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Numerical Analyses Methods

Solution of Nonlinear Equations:-

1) Bisection Method:

The bisection method (sometimes called the midpoint method
for equations) is a method used to estimate the solution of an
.equation

we approach this problem by writing the equation in the form
f(x) = 0 for some function f(x). This reduces the problem to
.(finding a root for the function f(x))

the Bisection Method needs a closed interval [a,b] for which
the function f(x) is positive at one endpoint and negative at
the other. In other words f(x) must satisfy the condition
f(a)*f(b) < 0. This means that this algorithm can not be applied
.to find tangential roots

There are several advantages that the Bisection method

The number of steps required to estimate the root within the
desired error can be easily computed before the algorithm is
applied. This gives a way to compute how long the algorithm
(will compute. (Real-time applications



NOTE
e |If f(a) and f(b) have the same
sign, the function may have an ;
even number of real zeros or /
no real zeros in the interval - T
[a, b]. ‘ \/

e Bisection method can not be The function has four real zeros

used in these cases.

The function has no real zeros

Bisection Algorithm

The idea for the Bisection Algorithm is to cut the interval [a,b] you are given in
half (bisect it) on each iteration by computing the midpoint P. The midpoint will

replace either a or b depending on if the sign of f(P ) agrees with f(a) or f(b).
Step 1: Compute P = (a+b)/2
Step 2: If sign(f(P)) =0 then end algorithm
else If sign(f(P)) = sign(f(a)) thena =P
else b =P

Step 3: Returnto step 1
fla) L fix) root

P / This shows how the points z, &
b

and P are related.

f)L

Assumptions:
. féx; IS continuous on [a,b]
« f(a) f(b) <O

Algorithm:




Loop
1. Compute the mid point p=(a+b)/2

2. Evaluate f(c)
3.1f f(a) f(p) <0 then new interval [a, p]

If f(a) f(p) >0 then new interval [p, b]
End loop

(=)

(b )

Example

Can you use Bisection method to find a zero of :
f(x)=x®-3x+1 in the interval [0,1]?

Answer:

f (x) is continuous on [0,1]

and f(0)*f(1)=(1)(-1)=-1<0

= Assumptiors are satisfied

= Bisection method can be used

Example
Use Bisection method to find a root of the equation x = cos (x) with

absolute error <0.02

(assume the initial interval [0.5, 0.9])

f(a)=-0.3776 f(b) =0.2784
Error < 0.2




-0.3776 -0.0648 0.2784
° Error < 0.1
0.5 0.7 0.9
-0.0648 0.1033 0.2784
® Error < 0.05
0.7 0.8 0.9
Iteration a b = I%’ f(c)
1 0 1 0.5 -0.375
2 0 0.5 0.25 0.266
3 0.25 0.5 .375 -7.23E-3
4 0.25 0.375 0.3125 9.30E-2
5 0.3125 | 0.375 0.34375 | 9.37E-3

In order to compute the number of iteration we

use the following equation :-

. log(b—a) —log(&)

Example

log(2)

Lets apply the Bisection Method to the same function as we did
for the Regula-Falsi Method. The equation is: x°-2x-3=0, the

function is: f{x)=x>-2x-3.

This function has a root on the interval [0,2]



e | b | X | f2) | £D) | %)
1 10 2 1 -3 1 -4
2 |1 2 1.5 4 1 -2.262
3 |15 |2 1.75 |[2262 |1 -1.140
4 175 |2 1.875 [-1.140 |1 -.158
Advantages

Simple and easy to implement

One function evaluation per iteration

The size of the interval containing the zero is
reduced by 50% after each iteration

The number of iterations can be determined a
priori

No knowledge of the derivative is needed

The function does not have to be differentiable

Disadvantage

Slow to converge

Good intermediate approximations may be discarded

2) False position method

If a real root is bounded by aand b of f(x)=0, then we can

approximate the solution by doing a linear interpolation

between the points

[a, f(a)] and [b, f(b)] to find the c value such that f(c)=0,
where f(x) is the linear approximation of f(x).




S 4

1. Find a pair of values of a, b and x such that
f=f(a) <0 and f,=f(b) >0.

2. Estimate the value of the root from the
following formula:-

af, —bf,
fu T fl

and evaluate f(¢).

3.
Use the new point to replace one of the original points,

keeping the two points on opposite sides of the x axis.
If f(c)<0 thena=c ==> fI:f(c)

If f(c)>0 thenb=c ==> f =f(c)
u

If f(c)=0 then you have found the root and need go no
further!



4. See if the new X and X are close enough for

convergence to be declared. If they are not go back
to step 2.

examplel:- Root of f(x)=x®—0.165x? +3.993 x10~* = Ofor false-position method.

