim\left[\begin{array}{|cc|c}
2 & 4 & 2 \\
0 & 1 & 2 \\
0 & 0 & 26
\end{array}\right] .
\end{aligned}
$$

Since there is a pivot in the last column, we conclude that $[-2,9,0]^{T}$ is not in $\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$.

Here is the general definition of span:

Span.
Let $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{s}\right\}$ be a set of vectors in \mathbf{R}^{n}. The span of $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{s}\right\}$ (denoted $\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{s}\right\}$) is the set of all linear combinations of the vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{s}$. In symbols,

$$
\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{s}\right\}=\left\{\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}+\cdots+\alpha_{s} \mathbf{x}_{s} \mid \alpha_{1}, \alpha_{2}, \ldots, \alpha_{s} \in \mathbf{R}\right\} .
$$

We sometimes say "the span of the vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{s}$ " to mean the span of the set $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{s}\right\}$.
The span of a single nonzero vector \mathbf{x}_{1} in \mathbf{R}^{3} (or \mathbf{R}^{2}) is the line through the origin determined by \mathbf{x}_{1}. (Reason: $\operatorname{Span}\left\{\mathbf{x}_{1}\right\}$ is the set of all possible linear combinations of the vector \mathbf{x}_{1}, that is, all vectors of the form $\alpha_{1} \mathbf{x}_{1}$ where $\alpha_{1} \in \mathbf{R}$. So $\operatorname{Span}\left\{\mathbf{x}_{1}\right\}$ is the set of all multiples of \mathbf{x}_{1} and is therefore the line through the origin determined by \mathbf{x}_{1}):

4.2.2 Example Let $\mathbf{x}_{1}=[2,1]^{T}$ and $\mathbf{x}_{2}=[1,3]^{T}$. Show that $\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}=$ \mathbf{R}^{2}.

Solution The way to show that two sets are equal is to show that each is a subset of the other. It is automatic that $\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\} \subseteq \mathbf{R}^{2}$ (since every linear combination of \mathbf{x}_{1} and \mathbf{x}_{2} is a vector in \mathbf{R}^{2}). So we just need to show that $\mathbf{R}^{2} \subseteq \operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$, that is, show that every vector in \mathbf{R}^{2} can be written as a linear combination of \mathbf{x}_{1} and \mathbf{x}_{2}.
Let $\mathbf{b}=\left[b_{1}, b_{2}\right]^{T}$ be an arbitrary vector in \mathbf{R}^{2}. We are trying to show that there exist scalars α_{1} and α_{2} such that $\mathbf{b}=\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}$, that is,

$$
\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\alpha_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+\alpha_{2}\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
2 \alpha_{1}+\alpha_{2} \\
\alpha_{1}+3 \alpha_{2}
\end{array}\right]
$$

This leads to a system with augmented matrix

$$
\left.\left[\begin{array}{cc|c}
2 & 1 & b_{1} \\
1 & 3 & b_{2}
\end{array}\right]-2\right) \sim\left[\begin{array}{cc|c}
2 & 1 & b_{1} \\
\hline 0 & -5 & b_{1}-2 b_{2}
\end{array}\right]
$$

Since there is no pivot in the augmented column, a solution α_{1} and α_{2} exists. Therefore, \mathbf{b} can be written as a linear combination of \mathbf{x}_{1} and \mathbf{x}_{2}. This finishes the proof that $\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}=\mathbf{R}^{2}$.

An argument similar to that just given shows that $\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}=\mathbf{R}^{2}$ whenever \mathbf{x}_{1} and \mathbf{x}_{2} are nonparallel vectors in \mathbf{R}^{2}. (The nonparallel assumption means that \mathbf{x}_{2} is not a multiple of \mathbf{x}_{1} so the row echelon form of the corresponding augmented matrix will have a pivot in each row and hence no pivot in the augmented column.)

On the other hand, if \mathbf{x}_{1} and \mathbf{x}_{2} are parallel and nonzero, then both vectors lie on the same line through the origin and $\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ is this line. (In this case, \mathbf{x}_{2} is a multiple of \mathbf{x}_{1} so linear combinations of the two vectors amount to multiples of the single vector \mathbf{x}_{1}.)

4.3 Subspace

When a subset of \mathbf{R}^{n} contains the origin and is closed under addition and scalar multiplication, we call it a "subspace."

Subspace.

