
Chapter 1

Vectors and Vector Spaces

1.1 Vector Spaces

Underlying every vector space (to be defined shortly) is a scalar field F .
Examples of scalar fields are the real and the complex numbers

R := real numbers

C := complex numbers.

These are the only fields we use here.

Definition 1.1.1. A vector space V is a collection of objects with a (vector)
addition and scalar multiplication defined that closed under both operations
and which in addition satisfies the following axioms:

(i) (α+ β)x = αx+ βx for all x ∈ V and α,β ∈ F
(ii) α(βx) = (αβ)x

(iii) x+ y = y + x for all x, y ∈ V
(iv) x+ (y + z) = (x+ y) + z for all x, y, z ∈ V
(v) α(x+ y) = αx+ αy

(vi) ∃O ∈ V 0 + x = x; 0 is usually called the origin

(vii) 0x = 0

(viii) ex = x where e is the multiplicative unit in F .
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The “closed” property mentioned above means that for all α,β ∈ F and
x, y ∈ V

αx+ βy ∈ V
(i.e. you can’t leave V using vector addition and scalar multiplication). Also,
when we write for α,β ∈ F and x ∈ V

(α+ β)x

the ‘+’ is in the field, whereas when we write x+ y for x, y ∈ V , the ‘+’ is
in the vector space. There is a multiple usage of this symbol.

Examples.

(1) R2 = {(a1, a2) | a1, a2 ∈ R} two dimensional space.

(2) Rn = {(a1, a2, . . . , an) | a1, a2, . . . , an ∈ R}, n dimensional space.
(a1, a2, . . . , an) is called an n-tuple.

(3) C2 and Cn respectively to R2 and Rn where the underlying field is C,
the complex numbers.

(4) Pn =
n

j=0
ajx

j | a0, a1, . . . , an ∈ R is called the polynomial space of

all polynomials of degree n. Note this includes not just the polynomials
of exactly degree n but also those of lesser degree.

(5) p = {(ai, . . . ) | ai ∈ R,Σ|ai|p < ∞}. This space is comprised of
vectors in the form of infinite-tuples of numbers. Properly we would
write

p(R) or p(C)

to designate the field.

(6) TN =
N

n=1
an sinnπx | a1, . . . , an ∈ R , trigonometric polynomials.

Standard vectors in Rn

e1 = (1, 0, . . . , 0)
e2 = (0, 1, 0, . . . , 0)
e3 = (0, 0, 1, 0, . . . , 0)
...
en = (0, 0, . . . , 0, 1)

These are the
unit∗ vec-
tors which
point in the
n orthogonal∗

directions.
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∗Precise definitions will be given later.

For R2, the standard vectors are
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e1 = (1, 0)

e2 = (0, 1) (1,0)

(0,1)

(0,0)

1

2

e

Graphical representa-
tion of e1 and e2 in the
usual two dimensional
plane.

Recall the usual vector addition in the plane uses the parallelogram rule

y

x+y

For R3, the standard vectors are

e1 = (1, 0, 0)

e2 = (0, 1, 0)

e3 = (0, 0, 1)

(0,0,1)

(1,0,0)

e

e

e (0,1,0)

2

3

1

Graphical representa-
tion of e1, e2, and e3 in
the usual

Linear algebra is the mathematics of vector spaces and their subspaces. We
will see that many questions about vector spaces can be reformulated as
questions about arrays of numbers.

1.1.1 Subspaces

Let V be a vector space and U ⊂ V . We will call U a subspace of V if U
is closed under vector addition, scalar multiplication and satisfies all of the
vector space axioms. We also use the term linear subspace synonymously.
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Examples. Proofs will be given later

let V = R3 = {(a, b, c) | a, b, c ∈ R} (1.1)

U = {(a, b, 0) | a, b ∈ R}.
Clearly U ⊂ V and also U is a subspace of V .

let v1, v2 ∈ R3 (1.2)

W = {av1 + bv2 | a, b ∈ R}
W is a subspace of R3.

In this case we say W is “spanned” by {v1, v2}. In general, let S ⊂ V , a
vector space, have the form

S = {v1, v2, . . . , vk}.
The span of S is the set

U =


k

j=1

ajvj | a1, . . . , ak ∈ R
 .

We will use the notion

S(v1, v2, . . . , vk)

for the span of a set of vectors.

Definition 1.1.2. We say that

u = a1v1 + · · ·+ akvk
is a linear combination of the vectors v1, v2, . . . , vk.

Theorem 1.1.1. Let V be a vector space and U ⊂ V . If U is closed under
vector addition and scalar multiplication, then U is a subspace of V .

Proof. We remark that this result provides a “short cut” to proving that a
particular subset of a vector space is in fact a subspace. The actual proof
of this result is simple. To show (i), note that if x ∈ U then x ∈ V and so

(ab)x = ax+ bx.

Now ax, bx, ax+ bx and (a+ b)x are all in U by the closure hypothesis. The
equality is due to vector space properties of V . Thus (i) holds for U . Each
of the other axioms is proved similarly.
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A very important corollary follows about spans.

Corollary 1.1.1. Let V be a vector space and S = {v1, v2, . . . , vk} ⊂ V .
Then S(v1, . . . , vk) is a linear subspace of V .

