
4 Span and subspace

4.1 Linear combination

Let x1 = [2,−1, 3]T and let x2 = [4, 2, 1]T , both vectors in the R3. We are
interested in which other vectors in R3 we can get by just scaling these two
vectors and adding the results. We can get, for instance,

3x1 + 4x2 = 3





2
−1
3



+ 4





4
2
1



 =





22
5
13





and also

2x1 + (−3)x2 = 2





2
−1
3



+ (−3)





4
2
1



 =





−8
−8
3



 .

Each of these is an example of a “linear combination” of the vectors x1 and x2.

Linear combination.

Let x1,x2, . . . ,xs be vectors in Rn. A linear combination of

x1,x2, . . . ,xs is an expression of the form

α1x1 + α2x2 + · · ·+ αsxs,

with α1, α2, . . . , αs ∈ R.

Note that a linear combination is a single vector; it is the result of scaling the
given vectors and adding them together. For instance, the linear combination
3x1 + 4x2 is the single vector [22, 5, 13]T .

4.2 Span

Let x1 and x2 be two vectors in R3. The “span” of the set {x1,x2} (denoted
Span{x1,x2}) is the set of all possible linear combinations of x1 and x2:

Span{x1,x2} = {α1x1 + α2x2 |α1, α2 ∈ R}.

If x1 and x2 are not parallel, then one can show that Span{x1,x2} is the plane
determined by x1 and x2. This seems reasonable, since every vector in the this
plane appears to be expressible in the form α1x1 + α2x2 for suitable scalars α1

and α2:

1
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4.2.1 Example Let x1 = [2,−1, 3]T and x2 = [4, 2, 1]T .

(a) Determine whether [2,−5, 8]T is in Span{x1,x2}.

(b) Determine whether [−2, 9, 0]T is in Span{x1,x2}.

Solution

(a) We are wondering whether there exist numbers α1 and α2 such that
[2,−5, 8]T = α1x1 + α2x2, that is,





2
−5
8



 = α1





2
−1
3



+ α2





4
2
1



 =





2α1 + 4α2

−α1 + 2α2

3α1 + α2



 .

Equating components leads to a system of equations with augmented ma-
trix





2 4 2
−1 2 −5
3 1 8





1
2

−3

2
∼





2 4 2
0 8 −8
0 −10 10





1

8
1

10

∼





2 4 2
0 1 −1
0 −1 1



1

∼





2 4 2
0 1 −1
0 0 0



 .

Since there is no pivot in the augmented column, we know that a solution
exists. Therefore, [2,−5, 8]T is in Span{x1,x2}.
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(b) Arguing as above, we are led to a system with augmented matrix





2 4 −2
−1 2 9
3 1 0





1
2

−3

2
∼





2 4 1
0 8 16
0 −10 6





1

8

∼





2 4 2
0 1 2
0 −10 6



10

∼





2 4 2
0 1 2
0 0 26



 .

Since there is a pivot in the last column, we conclude that [−2, 9, 0]T is
not in Span{x1,x2}.

Here is the general definition of span:

Span.

Let {x1,x2, . . . ,xs} be a set of vectors in Rn. The span of

{x1,x2, . . . ,xs} (denoted Span{x1,x2, . . . ,xs}) is the set of all
linear combinations of the vectors x1,x2, . . . ,xs. In symbols,

Span{x1,x2, . . . ,xs} = {α1x1+α2x2+· · ·+αsxs |α1, α2, . . . , αs ∈ R}.

We sometimes say “the span of the vectors x1,x2, . . . ,xs” to mean the span of
the set {x1,x2, . . . ,xs}.

The span of a single nonzero vector x1 in R3 (or R2) is the line through the
origin determined by x1. (Reason: Span{x1} is the set of all possible linear
combinations of the vector x1, that is, all vectors of the form α1x1 where α1 ∈ R.
So Span{x1} is the set of all multiples of x1 and is therefore the line through
the origin determined by x1):
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4.2.2 Example Let x1 = [2, 1]T and x2 = [1, 3]T . Show that Span{x1,x2} =
R2.

Solution The way to show that two sets are equal is to show that each is a
subset of the other. It is automatic that Span{x1,x2} ⊆ R2 (since every linear
combination of x1 and x2 is a vector in R2). So we just need to show that
R2 ⊆ Span{x1,x2}, that is, show that every vector in R2 can be written as a
linear combination of x1 and x2.

Let b = [b1, b2]
T be an arbitrary vector in R2. We are trying to show that there

exist scalars α1 and α2 such that b = α1x1 + α2x2, that is,

[

b1
b2

]

= α1

[

2
1

]

+ α2

[

1
3

]

=

[

2α1 + α2

α1 + 3α2

]

.