Iteration X, X, X | |ea|% f(x,)

1| 0.0000 | 0.1100 | 0.0660 — | 31944105

2 | 0.0000 | 0.0660 | 0.0611 8.00 | —1.1320x10°

3] 0.0611 | 0.0660 | 0.0624 | 2.05| _11313x10~"

Example 2

Find the root of f(x)=(x—4)*(x+2)=0, using the initial guesses of X, =—2.5 and
X

v =—1.0, and a pre-specified tolerance of €,=0.1%.

Solution

The individual iterations are not shown for this example, but the results are summarized in
Table 2. It takes five iterations to meet the pre-specified tolerance.

Table 2 Root of f(x)=(x—4)’(x+ 2) = Ofor false-position method.

lteration | x X, | F(x.) | f(x) Xe | |el|% f(x,)

1]-25 -1 -21.13 25.00 | -1.813 N/A 6.319

2(-25|-1813 | -21.13 6.319 | -1.971 8.024 1.028

3]1-25|-1971| -21.13 1.028 | -1.996 1.229 0.1542

4|-25]-199 | -21.13 | 0.1542 | -1.999 | 0.1828 | 0.02286

51-25|-1.999 | -21.13 | 0.02286 | -2.000 | 0.02706 | 0.003383

3) Newton-Raphson Method:-

A convenient method for functions whose derivatives can be evaluated

analytically. It may not be convenient for functions whose derivatives
cannot be evaluated analytically.
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Slope = f (x)

ST, | S e, e e
S — O
o ~
Algorithm:-
algorithm
1)Eva|uate f’(.?C) symbolically.
2) Use an initial guess of the root, x ,, to estimate the
new value of the root, ., »as
_ )
Xin =X = 5
f'(x)

3) Find the absolute relative approximatée—;‘,#ror as

_ K~ X

IS x 100

a

xi+l

24




Example 1 Cont.

Entered funclion on given interval
Solution o
To aid in the understanding of how this 000031
method works to find the root of an v
equation, the graph of f(x) is shown to 000021
the right, 20001
where
002 O 002 004
00001
0.00021

S (X) = x>-0165x24+3993x10* o

Function

Figure 4 Graph of the function f(x)

Example 1 Cont.

lteration 1
The estimate of the root is
= x f'(xo)
f (xo)
(0.05) —0.165 (0.05 ) +3.993 x10~*
=0.05 - :
3(0.05 ) - 0.33(0.05)
-4
_ 005 _ 1118 x10
-9x10

=0.05 — (- 0.01242 )
= 0.06242



Example 1 Cont.

The absolute relative approximate error ’e . ’at the end of Iteration 1 is

—[F "%l 100
xl

_|0.06242 —0.05]

0.06242

=19.90%

a |

e

The number of significant digits at least correct is 0, as you need an
absolute relative approximate error of 5% or less for at least one
significant digits to be correct in your result.

Example 1 Cont.

Iteration 2
The estimate of the root is
o )
2 T M ;
J (xl)
3 o 2 -4
_ 00604y _ (0.06242 )’ —0.165 2(0.06242 ) +3.993 x 10
3(0.06242 ) —0.33(0.06242 )
_ -7
0.0624n . —3-97781 x10

~8.90973 x10°
=0.06242 — (4.4646 x10 )
= 0.06238



Example 1 Cont.

The absolute relative approximate error ’e . ’at the end of Iteration 2 is

uxlgo

a

X,
_ 0.06238 — 0.06242 <100
0.06238

= 0.0716 %

The maximum value of m for which |e | < 0.5x10 %715 2.844.
Hence, the number of significant digits at least correct in the
answer is 2.

Example 1 Cont.

Iteration 3
The estimate of the root is
X, =x, - f'(xz)
f (xz)
3 2 _4
006238 _ (0.06238 )’ —0.165 50.06238 ) +3.993 x 10
3(0.06238 )’ —0.33(0.06238 )
-11
_ 006038 _ _ 4A44x10

~8.91171 x10 °
= 0.06238 — (—4.9822 x 10
~ 0.06238



Example 1 Cont.

The absolute relative approximate error |e i |at the end of Iteration 3 is

uxmo

X,

_|0.06238 —0.06238 | ...
0.06238 |

e =

= 0%

The number of significant digits at least correct is 4, as only 4
significant digits are carried through all the calculations.

