
Pointers
• To understand pointers, you should first know how

data is stored on the computer.
• Each variable you create in your program is assigned a

location in the computer's memory. The value the
variable stores is actually stored in the location assigned.

• To know where the data is stored, C++ has an
& operator.

• The & (reference) operator gives you the address
occupied by a variable.

• If var is a variable then, &var gives the address of
that variable.

Output

0x7fff5fbff8ac
0x7fff5f bff8a
8
0x7fff5f bff8a
4

Example 1: illustrate the Address in C++

#include <iostream>

using namespace std;

int main()
{

int var1 = 3;
int var2 = 24;
int var3 = 17;
cout << &var1 << endl;
cout << &var2 << endl;
cout << &var3 << endl;

}

حيضوت

• You may not get the same result on your
system.

• The 0x in the beginning represents the
address is in hexadecimal form.

• Notice that first address differs from
second by 4-bytes and second address
differs from third by 4-bytes.

• This is because the size of integer (variable
of type int) is 4 bytes in 64-bit system.

• A pointer is the memory address of a variable.

• A pointer is a variable that contains the address of a variable.

• Using pointer we can pass argument to the functions. Generally

we pass them by value as a copy. So we cannot change them. But if

we pass argument using pointer, we can modify them

• Let us imagine that a computer memory is a long array and every

array location has a distinct memory location.

• A pointer variable contains a representation of an address of another

variable (P is a pointer variable in the following):

3

Example: (pointer declarations)

float *p; //To declare a pointer variable p that can "point"

to a variable of type float

int *K; //To declare a pointer variable K that can "point"

to a variable of

type int

Example: If a number variable is stored in the memory

address 0x123, and it contains a value 5.

⚫The reference (&) operator gives the value 0x123, while

the dereference

(*) operator gives the value 5.

Pointer Variable Definition
Syntax: Type *Name;

Examples:
int *P;

f loat *Q;

char *R;

// P is varaible that can point toan integer var

// Q is a float pointer

// R is a char pointer

Example:

int *AP[5]; /* AP is an array of 5 pointers to ints */

Address (&) Operator
⚫An address used to tell where a variable is stored in memory is a

pointer

⚫Pointer variables must be declared to have a pointer type

⚫Reference operator (&) as discussed above gives the address of a
variable.

The Dereferencing Operator

To get the value stored in the memory address, we use the
dereference operator (*).

Example: p1 = &v1;

⚫ p1 is now a pointer to v1

⚫ v1 can be called v1 or "the variable pointed to by p1"

Example 2:

Example 3: C++ Pointers
C++ Program to demonstrate the working of pointer.

#include <iostream>

using namespace std;

int main() {

int *pc, c;

c = 5;

cout << "Address of c (&c): " << &c << endl;

cout << "Value of c (c): " << c << endl << endl;

pc = &c; // Pointer pc holds the memory address

of variable c cout << "Address that pointer pc holds (pc):

"<< pc << endl;

cout << "Content of the address pointer pc holds (*pc): " << *pc <<

endl

c = 11; // The content inside memory address &c is changed from

5 to 11. cout << "Address pointer pc holds (pc): " << pc << endl;

cout << "Content of the address pointer pc holds (*pc): " << *pc <<

endl;

*pc = 2;

cout << "Address of c (&c): " << &c << endl;

cout << "Value of c (c): " << c << endl << endl;

return 0;

}

The output for Example 3

Address of c (&c): 0x7fff5fbff80c

Value of c (c): 5

Address that pointer pc holds (pc): 0x7fff5fbff80c

Content of the address pointer pc holds (*pc): 5

Address pointer pc holds (pc): 0x7fff5fbff80c

Content of the address pointer pc holds (*pc): 11

Address of c (&c): 0x7fff5fbff80c

Value of c (c): 2

Pointer Assignment
⚫ The assignment operator = is used to assign the

value of one pointer to another

⚫ Example: If p1 still points tov1 (previous slide) then
p2 = p1;

⚫ causes *p2, *p1, and v1 all to name the same variable

⚫ Some care is required making assignments to pointervariables
⚫ p1= p2; // changes the location that p1 "points"

to

⚫ *p1 = *p2; // changes the value at the location

that p1 "points" to

C++ Pointers and Arrays
⚫ In this article, you'll learn about the relation between

arrays and pointers, and use them efficiently in your

program.

• Pointers are the variables that hold address. Not only

can pointers store address of a single variable, it can

also store address of cells of an array.

For example:

Int *ptr;

int a[5];

Ptr = &a[2]; // &a[2] is the address of third element of a[5].

⚫ Suppose, pointer needs to point to the fourth element of an array, that is, hold address of
fourth array element in abovecase.

⚫ Since ptr points to the third element in the above example, ptr + 1 will point to the fourth
element.

⚫ You may think, ptr + 1 gives you the address of next byte to the ptr. But it's not correct.

⚫ This is because pointer ptr is a pointer to an int and size of int is fixed for a operating
system (size of int is 4 byte of 64-bit operating system). Hence, the address between
ptr and ptr + 1 differs by 4 bytes.

⚫ If pointer ptr was pointer to char then, the address between ptr and ptr + 1 would
have differed by 1 byte since size of a character is 1 byte.

Example 4: C++ Pointers and Arrays
C++ Program to display address of elements of an array using both array

and pointers
#include <iostream>
using namespace std;

int main()
{

f loat arr[5];
f loat *ptr;

cout << "Displaying address using arrays: " << endl;
for (int i = 0; i < 5; ++i)
{

cout << "&arr[" << i << "] = " << &arr[i] << endl;
}

// ptr = &arr[0]
ptr = arr;

cout<<"\nDisplaying address using pointers: "<< endl;
for (int i = 0; i < 5; ++i)
{

cout << "ptr + " << i << " = "<< ptr + i << endl;
}

return 0;
}

Output of Eample 4:

Displaying address using arrays:

&arr[0] = 0x7fff5fbff880

&arr[1] = 0x7fff5fbff884

&arr[2] = 0x7fff5fbff888

&arr[3] = 0x7fff5fbff88c

&arr[4] = 0x7fff5fbff890

Displaying address using pointers:

ptr + 0 = 0x7fff5fbff880

ptr + 1 = 0x7fff5fbff884

ptr + 2 = 0x7fff5fbff888

ptr + 3 = 0x7fff5fbff88c

ptr + 4 = 0x7fff5fbff890

حيضوت

In the above program, a different pointer ptr is
used for displaying the address of array
elements arr.

But, array elements can be accessed using