Proof. We merely observe that

S(v1, . . . , vk) =
k

1

ajvj | a1, . . . , ak ∈ R or C .

This means that the closure is built right into the definition of span. Thus,
if

v = a1v1 + · · ·+ akvk
w = b1v1 + · · ·+ bkvk

then both

v +w = (a1 + b1)v1 + · · ·+ (ak + bk)vk

and

cv = ca1v + ca2v + · · ·+ cakv

are in U . Thus U is closed under both operations; therefore U is a subspace
of V .

Example 1.1.1. (Product spaces.) Let V and W be vector spaces defined
over the same field. We define the new vector space Z = V ×W by

Z = {(v, w) | u ∈ V, w ∈W}

We define vector addition as (v1, w1) + (v2, w2) = (v1 + v2, w1 + w2) and
scalar multiplication by α(v, w) = (αv, αw). With these operations, Z is a
vector space, sometimes called the product of V and W .

Example 1.1.2. Using set-builder notation, define V13 = {(a, 0, b) | a, b,∈
R}. Then U is a subspace of R3. It can also be realized as the subspace of
the standard vectors e1 = (1, 0, 0) and e3 = (0, 0, 1), that is to say V13 =
S (e1, e3).
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Example 1.1.3. More subspaces of R3. There are two other important
methods to construct subspaces of R3. Besides the set builder notation
used above, we have just considered the method of spanning sets. For
example, let S = {v1, v2} ⊂ R3. Then S (S) is a subspace of R3. Simi-
larly, if T = {v1} ⊂ R3. Then S (T ) is a subspace of R3. A third way
to construct subspaces is by using inner products. Let x,w ∈ R3. Ex-
pressed in coordinates x = (x1, x2, x3) and w = (w1, w2, w3) . Define
the inrner product of x and w by x · w = x1w1 + x2w2 + x3w3. Then
Uw = {x ∈ R3 | x · w = 0} is a subpace of R3. To prove this it is neces-
sary to prove closure under vector addition and scalar multiplication. The
latter is easy to see because the inner product is homogeneous in α, that is,
(αx) · w = αx1w1 + αx2w2 + αx3w3 = α (x · w) . Therefore if x · w = 0 so
also is (αx) ·w. The additivity is also straightforward. Let x, y ∈ U . Then
the sum

(x+ y) · w = (x1 + y1)w1 + (x2 + y2)w2 + (x3 + y3)w3

= (x1w1 + x2w2 + x3w3) + (y1w1 + y2w2 + y3w3)

= 0 + 0 = 0

However, by choosing two vectors v, w,∈ R3 we can define Uv,w = {x ∈
R3 | x ·y = 0 and x ·w = 0}. Establishing Uv,w is a subspace of R3 is proved
similarly. In fact, what is that both these sets of subspaces, those formed
by spanning sets and those formed from the inner products are the same set
of subspaces. For example, referring to the previous example, it follows that
V13 = S (e1, e3) = Ue2 . Can you see how to correspond the others?

1.2 Linear independence and linear dependence

One of the most important problems in vector spaces is to determine if
a given subspace is the span of a collection of vectors and if so, to deter-
mine a spanning set. Given the importance of spanning sets, we intend to
examine the notion in more detail. In particular, we consider the concept
of uniqueness of representation.

Let S = {v1, . . . , vk} ⊂ V , a vector space, and let U = S(v1, . . . , vk) (or
S(S) for simpler notation). Certainly we know that any vector v ∈ U has
the representation

v = a1v1 + · · ·+ akvk
for some set of scalars a1, . . . , ak. Is this representation unique? Or, can we
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find another set of scalars b1, . . . , bk not all the same as a1, . . . , ak respec-
tively for which

v = b1v1 + · · ·+ bkvk.

We need more information about S to answer this question either way.

Definition 1.2.1. Let S = {v1, . . . , vk} ⊂ V , a vector space. We say that
S is linearly dependent (l.d.) if there are scalars a1, . . . , ak not all zero for
which

a1v1 + a2v2 + · · ·+ akvk = 0. ( )

Otherwise we say S is linearly independent (l.i.).

Note. If we allow all the scalars to be zero we can always arrange for ( )
to hold, making the concept vacuous.

Proposition 1.2.1. If S = {v1, . . . , vk} ⊂ V , a vector space, is linearly
dependent, then one member of this set can be expressed as a linear combi-
nation of the others.

Proof. We know that there are scalars a1, . . . , ak such that

a1v1 + a2v2 + · · ·+ akvk = 0

Since not all of the coefficients are zero, we can solve for one of the vectors
as a linear combination of the other vectors.

Remark 1.2.1. Actually we have shown that there is no vector with a
unique representation in S(S).

Corollary 1.2.1. If 0 ∈ S = {v1, . . . , vk}, then S is linearly dependent.

Proof. Trivial.

Corollary 1.2.2. If S = {v1, . . . , vk} is linearly independent then every
subset of S is linearly independent.
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1.3 Bases

The idea of a basis is that of finding a minimal generating set for a vector
space. Through basis, unicity of representation and a number of other useful
properties, both theoretical and computational, can be concluded. Thinking
of the concept in operations research ideas, a basis will be a redundancy free
and complete generating set for a vector space

Definition 1.3.1. Let V be a vector space and S = {v1, . . . , vk} ⊂ V . We
call S a spanning set for the subspace U = S(S).

