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Notation

Along with notation from previous lecture, other notations often used in algebra are:

Notation in Lecture 8 Additive notation Multiplicative notation
a∗b a+b ab

e 0 1
a′ −a a−1

a∗a∗ ⋅ ⋅ ⋅ ∗a (n times) na an

Additive notation is used only for abelian groups.

Definition 1. The order ∣G∣ of a group G is the cardinality of the set G.
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Subgroups

A subgroup H of a group G is a group contained in G so that if h, h′ ∈ H, then the product
hh′ in H is the same as the product hh′ in G. The formal definition of subgroup, however, is more
convenient to use.

Definition 2. (Thm 7.10, Sec. 7.3, p. 182)
A subset H of a group G is a subgroup if

À 1 ∈ H;

Á If a, b ∈ H, then ab ∈ H;

Â if a ∈ H, then a−1 ∈ H.

Theorem 1. (Thm 7.11, Sec. 7.3, p. 182)
If G is finite, then a non-empty H ⊂ G is a subgroup if a,b ∈ H⇒ ab ∈ H.
Proof. In finite G, for any a ∈ G there exists positive integer k such that ak = e. Hence, for any
a ∈ H,

a−1 = ak−1 ∈ H and ak = e ∈ H

because a,b ∈ H⇒ ab ∈ H.

If H is a subgroup of G, we write H ≤G; if H is a proper subgroup of G, that is, H ∕= G, then
we write H < G. G is the improper subgroup of G. The subgroup {1} is the trivial subgroup of
G. All other subgroups are nontrivial.

Definition 3. (Sec. 7.3, p. 183)
Center of G is the subset in G consisting of all elements which commute with every element in G:

Z(G) = {a ∈ G ∣ ag = ga ∀g ∈ G}

OBS! G is abelian⇔ Z(G) = G

Theorem 2. (Compare with Thm 7.12, Sec. 7.3, p. 183)
The center Z(G) is abelian subgroup of G.

Proof. Do this as an exercise. For detailed proof see the end of p. 183 in the book.
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Examples of subgroups

Example 1. For any n ∈ ℤ+, we have (ℤn,+)< (ℤ,+)< (ℚ,+)< (ℝ,+)< (ℂ,+).

Example 2. Let ℂ∗ = ℂ∖{0}. Then, for any n ∈ ℤ+, we have (Un, ⋅)< (U, ⋅)< (ℂ∗, ⋅).
Example 3. The set of cardinality 4 may carry exactly two different group structures. The first is
(ℤ4,+),

+4 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

while the second is the Klein 4-group V (V abbreviates the original German term Vierergruppe):

e a b c

e e a b c
a a e c b
b b c e a
c c b a e

ℤ4 has only one nontrivial proper subgroup {0,2}, while V has three nontrivial proper
subgroups, {e,a}, {e,b}, and {e,c}. This is shown at the following subgroup diagrams.

ℤ4

{0,2}

{0}

V

wwwwwwwwww

GGGGGGGGGG

{e,a}

FFFFFFFFF

{e,b} {e,c}

xxxxxxxxx

{e}
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Extra info on Klein four-group
(See more in Wikipedia article Klein four-group)

The Klein four-group is the smallest non-cyclic group. The only other group with four
elements, up to isomorphism, is ℤ4, the cyclic group of order four (see also the list
of small groups).
All non-identity elements of the Klein group have order 2. It is abelian, and isomorp-
hic to the dihedral group of order (cardinality) 4. It is also isomorphic to the direct
sum ℤ2

⊕
ℤ2.

