A. Relations

1. A **relation** is a set of ordered pairs. For example,

$$A = \{(-1,3), (2,0), (2,5), (-3,2)\}$$

2. **Domain** is the set of all first coordinates: $\{-1, 2, 2, -3\}$

so
$$dom(A) = \{-1, 2, -3\}$$

3. **Range** is the set of all second coordinates: $\{3, 0, 5, 2\}$

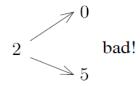
so
$$rang(A) = \{3, 0, 5, 2\}$$

B. Functions

A function is a relation that satisfies the following:

each
$$x$$
-value is allowed only **one** y -value

Note: A (below) is **not** a function, because 2 has y-values 0 and 5 (violates our condition!)



Fall 2017

C. Testing Relations To See If They Are Functions

We make a "mapping table". We do this as follows:

- 1. List all the x-values on the left.
- 2. At each x-value, draw an arrow—one arrow pointing to each y-value it has.
- 3. If you see a situation where an x-value has two or more arrows branching to y-values, then it is **not** a function.

Examples:

Check to see if the following relations are functions:

$$B = \{(3,4), (2,4), (1,4), (-3,2)\}$$

$$C = \{(1,2), (-2,3), (5,1), (1,4)\}$$

Solution

Make a mapping table for B:

Thus we see that B is a function.

Make a mapping table for C:

$$\begin{array}{cccc}
1 & \longrightarrow & 2 \\
-2 & \longrightarrow & 3 \\
5 & \longrightarrow & 1 \\
4 & & & 4
\end{array}$$

Thus we see that C is **not** a function!

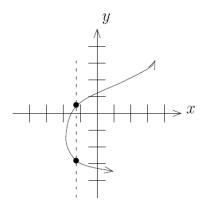
C. Graphs and Functions

To check to see if a **graph** determines a function, we apply the **Vertical Line Test**.

Vertical Line Test:

If a vertical line moved over allowed x-values intersects the graph exactly once (each time), the graph is a function; otherwise; it is not.

Example:



not a function!

Functions and its Algebra:

A function from a set A to set B is a rule that assigns each element $x \in A$ to only one element in B satisfy

$$f: A \to B \quad iff \ \forall x \in A \quad \exists! \quad y \in B \ , f(x) = y$$

The domain:

The set of all $x \in$ first component occurring in the ordered pairs of f is called the domain of f, and it is denoted by dom (f)

Dom (f)=
$$\{x \in A : (x,y) \in f , from some y \in B\}$$

The codomain:

The codomain is the set of the second component occurring in the ordered pairs of f $\,$ (all element in set B),and it is denoted by cod_f

$$cod_f = \{y : y \in B \}$$

The Range:

The Range of f is a subset of the codomain of f whose elements are assigned by elements of the domain of f, and it is denoted by R_f

$$R_f = \left\{ f(x); x \in D_f \right\}$$

EX: find the domain of the functions:

1-
$$y = x + 2 \Rightarrow D_f = R$$

2-
$$y = \frac{x}{x^2 - 1} \Rightarrow x^2 - 1 = 0 \Rightarrow x^2 = 1 \Rightarrow x = \pm 1 \Rightarrow D_f = R/\{1, -1\}$$

3-
$$y = \sqrt{2x - 1} \Rightarrow 2x - 1 \ge 0 \Rightarrow 2x \ge 1 \Rightarrow x \ge \frac{1}{2} \Rightarrow D_f = \left\{x : x \ge \frac{1}{2}\right\}$$

4-
$$y = \frac{1}{\sqrt{1-x^2}} \Rightarrow 1 - x^2 > 0 \Rightarrow 1 > x^2 \Rightarrow x < \pm 1 \Rightarrow D_f = (-1,1)$$

Some operations on functions:

$$\begin{aligned} & 1\text{-}(f+g)(x) = f(x) + g(x) \, ; \quad x \in D_f \cap D_g \quad \Rightarrow d(f+g) = D_f \cap D_g \\ & 2\text{-} \ \, (f-g)(x) = f(x) - g(x) \, ; \quad x \in D_f \cap D_g \quad \Rightarrow d(f-g) = D_f \cap D_g \\ & 3\text{-}(f.g)(x) = f(x).g(x) \, ; \quad x \in D_f \cap D_g \quad \Rightarrow d(f.g) = D_f \cap D_g \\ & 4\text{-}\Big(\frac{f}{g}\Big)(x) = \frac{f(x)}{g(x)} \, ; \quad x \in D_f \cap D_g \quad , \{x \colon g(x) \neq 0\} \\ & \qquad \Rightarrow d\left(\frac{f}{g}\right) = D_f \cap D_g \quad - \{x \colon g(x) = 0\} \\ & \text{Ex:let } f(x) = \sqrt{x} \, , \quad g(x) = \sqrt{1-x} \quad , \text{ find } f+g \, , \, f-g \quad , f.g, \quad \frac{f}{g} \quad , \frac{g}{f} \quad , \text{and their domains.} \\ & \text{Sol: } D_f = [0,\infty) \, , \quad D_g = (-\infty,1] \, \to \quad d(f+g) = D_f \cap D_g \quad = [0,1] \end{aligned}$$