Suppose that V is a vector space, and S = {v1, . . . , vk} is a linearly
independent spanning set for V . Then S is called a basis of V . Modify this
definition correspondingly for subspaces.

Proposition 1.3.1. If S is a basis of V , then every vector has a unique
representation.

Proof. Let S = {v1, . . . , vk} and v ∈ V . Then
v = a1v1 + · · ·+ akvk

for some choice of scalars. If there is a second choice of scalars b1, . . . , bk
not all the same, respectively, as a1, . . . , ak, we have

v = b1v1 + · · ·+ bkvk
and

0 = (a1 − b1)v1 + · · ·+ (ak − bk)vk.
Since not all of the differences a1 − b1, . . . , ak − bk are zero we must have
that S is linearly dependent. This is a contradiction to our hypothesis, and
the result is proved.

Example. Let V = R3 and S = {e1, e2, e3}. Then S is a basis for V .
Proof. Clearly V is spanned by S. Now suppose that

0 = a1e1 + a2e2 + a3e3

or

(0, 0, 0) = a1(1, 0, 0) + a2(0, 1, 0) + a3(0, 0, 1)

= (a1, a2, a3).

Hence a1 = a2 = a3 = 0. Thus the set {e1, e2, e3} is linearly independent.
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Remark 1.3.1. Note how we resolved the linearly dependent/linearly in-
dependent issue by converting a vector problem to a numbers problem. This
is at the heart of linear algebra.

Exercise. Let S = {v1, v2} = {(1, 0, 1), (1,−1, 0)} ⊂ R3. Show that S is
linearly independent and therefore a basis of S(S).

1.4 Extension to a basis

In this section, we show that given a linearly independent set of vectors
from a vector space with a finite spanning set, it is possible add to this set
more vectors until it becomes a basis. Thus any set of linearly independent
vectors can be a part (subset) of a basis.

Theorem 1.4.1 (Extension to a basis). Assume that the given vector space
V has a finite spanning set S1, i.e. V = S(S1). Let S0 = {x1, . . . , x } be a
linearly independent subset of V so that S(S0) V . Then, there is a subset
S1 of S1, such that S0 ∪ S is a basis for V .

Proof. Our intention is to add vectors to S0 keeping it linearly independent
and eventually becoming a basis. There are a couple of steps.
Steps.

1. Since S(S1) S(S0), there is a vector y1 ∈ S1 such that S0,1 =
{S0, y1} is linearly independent and thus S(S0,1) S(S0).

2. Continue this process generating sets

S0,1 = {S0, y1}
S0,2 = {S0,1, y2}
...

S0,j = {S0,j−1, yj−1}
...

At each step S0,1, S0,2, . . . are linearly independent sets. Since S1 is
finite we must eventually have that

S(S0,m) = S(S1) = V.

3. Since S0,m is linearly independent and spans V , it must be a basis.
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Remark 1.4.1. In the proof it was important to begin with any spanning
set for V and to extract vectors from it as we did. Assuming merely that
there exists a finite spanning set and extracting vectors directly from V
leads to a problem of terminus. That is, when can we say that the new
linearly independent set being generated in Step 2 above is a spanning set
for V ? What we would need is a theorem that says something to the effect
that if V has a finite basis, then every linearly independent set having the
same number of vectors is also a basis. This result is the content of the next
section. However, to prove it we need the Extension theorem.

Corollary 1.4.1. If S = {v1, . . . , vk} is linearly dependent then the repre-
sentation of vectors in S(S) is not unique.

Proof. We know there are scalars a1, . . . , ak not all zero, for which

a1v1 + · · ·+ akvk = 0

let v ∈ S(S) have the representation

v = b1v1 + b2v2 + · · ·+ bkvk.

Then we also have the representation

v = (a1 + b1)v1 + (a2 + b2)v2 + · · ·+ (ak + bk)vk
establishing the result.

Remark 1.4.2. The upshot of this construction is that we can always con-
struct a basis from a spanning set. In actual practice this process may be
quite difficult to carry out. In fact, we will spend some time achieving this
goal. The main tool will be matrix theory.

1.5 Dimension

One of the most remarkable features of vector spaces is the notion of
dimension. We need one simple result that makes this happen, the basis
theorem.

Theorem 1.5.1 (Basis Theorem). Let S = {v1, . . . , vk} ⊂ V be a basis
for V . Then every basis of V has k elements.
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Proof. We proceed by induction. Suppose S = {v1} and T = {w1, w2} are
both bases of V . Then since S is a basis

w1 = α1v1 w2 = α2v1

and therefore

1

α1
w1 − 1

α2
w2 = 0

which implies that T is linearly dependent (we tacitly assumed that both
α1 and α2 were nonzero. Why can we do this?)

The next step is to assume the result holds for bases having up to k
elements. Suppose that S = {v1, . . . , vk+1} and T = {w1, . . . , wk+2} are
both bases of V . Now consider S = {v1, . . . , vk}. We know that S(S )
S(S) = S(T ) = V . By our extension of bases result, there is a vector
w 1 ∈ T such that

S1 = {v1, . . . , vk, w 1}
is linearly independent andS(S1) ⊂ S(S) = V . IfS(S1) V , our extension
result applies again to give a vector v 1 such that

S11 = {v1, . . . , vk, w 1 , v 1}
is linearly independent The only possible selection is v 1 = vk+1. But in this
case w i will depend on v1, . . . , vk, vk+1, and that is a contradiction. Hence
S(v1, . . . , vk, w 1) = V .