Newton’s method

@ Use Newton’s method to find root of
Ilz) = z? — 4sin(x) =0
@ Derivative is
f/(x) = 22 — 4cos(x)
so iteration scheme is
zf — 4sin(xy)

Thal = Tp —
sl : 2xy — 4 cos(xy)

@ Taking x¢p = 3 as starting value, we obtain
x f(z) f'(z) h
3.000000 8.435520 9.959970 —0.846942
2.153058 1.294772 6.505771 —0.199019
1.954039 0.108438 5.403795 —0.020067
1.933972 0.001152 5.288919 —0.000218
1.933754 0.000000 5.287670 0.000000

.Example: Find the root of e*-3x =0
:Solution

f(x) =e™ - 3x



f(x)=-e>-3

With these, the Newton-Raphson solution

can be updated as

&% - 3Xi

Xi+1 = Xi +
-€%- 3

-1— 0:2795 — 0:5680 — 0:6172 —
0:6191 — 0:6191
Converges much faster than the bisection

Example :-By using the Newton-Raphson’s method find the
positive root of the quadratic equation

x2 + 11x—17 = 0 correct to 3 significant figures

Numerical analyses of integration



The Definite integral as the area of a region

If f is continuous and nonnegative on the closed interval
[a, b], then the area of the region bounded by the graph
of f, the x-axis, and the vertical lines x=a andx=b is
given by

area = J- f(x)dx

Areas of common geometric figures.

4 1

Area=4(2)=8

3
I Addx
|

j\/4—x2dx
)

A:%ﬂr2 2172'22 =2 2 2



Riemann Sums and Definite Integrals

Definition of the Definite Integral

If f is defined on the closed interval [a, b] and the limit of
a Riemann sum of f exists, then we say f is integrable on [a, b]
and we denote the limit by

hm Zf(c )Ax, = If(x)dx

The limit is called the definite integral of f from a to b. The
number a is the lower limit of integration, and the number b

is the upper limit of integration.

Introduction to area under a curve
(cont.)

There are two methods we can use to find the area
under a curve: the trapezoidal rule, and
Simpson’s rule.

For each method we must know:
f(x)- the function of the curve
n- the number of partitions or rectangles

(a, b)- the boundaries on the x-axis between which
we are finding the area

[



Trapezoidal Rule

TRAPEZOIDAL RULE ALWAYS begins with:

f(xo)and ends Withf(xn)

Within the brackets with
every“ f” being multiplied by 2
EXCEPT for the first and last terms

Trapezoidal Rule- Example

Remember: Trapezoidal Rule Only

A=

B 2 (e + 2 () + 2 () )

Given this problem below, what all do we need to know
in order to find the area under the curve using
Trapezoidal Rule?

4
f(x) = J‘x3 4 partitions
0



Simpson’s Rule

Simpson’s rule is the most accurate method of finding
the area under a curve. It is better than the
trapezoidal rule because instead of using straight
lines to model the curve, it uses parabolic arches to
approximate each part of the curve. The equation
that is used for Simpson’s Rule ALWAYS begins with:

f (X0)And ends with f (X5,)

Within the brackets with every “f” being multiplied by alternating coefficients
of 4 and 2 EXCEPT the first and last terms.

In Simpson’s Rule, n MUST be even.

Simpson’s Rule- Example

Remember: Simpson’s Rule Only

b

A== O+ 47 () + 2 Ge) + 4 (e )+ ()]

Given this problem below, what all do we need to
know in order to find the area under the curve
using Simpson’s Rule?

4 Partitions

f(x)= j X



Example: Simpson’s Rules

4 g
Evaluate the integral L xe Vdx
o Simpson’s 1/3-Rule

I= J Rl ﬁ[f( O +4£2)+ f(4)]
0 3

= [ 0+4(2e*)+4e" | =8240 411
D
aimel e
.. 3216926 _ f;_-_to,-m o
5216926

o Simpson’s 3/8-Rule

Fis J‘\L c/\~i{f(0)+?f( )+?f( )+7‘(4)}

q ‘»
(4 )[(>+ 3(19.18922) + 3(552.33933)+ 11923.832] = 681 9.209

"l 6.926—6819.209

o = 30.71%
5216.926 : Djzsam

Example

4 2
I X dx
Approximate ¥0 using trapizume rule , n =8
subintervals.

Ax=(4-0)/8=1/2 x0=0 x1=0.5,x2=1 ,x3=1.5, x4=2
XxX5=2.5 x6=3 ,x7=3.5 ,x8=4

4, Ax
Jy Fode = =) +2F () + 2 () +o 4 ()]

1/2
[f(O) +2£(0.5) +2f (1) +---+ f(4)]

= 0.25[0 +2(0.25) +2(1) +--- +16]
=21.5



Example

4 2
j X“dx
Estimate +0 using Simpson’s Rule and n = 4.
Here, Ax = (4-0)/4 = 1.

U

Ax

S L0+ 4F0e) +2F(e) + 4 () + F(xp)]
1

= J[fO+4f0+2f@D+4f3)+ F(4)]

- %[02 +4(1)° +2(2) +4(3)* + (4)2]
= 64/3=21.333

Jj f(x)dx

NUMERICAL SOLUTION OF
ORDINARY DIFFERENTIAL
EQUATIONS

Differential equations are among the most important mathematical tools
used in producing models in the physical sciences, biological sciences,
and engineering. In this text, we consider numerical methods for solving
ordinary differential equations, that is, those differential equations that
have only one independent variable.