A subset S of \mathbf{R}^{n} is called a subspace if the following hold:
(a) $\mathbf{0} \in S$,
(b) $\mathbf{x}, \mathbf{y} \in S$ implies $\mathbf{x}+\mathbf{y} \in S$,
(c) $\mathbf{x} \in S, \alpha \in \mathbf{R}$ implies $\alpha \mathbf{x} \in S$.

In other words, a subset S of \mathbf{R}^{n} is a subspace if it satisfies the following:
(a) S contains the origin $\mathbf{0}$,
(b) S is closed under addition (meaning, if \mathbf{x} and \mathbf{y} are two vectors in S, then their $\operatorname{sum} \mathbf{x}+\mathbf{y}$ is also in S),
(c) S is closed under scalar multiplication (meaning, if \mathbf{x} is a vector in S and α is any scalar, then the product $\alpha \mathbf{x}$ is also in $S)$.
4.3.1 Example Let S be the subset of \mathbf{R}^{2} given by

$$
S=\left\{\left.\left[\begin{array}{c}
2 t \\
-t
\end{array}\right] \right\rvert\, t \in \mathbf{R}\right\}
$$

Show that S is a subspace of \mathbf{R}^{2}.
Solution We check that S satisfies the three properties in the definition of subspace.
(a) We have

$$
\mathbf{0}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
2(0) \\
-(0)
\end{array}\right] \in S
$$

(the vector $[2(0),-(0)]^{T}$ is in S because it is of the form $[2 t,-t]^{T}$).
(b) Let $\mathbf{x}, \mathbf{y} \in S$. (Must show that $\mathbf{x}+\mathbf{y} \in S$.) Since \mathbf{x} is in S, it can be written $\mathbf{x}=[2 t,-t]^{T}$ for some $t \in \mathbf{R}$. Similarly, $\mathbf{y}=[2 s,-s]^{T}$ for some $s \in \mathbf{R}$ (if we had used t instead of s here, then we would have been assuming that \mathbf{y} was the same as \mathbf{x}, which might not be the case). Therefore,

$$
\mathbf{x}+\mathbf{y}=\left[\begin{array}{c}
2 t \\
-t
\end{array}\right]+\left[\begin{array}{c}
2 s \\
-s
\end{array}\right]=\left[\begin{array}{c}
2 t+2 s \\
-t-s
\end{array}\right]=\left[\begin{array}{c}
2(t+s) \\
-(t+s)
\end{array}\right] \in S
$$

(c) Let $\mathbf{x} \in S$ and $\alpha \in \mathbf{R}$. (Must show that $\alpha \mathbf{x} \in S$.) Since \mathbf{x} is in S, it can be written $\mathbf{x}=[2 t,-t]^{T}$ for some $t \in \mathbf{R}$. Therefore,

$$
\alpha \mathbf{x}=\alpha\left[\begin{array}{c}
2 t \\
-t
\end{array}\right]=\left[\begin{array}{c}
2(\alpha t) \\
-(\alpha t)
\end{array}\right] \in S
$$

Therefore, S is a subspace of \mathbf{R}^{2}.
4.3.2 Example Let S be the subset of \mathbf{R}^{3} given by

$$
S=\left\{\left.\left[\begin{array}{c}
t+s \\
2 t \\
3 t-s
\end{array}\right] \right\rvert\, t, s \in \mathbf{R}\right\}
$$

Show that S is a subspace of \mathbf{R}^{3}.
Solution We check that S satisfies the three properties in the definition of subspace.
(a) We have

$$
\mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
(0)+(0) \\
2(0) \\
3(0)-(0)
\end{array}\right] \in S .
$$

