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Abstract. This chapter is a concise mathematical introduction into the algebra of groups. It is build up in the
way that definitions are followed by propositions and proofs. The concepts and the terminology introduced
here will serve as a basis for the following chapters that deal with group theory in the stricter sense and its
application to problems in physics. The mathematical prerequisites are at the bachelor level.1

1. GROUP STRUCTURE

An algebraic structure is a set of elements (the carrier of the structure) with an operation (equally denoted
application) that matches any two members of the set uniquely onto a third member. The specificity of
an algebraic structure is given by the axioms that it satisfies. One of the most basic algebraic structures
is the group.

(1.1) Definition.
A group is a couple (G, �) where:
1) G is a set
2) � is an application, � : G × G �−→ G

3) ∀a, b, c ∈ G, the relation �(a, �(b, c)) = �(�(a, b), c) is fullfilled
4) ∃e ∈ G such that ∀a ∈ G, the relation �(e, a) = �(a, e) = a is fullfilled
5) ∀a ∈ G, ∃b ∈ G such that �(a, b) = �(b, a) = e.

Thus, apart from closure (axiom 2), which is applicable to any algebraic structure, a group is chara-
cterized by the properties of associativity (axiom 3), identity (axiom 4) and invertibility (axiom 5).

From the group axioms it can be derived that both the identity and the inverse elements are unique.
Formally:

(1.1) Proposition.
If (G, �) is a group, then
a) the element e whose existence is guaranteed by axiom 4, is unique.
b) ∀a ∈ G, b the inverse of a in G, the existence of which is guaranteed by axiom 5, is unique.

1 Supplementary material for illustration can be found in the presentation slides of B. Canals (http://www.ill.eu/news-
events/past-events/2009/ecole-theorie-des-groupes/transparents-cours-td-tp/). The reader who would like to learn more about the
mathematical foundation of group theory is referred to the literature [1, 2].
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Proof.
a) Let e1 and e2 be two elements of (G, �) satisfying axiom 4.
e1 satisfies (4), so �(e1, e2) = e2.
e2 satisfies (4), so �(e1, e2) = e1.
Therefore e1 = �(e1, e2) = e2.

b) Given a ∈ G and b1, b2 two elements of (G, �) satisfying axiom 5.
Then �(a, b1) = �(b1, a) = e and �(a, b2) = �(b2, a) = e.
We have �(b1, �(a, b2)) = �(b1, e) = b1.
Because the � law is associative (3), �(b1, �(a, b2)) = �(�(b1, a), b2) = �(e, b2) = b2, which means that
b1 = b2. �

Terminology.
The unique element e ∈ (G, �) fulfilling condition (4) is called the neutral element of (G, �).
For all a ∈ (G, �), the unique element b satisfying �(a, b) = �(b, a) = e is called the inverse
of a in (G, �).

The component � of (G, �) is called the law of (G, �) or sometimes, the inner law2.

Instead of talking of the group (G, �), one often talks of the G group and its inner law �. For instance,
one will talk of the Z group and its additive + law, of the Q∗ group and its mutiplicative × law, or of
the SL2(Z) group3 and its multiplicative · law.

Examples of groups
Many mathematical structures that are familiar to us satisfy group axioms. This is e.g. the case for the
set of integer numbers with the addition as the group application (Z, +).

- (G, �) = (Z, �) = ({integers}, �) where

� : Z× Z −→ Z

(m, n) �−→ m + n

Are the group axioms satisfied?
(1) and (2) are satisfied as the addition of two integer numbers gives an integer number.
So is (3) because addition is associative.
(4) : is there an e ∈ Z such that ∀a ∈ Z, �(e, a) = �(a, e) = a? Yes, we have e = 0.
(5) : ∀a ∈ Z, is there a b ∈ Z such that �(a, b) = �(b, a) = e = 0? Yes, we have b = −a.
Therefore (Z, �) is a group.

Remark.
(Q, ×) with Q the set of rationals and × the multiplication is not a group because (5) is not fulfilled for
a = 0.

A particularly useful property of groups is the so-called simplification rule.

2 The word “inner” comes from the fact that the two elements a and b taken to form �(a, b) are in the group; this notion is,
therefore, related to the input, not the output. Conversely, one will talk of an external law when dealing with the multiplication
of an element of a vector space with a scalar. The fact that �(a, b) ∈ G is a closure condition; one sometimes states that (G, �) is
closed.
3 The special linear group SL2(Z) or SL(2,Z) is the group of all integer 2 × 2 matrices with determinant one.
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(1.2) Proposition.
Let G be a group. Then ∀a, b, c ∈ G,

ab = ac ⇒ b = c (left simplification by a)

ba = ca ⇒ b = c (right simplification by a)

Proof.
ab = ac; we left multiply by a−1

a−1(ab) = a−1(ac)

(a−1a)b = (a−1a)c associativity

eb = ec

b = c

We, therefore, have b = c. �
As we will see in the later chapters groups are the mathematical structures that allow to capture the

notion of symmetry. Talking about symmetry always presupposes that the objects under consideration
can be operated upon. In other terms, it has to be possible to produce images and to compare those
images with the original. The most interesting operations in terms of symmetry are those that match
an object onto itself, the so-called symmetry operations. A common example of physical operations
are rotations in space. Two physical operations can be combined into a third one by executing them
consecutively. Physical operations thus form a closed set with an application (inner law of combination).
This set contains the identity and the inverse elements (the operations that produce the originals from
the images). As the inner law is in general associative, physical operations possess the structure of a
group.4

A particularly important class of groups are the so-called commutative or abelian groups.

(1.2) Definition.
The group (G, �) is abelian or commutative if ∀a, b ∈ G, �(a, b) = �(b, a).

Terminology.
If (G, �) is commutative, one often uses the infixed + notation for the inner law, often called the additive
notation.
Otherwise, i.e. when the group is not commutative, one almost always uses the multiplicative notation,
(a × b, a · b, ab).

Example.
The vector product is a non commutative group:

R3 × R3 −→ R3

	a × 	b �−→ 	c
Attention: (Q∗, ×) is the multiplicative group of non zero rationals and is commutative.

4 We will see in the following that the groups possess a life of their own, i.e. that they can be dissociated from the objects that
they act upon. In other words, the type of these physical operations does not matter. As soon as one can identify a group structure,
it is possible to apply all the generic tools of group theory, and once all properties of the formal algebraic structure are derived, it
is then possible to interpret those properties as physical properties.
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Terminology.
If the law of a group is a multiplicative law (non commutative), then, if a ∈ G and if n ∈ N, one notes

an = a · a · . . . · a︸ ︷︷ ︸
n times

.

In particular, a1 = a; aman = am+n and a0 is the empty product = neutral element = e and consequently,
a0 · am = a0+m = am.

If a−1 is the inverse of a, then a−1 · a1 = a0 = e and more generally,

a−n = a−1 · a−1 · . . . · a−1︸ ︷︷ ︸
n times

= (
a−1

)n

This implies that the exponent law applies ∀m, n ∈ Z.
If the law of a group is an additive law (commutative) and if n ∈ N, one generally uses

n · a = a + a + . . . + a︸ ︷︷ ︸
n times

0 · a = e is most often noted by 0.
−a = opposite of a = inverse of a with respect to + and of course,

−na = n(−a) = (−a) + (−a) + . . . + (−a)︸ ︷︷ ︸
n times

.

2. SUBGROUPS AND PRODUCT GROUP

Any group may contain a subset of elements that fulfills all the conditions of a group.
To form a subgroup of the group G a set H has to comply with the following requirements:
1) The identity element (as it is unique) has to belong to H .
2) The set H is closed under the law that G induces in H .
3) Every element of H has its inverse element in H .

Formally:

(2.1) Definition.
Let G be a group. A subgroup H of G is a subset H of G such that (s.t.):
1) the neutral element of G belongs to H ,
2) ∀a, b ∈ H it holds that ab ∈ H ,
3) ∀a ∈ H it holds that a−1 ∈ H .

Remark.
- A subgroup H is called a proper subgroup of G if the set H is distinct from G, i.e. H 
= G.
- Any group has a trivial subgroup that is composed of the set {e} containing only the identity element.