The next step is to remove the vector vk from S1 and apply the extension
to conclude that the span of the set

S2 = {v1, . . . , vk−1, w 1 , w 2}
is V . We continue in this way eventually concluding that

Sk+1 = {w 1 , w 2 , . . . , w k+1
}

has span V . But Sk+1 T , whence T is linearly dependent.

Proposition 1.5.1 (Reduced spanning sets). (a) Suppose that S =
{v1, . . . , vk} spans V and vj depends (linearly) on

Sj = {v1, . . . , vj−1, vj+1 . . . vk}.
Then Sj also spans V .
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(b) If at least one vector in S is nonzero (that is V = {0}, the smallest
vector space), then there is a subset S0 ⊂ S that is linearly independent
and spans V .

Proof. (Left to reader.)

Definition 1.5.1. The dimension of a vector space V is the (unique) num-
ber of vectors in a basis of V . We write dim(V ) for the dimension.

Remark 1.5.1. This definition make sense possible only because of our
basis theorem from which we are assured all every linearly independent
spanning sets of V , that is all bases, have the same number of elements.

Examples.

(1) dim(Rn) = n,

(2) dim(Pn) = n+ 1.

Exercise. Let M = all rectangular arrays of two rows and three columns
with real entries. Find a basis for M , and find the dimension of M . Note

M =
a b c
d e f

a, b, c, d, e, f ∈ R

Example 1.5.1. Pn = {anxn + an−1xn−1 + · · · + a1x + a0 = 0} is the
vector space of polynomials of degree n. We claim that the powers, x0 = 1,
x, x2, . . . , xn are linearly independent, and since

Pn = S(1, x, . . . , x
n)

they form a basis of Pn.

Proof. There are several ways we can prove this fact. Here is the most
direct and it requires essentially no machinery. Suppose they are linearly
dependent, which means that there are coefficients a0, a1, . . . , an so that

anx
n + an−1xn−1 + · · ·+ a1x+ a0 = 0, ( )

the function. (This functional view is critically important because every
polynomial has roots.) There must be a coefficient which is nonzero and
which corresponds to the highest power. Let us assume that an = 0, for
convenience, and with no loss in generality.
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Solve for xn to get

xn = −an−1
an

xn−1 + · · ·+−a1
an
x− a0

an
( )

Now compute the ratio of this expression divided by xn on both sides, and
let x→∞. The left side of course will be 1. Again for convenience we take
n = 2. So, condensing terms we will have

b1x+ b0
x2

= b1
1

x
+ b0

1

x2
= 1

where bj = −aj/a2. But as x → ∞ the expression b1
1
x + b0

1
x2
→ 0.

This is a contradiction. It cannot be that the functions 1, x, and x2 are
linearly dependent.

In the general case for n we have

bn−1
1

x
+ bn−2

1

x2
+ · · ·+ b0 1

xn
= 1,

where bj = −aj/an. Apply the same limiting argument to obtain the con-
tradiction. Thus

T = {1, x, . . . , xn}
is a basis of Pn.

A calculus proof is available. It is also based on the fact that if the
powers are linearly independent and ( ) holds, then we can assume that the
same relation ( ) is true. Now take the nth derivative of both sides. We
obtain

n! = 0

a contraction, and the result if proved
Finally, one more technique used to prove this result is by using the

Fundamental Theorem of Algebra.

Theorem 1.5.2. Every polynomial ( ) of exactly nth degree (i.e. with
an = 0) has exactly n roots counted with multiplicity (i.e. if q(x) = qnx

n +
qn−1xn−1 + · · ·+ q1x+ q0 ∈ Pn(C), qn = 0 then the number of solutions of
q(x) = 0 is exactly n).

From ( ) above we have an nth degree polynomial that is zero for every
x. Thus the polynomial is zero, and this means all the coefficients are
zero. This is a contradiction to the hypothesis, and therefore the theorem
is proved.
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Remark 1.5.2.

P0 P1 P2 · · · Pn · · · .

On the other hand this is not true for the Euclidean spaces R1, R2, . . . .
However, we may say that there is a subspace of R3 which is “like” R2 in
every possible way. Do you see this? We have

R2 = {(a, b) | a, b ∈ R}
R3 = {(a, b, c) | a, b, c ∈ R}.

No element in R2, an ordered pair, can be in R3, a set of ordered triples.
However

U = {(a, b, 0) | a, b ∈ R}

is “like” R2 is just about every way. Later on we will give a precise mathe-
matical meaning to this comparison.

Example 1.5.2. Find a basis for the subspace V0 of R3 of all solutions to

x1 + x2 + x3 = 0 ( )

where x = (x1, x2, x3) ∈ R3.
Solution. First show that the set V0 = {(x1, x2, x3) ∈ R3 | x1+x2+x3 = 0}
is in fact a subspace of R3. Clearly if x = (x1, x2, x3) ∈ V0 and y =
(y1, y2, y3) ∈ V0 then x + y = (x1 + y1, x2 + y2, x3 + y3) ∈ V0, proving
closure under vector addition. Similarly V0 is closed under scalar multi-
plication. Next, we seek a collection of vectors v1, v2, . . . , vk ∈ V0 so that
S(v1, . . . , vk) = V0. Let x3 = α and x2 = β be free parameters. Then

x1 = −(α+ β).