The differential equations we consider in most of the book are of the form

Y0 =1 Y (1),

where Y (t) is an unknown function that is being sought. The given
function f(t, y) of two variables defines the differential equation.

» A first order initial value problem of ODE may be written in the
form



1)

y'©)="1(yt), y0)=y,

« Example:

y'(t) =3y +5, y(0) =1
y'(t) =ty +1, y(0)=0

* Numerical methods for ordinary differential equations calculate
solution on the points, t, = t, , + h where h is the

steps size .

Methods to find appraoximate solution of ORDINARY
DIFFERENTIAL EQUATIONS

« Euler Methods

* Modified Euler Method

* Runge-Kutta Methods Second Order

EULER METHOD:-
The Euler forward scheme may be very easy to implement but it can't give
accurate solutions. A very small step size is required for any meaningful
result. In this scheme, since, the starting point of each sub-interval is used
to find the slope of the solution curve, the solution would be correct only if
the function is linear. So an improvement over this is to take the arithmetic
average of the slopes at t; and tj;1(that is, at the end points of each sub-
interval). The scheme so obtained is called modified Euler's method. It
works first by approximating a value to y;:; and then improving it by
making use of average slope.

Consider the forward difference approximation for first derivative

Yn = yn+1h_ Yn ’ h = tn+1 —t

* Rewriting the above equation we have

yn+l:yn+hyn|’ ynlz f(yn’tn)

+ So, Y. isrecursively calculated as

n



Y1 = Yo +hyo': Yo +h f(yo’to)
Y, = y1+h f(yl’tl)

yn - yn—l + h f (yn—l’tn—l)

Example: solve
y'=ty+1, y,=y(0)=1 0<t<l h=0.25

Solution:

for t,=0, vy,=y(0)=1
for t, =025 vy, =y,+hy,
=Yoot h(toyo +1)
=1+0.25(0*1+1) =1.25
for t,=05  vy,=y,+hy

=Yt h(t1Y1 "‘1)
=1.25+0.25(0.251.25+1) =1.5781



THE SOLUTION OF ODE
3 BY EXACT SOLUTION AMD FORWARD EULER APPROXIMATION

258

Exact Solution

181

Forward Euler Solution

2)Modified Euler Method

* Modified Euler method is derived by applying the trapezoidal rule
to integrating Y, = f(Yy,1) : S0, we have

h ' ! 1
yn+1:yn+5(yn+l+yn)’ Yo = f(yn’tn)

« Iffislinear iny, we can solved for Yn.1 similar as
backward euler method

« Iffis nonlinear in y, we necessary to used the method for solving
nonlinear equations i.e. successive substitution method (fixed
point)



Example: solve
y=ty+l, y,=y0)=1, 0<r<l, h=025
Solution:

fis linearin y. So, solving the problem using modified Euler
method for}, yields

h ,
Yu = Vo +E(y n—1 +.}, n )
h
= .},n—l + E (fn—l.]",n—l +1 + fn.yn + 1)

= yn(l_grn) = yn—l(l +§fn—1)+ )‘?

h
(1 + E rn—l)
S p=—2 . +h
(1 _Er'ﬂ)
172 expi1/2 12) 112 212 erf1/2 21 H4exp(1/2 19
3 o
Exact Solution
28r -
2 L -
1.5+ .
Modified Euler
1 .

Example 1:
Find y(1.0) accurate upto four decimal places using Modified Euler's method by

solving the IVP y* = -2xy?, y(0) = 1 with step lengh 0.2.

Solution:  f(x, y) = -2xy?
y' = -2*x*y*y, y[0.0] = 1.0 withh =0.2



Given
y[0.0] =1.0

Euler Solution:  y(1) = y(0) + h*(-2*x*y*y)(1)

y[0.20] = 1.0

Modified Euler iterations:y(1) = y(0) + .5*h*((-2*x*y*y)(0) + (-2*x*y*y)(1)
y[0.20] =1.0 y[0.20] = 0.9599999988079071 y[0.20] =0.9631359989929199
y[0.20] = 0.9628947607919341 y[0.20] = 0.9629133460803093

Euler Solution:  y(2) = y(1) + h*(-2*x*y*y)(2)

y[0.40] = 0.8887359638083165

Modified Euler iterations:y(2) = y(1) + .5*h*((-2*x*y*y)(1) + (-2*x*y*y)(2)
y[0.40] = 0.8887359638083165 y[0.40] = 0.8626358081578545

y[0.40] = 0.8662926943348495 y[0.40] = 0.8657868947404332

y[0.40] = 0.865856981554814

Euler Solution:  y(3) = y(2) + h*(-2*x*y*y)(3)

y[0.60] = 0.7458966289094106

Modified Euler iterations:y(3) = y(2) + .5*h*((-2*x*y*y)(2) + (-2*x*y*y)(3)
y[0.60] = 0.7458966289094106 y[0.60] = 0.7391085349039348