(b) Let $\mathbf{x}, \mathbf{y} \in S$. (Must show that $\mathbf{x}+\mathbf{y} \in S$.) Since \mathbf{x} is in S, it can be written $\mathbf{x}=[t+s, 2 t, 3 t-s]^{T}$ for some $t, s \in \mathbf{R}$. Similarly, $\mathbf{y}=[r+q, 2 r, 3 r-q]^{T}$ for some $r, q \in \mathbf{R}$. Therefore,
$\mathbf{x}+\mathbf{y}=\left[\begin{array}{c}t+s \\ 2 t \\ 3 t-s\end{array}\right]+\left[\begin{array}{c}r+q \\ 2 r \\ 3 r-q\end{array}\right]=\left[\begin{array}{c}(t+s)+(r+q) \\ (2 t)+(2 r) \\ (3 t-s)+(3 r-q)\end{array}\right]=\left[\begin{array}{c}(t+r)+(s+q) \\ 2(t+r) \\ 3(t+r)-(s+q)\end{array}\right] \in S$
(this last vector is in S since it is in the right form with $t+r$ playing the role of the t and $s+q$ playing the role of the s).
(c) Let $\mathbf{x} \in S$ and $\alpha \in \mathbf{R}$. (Must show that $\alpha \mathbf{x} \in S$.) Since \mathbf{x} is in S, it can be written $\mathbf{x}=[t+s, 2 t, 3 t-s]^{T}$ for some $t, s \in \mathbf{R}$. Therefore,

$$
\alpha \mathbf{x}=\alpha\left[\begin{array}{c}
t+s \\
2 t \\
3 t-s
\end{array}\right]=\left[\begin{array}{c}
\alpha(t+s) \\
\alpha(2 t) \\
\alpha(3 t-s)
\end{array}\right]=\left[\begin{array}{c}
(\alpha t)+(\alpha s) \\
2(\alpha t) \\
3(\alpha t)-(\alpha s)
\end{array}\right] \in S
$$

Therefore, S is a subspace of \mathbf{R}^{3}.
4.3.3 Example Let S be the subset of \mathbf{R}^{2} given by

$$
S=\left\{\left.\left[\begin{array}{c}
t \\
t^{2}
\end{array}\right] \right\rvert\, t \in \mathbf{R}\right\}
$$

Is S a subspace of \mathbf{R}^{2} ? Explain.
Solution We check to see whether S satisfies the three properties of subspace.
(a) We have

$$
\mathbf{0}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
(0) \\
(0)^{2}
\end{array}\right] \in S
$$

(b) Let $\mathbf{x}, \mathbf{y} \in S$. (Must show that $\mathbf{x}+\mathbf{y} \in S$.) Since \mathbf{x} is in S, it can be written $\mathbf{x}=\left[t, t^{2}\right]^{T}$ for some $t \in \mathbf{R}$. Similarly, $\mathbf{y}=\left[s, s^{2}\right]^{T}$ for some $s \in \mathbf{R}$. Therefore,

$$
\mathbf{x}+\mathbf{y}=\left[\begin{array}{c}
t \\
t^{2}
\end{array}\right]+\left[\begin{array}{c}
s \\
s^{2}
\end{array}\right]=\left[\begin{array}{c}
t+s \\
t^{2}+s^{2}
\end{array}\right] .
$$

If this last vector is to be in S, then the second component must be the square of the first component. But since $(t+s)^{2}=t^{2}+2 t s+s^{2}$, we see that this need not be the case. In fact, it is not the case when, say, $t=1$ and $s=1$.

Everything we have done up to this point can be considered scratch work. It was done just to come up with an idea for a counterexample. To solve the problem, all we really need to write is this:
Let $\mathbf{x}=[1,1]^{T}$ and $\mathbf{y}=[1,1]^{T}$. Then \mathbf{x} is in S, since $\mathbf{x}=[1,1]^{T}=\left[(1),(1)^{2}\right]^{T}$ so \mathbf{x} is of the right form. Similarly, \mathbf{y} is in S. However,

$$
\mathbf{x}+\mathbf{y}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
2
\end{array}\right] \notin S
$$

(this last vector is not in S because its second component is not the square of its first component). Therefore, S is not a subspace of \mathbf{R}^{2}.
4.3.4 Example Let \mathbf{x}_{1} and \mathbf{x}_{2} be two vectors in \mathbf{R}^{n} and let $S=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$. Show that S is a subspace of \mathbf{R}^{n}.