We now proof two useful properties of subgroups:

(2.1) Proposition.
If G is a group, H ⊂ G is a subgroup of G if and only if
1) H is not empty,
2) ∀a, b ∈ H it holds that ab−1 ∈ H .
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Proof.
H subgroup ⇔ (1) and (2)?

⇒ :
H subgroup ⇒
e ∈ H ⇒ H not empty (1).
If b ∈ H , b−1 ∈ H (because every element is invertible in H ).
If a ∈ H , b−1 ∈ H , ab−1 ∈ H (because H is closed) (2).

⇐ : We have to proof that H is closed and contains the neutral and inverse elements.
Because of (1) H is not empty, ∃a ∈ H .
a ∈ H ⇒ aa−1 = e ∈ H because of (2) (therefore the neutral element ∈ H ).
If a, e ∈ H , ea−1 ∈ H , then a−1 ∈ H (therefore the inverse elements are ∈ H ).
If b−1 ∈ H , a ∈ H , a

(
b−1

)−1 = ab ∈ H , then ab ∈ H (closure of H ). �

(2.2) Proposition.
H is a subgroup of G ⇒ H “inherits” a group structure.

(2.3) Proposition.
Let G be a group, and H1 and H2 be two subgroups of G. Then H1 ∩ H2 is a subgroup of G.

Proof.
(We use the alternative definition of subgroups that we have just demonstrated).
H1 subgroup ⇒ e ∈ H1.
H2 subgroup ⇒ e ∈ H2.
Therefore e ∈ H1 ∩ H2 is not empty, i.e. condition (1) is fulfilled for H1 ∩ H2.
If a, b ∈ H1 ∩ H2, ab−1 ∈ H1 ∩ H2 ?
a, b ∈ H1 ⇒ ab−1 ∈ H1 using condition (2) for H1.
a, b ∈ H2 ⇒ ab−1 ∈ H2 using condition (2) for H2.
Therefore ab−1 ∈ H1 ∩ H2, i.e. condition (2) is fulfilled for H1 ∩ H2. �

This statement can be generalized to whole families of subgroups.

(2.4) Proposition.
Let {Hi}i∈I be a subgroup family of G, then

⋂
i∈I Hi is a subgroup of G.

Proof.
Left to the reader.

Remark.
H1 and H2 subgroups 
⇒ H1 ∪ H2 = subgroup.

We now turn our attention to the notion of subgroup generators.

(2.2) Definition.
Let G be a group. Let A be a subset of G.
Then the subgroup of G generated by A is (equivalently)
1) the smallest subgroup of G containing A
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2) the intersection of all subgroups of G containing A

3)
{
�ε1

1 �ε2
2 . . . �εn

n

}
n∈N, �i ∈ A, εi = ±1.

Terminology.
Let G be a group and A a subset of G. We will note G(A) the subgroup of G generated by A, which is
therefore the smallest subgroup of G containing A or also

{
�ε1

1 �ε2
2 . . . �εn

n

}
n∈N, �i ∈ A, εi = ±1.

(2.5) Proposition.
The group G is finite if and only if there exists a finite subset A such that G = G(A).

(2.3) Definition.
If the group G is finite and admits a generating system with only one element, it is said to be cyclic5.

(2.6) Proposition.
A group (G, ·) is a cyclic group generated by g if the only subgroup that contains g is the group (G, ·)
itself.

As groups are based on sets we can form cartesian or direct products.
Let G1 and G2 be the carriers of two groups (G1, �1) and (G2, �2).
We define the direct product G1 × G2 as the assembly of all ordered pairs {(g1, g2)} with g1 ∈ G1 and
g2 ∈ G2. The direct product then forms a group. Formally:

(2.7) Proposition.
Let (G1, �1), (G2, �2) be two groups. Then G1 × G2, the cartesian product, defined as

G = G1 × G2

= {(g1, g2) such that g1 ∈ G1; g2 ∈ G2}
forms a group under the binary relation

�
(
(g1, g2), (g′

1, g′
2)

) = (
�1(g1, g′

1), �2(g2, g′
2)

)
.

The associativity of � is guaranteed by the associativity of �1 and �2.
The identity element is given by (e(G1), e(G2)), with e(G1) and e(G2) the identity elements of G1 and
G2, respectively.
The inverse is given by (g−1

1 , g−1
2 ), with g−1

1 and g−1
2 the inverse elements of g1 and g2 in G1 and G2,

respectively.

We thus can speak of the direct group product.

(2.8) Proposition.
The direct group product definition is coherent.

5 Be careful: It is not because the group is cyclic that it is finite.
(Z, +) is e.g. a cyclic group that is generated by 1, but is infinite. This terminology can thus be intuitively misleading. For
Bourbaki, a group generated by one element is said “monogene”, and a cyclic group is a finite monogene group. Those definitions
must therefore be considered with care because they are not universal.
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Proof.

�
(
(g1, g2), �

(
(g′

1, g′
2), (g′′

1 , g′′
2 )

))
= �

(
(g1, g2),

(
�1(g′

1, g′′
1 ), �2(g′

2, g′′
2 )

))
= (

�1
(
g1, �1(g′

1, g′′
1 )

)
, �2

(
g2, �2(g′

2, g′′
2 )

))
= (

�1
(
�1(g1, g′

1), g′′
1

)
, �2

(
�2(g2, g′

2), g′′
2

))
= �

((
�1(g1, g′

1), �2(g2, g′
2)

)
, (g′′

1 , g′′
2 )

)
= �

(
�

(
(g1, g2), (g′

1, g′
2)

)
, (g′′

1 , g′′
2 )

)
�

3. GROUP HOMOMORPHISM, IMAGE, KERNEL

We now want to introduce functions (or applications) that map the elements of one group (objects) onto
another (images). We are particularly interested in such functions that preserve the group structures.
These functions are called homomorphisms. When dealing with homomorphisms we have the free
choice of first combining the objects and then producing the image or equivalently of first producing the
images from the objects and then combining those images.

(3.1) Definition.
Let (G1, �1) and (G2, �2) be two groups and f : G1 → G2 an application.
f is called a group homomorphism if

∀a, b ∈ G1, f (�1(a, b)) = �2 (f (a), f (b))

⇔ the diagram:

is commutative, i.e. the two paths are equivalent (see Fig. 1). One sometimes notes this property by ©.
We usually say that f is compatible with both laws �1 and �2.

As they preserve the group structures, homomorphisms match the identity elements as well as the inverse
elements onto each other. Formally:

(3.1) Proposition.
Let f : G1 → G2 be a group homomorphism. Then
1) f (e1) = e2

2) f (a−1) = (f (a))−1

Proof.
Statement (1)
We consider the two “paths” of the previous diagram.

00004-p.7



EPJ Web of Conferences

g2

h8

h7

g5

g4

eG

g3 eH

h2

h5

h4

h3

h5

f

f

f

f
f

g1 h1 

Carrier G = object domain
Carrier H = image domain

Neutral element of HNeutral element of G

f

Function f mapping the object onto the image domain

µG
µH

.....

Figure 1. Schematics of a group homomorphism f : G → H . To be a homomorphism the function f has to
preserve the group structures. For the given example this implies among other things that if �G(g5, g2) = g4 then
�H (h5 = f (g5), h4 = f (g2)) = f (g4) = h8. Any object possesses a unique image. A given image can, however, be
associated with various objects.

“First path”: Producing the images under the function f and combining them via the relation �2.

“Second path”: Combining the elements via the relation �1 and then produce the image via the
function f.

f is a homomorphism. Therefore, the two paths give identical results ⇒ f (e1)f (e1) = f (e1e1) = f (e1)
G2 group ⇒ f (e1) = e2 (we multiply by f (e1)−1) (q.e.d).

Statement (2)
Identically, we can write the two “paths” of the diagram as follows:

“First path”
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g2 h8

h7

g4

eG

g3

g5

eH

h2

h4

h3

h5

f

f

f
f

f

g1 h1 

Carrier G

Carrier H

Neutral element of HNeutral element of G

f

Image of G in H
.....