In 2D it is the symmetry group of a rhombus and of a rectangle which are not squa-
res, the four elements being the identity, the vertical reflection, the horizontal reflec-
tion, and a 180 degree rotation.
In 3D there are three different symmetry groups which are algebraically the Klein
four-group V :

∙ one with three perpendicular 2-fold rotation axes: D2

∙ one with a 2-fold rotation axis, and a perpendicular plane of reflection: C2h =
D1d

∙ one with a 2-fold rotation axis in a plane of reflection (and hence also in a
perpendicular plane of reflection):

C2v = D1h

The three elements of order 2 in the Klein four-group are interchangeable: the auto-
morphism group is the group of permutations of the three elements. This essential
symmetry can also be seen by its permutation representation on 4 points:

V = {identity,(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)}

In this representation, V is a normal subgroup of the alternating group A4 (and also
the symmetric group S4) on 4 letters. In fact, it is the kernel of a surjective map
from S4 to S3. According to Galois theory, the existence of the Klein four-group
(and in particular, this representation of it) explains the existence of the formula
for calculating the roots of quartic equations in terms of radicals, as established by
Lodovico Ferrari: the map corresponds to the resolvent cubic, in terms of Lagrange
resolvents.
Another example of the Klein four-group is the multiplicative group {1,3,5,7} with
the action being multiplication modulo 8.
In the construction of finite rings, eight of the eleven rings with four elements have
the Klein four-group as their additive substructure.
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Cyclic subgroups

Definition 4. (Sec. 7.3, p. 84)
If G is a group and a ∈ G, write

⟨a⟩= {an : n ∈ ℤ}.
⟨a⟩ is called the cyclic subgroup of G generated by a. A group G is called cyclic if there exists
a ∈ G with G = ⟨a⟩, in which case a is called a generator for G.

Obs! The fact that ⟨a⟩ is a subgroup of G is an easy exercise stated as Theorem 7.13. on
page 184 in the book.

Can you prove it yourself NOW in 3 minutes?

Example 4. For any n ∈ ℤ+, Un is a cyclic group with ζ = e2πi/n as a generator, i.e., Un = ⟨1⟩.
Becauseℤn is isomorphic to Un, ℤn is also a cyclic group with 1 as a generator, i.e., ℤn = ⟨1⟩.
Check that ℤ4 = ⟨3⟩.

Example 5. V is not cyclic, because ⟨a⟩, ⟨b⟩, and ⟨c⟩ are proper subgroups.

Example 6. (ℤ,+) = ⟨1⟩. For any n ∈ ℤ, the cyclic subgroup generated by n, ⟨n⟩, consists of all
multiples of n, and is denoted by nℤ. We have nℤ=−nℤ.
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Properties of cyclic groups

Definition 5. (equivalent way to define order of element, Theorem 7.14. p. 184 in the book)
Let G be a group, and let a ∈ G. If ⟨a⟩ is finite, then the order of a is the order ∣⟨a⟩∣ of this cyclic
subgroup. Otherwise, we say that a is of infinite order.

Theorem 3. Every cyclic group is abelian.

Theorem 4. (Thm 7.16, Sec. 7.3, p. 185)
Any subgroup H of a cyclic group G= ⟨a⟩ is cyclic (and more precisely H = ⟨ak⟩ where k =min{k >
0 ∣ ak ∈ H})

Proof. Let k = min{k > 0 ∣ ak ∈ H}. Any m such that am ∈ H can be written by division algorithm
in ℤ as m = qk+ r, 0 ≤ r < k. Thus r = m− kq and hence ar = am(ak)−q ∈ H and therefore
r = 0 by choice of k as minimal. So, am = (ak)q ∈ ⟨ak⟩ and hence H = ⟨ak⟩.

Corollary 1. The subgroups of (ℤ,+) are (nℤ,+) for n ∈ ℤ.
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The structure and generators of cyclic groups and subgroups

Theorem 5 (The structure of cyclic groups, Thm 7.18, Sec. 7.4, p. 193). Every infinite cyclic group
is isomorphic to the group (ℤ,+) and every finite cycle group of order m is isomorphic to the group
(ℤm,+m).

Proof. If G = ⟨a⟩ is a cyclic group, then f (k) = ak defines isomorphism in both cases. For more
details see p. 193 in the book.

Let r ∈ ℤ+ and s ∈ ℤ+. Let H = ⟨r,s⟩ denotes the smallest subgroup in (ℤ,+) containing both r
and s. H is a subgroup of (ℤ,+). One can prove that H = {nr+ms : n,m ∈ ℤ+ }. By Corollary 1,
H has a generator d ∈ ℤ∖{0}, that can be chosen to be positive.