Solution We check that S satisfies the three properties of subspace.
(a) We have

$$
\mathbf{0}=0 \mathbf{x}_{1}+0 \mathbf{x}_{2} \in S
$$

(b) Let $\mathbf{x}, \mathbf{y} \in S$. (Must show that $\mathbf{x}+\mathbf{y} \in S$.) Since \mathbf{x} is in S, it can be written $\mathbf{x}=\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}$ for some $\alpha_{1}, \alpha_{2} \in \mathbf{R}$. Similarly, $\mathbf{y}=\beta_{1} \mathbf{x}_{1}+\beta_{2} \mathbf{x}_{2}$ for some $\beta_{1}, \beta_{2} \in \mathbf{R}$. Therefore,
$\mathbf{x}+\mathbf{y}=\left(\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}\right)+\left(\beta_{1} \mathbf{x}_{1}+\beta_{2} \mathbf{x}_{2}\right)=\left(\alpha_{1}+\beta_{1}\right) \mathbf{x}_{1}+\left(\alpha_{2}+\beta_{2}\right) \mathbf{x}_{2} \in S$
(this last vector is in S because it is a linear combination of \mathbf{x}_{1} and \mathbf{x}_{2} and S is the set of all such linear combinations).
(c) Let $\mathbf{x} \in S$ and $\alpha \in \mathbf{R}$. (Must show that $\alpha \mathbf{x} \in S$.) Since \mathbf{x} is in S, it can be written $\mathbf{x}=\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}$ for some $\alpha_{1}, \alpha_{2} \in \mathbf{R}$. Therefore,

$$
\alpha \mathbf{x}=\alpha\left(\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}\right)=\left(\alpha \alpha_{1}\right) \mathbf{x}_{1}+\left(\alpha \alpha_{2}\right) \mathbf{x}_{2} \in S .
$$

Therefore, S is a subspace of \mathbf{R}^{n}.

4.4 Examples of subspaces

Theorem.

(a) $\{\mathbf{0}\}$ is a subspace of \mathbf{R}^{n}.
(b) \mathbf{R}^{n} is a subspace of \mathbf{R}^{n}.

Proof. (a) We need to show that $S=\{0\}$ satisfies the three properties of a subspace. First, $\mathbf{0}$ is in S so property (a) is satisfied. Next, if $\mathbf{x}, \mathbf{y} \in S$, then $\mathbf{x}=\mathbf{0}$ and $\mathbf{y}=\mathbf{0}$, so $\mathbf{x}+\mathbf{y}=\mathbf{0}+\mathbf{0}=\mathbf{0}$, implying $\mathbf{x}+\mathbf{y} \in S$ and (b) is satisfied. Finally, if $\mathbf{x} \in S$ and $\alpha \in \mathbf{R}$, then $\mathbf{x}=\mathbf{0}$, so $\alpha \mathbf{x}=\alpha \mathbf{0}=\mathbf{0}$, implying $\alpha \mathbf{x} \in S$ and (c) is satisfied.
(b) \mathbf{R}^{n} is a subspace of itself since it contains $\mathbf{0}$ and it is closed under addition and scalar multiplication and therefore satisfies the three properties.

Theorem.
(a) The subspaces of \mathbf{R}^{2} are
$\{\mathbf{0}\}$, lines through origin, $\quad \mathbf{R}^{2}$.
(b) The subspaces of \mathbf{R}^{3} are
$\{\mathbf{0}\}$, lines through origin, planes through origin, $\quad \mathbf{R}^{3}$.

Proof. Here is informal reasoning for why (a) is true. First, $\{\mathbf{0}\}$ and \mathbf{R}^{2} are subspaces by the previous theorem. Also, an argument just like that in Example 4.3.1 shows that any line through the origin is a subspace.

We also need to argue that this list covers all possible subspaces of \mathbf{R}^{2}. Let S be an arbitrary subspace of \mathbf{R}^{2}. Since S is a subspace, it contains the zero vector. If it contains only the zero vector, then it is $\{\mathbf{0}\}$, which is one in the list. Otherwise, it must contain a nonzero vector \mathbf{x}. Since S is closed under scalar multiplication, it must contain all multiples of \mathbf{x} and hence the line through the origin containing this vector. If this is all it contains then S is again one in the list. Otherwise, it contains a vector \mathbf{y} not in the line determined by \mathbf{x}. Then, by the closure properties of S it must contain all linear combinations of \mathbf{x} and \mathbf{y} so that S is \mathbf{R}^{2} (using an argument similar to that in 4.2.2), which is again in the list. This handles all of the possibilities.

Part (b) is handled similarly.

Consider \mathbf{R}^{3}. A plane through the origin is an analog of \mathbf{R}^{2} (possibly tilted); we call it a "copy" of \mathbf{R}^{2}. Similarly, a line through the origin is a copy of \mathbf{R}^{1}. If we define \mathbf{R}^{0} to be $\{\mathbf{0}\}$, then we can view the theorem as saying that the subspaces of \mathbf{R}^{3} are copies of the spaces $\mathbf{R}^{0}, \mathbf{R}^{1}, \mathbf{R}^{2}, \mathbf{R}^{3}$. A similar statement about the subspaces of \mathbf{R}^{n} holds for any n.