Figure 2. The image of a group homomorphism f : G → H consists of all elements in the image domain H that
emanate from an element in the object domain G. The image forms a subgroup of H .

“Second path”

so e2 = f (a)f (a−1), which shows that (f (a))−1 = f (a−1). �

As homomorphisms preserve the group structure it is not surprising that the image they produce of the
entire object group (G1, �1) is in itself a group (Im(f ), �2) contained in the carrier G2 (see Fig. 2).
Formally:

(3.2) Proposition.
Let f : G1 → G2 be a group homomorphism.
Then

Im(f ) = {g2 ∈ G2 such that ∃g1 ∈ G1 such that f (g1) = g2}
= image of f

is a subgroup of G2.

Proof.
We note Im(f ) = f (G1).
f (G1) is not empty as it contains f (e1) = e2.
Let a′, b′ ∈ f (G1); do we have a′b′−1 ∈ f (G1)?
We know that a′ = f (a) and b′ = f (b), a, b ∈ G1. Therefore

a′b′−1 = f (a) (f (b))−1

= f (a)f (b−1) because f homomorphism

= f (ab−1) idem

which shows a′b′−1 ∈ f (G1). �
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g2 h8 h7g4

eG

g3

g5

eH

h2

h4

h3
h5

f

f

f
f

f

g1 h1 Kernel of f

Carrier G

Carrier H

Neutral element of HNeutral element of G

f

....

Figure 3. The kernel of a group homomorphism f : G → H consists of all elements in the object domain G that
are matched on the neutral element in the image domain H . The kernel forms a subgroup of G.

(3.3) Proposition.
More generally, if f : G1 → G2 is a group homomorphism and if H1 is a subgroup of G1, then f (H1)
is a subgroup of G2.

Proof.
Left to the reader.

Apart from the image, the kernel is an important characteristic of a homomorphism f . The kernel is
comprised of all the elements in G1 that are mapped by f onto the neutral element of G2 (see Fig. 3).
We thus may say that the elements of the kernel are neutralized, i.e. they are rendered inactive within
G2. Any multiplication of an object with an element of the kernel in G1 will not change the image of
that object in G2. Formally:

(3.2) Definition.
Let f : G1 → G2 be a group homomorphism. Then

ker(f) = {g1 ∈ G1 such that f (g1) = e2}
= kernel of f

(3.4) Proposition.
ker(f ) is a subgroup of G1.

Proof.
ker(f ) is not empty as e1 ∈ ker(f ).
If a, b ∈ ker(f ), do we have ab−1 ∈ ker(f )?

f (ab−1) = f (a)f (b−1) as f is a homomorphism

= f (a) (f (b))−1 idem

= e2 (e2)−1

= e2.

Therefore, ker(f ) is a subgroup of G1. �
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An extreme case of a group homomorphism is a function f : G1 → G2 that maps all elements of G1

onto the neural element of G2. In that case the kernel of f is identical to G1 and all elements of G1

become neutralized in G2. Such a homomorphism, therefore, leads to a complete “information loss of
the object” in the image domain.

In general homomorphisms connect distinct carriers. Particular properties arise when the function f

maps the carrier of the group onto itself. We now proof a couple of useful relations between such
homomorphisms and the commutation property.

(3.5) Proposition.
The application f : G → G; a �→ a2 is a group homomorphism ⇔ G is commutative.

Proof.
⇒ : because f is an homomorphism, we can write the two paths of the following diagram:

“First path”

“Second path”

Because the diagram is commutative we have abab = aabb ⇔ bab = abb ⇔ ba = ab so G is
commutative.

⇐ : If G is commutative, then abab = aabb which makes the previous diagram commutative, and
proves that f is a group homomorphism. �

Remark.
In general, if the group G is not commutative, the application

fm : G −→ G

a �−→ am

for a given m, is not a group homomorphism (for it to be true, one would need, as in the previous case,
that abab . . . abab = aa . . . aabb . . . bb).

For the following discussion we have to introduce the subgroups of (Z, +). We will demonstrate that
these subgroups are all composed by the multiples of a unique generator a ∈ Z.

(3.6) Proposition.
Let G be a subgroup of Z. Then there exists a unique number a (∃!a ∈ N) such that G = aZ =
{multiples of a}.
(in other words, every subgroup of Z is of the form aZ, a ∈ N, and a is unique)
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EPJ Web of Conferences

Proof.
If G = trivial subgroup = “null” subgroup = { 0 } = 0 · Z, we have the result.
If not, then ∃b ∈ G, b 
= 0. Consequently, there exists c > 0 ∈ G as if b < 0 then −b ∈ G and −b > 0.
Let a = min {b ∈ N∗ ∩ G}. Because a ∈ G, na ∈ G, ∀n ∈ Z.
If n > 0, na = a + . . . + a ∈ G.
If n = 0, 0 · a = 0 ∈ G.
If n < 0, −na = −(na) ∈ G.
Let b ∈ G; we (euclidean) divide b by a to obtain b = qa + r where r ∈ {0, 1, . . . , a − 1}, and r =
b − qa ∈ G.
Because a is the minimum, necessarily r = 0. We therefore have G = aZ. �

This allows us to define in an elegant way the order of an element of a group.

(3.3) Definition.
Let G be a group, and a ∈ G. We can define the group homomorphism

fa : Z −→ G

n �−→ an

If the kernel of fa is not empty then the unique element � of N that generates ker(fa) = �Z is called the
order of a in G.

ker(fa) = {
n ∈ Z s.t. an = e

}

The kernel of fa is never empty if the set G is finite.

We now address the important subject of comparing group structures. Groups as we have defined them
are a priori distinct as soon as they are based on different carriers, i.e. different sets of elements. Starting
from a given carrier, additional groups can thus be created by a simple relabeling of the elements of the
carrier while preserving the relations that exist among them. In that case we definitely would consider
that the structure of all these groups is identical, i.e. that all these groups have the same algebraic form,
i.e. that they are isomorphic. We extend the concept by considering two groups as isomorphic whenever
there is a one-to-one correspondence (bijection) between the elements of the group that respects the
group structure.

We will now cast this statement into a mathematical form. To this end we recall a few essential
definitions characterizing functions.

A function is called injective if the images preserve the distinctness of the objects. Thus two distinct
objects have to be mapped onto two distinct images.
Formally:
The function f : G1 → G2 is injective if for all a 
= b ∈ G1 it holds that f (a) 
= f (b) in G2.

It can be shown that in the case of an injective homomorphism the kernel of f has to be trivial.

(3.7) Proposition.
If f : G1 → G2 is a group homomorphism then f is injective ⇔ ker(f ) = {e1}.

Proof.
⇒ : f homomorphism ⇒ f (e1) = e2.
f injective ⇒ ∀x 
= e1, f (x) 
= e2.
Consequently, ker(f ) = f −1 ({e2}) = {e1}.
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g2 g4

eG

g3

g5

eH

h2

h4

h3 h5

g1

h1 

Kernel of f
is ={eG}

Carrier G = Imf-1(H)
Carrier H = Imf(G)

Neutral element of HNeutral element of G

f/f-1

f/f-1

f/f-1

f/f-1

f/f-1

f/f-1

Kernel of f-1

is = {eH}

Figure 4. Schematics of a group isomorphism. There is a one-to-one correspondence of the elements that preserves
the group structure, i.e. both f and f −1 are group homomorphisms. Both kernels have to be trivial, i.e. they contain
only the respective neutral element.

⇐ : f (a) = f (b)
?⇒ a = b.

f (a) = f (b) ⇒ f (a)f (b)−1 = e2. As f is a group homomorphism f (a)f (b)−1 = f (ab−1). Therefore,
f (a) = f (b) ⇒ f (ab−1) = f (b)f (b)−1 = e2.
But ker(f ) = {e1}, so ab−1 = e1, i.e. a = b. �

A function is called surjective if every element of the image domain is the actual image of an object in
the object domain.
Formally:
The function f : G1 → G2 is surjective if for any b ∈ G2 there exists a ∈ G1 such that f (a) = b.