This leads to a system with augmented matrix

[

2 1 b1
1 3 b2

]

−2
∼

[

2 1 b1
0 −5 b1 − 2b2

]

.

Since there is no pivot in the augmented column, a solution α1 and α2 exists.
Therefore, b can be written as a linear combination of x1 and x2. This finishes
the proof that Span{x1,x2} = R2.

An argument similar to that just given shows that Span{x1,x2} = R2 whenever
x1 and x2 are nonparallel vectors in R2. (The nonparallel assumption means
that x2 is not a multiple of x1 so the row echelon form of the corresponding
augmented matrix will have a pivot in each row and hence no pivot in the
augmented column.)

On the other hand, if x1 and x2 are parallel and nonzero, then both vectors
lie on the same line through the origin and Span{x1,x2} is this line. (In this
case, x2 is a multiple of x1 so linear combinations of the two vectors amount to
multiples of the single vector x1.)

4.3 Subspace

When a subset of Rn contains the origin and is closed under addition and scalar
multiplication, we call it a “subspace.”



4 SPAN AND SUBSPACE 5

Subspace.

A subset S of Rn is called a subspace if the following hold:

(a) 0 ∈ S,

(b) x,y ∈ S implies x+ y ∈ S,

(c) x ∈ S, α ∈ R implies αx ∈ S.

In other words, a subset S of Rn is a subspace if it satisfies the following:

(a) S contains the origin 0,

(b) S is closed under addition (meaning, if x and y are two vectors in S, then
their sum x+ y is also in S),

(c) S is closed under scalar multiplication (meaning, if x is a vector in S and
α is any scalar, then the product αx is also in S).

4.3.1 Example Let S be the subset of R2 given by

S = {

[

2t
−t

]

| t ∈ R}.

Show that S is a subspace of R2.

Solution We check that S satisfies the three properties in the definition of
subspace.

(a) We have

0 =

[

0
0

]

=

[

2(0)
−(0)

]

∈ S
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(the vector [2(0),−(0)]T is in S because it is of the form [2t,−t]T ).

(b) Let x,y ∈ S. (Must show that x+y ∈ S.) Since x is in S, it can be written
x = [2t,−t]T for some t ∈ R. Similarly, y = [2s,−s]T for some s ∈ R (if
we had used t instead of s here, then we would have been assuming that
y was the same as x, which might not be the case). Therefore,

x+ y =

[

2t
−t

]

+

[

2s
−s

]

=

[

2t+ 2s
−t− s

]

=

[

2(t+ s)
−(t+ s)

]

∈ S.

(c) Let x ∈ S and α ∈ R. (Must show that αx ∈ S.) Since x is in S, it can
be written x = [2t,−t]T for some t ∈ R. Therefore,

αx = α

[

2t
−t

]

=

[

2(αt)
−(αt)

]

∈ S.

Therefore, S is a subspace of R2.

4.3.2 Example Let S be the subset of R3 given by

S = {





t+ s
2t

3t− s



 | t, s ∈ R}.

Show that S is a subspace of R3.

Solution We check that S satisfies the three properties in the definition of
subspace.

(a) We have

0 =





0
0
0



 =





(0) + (0)
2(0)

3(0)− (0)



 ∈ S.

(b) Let x,y ∈ S. (Must show that x+y ∈ S.) Since x is in S, it can be written
x = [t+ s, 2t, 3t− s]T for some t, s ∈ R. Similarly, y = [r+ q, 2r, 3r− q]T

for some r, q ∈ R. Therefore,

x+y =





t+ s
2t

3t− s



+





r + q
2r

3r − q



 =





(t+ s) + (r + q)
(2t) + (2r)

(3t− s) + (3r − q)



 =





(t+ r) + (s+ q)
2(t+ r)

3(t+ r) − (s+ q)



 ∈ S

(this last vector is in S since it is in the right form with t+ r playing the
role of the t and s+ q playing the role of the s).

(c) Let x ∈ S and α ∈ R. (Must show that αx ∈ S.) Since x is in S, it can
be written x = [t+ s, 2t, 3t− s]T for some t, s ∈ R. Therefore,

αx = α





t+ s
2t

3t− s



 =





α(t+ s)
α(2t)

α(3t− s)



 =





(αt) + (αs)
2(αt)

3(αt)− (αs)



 ∈ S.
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Therefore, S is a subspace of R3.

4.3.3 Example Let S be the subset of R2 given by

S = {

[

t
t2

]

| t ∈ R}.

Is S a subspace of R2? Explain.

Solution We check to see whether S satisfies the three properties of subspace.

(a) We have

0 =

[

0
0

]

=

[

(0)
(0)2

]

∈ S.