The next theorem says that the span of a set of vectors in \mathbf{R}^{n} is a subspace of \mathbf{R}^{n}.

Theorem. If $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{s}$ are vectors in \mathbf{R}^{n} and S is their span (i.e., $S=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{s}\right\}$), then S is a subspace of \mathbf{R}^{n}.

Example 4.3.4 handled the case of two vectors $(s=2)$. The proof of the general case is very similar so we omit it.
4.4.1 Example Give a geometrical interpretation of $S=\operatorname{Span}\left\{[1,0,4]^{T},[2,-1,3]^{T}\right\}$.

Solution A vector $\mathbf{x}=\left[x_{1}, x_{2}, x_{3}\right]^{T}$ is in S if and only if there exist scalars α_{1} and α_{2} such that

$$
\left[\begin{array}{l}
x_{1} \tag{}\\
x_{2} \\
x_{3}
\end{array}\right]=\alpha_{1}\left[\begin{array}{l}
1 \\
0 \\
4
\end{array}\right]+\alpha_{2}\left[\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right]=\left[\begin{array}{c}
\alpha_{1}+2 \alpha_{2} \\
-\alpha_{2} \\
4 \alpha_{1}+3 \alpha_{2}
\end{array}\right]
$$

This equation of vectors leads to a system with augmented matrix

$$
\begin{aligned}
& {\left[\begin{array}{cc|c}
1 & 2 & x_{1} \\
0 & -1 & x_{2} \\
4 & 3 & x_{3}
\end{array}\right]-4 } \\
&\left.\sim\left[\begin{array}{cc|c}
1 & 2 & x_{1} \\
0 & -1 & x_{2} \\
0 & -5 & -4 x_{1}+x_{3}
\end{array}\right]-5\right) \\
& \sim\left[\begin{array}{cc|c}
1 & 2 & x_{1} \\
\cline { 1 - 2 } & -1 & x_{2} \\
0 & 0 & -4 x_{1}-5 x_{2}+x_{3}
\end{array}\right]
\end{aligned}
$$

The system has a solution if and only if there is no pivot in the augmented column. Therefore, there exist scalars α_{1} and α_{2} satisfying $\left(^{*}\right)$ if and only if $-4 x_{1}-5 x_{2}+x_{3}=0$. We conclude that S is the plane $-4 x_{1}-5 x_{2}+x_{3}=0$. It is the plane through the origin determined by the two vectors $[1,0,4]^{T}$ and $[2,-1,3]^{T}$.
$\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{s}\right\}$ is the smallest subspace of \mathbf{R}^{n} containing the vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{s}$. The reason is that any subspace of \mathbf{R}^{n} that contains the vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{s}$ must contain all possible linear combinations of these vectors (by the closure properties of subspace) and must therefore contain their span.

The previous example illustrates this fact. The vectors $[1,0,4]^{T}$ and $[2,-1,3]^{T}$ are not parallel (the second is not a multiple of the first), so the smallest subspace of \mathbf{R}^{3} containing these vectors is the plane through the origin determined by the vectors. This is the plane found in the solution.

Theorem. If $L: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is a linear function, then
(a) $\operatorname{im} L$ is a subspace of \mathbf{R}^{m},
(b) $\operatorname{ker} L$ is a subspace of \mathbf{R}^{n}.

Proof. Let $L: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear function.
(a) We check that $\operatorname{im} L=\left\{L(\mathbf{x}) \mid \mathbf{x} \in \mathbf{R}^{n}\right\}$ satisfies the three properties of subspace.
(a) Using the fact that a linear function sends $\mathbf{0}$ to $\mathbf{0}$, we have

$$
\mathbf{0}=L(\mathbf{0}) \in \operatorname{im} L
$$

(b) Let $\mathbf{u}, \mathbf{v} \in \operatorname{im} L$. (Must show that $\mathbf{u}+\mathbf{v} \in \operatorname{im} L$.) Since \mathbf{u} is in im L, it can be written $\mathbf{u}=L(\mathbf{x})$ for some $\mathbf{x} \in \mathbf{R}^{n}$. Similarly, $\mathbf{v}=L(\mathbf{y})$ for some $\mathbf{y} \in \mathbf{R}^{n}$. Therefore,