A function that is both injective and surjective is called bijective. A bijective function creates a one-to-
one relation among the objects and their images.
An injective function f : G1 → G2 can always be rendered bijective by limiting the image domain to
the image of G1 under f , i.e. by defining
freduced : G1 → Imf (G1), freduced(a) = f (a), ∀a ∈ G1.

With this background we can define the isomorphism of groups.

(3.4) Definition.
Two groups G1 and G2 are isomorphic if ∃f : G1 → G2 and ∃g : G2 → G1 two reciprocal
homomorphisms.

Thus two groups are isomorphic if there is a two-way homomorphism among them. Actually the
two functions f and g are reciprocal bijections, but they are in addition group homomorphisms thus
preserving in the two directions the group structure.

This definition can be cast in a slightly different form by exploiting the following proposition (see
Fig. 4).

(3.8) Proposition.
If ∃f : G1 → G2 a bijective homomorphism mapping G1 onto G2, then G1 and G2 are isomorphic.
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Proof.
As f : G1 → G2 is bijective it has an inverse f −1.
Let us define g : G2 → G1 via g = f −1.
We now have to demonstrate that g is a group homomorphism, i.e. that:
g(�2(a, b)) = �1(g(a), g(b)).
If we set a = f (a′) and b = f (b′) then the previous question becomes:

g(�2(f (a′), f (b′))) ?= �1(g(f (a′)), g(f (b′))) i.e. g(�2(f (a′), f (b′))) ?= �1(a′, b′).
Let us apply f to each side of this equation. This leaves us with:

f (g(�2(f (a′), f (b′)))) ?= f (�1(a′, b′)) i.e. �2(f (a′), f (b′)) ?= f (�1(a′, b′)).
The answer to this question is yes as f is a group homomorphism.
Therefore, g is a group homomorphism. �

4. GROUP AUTOMORPHISM, INNER AUTOMORPHISM

In the preceding section we have compared groups defined on different carriers. This lead us to the
central concept of group isomorphisms. Isomorphisms are extremely useful as they allow to transpose
group theoretical results directly from one group to its isomorphic partners. We will now turn our
attention to mappings of a set onto itself. We are particularly interested in such mappings that preserve
the algebraic structure of the group. These mappings are intimately related to the concept of symmetry,
which in abstract terms is the ensemble of structure preserving operations of an object.

Let us start by introducing permutations, i.e. operations that rearrange the elements of a set in a
unique one-to-one fashion. Mathematically this action of rearrangement corresponds to a bijection.
Permutations can be executed one after the other and the result is another permutation. This provides us
with an inner law of composition. It is easy to show that the permutations form a group under this law.

(4.1) Definition.
Let E be a set, then the permutation group of E corresponds to the set of bijections � : E → E.
The group law is defined by composing (◦) the bijections in the following way:

�i�j : a �−→ �i

(
�j (a)

)
(�i�j = �i ◦ �j )

Terminology.
For a finite set of cardinality n the permutation group is denoted by Sn(E) or Sn if the nature of the
carrier is of no importance.
Sn is equally termed the symmetric group of E abbreviated as Sym(E).

Example: Let us take a set of three elements (a, b, c). The 3! = 6 internal bijections forming S3 are
uniquely defined by giving the corresponding one-to-one correspondences S3 = {�1, �2, �3, �4, �5, �6}.

In the usual two-row notation (first row = starting configuration, second row gives target
configuration) these bijections read:

�1 =
(

a b c

a b c

)
�2 =

(
a b c

a c b

)
�3 =

(
a b c

b a c

)

�4 =
(

a b c

c b a

)
�5 =

(
a b c

c a b

)
�6 =

(
a b c

b c a

)

We e.g. verify that:
�1 is the neutral element of S3.
�2 ◦ �3 = �5 etc.
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Inner bijections do not necessarily preserve a group structure. To guarantee this preservation they have
to be isomorphisms. Isomorphisms of a group onto itself are called automorphisms (Aut).

(4.2) Definition.
Let G be a group. Then Aut(G) is the set of isomorphisms mapping G onto itself.

Aut(G) = {f : G → G such that f = bijection + homomorphism}

Then Aut(G) is a subgroup of �G, the set of permutations of G.

Indeed, Aut(G) � IdG
6 so Aut(G) 
= ∅. Moreover, if f , g ∈ Aut(G), f , g−1 ∈ Aut(G), the combination

of two bijections is a bijection, and the combination of two homomorphisms is a homomorphism (proof
left to the reader), so fg−1 ∈ Aut(G). Aut(G) is, therefore, a subgroup of �G.

Remark.
A homomorphism of a group onto itself is called an endomorphism.

A particular type of automorphisms are related to conjugation. A conjugation is an operation of the type
g → aga−1. The result of a conjugation is non-trivial, i.e. it gives a result different from g, if g modifies
the system such that the inverse a−1 does not annihilate the action of a. This can only be the case if a

and g do not commute.
A telling example is to be found on wikipedia: let a be the action “put shoe on” and g correspond to

“take sock off”. Then the conjugate of g under a is: aga−1 = “take shoe off (= inverse of put shoe on),
take sock off, put shoe on”. This is definitely not equal to the action “take sock off” as putting shoes on
and taking socks off do not commute.
A more physical example are rotations.
Let g equal “rotation by 180 degrees around ŷ”.
Let a equal “rotation by 90 degrees around x̂”.
In that case aga−1 gives a “180 degree rotation around ẑ”, which is distinct from g. This is not surprising
as rotations about distinct axes do not commute.

(4.1) Proposition.
Let G be a group and a ∈ G. Then Inta defined by

Inta : G −→ G

g �−→ aga−1

is an automorphism of G.

Proof.
Inta is indeed a homomorphism:

6 IdG is the trivial homomorphism that maps every g ∈ G onto itself. It is obviously a bijection.
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(because the previous diagram is commutative), and moreover:

g −−−−→
Inta

aga−1 −−−−→
Int

a−1

a−1aga−1a = g

g −−−−→
Int

a−1

a−1ga −−−−→
Inta

aa−1gaa−1 = g

So Inta−1◦ Inta = Inta◦ Inta−1 = IdG, which means that (Inta)−1 = Inta−1 .
Inta is injective: ag1a−1 = ag2a−1 ⇒ ag1 = ag2 ⇒ g1 = g2.
Inta is surjective: ∀g ∈ G, g = aa−1gaa−1 = Inta(a−1ga).
So Inta is a bijection. �

(4.2) Proposition.
{Inta}a∈G, the set of bijective homomorphisms when a takes its values in G, is a subgroup of Aut(G).

Proof.
Inte = IdG ∈ {Inta}a∈G 
= ∅.
Let Inta and Intb ∈ {Inta}a∈G; then (Intb)−1 = Intb−1 .
Consequently, Inta ◦ (Intb)−1 = Inta◦ Intb−1 = Intab−1 ∈ {Inta}a∈G.
So Int(G) = AutInt(G) ⊂ Aut(G) ⊂ �G. �

In other words, {Inta}a∈G is the set of inner automorphisms of G, which we also denote by AutInt(G),
and is a subgroup of the automorphisms of G, which is in itself a subgroup of the permutations of G.

Remark.
G commutative ⇒ every inner automorphism is reduced to the identity. (g �→ aga−1 = aa−1g = g).

5. EQUIVALENCE RELATIONS

In this section we turn our attention to the notion of equivalence. This will help us to structure a group in
terms of subsets or classes. In the first instance we make abstraction from the group structure and treat
the partitioning of a set into subunits.

We start with the definition of the power set.

(5.1) Definition.
Given a set E the power set P(E) comprises all the subsets of E.

Power sets are of essential importance in set theory.

Example : E = {a, b, c}, then P(E) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.
Terminology.
The cardinality of a set is loosely speaking the number of its elements. We denote it by #E.

If the cardinality of a set is finite then the cardinality of the power set can be determined as
#P(E) = 2#E .

In the case of infinite sets the cardinality of the power set is always greater than the cardinality of
the set itself. We can e.g. establish a one-to-one correspondence between the power set of the natural
numbers (that are countably infinite) with the real numbers (that are uncountably infinite).