(b) Let x,y ∈ S. (Must show that x + y ∈ S.) Since x is in S, it can be
written x = [t, t2]T for some t ∈ R. Similarly, y = [s, s2]T for some s ∈ R.
Therefore,

x+ y =

[

t
t2

]

+

[

s
s2

]

=

[

t+ s
t2 + s2

]

.

If this last vector is to be in S, then the second component must be the
square of the first component. But since (t + s)2 = t2 + 2ts+ s2, we see
that this need not be the case. In fact, it is not the case when, say, t = 1
and s = 1.

Everything we have done up to this point can be considered scratch work. It was
done just to come up with an idea for a counterexample. To solve the problem,
all we really need to write is this:

Let x = [1, 1]T and y = [1, 1]T . Then x is in S, since x = [1, 1]T = [(1), (1)2]T

so x is of the right form. Similarly, y is in S. However,

x+ y =

[

1
1

]

+

[

1
1

]

=

[

2
2

]

/∈ S

(this last vector is not in S because its second component is not the square of
its first component). Therefore, S is not a subspace of R2.

4.3.4 Example Let x1 and x2 be two vectors inRn and let S = Span{x1,x2}.
Show that S is a subspace of Rn.

Solution We check that S satisfies the three properties of subspace.

(a) We have
0 = 0x1 + 0x2 ∈ S.
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(b) Let x,y ∈ S. (Must show that x + y ∈ S.) Since x is in S, it can be
written x = α1x1+α2x2 for some α1, α2 ∈ R. Similarly, y = β1x1+β2x2

for some β1, β2 ∈ R. Therefore,

x+ y = (α1x1 + α2x2) + (β1x1 + β2x2) = (α1 + β1)x1 + (α2 + β2)x2 ∈ S

(this last vector is in S because it is a linear combination of x1 and x2

and S is the set of all such linear combinations).

(c) Let x ∈ S and α ∈ R. (Must show that αx ∈ S.) Since x is in S, it can
be written x = α1x1 + α2x2 for some α1, α2 ∈ R. Therefore,

αx = α(α1x1 + α2x2) = (αα1)x1 + (αα2)x2 ∈ S.

Therefore, S is a subspace of Rn.

4.4 Examples of subspaces

Theorem.

(a) {0} is a subspace of Rn.

(b) Rn is a subspace of Rn.

Proof. (a) We need to show that S = {0} satisfies the three properties of a
subspace. First, 0 is in S so property (a) is satisfied. Next, if x,y ∈ S, then
x = 0 and y = 0, so x+y = 0+0 = 0, implying x+y ∈ S and (b) is satisfied.
Finally, if x ∈ S and α ∈ R, then x = 0, so αx = α0 = 0, implying αx ∈ S and
(c) is satisfied.

(b) Rn is a subspace of itself since it contains 0 and it is closed under addition
and scalar multiplication and therefore satisfies the three properties.

Theorem.

(a) The subspaces of R2 are

{0}, lines through origin, R2.

(b) The subspaces of R3 are

{0}, lines through origin, planes through origin, R3.



4 SPAN AND SUBSPACE 9

Proof. Here is informal reasoning for why (a) is true. First, {0} and R2 are
subspaces by the previous theorem. Also, an argument just like that in Example
4.3.1 shows that any line through the origin is a subspace.

We also need to argue that this list covers all possible subspaces of R2. Let
S be an arbitrary subspace of R2. Since S is a subspace, it contains the zero
vector. If it contains only the zero vector, then it is {0}, which is one in the list.
Otherwise, it must contain a nonzero vector x. Since S is closed under scalar
multiplication, it must contain all multiples of x and hence the line through the
origin containing this vector. If this is all it contains then S is again one in the
list. Otherwise, it contains a vector y not in the line determined by x. Then,
by the closure properties of S it must contain all linear combinations of x and
y so that S is R2 (using an argument similar to that in 4.2.2), which is again
in the list. This handles all of the possibilities.

Part (b) is handled similarly.

Consider R3. A plane through the origin is an analog of R2 (possibly tilted);
we call it a “copy” of R2. Similarly, a line through the origin is a copy of R1.
If we define R0 to be {0}, then we can view the theorem as saying that the
subspaces of R3 are copies of the spaces R0,R1,R2,R3. A similar statement
about the subspaces of Rn holds for any n.

The next theorem says that the span of a set of vectors in Rn is a subspace of
Rn.

Theorem. If x1,x2, . . . ,xs are vectors in Rn and S is their

span (i.e., S = Span{x1,x2, . . . ,xs}), then S is a subspace of

Rn.

Example 4.3.4 handled the case of two vectors (s = 2). The proof of the general
case is very similar so we omit it.