$$
\mathbf{u}+\mathbf{v}=L(\mathbf{x})+L(\mathbf{y})=L(\mathbf{x}+\mathbf{y}) \in \operatorname{im} L
$$

where we have used the first property in the definition of linear function.
(c) Let $\mathbf{u} \in \operatorname{im} L$ and $\alpha \in \mathbf{R}$. (Must show that $\alpha \mathbf{u} \in \operatorname{im} L$.) Since \mathbf{u} is in $\operatorname{im} L$, it can be written $\mathbf{u}=L(\mathbf{x})$ for some $\mathbf{x} \in \mathbf{R}^{n}$. Therefore,

$$
\alpha \mathbf{u}=\alpha L(\mathbf{x})=L(\alpha \mathbf{x}) \in \operatorname{im} L
$$

where we have used the second property in the definition of linear function.

Therefore, im L is a subspace of \mathbf{R}^{m}.
(b) This proof is left as an exercise (see Exercise 4-9).

4 - Exercises

4-1 Let $\mathbf{x}_{1}=[1,-3,2]^{T}$ and $\mathbf{x}_{2}=[4,-7,-1]^{T}$.
(a) Determine whether $[2,-1,6]^{T}$ is in $\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$.
(b) Determine whether $[5,-5,-8]^{T}$ is in $\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$.

4-2 Let \mathbf{x}_{1} and \mathbf{x}_{2} be vectors in \mathbf{R}^{n} and let $S=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$.
(a) Show that \mathbf{x}_{1} and \mathbf{x}_{2} are both in S.
(b) Show that if \mathbf{x} is in S, then $-\mathbf{x}$ is in S.

4-3 Let $\mathbf{x}_{1}=[-1,4]^{T}, \mathbf{x}_{2}=[2,-8]^{T}$, and $\mathbf{x}_{3}=[0,6]^{T}$. Show that $\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}=$ \mathbf{R}^{2}.

4-4 Let $\mathbf{x}_{1}=[1,3,-5]^{T}, \mathbf{x}_{2}=[-2,-1,0]^{T}, \mathbf{x}_{3}=[0,5,-10]^{T}$ and let $S=$ $\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$. Determine whether $S=\mathbf{R}^{3}$. If your answer is no, then find a vector in \mathbf{R}^{3} that is not in S.

4-5 Let S be the subset of \mathbf{R}^{2} given by

$$
S=\left\{\left.\left[\begin{array}{c}
4 t \\
-3 t
\end{array}\right] \right\rvert\, t \in \mathbf{R}\right\}
$$

Show that S is a subspace of \mathbf{R}^{2}.

4-6 Let S be the subset of \mathbf{R}^{3} given by

$$
S=\left\{\left.\left[\begin{array}{c}
4 t-5 s \\
3 t+s \\
s-t
\end{array}\right] \right\rvert\, t, s \in \mathbf{R}\right\}
$$

Show that S is a subspace of \mathbf{R}^{3}.

4-7 Let S be the upper half plane in \mathbf{R}^{2}. So S consists of those vectors in \mathbf{R}^{2} with second component ≥ 0. In symbols, $S=\left\{[t, s]^{T} \mid t, s \in \mathbf{R}, s \geq 0\right\}$. Using only the definition of subspace, determine whether S is a subspace of \mathbf{R}^{2}.

4-8 Let $S=\operatorname{Span}\left\{[2,-4,1]^{T}\right\}$.
(a) Give a geometrical description of S.
(b) Find two planes having S as their intersection. (Hint: Use the method for determining S given in the solution to Example 4.4.1.)

4-9 Let $L: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear function. Prove that ker L is a subspace of \mathbf{R}^{n}.

Hint: Verify the three properties in the definition of subspace with ker L playing the role of S. If you assume that \mathbf{x} and \mathbf{y} are elements of ker L, then you know
that $L(\mathbf{x})=\mathbf{0}$ and $L(\mathbf{y})=\mathbf{0}$. On the other hand, if you want to show that $\mathbf{x}+\mathbf{y}$ is an element of $\operatorname{ker} L$, then you need to show that $L(\mathbf{x}+\mathbf{y})=\mathbf{0}$.