A partition of a set is a subset of the power set with the property that every element of the set is uniquely
attributed to a subset of the partition.
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Example of partition of E: � = {{a}, {b, c}}
Example of non-partition of E: {{a}, {a, c}, {c}}. Indeed, a and c belong to two different subsets, while
b is not represented in any subset.

(5.2) Definition.
A partition of E is a set � of subsets of E (� ⊂ P(E) or also � ∈ P (P(E))) such that:
1) ∀A ∈ �, A 
= ∅
2) ∀A, B ∈ �, A ∩ B 
= ∅ ⇒ A = B

3)
⋃

A∈� A = E

A typical example is the partitioning of the land mass of the globe into countries.
Attention: Countries do not partition the full globe as the oceans are to a large extent international
territory. Adding international territory to the set of national countries would allow to reestablish a
partitioning.

Remark.
E a set. Then a partitioning P(E) is also a set.

By definition a partition � of E projects the elements of E into the subsets constituting the partition.
In other words, every partition � of E defines a “canonical projection” � : E → � with �(a) = the
unique element A ∈ � which contains a.

As an example: all citizens of the globe are projected into sets (countries) of where they live.
Nationality on the other hand is not creating a partition of the set of global citizens as there are citizens
with double nationality, or no nationality at all.

The canonical projection � : E → � is surjective. In the above example: a country without residents
is no country.

As any given element of E belongs to a unique element of a partition of E it represents these
elements (in the above example any citizen may represent the country where he lives).

This leads us to the following formal definition (see Fig. 5):

(5.3) Definition.
A system of representation for � is an application � : � → E such that � ◦ � = id�.
This amounts to choose �(A) ∈ A for each element A ∈ �.

The general assembly of the united nations is e.g. such a system of representation. It allocates to
every country a delegation.

In a general partition there is no particular relation among the subsets. In the following step we
will define the principle of equivalency in mathematical terms. Equivalency is an attribute that accepts
only two values. Either two subsets are equivalent with respect to a certain criterium and then the
corresponding equivalence relation between them is true or they are not and then it is false. This leads
us to define equivalence via a binary relation.

(5.4) Definition.
Let E be a set; a binary relationR in E is an application

R : E × E −→ {T = true, F = false} = {1, 0}
A binary relation becomes an equivalence relation, when it fulfills particular properties.
First, in a coherent world everybody should be equivalent to him- or herself.
Second, equivalency is a two-way relationship. If A is equivalent to B then B has to be equivalent to A.
Third, equivalency is transmittable. If A is equivalent to B and if B is equivalent to C then A should be
equivalent to C.
This leads us to the mathematical definition
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Figure 5. Schematics of a partition and a system of representatives. The partition � has four elements. These
elements are the sets {eH }, {h3}, {h1, h2}, {h4, h5, h6}. Every element of E is uniquely mapped onto the partition via
the canonical projection �. On the other hand the partition may be represented by anyone of the members of the sets
that it is containing. The mapping � : A1 → h5, A2 → h3, A3 → eH , A4 → h2 is such a system of representatives.

(5.5) Definition.
A binary relationR is an equivalence relation if:
1) (reflexivity) ∀a; R(a, a) = T ,
2) (symmetry) ∀a, b; R(a, b) = T ⇒ R(b, a) = T ,
3) (transitivity) ∀a, b, c; R(a, b) = T andR(b, c) = T ⇒ R(a, c) = T .

Remark.
A relation that is reflective, transitive and anti-symmetric, i.e. for which
∀a, b; (R(a, b) = T andR(b, a) = T ) ⇒ a = b

is called a “partial order” (example: if a > b and b > a then a = b).

Terminology.
The above notation can become cumbersome. OftenR(a, b) = T is simply replaced by a ∼ b indicating
that a is equivalent to b.

Equivalence relations allow to partition a set E into equivalence classes.
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(5.6) Definition.
Let E be a set andR an equivalence relation. Then if a ∈ E, the equivalence class of a moduloR is the
set

āR = {b ∈ E|R(a, b) = T } .

(5.1) Proposition.
The set of equivalence classes {āR|a ∈ E} is a partition � of E.

Proof.
Three conditions have to be satisfied:
(1) None of the equivalent classes is empty as every element a is equivalent to itself. Therefore, {a} ⊂ āR

and in consequence āR 
= ∅.
(2) As a is equivalent to itself any element a ∈ E belongs to an equivalence class. Therefore,

⋃
A∈� A =

E.
(3) This membership is unique. Let c ∈ āR and at the same time c ∈ b̄R . Then, R(a, c) = T and
R(b, c) = T . As R is transitive and symmetric this implies that R(a, b) = T and, therefore, āR = b̄R .
Therefore, ∀āR , b̄R ∈ �, āR ∩ b̄R 
= ∅ ⇒ āR = b̄R . �

(5.2) Proposition.
Let G be a group and H a subgroup of G. Then H defines two equivalence relations

RH
l (a, b) = T ⇔ a−1b ∈ H

RH
r (a, b) = T ⇔ ab−1 ∈ H .

Terminology.
We callRH

l the set of left equivalence classes modulo H of G. This set is denoted by G/H .
RH

r is the set of right equivalence classes modulo H of G and is denoted by H\G.
When it comes to groups, one uses “coset” instead of equivalence class; therefore, we will from now on
speak of right cosets and left cosets.

Proof.
Part I of the proposition:RH

l is an equivalence relation.
1)RH

l (a, a) = T ⇔ a−1a ∈ H but a−1a = e ∈ H :RH
l is reflexive.

2)RH
l (a, b) = T ⇔ a−1b ∈ H , but H is a subgroup so

(
a−1b

)−1 = b−1a ∈ H , i.e. RH
l (b, a) = T :RH

l

is symmetric.
3) If a−1b ∈ H and b−1c ∈ H then H subgroup implies a−1bb−1c = a−1c ∈ H :RH

l is transitive.
The fulfillment of these three conditions characterizesRH

l as an equivalence relation.

Part II of the proposition: RH
r is an equivalence relation (following the same derivation, we obtain

the same conclusion forRH
r ). �

(5.3) Proposition.
Let G be a group and H a subgroup of G. Then the (unique) left coset of H in G containing a is

H āl = aH = {ah with h ∈ H }
and identically (for the (unique) right coset H in G containing a)

H ār = Ha = {ha with h ∈ H }
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Figure 6. Schematics of the operations leading to the right cosets of the permutation group S of three elements
with respect to the subset H = {�1, �2} (see text). All elements of the group are systematically left multiplied by
the two elements of H . The results corresponding to each element are grouped in 6 subsets. Out of these six, three
are distinct. These three sets partition S. Only one of the sets H is a group.

Proof.

RH
l (a, b) = T ⇔ ∃h ∈ H s.t. a−1b = h

⇔ ∃h ∈ H s.t. b = ah.
�

Example.
Let us take as an example the group of permutations of 3 elements that we had already encountered in
section 4.
We choose as the subgroup H the permutations �1 and �2. �1 is the neutral element and has to be in H .
�2 permutes the elements b and c and is by definition its own inverse.
Left multiplying the elements of H by the group elements gives three left cosets.
• The first one is identical to H and thus is a subgroup of G.
• The second coset is {�3, �5}. It does not contain the neutral element and thus cannot be a subgroup

of G.
• The third coset is {�4, �6}. Idem.
• All three left cosets together give the group G.
We get a different set of right cosets (See Fig. 6).
• The first one is identical to H and thus is a subgroup of G.
• The second coset is {�4, �5}. It does not contain the neutral element and thus cannot be a subgroup of

G.
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• The third coset is {�3, �6}. Idem.
If we had chosen a different subgroup we would have naturally obtained different cosets.

Remark.
If the group law is commutative, thenRH

l = RH
r .

(5.4) Proposition.
Let G be a group and H a subgroup of G. Then every left coset aH can be mapped bijectively onto H .
Idem for right cosets.

This implies that there is a one-to-one correspondence between the elements of a coset and those of the
generating subgroup.