Definition 6. The positive generator d of the cyclic group H = {nr+ms : n,m ∈ ℤ+ } is called the
greatest common divisor of r and s.

Definition 7. Two positive integers r and s are relatively prime if their greatest common divisor is
1.

Theorem 6. Let G = ⟨a⟩ and ∣G∣ = n. Let b = as ∈ G. Let d be the greatest common divisor of n
and s, and let H = ⟨b⟩. Then ∣H∣= n/d. In particular, b generates all of G if and only if r is relatively
prime with n.

Example 7. The following subgroup diagram is obtained from Theorem 6 by direct calculations.

⟨1⟩= ℤ18

ssssssssss

KKKKKKKKKK

⟨2⟩= ℤ9

KKKKKKKKKK
⟨3⟩= ℤ6

ssssssssss

JJJJJJJJJ

⟨6⟩= ℤ3

KKKKKKKKKK
⟨9⟩= ℤ2

ttttttttt

⟨0⟩= ℤ1
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Generating sets

Let (G, ⋅) be a group, and let S be a subset of G.

Theorem 7. Let ⟨S⟩ be the set of elements of G consisting of all products x1 . . .xn such that xi or
x−1

i is an element of S for each i, and also containing the unit element. It is the smallest subgroup
of G containing S.

Definition 8. The elements of S are called the generators of ⟨S⟩. If ⟨S⟩ = G, we say that S
generates G. If there exists a finite set S that generates G, then G is finitely generated.

Example 8. (ℤ,+) = ⟨1⟩ is a finitely generated group. Its subgroup ⟨r,s⟩ is also generated by one
element d, which is the greatest common divisor of r and s.
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Directed graphs: definition

Definition 9. A directed graph (or just digraph) is a finite set of points called vertices and some
arcs (with a direction denoted by an arrowhead or without a direction) joining vertices.

For each generating set S of a finite group G, we can construct the following Cayley digraph
D . The number of vertices in D is ∣G∣. For any a ∈ S, there exist arcs of type a. An arc of type
a points from x ∈ G to y ∈ G if and only if y = xa. If a ∈ S and a2 = e, it is customary to omit the
arrowhead from the arc of type a.

Example: Cayley digraph for G = ℤ6 and S = {1}

Example 9. Let G = ℤ6 and S = {1}. The Cayley digraph has the form

0

��>>>>>>>

5

@@�������

1

��

4

OO

2

���������

3

^^>>>>>>>
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Example: Cayley digraph for G = ℤ6 and S = {2,3}

Example 10. Let G = ℤ6 and S = {2,3}. Let // be an arrow of type 2. Because 32 = 0

in ℤ6, the arrow of type 3 must be ___ . The Cayley digraph has the form

0

�
�
�

��3333333333333333333333333333333
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@@�������
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�
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5oo

>
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>
>

4
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�
�

�
�

2oo
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A characterisation of Cayley digraphs

Theorem 8. A digraph G is a Cayley digraph of some generating set H of a finite group G if and
only if the following four properties are satisfied.

À G is connected.

Á At most one arc goes from vertex g to a vertex h.

Â Each vertex g has exactly one arc of each type starting at g, and one of each type ending at g.

Ã If two different sequences of arc types starting from vertex g lead to the same vertex h, then
those same sequences of arc types starting from any vertex u will lead to the same vertex v.

Cayley used this theorem to construct new groups. For example, the following digraph satis-
fies all conditions of Theorem 8.

⋅ //

>
>

>
>
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⋅
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⋅oo
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OO

>
>

>
>

⋅

�
�

�
�

OO

⋅oo

If we label // by a and ___ by b, we obtain a Cayley digraph of a new
group of order 8:

e //

C
C

C
C

C
a

{
{

{
{

��

b

��

aboo

a3b

}
}

}
}

// a2b

OO

A
A

A
A

a3

}
}

}
}
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