y[0.60] = 0.7403181774980547 y[0.60] = 0.7401034281837107

y[0.60] = 0.7401415785278189

Euler Solution:  y(4) = y(3) + h*(-2*x*y*y)(4)

y[0.80] = 0.6086629119889084

Modified Euler iterations:y(4) = y(3) + .5*h*((-2*x*y*y)(3) + (-2*x*y*y)(4)
y[0.80] = 0.6086629119889084 y[0.80] = 0.6151235687114084

y[0.80] = 0.6138585343771569 y[0.80] =0.6141072871136244

y[0.80] = 0.6140584135348263

Euler Solution:  y(5) = y(4) + h*(-2*x*y*y)(5)

y[1.00] = 0.49340256427369866

Modified Euler iterations:y(5) = y(4) + .5*h*((-2*x*y*y)(4) + (-2*x*y*y)(5)
y[1.00] = 0.49340256427369866 y[1.00] = 0.5050460713552334

y[1.00] = 0.5027209825340415 y[1.00] = 0.5031896121302805

y[1.00] = 0.5030953322323046 y[1.00] = 0.503114306721248

Example 2:

Find y in [0,3] by solving the initial value problem y* = (x - y)/2, y(0) = 1. Compare solutions for h =
1/2, 1/4 and 1/8.

Solution: f(x,y) =(x-y)/2

Case(i) : y'=(x-y)/2, y(0)=1.0withh=1/2

Given
y[0.0] =1.0



Euler Solution:  y(1) = y(0) + h*((x-y)/2)(1)

y[0.50] =0.75

Modified Euler iterations:y(1) = y(0) + .5*h*(((x-y)/2)(0) + ((x-y)/2)(1)

y[0.50] =0.75 y[0.50] = 0.84375 y[0.50] = 0.83203125 y[0.50] =0.83349609375 y[0.50] =
0.83331298828125 y[0.50] = 0.8333358764648438

Euler Solution:  y(2) = y(1) + h*((x-y)/2)(2)

y[1.00] = 0.7499997615814209

Modified Euler iterations:y(2) = y(1) + .5*h*(((x-y)/2)(1) + ((x-y)/2)(2)

y[1.00] = 0.7499997615814209 y[1.00] =0.8229164183139801 y[1.00] =0.8138018362224102
y[1.00] = 0.8149411589838564 y[1.00] =0.8147987436386757 y[1.00] =0.8148165455568233

Euler Solution:  y(3) = y(2) + h*((x-y)/2)(3)

y[1.50] = 0.8611107402377911

Modified Euler iterations:y(3) = y(2) + .5*h*(((x-y)/2)(2) + ((x-y)/2)(3)

y[1.50] = 0.8611107402377911 y[1.50] =0.9178236877476991 y[1.50] =0.9107345693089606
y[1.50] =0.9116207091138029 y[1.50] =0.9115099416381975 y[1.50] =0.9115237875726483

Euler Solution:  y(4) = y(3) + h*((x-y)/2)(4)

y[2.00] = 1.0586415426231315

Modified Euler iterations:y(4) = y(3) + .5*h*(((x-y)/2)(3) + ((x-y)/2)(4)

y[2.00] = 1.0586415426231315 y[2.00] = 1.1027516068990952 y[2.00] = 1.0972378488645997
y[2.00] = 1.0979270686189118 y[2.00] = 1.0978409161496228 y[2.00] = 1.0978516852082838

Euler Solution:  y(5) = y(4) + h*((x-y)/2)(5)

y[2.50] = 1.3233877543069634

Modified Euler iterations:y(5) = y(4) + .5*h*(((x-y)/2)(4) + ((x-y)/2)(5)

y[2.50] = 1.3233877543069634 y[2.50] = 1.357695577403087 y[2.50] = 1.3534070995160716 y[2.50]
=1.3539431592519484 y[2.50] = 1.3538761517849638

Euler Solution:  y(6) = y(5) + h*((x-y)/2)(6)

y[3.00] = 1.6404133957887526

Modified Euler iterations:y(6) = y(5) + .5*h*(((x-y)/2)(5) + ((x-y)/2)(6)

y[3.00] = 1.6404133957887526 y[3.00] = 1.6670972872799508 y[3.00] = 1.663761800843551 y[3.00]
=1.664178736648101 y[3.00] = 1.6641266196725322

Case(i) : y'=(x-y)/2, y(0)=1.0withh=1/4

Given
y[0.0] =1.0

Euler Solution:  y(1) = y(0) + h*((x-y)/2)(1)

y[0.250] = 0.875

Modified Euler iterations:y(1) = y(0) + .5*h*(((x-y)/2)(0) + ((x-y)/2)(1)

y[0.250] = 0.875 y[0.250] = 0.8984375 y[0.250] = 0.89697265625 y[0.250] = 0.897064208984375