Proof.
We demonstrate this proposition explicitly by constructing bijective applications.
Let �l

a : H → aH ; h �→ ah : this is the left translation by a.
Its reciprocal application is �l

a−1 : aH → H ; ah �→ h.
Idem for the other applications �r

a and �r
a−1 . �

(5.1) Corollary.
If G is a finite group and H is a subgroup of G, then #H |#G.

Proof.
G/H is a partition of G into m cosets.
Due to the existence of the aforementioned bijective applications each coset has the same cardinality n

as the generating subgroup H .
Therefore, #G = m · n, which means n | #G.
(this is the so called Lagrange theorem) �

Let G be a group and H a subgroup of G. Then we can partition G in cosets: G/H for instance. We
may now ask the question: Is it possible to endow the set of cosets G/H with a group structure?
The natural way to tackle this question is by trying to transpose the group properties of G to the set
of cosets. In other words, for ā = aH ∈ G/H and for b̄ = bH ∈ G/H , we would like to define the
product, ā · b̄ := (ab)H = (ab).

Warning: We have to verify the coherence of such a definition, i.e. we have to make sure that the product
does not depend on the particular choice of the representatives a and b used to characterize each coset.
Therefore, we must check that if aH = a′H and bH = b′H then abH = a′b′H .

aH = a′H and bH = b′H implies:

aH = a′H ⇔ ∃h ∈ H s.t. a′ = ah

bH = b′H ⇔ ∃h′ ∈ H s.t. b′ = bh′

We have to check whether the relationRH
l (ab, a′b′) is true, i.e. whether (ab)−1a′b′ ∈ H?

Using the above statements we can write a′b′ = ahbh′.
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As (ab)−1 = b−1a−1 we obtain (ab)−1(a′b′) = b−1a−1ahbh′ = b−1hbh′.
Thus (ab)−1a′b′ ∈ H provided that b−1hb ∈ H .

There is no general reason why this should be the case.

This leads us to the following definition:

(5.7) Definition.
Let G be a group and H a subgroup of G. H is a normal subgroup if

∀a ∈ G, aHa−1 = H

or equivalently

∀h ∈ H , aha−1 ∈ H .

In other words, H is normal (in G) ⇔ H is globally invariant under the action of any inner
automorphism.

Remark.
Normal subgroups H are thus invariant under the operation of conjugation in G.

With the definition of the normal subgroups we have attained our goal of endowing the set of cosets
with a canonical (i.e. inherited) group structure.
Formally:

(5.1) Theorem.
Let G be a group and H a normal subgroup.
1) ∀a ∈ G, aH = Ha, i.e. left cosets equal right cosets.
2) G/H = H\G, is canonically endowed with a group structure, called the quotient structure.

Proof.
1) ∀a ∈ G, aH = Ha?
Because H is normal in G, ∀a ∈ G, aHa−1 = H ; i.e. ∀a ∈ G, ∀h ∈ H , ∃h′ ∈ H such that aha−1 =
h′, or equivalently, ah = h′a. So aH ⊂ Ha. The reciprocal implication is proved following the same
directions, so aH = Ha.

2) G/H = {aH } = {Ha}
Coherence of the definition: If aH ∗ bH = (ab)H and if a′H ∗ b′H = (a′b′)H , do we have (ab)H =
(a′b′)H?
We have a−1a ∈ H and b−1b′ ∈ H and we ask ourselves if we will end up with (ab)−1(a′b′) ∈ H?
(ab)−1(a′b′) = b−1a−1a′b′ but a′ = ah and b′ = bh′ so b−1a−1a′b′ = b−1a−1ahbh′ = (b−1hb)h′ and
because the subgroup H is normal in G (and this is precisely for that reason that we need it to be), we
have a b−1hb ∈ H , i.e. b−1hb = h′′ ∈ H . Consequently, (ab)−1(a′b′) = h′′h′ ∈ H and the definition is
coherent.

Is the law associative?
(aH )((bH )(cH )) = (aH )((bc)H ) = (a(bc))H = ((ab)c)H = ((aH )(bH ))(cH ), so the law is
associative.
Neutral element: eH = H = “neutral class” or “neutral coset” in G/H .
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Inverse: (aH )−1 = a−1H

We therefore have a group structure. �

Terminology.
The subgroup that contains only the neutral element {e} is a trivial normal subgroup of G.
The quotient group is equally called the factor group.
G/H is pronounced as G mod(ulo) H . The quotient group of {e} is isomorphic to the group G itself.
If a group G has only {e} and G as normal subgroups it is called simple.

Remark.
If G is commutative, then every subgroup H is normal.

Example.
Let us consider (Z, +) the group of integers under addition.
For any positive number n ∈ Z > 0 we get a subgroup nZ consisting of all the multiples of n.
As the addition is commutative these subgroups are normal.
The cosets of nZ are given by the set {nZ, 1 + nZ, 2 + nZ, . . . , (n − 2) + nZ, (n − 1) + nZ}.
Any integer m belongs to one of the cosets of nZ. To identify this coset we have to determine the
remainder when dividing m by n.
The cosets are therefore equally called remainder classes modulo n.
The quotient group Z/nZ forms a cyclic group of order n.
The neutral element of the quotient group is nZ.
If n = 2 we get the partitioning of Z into odd and even numbers.

Example.
In the following example we would like to exemplify the class structure introduced by conjugation into
the symmetry group of rotations. Let us start with the free rotation group {Râ(�)}. In this notation the
unit vector â gives the rotation axis and � the rotation angle. Two rotations Râ(�) and Rb̂(�) are in the
same conjugacy class if there exists a rotation Rĉ(	) such that

Rb̂(�) = Rĉ(	)Râ(�)Rĉ(	)−1.

It is left as an exercise to demonstrate that this identity is only fulfilled if

� = �

and

b̂ = Rĉ(	)â.

Conjugation thus simply turns the rotation axis. All rotations about the same angle � end up in the
same conjugacy class C(�). Thus classification reduces the dimensions from 3 (the two angles defining
the direction of â plus the rotation angle �) to one (rotation angle �). Attention: the conjugacy classes
partition the free rotation group. However, apart from the one for � = 0 (trivial subgroup), they are not
subgroups and as such do not factorize {Râ(�)}.
This result can immediately be transposed to groups of finite rotations. Let us consider the rotation group
D3 of an equilateral triangle in R3. There are 6 symmetry elements in that group

{e = R(0), Rẑ(2�/3), R−ẑ(2�/3), Rŷ(�), R√
3/4x̂+0.5ŷ(�), R−√

3/4x̂+0.5ŷ(�)}

00004-p.23



EPJ Web of Conferences

3 1
2 2

x y+3 1
2 2

x y− +

y

x

Figure 7. Symmetry elements of an equilateral triangle in R3.

(see figure 7). The set of rotations decomposes into three classes

C(0) = {e},
C(2�/3) = Rẑ(2�/3), R−ẑ(2�/3),

C(�) = Rŷ(�), R√
3/4x̂+0.5ŷ(�), R−√

3/4x̂+0.5ŷ(�).

In a single class we find regrouped the rotations about the same angle:
C(0) is the trivial class containing the identity element (rotation by a zero angle).
C(2�/3) features the 2�/3 rotations about the ẑ and −ẑ directions.
C(�) contains the � rotations about the three symmetry axes lying in the plane of the triangle.

The rotation axes in one class are all related via symmetry elements in D3 not belonging to the respective
class:
The �-rotation about ŷ maps ẑ onto −ẑ.
The �-rotation axes in the plane are related to each other via the 2�/3-rotations about ẑ and −ẑ.

Classification schemes of this kind are omnipresent in crystallography as can be seen in practically all
chapters of this book.

Example.
We provide an additional example directly related to the symmetry groups of crystals, including
factorization.

As described in great detail in the chapter by Grenier and Ballou, the space group G of a crystal
consists of all the operations {R�|	ln + 	��} which leave the crystal lattice invariant. The {	ln} are general
Bravais lattice vectors. The R� are either simple point group operations, in that case the 	�� are zero,
or compound operations in the form of glide planes or screw axes, in that case the 	�� are fractions of
primitive translations. If 	�� = 0 ∀ R� then we speak of symmorphic space groups.