Hence all solutions of ( ) have the form

x = (−(α+ β),β,α)

x = α(−1, 0, 1) + β(−1, 1, 0).

Obviously the vectors v1 = (−1, 0, 1) and v2 = (−1, 1, 0) are linearly inde-
pendent, and x is expressed as being in the span of them. So, V0 = S(v1, v2).
V0 has dimension 2.
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Theorem 1.5.3 (Uniqueness). Let S = {v1, . . . , vk} be a basis of V .
Then each vector v ∈ V has a unique representation with respect to S.

Proof. Since S(S) = V we have that

v = a1v1 + a2v2 + · · ·+ akvk
for some coefficients a1, a2, . . . , ak in the given field. (This is the represen-
tation of v with respect to S.) If it is not unique there is another

v = b1v1 + b2v2 + · · ·+ bkvk.
So, subtracting we have

(a1 − b1)v1 + (a2 − b2)v2 + · · ·+ (ak − bk)vk = 0
where the differences aj−bj are not all zero. This implies that S is a linearly
dependent set.

Theorem 1.5.4. Suppose that S = {v1, . . . , vk} is a basis of the vector
space V . Suppose that T = {w1, . . . , wm} is a linearly independent subset
of V . Then m ≤ k.
Proof. We know that S is a linearly independent spanning set. This means
that every linearly independent set of k vectors is also a spanning set. There-
fore, m > k renders a contradiction as T0 = {w1, . . . , wk} is a spanning set
and wk+1 ∈ S(T0).
Definition 1.5.2. If A is any set we define

|A| := cardinality of A,
that is to say |A| is the number of elements of A.
Example 1.5.3. Let T = {1, x, x2, x3}. Then |T | = 4.
Theorem 1.5.5. Both Rk and Ck are k-dimensional and Sk = {e1, e2, . . . , ek}
is a basis of both.

Proof. It is easy to see that e1, . . . , ek are linearly independent, and any
vector x in Rk has the form

x = a1e1 + a2e2 + · · ·+ akek
for a1, . . . , ak ∈ R. Thus Sk is a linearly independent spanning set and
hence a basis of Rk.
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Question:What single change to the proof above gives the theorem for Ck?

The following results follow easily from previous results.

Theorem 1.5.6. Let V be a k-dimensional vector space.

(i) Every set T with |T | > k is linearly dependent.
(ii) If D = {v1, . . . , vj} is linearly independent and j < k, then there are

vectors v 1 , . . . , v k−j ∈ V such that

D ∪ {v 1 , . . . , v k−j}
is a basis of V .

(iii) If D ⊂ V , |D| = k, and D is either a spanning set for V or linearly
independent, then D is a basis for V .

1.6 Norms

Norms are a way of putting a measure of distance on vector spaces. The
purpose is for the refined analysis of vector spaces from the viewpoint of
many applications. It is also to all the comparison of various vectors on
the basis of their length. Ultimately, we wish to discuss vector spaces as
representatives of points. Naturally, we are all accustomed to the “shortest
distance” distance from the Pythagorean theorem. This is an example of a
norm, but we shall consider them as real valued functions with very special
properties.

Definition 1.6.1. Norms on vector spaces over C, or R. Let V be a vec-
tor space and suppose that · : V → R+ is a function from V to the
nonnegative reals for which

(i) x ≥ 0 for all x ∈ V and

x = 0 if and only if x = 0

(ii) αx = |α| x for all α ∈ C, R and x ∈ V
(iii) x+ y ≤ x + y for all x, y ∈ V “The Triangle inequality”.

Then · is called a norm on V . The second condition is often termed the
(positive) homogeneity property.

Remark 1.6.1. The notation is a substitute function notation. The ex-
pression · , without the vector, is just the way a norm is expressed.
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Examples. Let V = Rn (or Cn). Define for x = (x1, . . . , xn)

(i) x 2 = (|x1|2 + |x2|2 + · · ·+ |xn|2)1/2 Euclidean norm

(ii) x 1 = (|x1|+ |x2|+ · · ·+ |xn|) 1 norm

(iii) x ∞ = max
1≤i≤n

|xi| ∞ norm

Norm (ii) is read as: ell one norm. Norm (iii) is read as: ell infinity norm.

Proof that (ii) is a norm. Clearly (i) holds. Next

αx 1 = (|αx1|+ |αx2|+ · · ·+ |αxn|)
= (|α||x1|+ |α||x2|+ · · ·+ |α||xn|)
= |α|(|x1|+ |x2|+ · · ·+ |xn|) = |α| x 1

which is what we needed to prove. Also,

x+ y 1 = (|x1 + y1|+ |x2 + y2|+ · · ·+ |xn + yn|)
≤ (|x1|+ |y1|+ |x2|+ |y2|+ · · ·+ |xn|+ |yn|)
= (|x1|+ |x2|+ · · ·+ |xn|) + (|y1|+ |y2|+ · · ·+ |yn|)
= x 1 + y 1.