Euler Solution:  y(2) = y(1) + h*((x-y)/2)(2)
y[0.500] = 0.816176176071167
Modified Euler iterations:y(2) = y(1) + .5*h*(((x-y)/2)(1) + ((x-y)/2)(2)



y[0.500] = 0.816176176071167 y[0.500] = 0.8368563205003738 y[0.500] = 0.8355638114735484
y[0.500] = 0.835644593287725

Euler Solution:  y(3) = y(2) + h*((x-y)/2)(3)

y[0.750] = 0.7936846013712966

Modified Euler iterations:y(3) = y(2) + .5*h*(((x-y)/2)(2) + ((x-y)/2)(3)

y[0.750] = 0.7936846013712966 y[0.750] = 0.8119317853121117 y[0.750] = 0.8107913363158108
y[0.750] = 0.8108626143780796

Euler Solution:  y(4) =y(3) + h*((x-y)/2)(4)

y[1.000] = 0.8032508895617894

Modified Euler iterations:y(4) = y(3) + .5*h*(((x-y)/2)(3) + ((x-y)/2)(4)

y[1.000] = 0.8032508895617894 y[1.000] =0.8193513439328768 y[1.000] = 0.8183450655346838
y[1.000] = 0.8184079579345709

Euler Solution:  y(5) = y(4) + h*((x-y)/2)(5)

y[1.250] = 0.8411035237646307

Modified Euler iterations:y(5) = y(4) + .5*h*(((x-y)/2)(4) + ((x-y)/2)(5)

y[1.250] = 0.8411035237646307 y[1.250] = 0.8553098052268149 y[1.250] = 0.8544219126354284
y[1.250] = 0.8544774059223901

Euler Solution:  y(6) = y(5) + h*((x-y)/2)(6)

y[1.500] = 0.9039146953929605

Modified Euler iterations:y(6) = y(5) + .5*h*(((x-y)/2)(5) + ((x-y)/2)(6)

y[1.500] = 0.9039146953929605 y[1.500] = 0.9164496480303976 y[1.500] =0.9156662134905579
y[1.500] = 0.9157151781492978

Euler Solution:  y(7) = y(6) + h*((x-y)/2)(7)

y[1.750] = 0.9887481031258607

Modified Euler iterations:y(7) = y(6) + .5*h*(((x-y)/2)(6) + ((x-y)/2)(7)

y[1.750] = 0.9887481031258607 y[1.750] = 0.9998083540466274 y[1.750] =0.9991170883640794
y[1.750] = 0.9991602924692387

Euler Solution:  y(8) = y(7) + h*((x-y)/2)(8)

y[2.000] = 1.093012893186083

Modified Euler iterations:y(8) = y(7) + .5*h*(((x-y)/2)(7) + ((x-y)/2)(8)

y[2.000] = 1.093012893186083 y[2.000] = 1.1027719368752444 y[2.000] = 1.1021619966446718
y[2.000] = 1.1022001179090826

Euler Solution:  y(9) = y(8) + h*((x-y)/2)(9)

y[2.250] = 1.2144230184137998

Modified Euler iterations:y(9) = y(8) + .5*h*(((x-y)/2)(8) + ((x-y)/2)(9)

y[2.250] = 1.2144230184137998 y[2.250] = 1.223033938221066 y[2.250] = 1.2224957557331118
y[2.250] = 1.222529392138609

Euler Solution:  y(10) = y(9) + h*((x-y)/2)(10)

y[2.500] = 1.3509613786303571

Modified Euler iterations:y(10) = y(9) + .5*h*(((x-y)/2)(9) + ((x-y)/2)(10)

y[2.500] = 1.3509613786303571 y[2.500] = 1.3585592480824138 y[2.500] = 1.3580843812416603



y[2.500] = 1.3581140604192075

Euler Solution:  y(11) = y(10) + h*((x-y)/2)(11)

y[2.750] = 1.5008481797867843

Modified Euler iterations:y(11) = y(10) + .5*h*(((x-y)/2)(10) + ((x-y)/2)(11)

y[2.750] = 1.5008481797867843 y[2.750] = 1.5075521813920236 y[2.750] = 1.5071331812916962
y[2.750] = 1.5071593687979665

Euler Solution:  y(12) = y(11) + h*((x-y)/2)(12)

y[3.000] = 1.6625130155689716

Modified Euler iterations:y(12) = y(11) + .5*h*(((x-y)/2)(11) + ((x-y)/2)(12)

y[3.000] = 1.6625130155689716 y[3.000] = 1.6684283103508373 y[3.000] = 1.6680586044269707
y[3.000] = 1.6680817110472124

Case(iil) : y'=(x-y)/2, y(0) =1.0withh=1/8

Given
y[0.0] =1.0

Euler Solution:  y(1) = y(0) + h*((x-y)/2)(1)

y[0.1250] = 0.9375

Modified Euler iterations:y(1) = y(0) + .5*h*(((x-y)/2)(0) + ((x-y)/2)(1)
y[0.1250] = 0.9375 y[0.1250] = 0.943359375 y[0.1250] = 0.94317626953125