$$(f+g)(x) = \sqrt{x} + \sqrt{1-x}$$

$$(f-g)(x) = \sqrt{x} - \sqrt{1-x}$$

$$(f,g)(x) = \sqrt{x} \cdot \sqrt{1-x} = \sqrt{x(1-x)} = \sqrt{x-x^2}$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{\sqrt{x}}{\sqrt{1-x}} = \sqrt{\frac{x}{1-x}}$$

$$\left(\frac{g}{f}\right)(x) = \frac{g(x)}{f(x)} = \frac{\sqrt{1-x}}{\sqrt{x}} = \sqrt{\frac{1-x}{x}}$$

composition of function

Let f and g be two functions, if the range of g is a subset of the domain of f, then there is a function fog defined as follow:

$$fog(x) = f(g(x))$$

$$d(fog) = \{x : g(x) \in D_f, x \in D_g\}$$

$$d(gof) = \{x : f(x) \in D_g, x \in D_f\}$$

Note: In general

$$fog \neq gof$$

Ex: Let
$$f(x) = \sqrt{x}$$
 , $g(x) = x^2 - 1$, find fog , gof , d_{fog} , d_{gof} .

Sol:
$$f \circ g(x) = f(g(x)) = f(x^2 - 1) = \sqrt{x^2 - 1}$$

$$gof(x) = g(f(x)) = g(\sqrt{x}) = (\sqrt{x})^2 - 1 = x - 1$$

$$d_f = x \ge 0$$
 , $d_a = \mathbb{R}$

$$d(fog) = \{x: g(x) \in D_f , x \in D_g\} \Rightarrow x \in D_g = \mathbb{R}$$

$$g(x) \in D_f \Rightarrow x^2 - 1 \ge 0 \Rightarrow (x - 1)(x + 1) \ge 0$$

1-
$$X-1 \ge 0$$
 $\land x + 1 \ge 0$

$$X \ge 1$$
 Λ $x \ge -1$ $\rightarrow \{x: x \ge 1\}$

2- X-1
$$\leq 0$$
 $\Lambda x + 1 \leq 0$

$$X \le 1$$
 Λ $x \le -1$ $\rightarrow \{x: x \le -1\}$

$$d(f \circ g) = \{x : x \le -1, x \ge 1\} = \mathbb{R} \setminus (-1,1)$$

$$d(gof) = \{x: f(x) \in D_g , x \in D_f\}$$

$$= \{x \colon x \geq 0 \ , x \in \mathbb{R}\} = [0, \infty)$$

Homework Assignments:

1- find the domain, codomain, and the Range of the following functions:

A-
$$y = \sqrt{x}$$

$$B-y = \frac{1}{\sqrt{X}}$$

$$C-y = \sqrt{x^2 - 9}$$

B-
$$y = \frac{1}{\sqrt{x}}$$
 C- $y = \sqrt{x^2 - 9}$ D- $y = \sqrt{1 - x^2}$

2. Which of the following tables represent functions?

I.	Input	Output
	0	1
	0	2
	2	3
	3	4

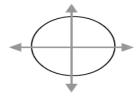
Ш.	Input	Output
	-3	2
	-2	-2
	2	-3
	3	3

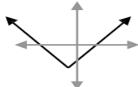
П.	Input	Output
	0	0
	1	0
	2	1
	3	1

IV.	Input	Output
	2	-11
	0	8
	2	4
	- 4	7

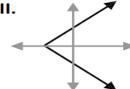
- A. I and IV only
- B. II and III only
- C. I, II and III only
- D. II, III and IV only

3. Determine which of the following are functions:

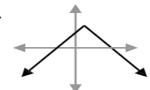




III.



IV.



- A. I and III only
- B. II and IV only
- C. II, III, and IV only
- D. I, II, III and IV

4- $Find \ f+g$, f-g , f.g, $\frac{f}{g}$, $\frac{g}{f}$, and their domains of the following functions:

A-
$$f(x) = \sqrt{x+1}$$
, $g(x) = \sqrt{4-x^2}$

B-
$$f(x) = \sqrt{x^2 - 1}$$
, $g(x) = x^2$

C-
$$f(x) = x^2 + 1$$
, $g(x) = \sqrt{2x - 3}$

5- find fog , gof , d_{fog} , d_{gof} of the following functions:

A-
$$f(x) = \sqrt{2-x}$$
, $g(x) = \sqrt{x-2}$

B-
$$f(x) = \sqrt{x^2 - 1}$$
, $g(x) = x^2$

C-
$$f(x) = x^2 + 1$$
, $g(x) = \sqrt{2x - 3}$

D-
$$f(x) = |x|$$
, $g(x) = -x$

E-
$$f(x) = \frac{x}{x+2}$$
, $g(x) = \frac{x-1}{x}$