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Cyclic Groups and Generators

Some groups have an interesting property: all the elements in the group can be obtained by repeatedly applying
the group operation to a particular group element. If a group has such a property, it is called a cyclic group and
the particular group element is called a generator. A trivial example is the group Z,, the additive group of

integers modulo 7. In Z,, 1 1s always a generator:

1=1modn
1+1 =2 modn

1+1+1 =3 mod n

1+1+1+.+1=n=0modn

If a group is cyclic, then there may exist multiple generators. For example, we know Zs is a cyclic group. The
element 1 is a generator for sure. And if we take a look at 2, we can find:

2=2mod5

2+2=4mod 5

242+2=6=1mod 5

2424242 =8=3 mod 5

242424242 =10=0mod 5
So all the group elements {0,1,2,3,4} in Z5 can also be generated by 2. That is to say, 2 is also a generator for the
group Zs.

Not every element in a group is a generator. For example, the identity element in a group will never be a
generator. No matter how many times you apply the group operator to the identity element, the only element you
can yield is the identity element itself. For example, in Z,, 0 is the identity element and 0+0+...+0 = 0 mod n in

all cases.

Not every group is cyclic. For example, Z,, * the multiplicative group modulo n, is cyclic if and only if n is 1 or 2
or 4 or pk or 2*pk for an odd prime number p and k> 1. So Z 5* must be a cyclic group because 5 is a prime

number. Actually all the elements in ZS*, {1,2,3,4} can be generated by 2:

21=2mod 5
22=4mod 5
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23=8=3mod5
24=16=1mod 5

And Z; 2* is not a cyclic group. The elements in Z; 2* are: {1,5,7,11}. Obviously the identity element 1 cannot be
a generator. Let's check the other three elements:

5! =5mod 12 7' =7 mod 12 111 =11 mod 12
52=05=1mod 12 | 72=49=1mod 12 | 112=121=1 mod 12

None of the elements can generate the whole group. Therefore, none of them is a generator. So Z; 2* is indeed
not cyclic.

If Zn* is cyclic and g is a generator of Z,, * then g is also called a primitive root modulo 7.
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