To treat space groups it is certainly desirable to separate off the infinity of Bravais translations.
We may be tempted to do so by considering the set of operations {R�|	��}. Unfortunately, for a
nonsymmorphic space group {R�|	��} does not necessarily form a subgroup of the space group. However,

00004-p.24



Contribution of Symmetries in Condensed Matter

since the translations {	ln} form an invariant subgroup T of the group G we may form the factor group
G/T . The (right) cosets of T are given by

C� :=T (R� + 	��)
l = (R� + 	��)T = {(R�|	ln + 	��)}.

As translations commute with all elements of the space group, T is a normal subgroup of G and the
right cosets are thus identical to the left cosets. The cosets or classes of the factor group thus contain for
every operation (R�|	��) the infinite ensemble of operations obtained by applying (R�|	��) to the original
plus all the translated lattices. The factor group itself is isomorphic to the point group composed by the
rotations {R�} contained in the space group. It thus has a very reduced order. By working with the cosets
we have effectively factored out the translational part of the problem.

We now formulate a few propositions that relate normal and quotient groups to homomorphisms.

(5.5) Proposition.
If f : G → H is a group homomorphism, then ker(f ) is a normal subgroup of G.

Proof.
Let a ∈ G, h ∈ ker(f ): Do we have aha−1 ∈ ker(f )?

f (aha−1) = f (a)f (h)f (a−1)

= f (a)eH f (a)−1

= f (a)f (a)−1

= eH

Therefore, aha−1 = h′ ∈ ker(f ). �

Remark.
The image f (G) is a subgroup but not a normal subgroup of H . For instance, G = O2(R) and
H = GL2(R).7 Let f : G → H ; A �→ A, then f (G) = G, which is not normal in H .

(5.6) Proposition.
Let G be a group, H a normal subgroup. Then there exists a canonical projection � : G → G/H which
is a surjective group homomorphism.

Proof.
The canonical projection is given by:
� : G → G/H = { cosets } = partition of G, defined by � : g �→ g coset of H in G = H ḡl = H ḡr = gH

= Hg.
To proof that � is a homomorphism we have to show that the � diagram is commutative.

7 The orthogonal group O2(R) or O(2,R) of degree 2 over the field R is the group of 2 × 2 orthogonal real matrices. The special
linear group SL2(R) or SL(2,R) of degree 2 is the set of 2 × 2 invertible matrices, together with the operation of ordinary matrix
multiplication.
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Let g, g′ ∈ G:
“First path”

“Second path”

and because gHg′H = gg′H , the diagram is commutative; � is a group homomorphism. The fact that
it is surjective is obvious. �

(5.7) Proposition.
Let G1 and G2 be two groups, H1 a normal subgroup of G1, and f : G1 → G2 a group homomorphism.

There exists a group homomorphism f̄ : G1/H1 → G2 such that f̄ ◦ �1 = f ⇔ H1 ⊂ ker(f ).

One usually says that the homomorphism f can be factorized. In diagram form:

G1
f

G2

G1/H1

π1
f̄

Remark.
ker(�1) = H1.
The content of that statement is intuitively clear. Unless H1 is the trivial normal group of G1 the quotient
group G1/H1 will have a lower cardinality than G1. Mapping G1 onto G1/H1 thus implies a loss of
information. In other words all information is only preserved modulo H1 by the mapping �1. For this
loss of information not to be relevant when going from G1 to G2 via the detour of G1/H1 implies that
the kernel of f (= elements of G1 inert in G2) comprises H1.

We now give the formal
Proof.
⇒ (factorization exists)
If f = f̄ ◦ �1, then
g ∈ H1 ⇒ �1(g) = ē (neutral element of G/H ) ⇒ f (g) = f̄ ◦ �1(g) = f̄ (ē) = e2 so g ∈ ker(f ).

⇐ we assume H1 ⊂ ker(f ).
Let us define f̄ (gH1) = f (g).
Is this definition coherent?
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Equivalently, if we take another representative for gH1, for instance g′, do we have f (g) = f (g′)?
f (g) = f (g′) ⇔ f (g)−1f (g′) = e2 ⇔ f (g−1g′) = e2. But the last relation is true because g−1g′ ∈ H1.
Therefore, f̄ is well defined.
Is f̄ a group homomorphism?

f̄ (gH1 · g′H1) = f̄ (gg′H1)

= f (gg′)

= f (g)f (g′) = f̄ (gH1)f̄ (g′H1)

Thus the image of the product of the cosets is indeed equal to the product of the images of the
cosets. �

(5.8) Proposition.
Let f : G1 → G2 be a group homomorphism. Then there exists a canonical factorization

f = f3 ◦ f2 ◦ f1

where
1) f1 = surjective homomorphism
2) f2 = isomorphism
3) f3 = injective homomorphism

Proof.

G1
f

G2

G1/ker(f)

f1 = π

f2?
Im(f)

f3

∪

f

According to the previous theorem f2 is possible ⇔ ker(f ′) ⊃ ker(f ).
f2 is an isomorphism because:
• f2 is a group homomorphism.
• f2 is by definition surjective.
• f2 is injective ⇔ ker(f2) = neutral element of G1/ker(f ) = { e·ker(f )}, which is true.
If g ker(f ) ∈ G1/ ker(f ) and if f2(g ker(f ))= e2 ⇔ g ∈ ker(f ′) = ker(f ). �

A combination of the statements proven above have gained notoriety as the first isomorphism theorem,
that we will reproduce for completeness here:

(5.9) Proposition. First isomorphism theorem
Let G and H be groups, and let f : G → H be a group homomorphism.

Then it holds that:
• The kernel ker(f ) is a normal subgroup of G

• The image Im(f ) is a subgroup of H

• The image Im(f ) is isomorphic to the quotient group G/ker(f ).
In particular, if f is surjective then H is isomorphic to G/ker(f ).
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We now establish a relation between the group of permutations Sn and n-dimensional vector spaces.
This relation is of considerable importance for representation theory.

Terminology.
The set of n × n invertible matrices (with entries usually taken out of R) forms a group under the
operation of ordinary matrix multiplication.
This group is called the general linear group GLn(R). This is due to the fact that matrices describe
general linear transformations. In other words, if V is a vector space then the general linear group GL(V )
is identical to the group of all automorphisms Aut(V ), which is the set of bijective linear transformations
V → V under the operation of functional composition.

(5.8) Definition.
The canonical representation � : Sn(E) → GLn(R) is the group homomorphism defined by

�(�) = {
ei �−→ e�(i)

}
where

ei = i th base vector of Rn = (. . . , 1
↑
i

, . . .).

The construction of this homomorphism is such that every element in E is identified with a direction
(base vector) of the vector space Rn. The canonical equivalent of a permutation of elements transforms
through � to a permutation of the directions in Rn.

We thus achieve representing the permutation group Sn in a n-dimensional vector space.

� is indeed a group homomorphism:

�(��′) = {
ei �−→ e��′(i)

}
and

�(�)�(�′) = {
ei �−→ e�′(i) �−→ e�(�′(i))

}
= {

ei �−→ e��′(i)
}

.

Therefore, �(��′) = �(�)�(�′).

6. GROUP ACTION

We now return to the subject of symmetry. The starting point of any symmetry consideration is an object
(e.g. a cube). To be able to speak about symmetry this object has to be characterized by a set E (e.g.
points in a vector space that may correspond to the vertices or edges or faces of the cube). The symmetry
group of these characteristics, which may not fully describe the symmetry of the object, corresponds to
the reversible transformations of the set E onto itself (e.g. permutation of the vertices, edges, faces). The
elements of E are thus given by the bijective maps of the set E. If the set E is finite we usually speak of
permutations in the other cases we prefer to stay with the broader notion of transformation. Symmetries
described in this way are strongly linked to the underlying set. If we e.g. color the faces of the cube then
the full symmetry will be reduced without affecting the symmetry of the geometrical characteristics. On
the other hand the symmetry groups related to various aspects of these geometrical characteristics like
vertices, edges and faces are all identical. It is thus comprehensible that we would like to have a more
comprehensive description of the symmetry, i.e. we would like to decouple the notion of symmetry as
much as possible from the sets. This is particularly important, when we deal with abstract symmetries.
In that case it is essential to be able to establish the link with the real word, i.e. we have to be able to
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transpose the symmetry properties to various sets without touching the symmetry group itself. In other
words: We would like to define the action of group elements (i.e. transformations) on sets. This is the
objective of this section.