Here we used the fact that |α+ β| ≤ |α|+ |β| for numbers.
To prove that (i) is a norm we need a very famous inequality.

Lemma 1.6.1 (Cauchy—Schwartz). Given that a1, . . . , an and b1, . . . , bn
are in C. Then

n

1

|aibi| ≤
n

1

a2i

1/2 n

1

b2i

1/2

. ( )

Proof. We consider for the variable t

Σ(ai + tbi)
2 = Σa2i + 2tΣaibi + t

2Σb2i .

Note that ( ) is obvious if
n

1
aibi = 0. If not take

t = −

n

1
a2i

n

1
aibi

.
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Then

Σ(ai + tbi)
2 = Σa2i − 2

Σa2i
Σaibi

Σaibi +
Σa2i

2

(Σaibi)
2Σb

2
i

= −Σa2i +
Σa2i

2
Σb2i

(Σaibi)
2

= Σa2i −1 + Σa2iΣb
2
i

(Σaibi)
2 .

Since the left side is ≥ 0 and since Σa2i ≥ 0, we must have that

−1 + Σa2iΣb
2
i

(Σaibi)
2 ≥ 0.

Solving this inequality we have

(Σaibi)
2 ≤ Σa2iΣb2i .

Now that square roots to get the result.

To prove that (i) is a norm, we note that conditions (i) and (ii) are
straightforward. The truth of condition (iii) is a consequence of another
famous result.

Theorem 1.6.1 (Minkowski). x+ y 2 ≤ x 2 + y 2.

Proof.

Σ(ai + bi)
2 = Σa2i + 2Σaibi + Σb

2
i

≤ Σa2i + 2 Σa2i
1/2

Σb2i
1/2
+ Σb2i

= Σa2i
1/2
+ Σb2i

1/2 2
.

Taking square roots gives the result.

Continuity and Equivalence of Norms

Lemma 1.6.2. Every vector norm on Cn is continuous in the vector com-
ponents.
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Proof. Let x ∈ Cn and · some norm on Cn. We need to show that if the
vector δ → 0, in components, then x+ δ → x . First, by the triangle
inequality

x+ δ ≤ x + δ or

x+ δ − x ≤ δ

Similarly

x ≤ x+ δ − δ
≤ x+ δ + δ or

− δ ≤ x+ δ − x

Therefore

| x+ δ − x | ≤ δ

Now expressing δ in components and standard bases vectors, we write δ =
δ1e1 + · · ·+ δnen and

δ ≤ |δ1| e1 + · · ·+ |δn| en
≤ max

1≤i≤n
|δi| ( e1 + · · ·+ en )

≤ M max
1≤i≤n

|δi|

where M = e1 + · · ·+ en . We know that if δ → 0 in components, then
max1≤i≤n |δi|→ 0. Therefore | x+ δ − x |→ 0, as well.

Definition 1.6.2. Let · a and · b be two vector norms on Cn. We say
that these norms are equivalent if there are postive constants m, M such
that for all x ∈ Cn

m x a ≤ x b ≤M x a

The remarkable fact about vector norms on Cn is that they are all equiv-
alent. The only tool we need to prove this is the following result: Every
continuous function on a compact set of Cn assumes its maximum (and
minimum) on that set. The term “compact” refers to a particular kind of
set K, one which is both bounded and closed. Bounded means that for
maxx∈K x ≤ B < ∞ and closed means that if limn→∞ xn = x, then
x ∈ K.
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Theorem 1.6.2. All norms on Cn are equivalent.

Proof. Since equivalence of norms is an equivalence condition, we can take
one of the norms to be the infinity norm · ∞ . Denote the other norm by
· . Now define K = { x | x ∞ = 1 }. This set, called the unit ball in the
infinity norm, is compact. Now we define

m = min
x ∈ K

x and

M = max
x ∈ K

x

Since · is a continuous function on K (from the lemma above) and since
K is compact, we have that both the minimum and maximum are attained
by specific vectors in K. Since these vectors are nonzero (they’re in K) and
because x is positive for nonzero vectors, it must follow that 0 < m <
M <∞. Hence, on K, the relation

m x ≤ x ∞ ≤M x

holds true. For any vector x ∈ Cn we can write x = x

x ∞
x ∞ and

x

x ∞
∈ K. Thus

m
x

x ∞
≤ x

x ∞ ∞
≤M x

x ∞

m
x

x ∞
x ∞ ≤ x

x ∞ ∞
x ∞ ≤M

x

x ∞
x ∞

m x ≤ x ∞ ≤M x

and the theorem is proved.

Example 1.6.1. Example. Find the estimates for the equivalence of · 2
and · ∞

Solution. Let x ∈ Cn. Then, because we know for any finite sequences
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that n
i=1 |aibi| ≤ max1≤i≤n |ai| n

i=1 |bi|

x 2 =
n

i=1

|xi|2
1
2

≤
n

i=1

1 · |xi|2
1
2

≤ max
1≤i≤n

|xi|2
1/2 n

i=1

1

1
2

= n
1
2 x ∞

On the other hand, by the Cauchy-Schwartz inequality

x ∞ = max
1≤i≤n

|xi|

≤
n

i=1

|xi|

≤
n

i=1

1

1
2 n

i=1

|xi|2
1/2

= n
1
2 x 2

Putting these inequalities together we have

n−
1
2 x 2 ≤ x ∞ ≤ n

1
2 x 2

This makes m = n−1/2 and M = n
1
2 .