Euler Solution:  y(2) = y(1) + h*((x-y)/2)(2)

y[0.2500] = 0.8920456171035767

Modified Euler iterations:y(2) = y(1) + .5*h*(((x-y)/2)(1) + ((x-y)/2)(2)

y[0.2500] = 0.8920456171035767 y[0.2500] = 0.8975498788058758 y[0.2500] =
0.8973778706276789

Euler Solution:  y(3) = y(2) + h*((x-y)/2)(3)

y[0.3750] = 0.8569217930155446

Modified Euler iterations:y(3) = y(2) + .5*h*(((x-y)/2)(2) + ((x-y)/2)(3)

y[0.3750] = 0.8569217930155446 y[0.3750] = 0.8620924634176603 y[0.3750] =
0.8619308799675942

Euler Solution:  y(4) = y(3) + h*((x-y)/2)(4)

y[0.5000] = 0.8315024338597582

Modified Euler iterations:y(4) = y(3) + .5*h*(((x-y)/2)(3) + ((x-y)/2)(4)

y[0.5000] = 0.8315024338597582 y[0.5000] = 0.836359730596966 y[0.5000] = 0.8362079400739283

Euler Solution:  y(5) = y(4) + h*((x-y)/2)(5)

y[0.6250] = 0.8151993908072874

Modified Euler iterations:y(5) = y(4) + .5*h*(((x-y)/2)(4) + ((x-y)/2)(5)

y[0.6250] = 0.8151993908072874 y[0.6250] = 0.8197623062048026 y[0.6250] =
0.8196197150986302

Euler Solution:  y(6) = y(5) + h*((x-y)/2)(6)
y[0.7500] = 0.8074601603787794



Modified Euler iterations:y(6) = y(5) + .5*h*(((x-y)/2)(5) + ((x-y)/2)(6)
y[0.7500] = 0.8074601603787794 y[0.7500] = 0.8117465357129019 y[0.7500] =
0.8116125864837106

Euler Solution:  y(7) = y(6) + h*((x-y)/2)(7)

y[0.8750] = 0.8077657241223026

Modified Euler iterations:y(7) = y(6) + .5*h*(((x-y)/2)(6) + ((x-y)/2)(7)

y[0.8750] = 0.8077657241223026 y[0.8750] =0.8117923193808908 y[0.8750] =
0.8116664882790599

Euler Solution:  y(8) = y(7) + h*((x-y)/2)(8)

y[1.0000] = 0.8156285192196802

Modified Euler iterations:y(8) = y(7) + .5*h*(((x-y)/2)(7) + ((x-y)/2)(8)

y[1.0000] = 0.8156285192196802 y[1.0000] =0.8194110786347212 y[1.0000] =
0.8192928736530011

Euler Solution:  y(9) = y(8) + h*((x-y)/2)(9)

y[1.1250] = 0.8305905320862623

Modified Euler iterations:y(9) = y(8) + .5*h*(((x-y)/2)(8) + ((x-y)/2)(9)

y[1.1250] = 0.8305905320862623 y[1.1250] = 0.8341438456947754 y[1.1250] =
0.8340328046445094

Euler Solution:  y(10) = y(9) + h*((x-y)/2)(10)

y[1.2500] = 0.852221507509997

Modified Euler iterations:y(10) = y(9) + .5*h*(((x-y)/2)(9) + ((x-y)/2)(10)

y[1.2500] = 0.852221507509997 y[1.2500] = 0.8555594689839763 y[1.2500] = 0.8554551576879144

Euler Solution:  y(11) = y(10) + h*((x-y)/2)(11)

y[1.3750] = 0.8801172663274216

Modified Euler iterations:y(11) = y(10) + .5*h*(((x-y)/2)(10) + ((x-y)/2)(11)

y[1.3750] = 0.8801172663274216 y[1.3750] = 0.883252927298937 y[1.3750] = 0.8831549378935771

Euler Solution:  y(12) = y(11) + h*((x-y)/2)(12)

y[1.5000] = 0.9138981250585888

Modified Euler iterations:y(12) = y(11) + .5*h*(((x-y)/2)(11) + ((x-y)/2)(12)
y[1.5000] = 0.9138981250585888 y[1.5000] = 0.9168437461524608 y[1.5000] =
0.9167516954932773

Euler Solution:  y(13) = y(12) + h*((x-y)/2)(13)

y[1.6250] = 0.9532074113216032

Modified Euler iterations:y(13) = y(12) + .5*h*(((x-y)/2)(12) + ((x-y)/2)(13)

y[1.6250] = 0.9532074113216032 y[1.6250] = 0.95597451009519 y[1.6250] = 0.9558880382585153