4.4.1 Example Give a geometrical interpretation of S = Span{[1, 0, 4]T , [2,−1, 3]T}.

Solution A vector x = [x1, x2, x3]
T is in S if and only if there exist scalars α1

and α2 such that





x1

x2

x3



 = α1





1
0
4



+ α2





2
−1
3



 =





α1 + 2α2

−α2

4α1 + 3α2



 . (*)
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This equation of vectors leads to a system with augmented matrix





1 2 x1

0 −1 x2

4 3 x3





−4
∼





1 2 x1

0 −1 x2

0 −5 −4x1 + x3



−5

∼





1 2 x1

0 −1 x2

0 0 −4x1 − 5x2 + x3



 .

The system has a solution if and only if there is no pivot in the augmented
column. Therefore, there exist scalars α1 and α2 satisfying (*) if and only if
−4x1 − 5x2 + x3 = 0. We conclude that S is the plane −4x1 − 5x2 + x3 = 0.
It is the plane through the origin determined by the two vectors [1, 0, 4]T and
[2,−1, 3]T .

Span{x1,x2, . . . ,xs} is the smallest subspace ofRn containing the vectors x1,x2, . . . ,xs.
The reason is that any subspace of Rn that contains the vectors x1,x2, . . . ,xs

must contain all possible linear combinations of these vectors (by the closure
properties of subspace) and must therefore contain their span.

The previous example illustrates this fact. The vectors [1, 0, 4]T and [2,−1, 3]T

are not parallel (the second is not a multiple of the first), so the smallest subspace
of R3 containing these vectors is the plane through the origin determined by
the vectors. This is the plane found in the solution.

Theorem. If L : Rn → Rm is a linear function, then

(a) imL is a subspace of Rm,

(b) kerL is a subspace of Rn.

Proof. Let L : Rn → Rm be a linear function.

(a) We check that imL = {L(x) |x ∈ Rn} satisfies the three properties of
subspace.

(a) Using the fact that a linear function sends 0 to 0, we have

0 = L(0) ∈ imL.

(b) Let u,v ∈ imL. (Must show that u+ v ∈ imL.) Since u is in imL,
it can be written u = L(x) for some x ∈ Rn. Similarly, v = L(y) for
some y ∈ Rn. Therefore,

u+ v = L(x) + L(y) = L(x+ y) ∈ imL,
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where we have used the first property in the definition of linear func-
tion.

(c) Let u ∈ imL and α ∈ R. (Must show that αu ∈ imL.) Since u is in
imL, it can be written u = L(x) for some x ∈ Rn. Therefore,

αu = αL(x) = L(αx) ∈ imL,

where we have used the second property in the definition of linear
function.

Therefore, imL is a subspace of Rm.

(b) This proof is left as an exercise (see Exercise 4–9).

4 – Exercises

4–1 Let x1 = [1,−3, 2]T and x2 = [4,−7,−1]T .

(a) Determine whether [2,−1, 6]T is in Span{x1,x2}.

(b) Determine whether [5,−5,−8]T is in Span{x1,x2}.

4–2 Let x1 and x2 be vectors in Rn and let S = Span{x1,x2}.

(a) Show that x1 and x2 are both in S.

(b) Show that if x is in S, then −x is in S.

4–3 Let x1 = [−1, 4]T , x2 = [2,−8]T , and x3 = [0, 6]T . Show that Span{x1,x2,x3} =
R2.
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4–4 Let x1 = [1, 3,−5]T , x2 = [−2,−1, 0]T , x3 = [0, 5,−10]T and let S =
Span{x1,x2,x3}. Determine whether S = R3. If your answer is no, then find a
vector in R3 that is not in S.

4–5 Let S be the subset of R2 given by

S = {

[

4t
−3t

]

| t ∈ R}.

Show that S is a subspace of R2.

4–6 Let S be the subset of R3 given by

S = {





4t− 5s
3t+ s
s− t



 | t, s ∈ R}.

Show that S is a subspace of R3.

4–7 Let S be the upper half plane in R2. So S consists of those vectors in R2

with second component ≥ 0. In symbols, S = {[t, s]T | t, s ∈ R, s ≥ 0}. Using
only the definition of subspace, determine whether S is a subspace of R2.

4–8 Let S = Span{[2,−4, 1]T}.

(a) Give a geometrical description of S.

(b) Find two planes having S as their intersection. (Hint: Use the method for
determining S given in the solution to Example 4.4.1.)

4–9 Let L : Rn → Rm be a linear function. Prove that kerL is a subspace of
Rn.

Hint: Verify the three properties in the definition of subspace with kerL playing
the role of S. If you assume that x and y are elements of kerL, then you know
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that L(x) = 0 and L(y) = 0. On the other hand, if you want to show that
x+ y is an element of kerL, then you need to show that L(x+ y) = 0.
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