Remark 1.6.2. Note that the constantsm andM depend on the dimension
of the vector space. Though not the rule in all cases, it is mostly the
situation.

Norms on polynomial spaces

Polynomial spaces, as we have considered earlier, can be given norms as well.
Since they are function spaces, our norms usually need to consider all the
values of the independent variable. In many, though not all, cases we need
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to restrict the domains of the polynomials. With that in mind we introduce
the notation

Pk(a, b) = Pk with domain restricted to the interval [a, b]

We now define the function versions of the same three norms we have just
studied. For functions p(x) in Pk(a, b) we define

1. p(x) 2 =
b
a | p(x) |2 dx

1
2

2. p(x) 1 =
b
a | p(x) | dx

3. p(x) ∞ = max
a≤x≤b

| p(x) |

The positivity and homogeneity properties are fairly easy to prove. The
triangle property is a little more involved. However, it has essentially been
proved for the earlier norms. In the present case, one merely “integrates”
over the inequality. Sometimes · 2 is called the energy norm.

The integral norms are really the norm for polynomial spaces. Alternate
norms use pointwise evaluation or even derivatives depending on the appli-
cation. Here is a common type of norm that features the first derivative.
For p ∈ Pn (a, b) define

p = max
a≤x≤b

|p (x)|+ max
a≤x≤b

p (x)

As is evident this norm becomes large not only when the polynomial is large
but also when its derivative is large. If we remove the term maxa≤x≤b |p (x)|
from the norm above and define

N (p) = max
a≤x≤b

p (x)

This function satisfies all the norm properties except one and thus is not a
norm. (See the exercises.) Point evaluation-type norms take us too far afield
of our goals partly because making point evaluations into norms requires
some knowledge of interpolation and related topics. Leave it said that the
obvious point evaluation functions such as p(a) and the like will not provide
us with norms.
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1.7 Ordered Bases

Given a vector space V with a basis S = {v1, v2, . . . , vk} we now know
that every vector v ∈ V has a representation with respect to the basis

v = a1v1 + a2v2 + · · ·+ akvk.

But no order is implied. For example, for R2 we have S = {e1, e2} = {e2, e1}
shows us that there is no particular order convey through the definition of
a basis. When we place an order on a basis we will notice an underlying
algebraic structure of all k-dimensional vector spaces.

Definition 1.7.1. Let V be a k-dimensional vector space with basis S =
{v1; v2; . . . ; vk} is specified with a fixed and well defined order as indicated
by their relevant positions. Then S is called an ordered basis. With or-
dered bases we obtain coordinates. Let V be a vector space of dimension
k with ordered basis S, and suppose v ∈ V . For 1 ≤ i ≤ k, we define
the ith coordinate of v with respect to S to be the ith coefficient ai in the
representation

v = a1v1 + a2v2 + · · ·+ aivi + · · ·+ akvk.

In this way we can associate each v ∈ V with a k-tuple of numbers
(a1, a2, . . . , ak) ∈ Rk that are the coefficients of v with respect to S. The
k-tuple is unique, owing to the fixed ordering of S. Conversely, for each
ordered k-tuple (a1, a2, . . . , ak) ∈ Rk there is associated a unique vector
v ∈ V given by v = a1v1 + a2v2 + · · ·+ aivi + · · ·+ akvk.

We will express this association as

v ∼ (a1, a2, . . . , ak)

The following properties are each simple propositions:

• If v ∼ (a1, a2, . . . , ak) and w ∼ (b1, b2, . . . , bk) then

v + w ∼ (a1 + b1, a2 + b2, . . . , ak + bk)

• If v ∼ (a1, a2, . . . , ak) and α ∈ R (or C), then

αv ∼ α(a1, a2, . . . , ak) = (αa1,αa2, . . . ,αak)

• If v ∼ (a1, a2, . . . , ak) = (0, 0, . . . 0), then v = 0.
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We now define a special type of linear function from one linear space to
another. The special condition is linearity of the map.

Definition 1.7.2. Let V and W be two vector spaces. We say that V and
W are homomorphic if there is a mapping Φ between V and W for which

(1.) For v and w in V
Φ(v + w) = Φ(v) + Φ(w)

(2.) For v and α ∈ R (or C)
Φ(αv) = αΦ(v)

In this case we call Φ a homomorphism from V to W . Furthermore, we say
that V and W are isomorphic if they are homomorphic and if

(3.) For each w ∈W there exists a unique v ∈ V such that

Φ(v) = w

In this case we call Φ a isomorphism from V to W .

We put all this together to show that finite dimensional vector spaces
over the reals (resp. complex numers) and the standard Euclidean spaces
Rk (resp. Ck) are very, very closely related. Indeed from the point of view
of isometry, they are identical.

Theorem 1.7.1. If V is a k-dimensional vector space over R (resp C), then
V is isomorphic to Rk (resp. Ck).

This constitutes the beginning of the sufficiency of matrix theory as a
tool to study finite dimentsional vector spaces.