Euler Solution:  y(14) = y(13) + h*((x-y)/2)(14)

y[1.7500] = 0.9977100692219482

Modified Euler iterations:y(14) = y(13) + .5*h*(((x-y)/2)(13) + ((x-y)/2)(14)

y[1.7500] = 0.9977100692219482 y[1.7500] = 1.000309465199494 y[1.7500] = 1.0002282340751956

Euler Solution:  y(15) = y(14) + h*((x-y)/2)(15)



y[1.8750] = 1.0470913492635905
Modified Euler iterations:y(15) = y(14) + .5*h*(((x-y)/2)(14) + ((x-y)/2)(15)
y[1.8750] = 1.0470913492635905 y[1.8750] = 1.049533206241223 y[1.8750] = 1.049456898210672

Euler Solution:  y(16) = y(15) + h*((x-y)/2)(16)

y[2.0000] = 1.1010555776593376

Modified Euler iterations:y(16) = y(15) + .5*h*(((x-y)/2)(15) + ((x-y)/2)(16)
y[2.0000] = 1.1010555776593376 y[2.0000] = 1.1033494434461277 y[2.0000] =
1.1032777601402906

Euler Solution:  y(17) = y(16) + h*((x-y)/2)(17)

y[2.1250] = 1.1593250002283733

Modified Euler iterations:y(17) = y(16) + .5*h*(((x-y)/2)(16) + ((x-y)/2)(17)

y[2.1250] = 1.1593250002283733 y[2.1250] = 1.161479843978849 y[2.1250] = 1.1614125051116466

Euler Solution:  y(18) = y(17) + h*((x-y)/2)(18)

y[2.2500] = 1.221638696360544

Modified Euler iterations:y(18) = y(17) + .5*h*(((x-y)/2)(17) + ((x-y)/2)(18)

y[2.2500] = 1.221638696360544 y[2.2500] = 1.2236629436446282 y[2.2500] = 1.2235996859170006

Euler Solution:  y(19) = y(18) + h*((x-y)/2)(19)

y[2.3750] = 1.2877515588009272

Modified Euler iterations:y(19) = y(18) + .5*h*(((x-y)/2)(18) + ((x-y)/2)(19)

y[2.3750] = 1.2877515588009272 y[2.3750] = 1.289653124548429 y[2.3750] = 1.2895937006188196

Euler Solution:  y(20) = y(19) + h*((x-y)/2)(20)

y[2.5000] = 1.357433335265581

Modified Euler iterations:y(20) = y(19) + .5*h*(((x-y)/2)(19) + ((x-y)/2)(20)

y[2.5000] = 1.357433335265581 y[2.5000] = 1.359219654714051 y[2.5000] = 1.3591638322312865

Euler Solution:  y(21) = y(20) + h*((x-y)/2)(21)

y[2.6250] = 1.4304677281411309

Modified Euler iterations:y(21) = y(20) + .5*h*(((x-y)/2)(20) + ((x-y)/2)(21)

y[2.6250] = 1.4304677281411309 y[2.6250] = 1.4321457859080915 y[2.6250] = 1.432093346602874

Euler Solution:  y(22) = y(21) + h*((x-y)/2)(22)

y[2.7500] = 1.5066515487479644

Modified Euler iterations:y(22) = y(21) + .5*h*(((x-y)/2)(21) + ((x-y)/2)(22)

y[2.7500] = 1.5066515487479644 y[2.7500] = 1.5082279061411892 y[2.7500] = 1.508178644972651

Euler Solution:  y(23) = y(22) + h*((x-y)/2)(23)

y[2.8750] = 1.5857939228601574

Modified Euler iterations:y(23) = y(22) + .5*h*(((x-y)/2)(22) + ((x-y)/2)(23)
y[2.8750] = 1.5857939228601574 y[2.8750] = 1.5872747435327825 y[2.8750] =
1.5872284678867632

Euler Solution:  y(24) = y(23) + h*((x-y)/2)(24)
y[3.0000] = 1.6677155443756573
Modified Euler iterations:y(24) = y(23) + .5*h*(((x-y)/2)(23) + ((x-y)/2)(24)



y[3.0000] = 1.6677155443756573 y[3.0000] = 1.66910661842644 y[3.0000] = 1.669063147362353

3)Second Order Runge-Kutta Method

» The second order Runge-Kutta (RK-2) method is derived
by applying the trapezoidal rule to integrating V'= ./ (¥.1)

overthe interval[Z..%..1] . So, we have

EIJ'a—l
Vat [ [0t
Ly

J’!n—l

h _
.}!n + E (f(.}!n? rn) + f(.}!n—l = rrr—l ))

We estimate V,.; by the forward euler method.

S0, we have

Vot =V, +g(f 3ot )+ [+ B (,1,):8,)

Or in a more standard form as

1
P i + E (kl + kﬁ )

where & =hf(y, 1)
by = hf (y, + kit )
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