Definition 1.7.3. The mapping cs : V → Rk defined by

cs(v) = (a1, a2, . . . , ak)

where v ∼ (a1, a2, . . . , ak) is the so-called coordinate map.
Example 1.7.1. We have shown that in R3 the solutions to the equation
x1 + x2 + x3 = 0 for x = (x1, x2, x3) ∈ R3 is a subspace V0 with basis
S = {v1, v2} = {(−1, 0, 1), (−1, 1, 0)}. With respect to this basis v0 ∈ V0 if
there are constants α0, β0 so that

v0 = α0 (−1, 0, 1) + β0 (−1, 1, 0)
With respect to this basis the coordinate map has the form

cs(v0) = (α0, β0)

Therefore, we have established that V0 is isomorphic to R2.
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1.8 Exercises.

1. Show that {(a, b, 0) | a, b ∈ R} is a subspace of R3 by proving that it
is spanned by vectors in R3. Find at least two sets of spanning sets.

2. Show that {(a, b, 1) | a, b ∈ R} cannot be a subspace of R3.
3. Show that {(a − b, 2b − a, a − b) | a, b ∈ R} is a subspace of R3 by
proving that it is spanned by vectors in R3.

4. For any w ∈ R3, show that Uw = {x ∈ R3 | x · w = d = 0} is not
subpace of R3.

5. Find a set of vectors in R3 that spans the subspace Uw = {x ∈ R3 | x ·
w = 0}, where w = (1, 1, 1).

6. Why can {(a− b, a2, ab) | a, b ∈ R} never be a subspace of R3?
7. Let Q = {x1, . . . , xk } be a set of distinct points on the real line
with k < n. Show that the subset PQ of the polynomial space Pn of
polynomials zero on the set Q is in fact a subspace of Pn. Characterize
PQ if k > n and k = n.

8. In the product space defined above prove that definitions given the
result is a vector space.

9. What is the product space R2 ×R3 ?
10. Find a basis for Q = {ax+ bx3 | a, b ∈ R}.
11. Let T ⊂ Pn be those polynomials of exactly degree n. Show that T is

not a subspace of Pn.

12. What is the dimension of

Q = {ax+ ax2 + bx3 | a, b ∈ Q}.
What is a basis for Q?

13. Given that S = {x1, x2, . . . , x2k} and T = {y1, y2, . . . , y2k} are
both bases of a vector space V. (Note, the space V has dimension 2k.)
Consider the set of any k integers L = {l1, . . . , lk} ⊂ {1, 2, . . . , 2k}. (i)
Show that associated with P = {xl1 , xl2 , . . . , xlk} there are exactly
k vectors from T , say Q = {ym1 , ym2 , . . . , ymk} so that P ∪Q is also
a basis for V. (ii) Is the set of vectors from T unique? Why or why
not?
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14. Given Pn. Define Zn = {p (x) | p(x) ∈ Pn}. (The notation p (x) is the
standard notation for the derivative of the function p(x) with respect
to the variable x.) What is another way to express Zn in terms of
previously defined spaces?

15. Show that x ∞ is a norm. (Hint. The condition (iii) should be the
focal point of your effort.)

16. Let S = {x1, x2, . . . , xn} ⊂ Rn. For each j = 1, 2, . . . , n suppose
xj ∈ S has the property that its first j − 1 entries equal zero and the
jth entry is nonzero. Show that S is a basis of Rn.

17. Let w = (w1, w2, w3) ∈ R3, where all the components of w are strictly
positive. Define · w onR3 by x w = w1 |x1|2 + w2 |x3|2 +w2 |x3|2

1/2
.

Show that · w is a norm on R3.

18. Show that equivalence of norms is an equivalence relation.

19. Define for p ∈ Pn (a, b) the function N (p) = maxa≤x≤b |p (x)| . Show
that this is not a norm on Pn (a, b).

20. For p ∈ Pn (a, b) define p = maxa≤x≤b |p (x)|+maxa≤x≤b |p (x)| .
Show this is a norm on Pn (a, b).

21. Suppose that V is a vector space with dimension k. Find two (linearly
independent) spanning sets S = {v1, v2, . . . , vk} andW = {w1, w2, . . . , wk}
of V such that if any m < k vectors are chosen from S and any k−m
vectors are chosen from T, the resulting set will be a basis for V.

22. For p ∈ Pn (a, b) define N (p) = p a+b
2 . Show this is not a norm

on Pn (a, b).

23. Find the estimates for the equivalence of · 1 and · ∞.
24. Find the estimates for the equivalence of · 1 and · 2.
25. Show that Pn defined over the reals is isomorphic to Rn+1.

26. Show that Tn, the space of trigonometric polynomials, defined over
the reals is isomorphic to Rn.

27. Show that the product space Ck × Cm is isomorphic to Ck+m.
28. What is the relation between the product space Pn × Pn and P2n ?

Find the polynomial space that is isomorphic to Pn × Pn.
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Terms.

Field
Vector space
scalar multiplication
Closed space
Origin
Polynomial space
Subspace, linear subspace
Span
Spanning set
Representation
Uniqueness of representation
linear dependence
linear independence
linear combination
Basis
Extension to a basis
Dimension
Norm

2 norm; 1 norm; 2∞ norm
Cauchy-Schwartz inequality
Fundamental Theorem of Algebra
Cardinality
Triangle inquality