How group operations (e.g. rotations inR3) act upon objects (e.g. scalar functions f (	r), 	r ∈ R3) depends
on the specific relation between them. The group actions thus have to be defined case by case. However,
all of them have to fulfill at the very least the following two criteria.
• First criterium: To make any sense the action has to comply with the group structure. If we first act

upon x with g1 ∈ G and then with g2 ∈ G and if g2 · g1 = g3 then the result of their combined action
has to correspond to the action of g3 upon x.

• Second criterium: The identity operation e ∈ G should leave any element x ∈ E invariant.

(6.1) Definition.
An action � of a group G on an ensemble E is an application

� : G × E → E

which verifies

(1) ∀g, g′ ∈ G, ∀x ∈ E, �
(
g, �(g′, x)

) = �
(
gg′, x

)
,

(2) ∀x ∈ E, �(e, x) = x.

Terminology.
Using the multiplicative convention for noting �, one obtains
(1) g(g′x) = (gg′)x
(2) ex = x

Written in that way the group action � resembles an external law defined on E, with “coefficients” taken
in G.
The set E is called a (left) G-set.
Left refers to the order in which the product (gg′) acts on x (first g′ then g).
We can equivalently define right G-sets. As right actions can always be converted into left actions with
the help of the inverse elements it is sufficient to treat one of the two cases.

Example.
• Let us define a set E that describes a “Square” via the vectors { e1, e2, −e1, −e2 }, where (e1, e2)

denote the canonical basis of R2.

Let us consider the group of linear transformations G that map the Square onto itself:
G = {A ∈ GL2(R) s.t. A(Square) = Square}.
This is the so-called symmetry group of our object.

If we denote a = rot�/2 =
[

0 −1
1 0

]
and b = symOx =

[
1 0
0 −1

]
,

then the elements of G are:

id =
[

1 0
0 1

]
a =

[
0 −1
1 0

]
a2 =

[−1 0
0 −1

]
a3 =

[
0 1

−1 0

]

b =
[

1 0
0 −1

]
ab =

[
0 1
1 0

]
a2b =

[−1 0
0 1

]
a3b =

[
0 −1

−1 0

]
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which means that #G = 8 and that:

G = {
id, a, a2, a3, b, ab, a2b, a3b

}
To perform calculations in this set, it is sufficient to know that ba = a3b.
The group acts on the square in a natural way. We just specify how each of the vectors making up the
set “Square” transforms under the applications making up the symmetry group G.
Formally:

G × Square −→ Square

(g, ±ei) �−→ g · (±ei)

G is the dihedral group with eight elements, D8.8

• When confronted with symmetry in physics we are most often concerned with transformations in
space and time. Physical objects are generally described as one or multidimensional fields in the space
and time variables. It is thus of paramount importance to know how the space time transformations
act upon these fields.
Let us consider the case of quantum mechanical wave functions and coordinate transformations {ga}
in R3. We know how a coordinate transformation ga acts on the space variables (	r1, . . . , 	rN ) of the
wave functions (N is the number of particles).9 The action of changing the coordinate system on a
function corresponds to keeping the functional form and back-transforming the space variables. This
allows us to define operators T (ga) in the Hilbert space H of the wave functions via

T (ga)
(	r1, . . . , 	rN ) = 
′(	r1, . . . , 	rN ) = 
(g−1
a 	r1, . . . , g−1

a 	rN ).

T (ga) expresses the action of the group element ga on the wave functions in Hilbert space H in
functional form

T : G × H → H

(ga , 
) �→ T (ga)


Instead of transforming the wave functions we may equally well transform the operators {A} in Hilbert
space. To stay coherent with the action on the wave function the action of the group on the operators
has to take the form

A′ = T (ga)AT −1(ga).

(6.2) Definition.
A group action � : G × E → E

is effective if ∀g ∈ G, g 
= e, ∃x ∈ E s.t. g · x 
= x

is transitive if ∀x, y ∈ E, ∃g ∈ G s.t. g · x = y

is free if ∀x ∈ E, ∀g, h ∈ G, g · x = h · x entails g = h

is regular if it is both transitive and free.

8 There are two competing notations for the dihedral group associated to a polygon with n sides. In geometry the group is denoted
Dn (as in the chapter on crystallogrpahy by Grenier and Ballou, while in algebra the same group is denoted by D2n to indicate the
number of elements (notation used here).
9 We are actually dealing with a continuous action � : G × R3 → R

3 from a topological group G into a topological space V . It
can be shown that any such continuous action entails an action � on the continuous functions defined on the topological space V

via (�gf )(v) = f (�−1
g v).
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In other words:
• A group action is effective (or faithful) if, apart from the identity of G, every element of G “moves”

at least one element of E, or, equivalently, there is no element in G\{e} that would leave E invariant.
• An action is transitive if it is always possible to go from one element of E to another through the

action of at least one element g of G.
• An action is free if the action of any two distinct group elements gives different results for any x ∈ E,

i.e. if it differs for all elements x ∈ E. This statement is equivalent to saying that the only action that
is allowed to possess fixed points, i.e. points not moved, is the action related to the neutral element:
if ∃x ∈ E such that g · x = x then g = e.

• An action is regular if for any two x, y ∈ E there exists exactly one g ∈ G such that g · x = y.
A regular action thus establishes a one to one relation between pairs of elements (x, y) in E × E

with elements g in G.

Groups can act onto themselves. In this case the group structure allows to fully define the actions.

Let G be a group. Then G is canonically endowed with three actions

1) Left action:
� : G × G −→ G

(g, g′) �−→ gg′

This action can be considered as trivial in the sense that it expresses nothing else but the fundamental
relation defining the group as an algebraic structure.

2) Right action:
� : G × G −→ G

(g, g′) �−→ g′g−1

This action is well-defined due to the existence of the inverse elements within G. It is a perfect example
of how a group can act in a non-trivial way on a set, which in this case is its own carrier.

3) Conjugation action:
� : G × G −→ G

(g, g′) �−→ gg′g−1

The conjugation action is a combination of left and right actions. We had encountered this action before
in the context of equivalence classes. In the case of commutative groups left and right actions neutralize
each other and the conjugation action maps every group element onto itself.

Exercise.
Proove that:
• They are all actions.
• The left and right actions � and � are transitive.
• The conjugation action � is not transitive, unless G = {e}.
We will now establish an important relation between group actions and homomorphisms of the
symmetric group.

(6.1) Theorem.
Let G be a group and E a set. There exists a canonical bijection (symbolized by �),

Hom (G, SE) � {Act : G × E −→ E}
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(between homomorphisms of G onto the permutation group of E, SE , on one hand and the set of actions
of G upon E on the other hand)

Proof.
We explicitly construct this bijection.

Let � be a group homomorphism from G to SE . Then the image of g ∈ G is a permutation (�g) of
the elements x ∈ E. The expression �(g)(x) is a well-defined function fg(x) mapping the elements of
E onto themselves. We may, therefore, propose the mapping

 : Hom (G, SE) −→ {Act : G × E −→ E}

� �−→
[

� : G × E −→ E

(g, x) �−→ fg(x) := �(g)(x)

]

We have to show that � is an action.

�
(
g, �(g′, x)

) = �
(
g, �(g′)(x)

)
= �(g)

(
�(g′)(x)

)
= �(g) ◦ �(g′)(x)

and � homomorphism ⇒
= �(gg′)(x)

= �(gg′, x)

Therefore, axiom (1) of the definition of a group action is fulfilled.
Moreover, �(e, x) = �(e)(x) = eSE

x = x. In consequence axiom (2) holds.
We, therefore, have demonstrated that � is an action.

Let us now consider the inverse direction. We propose

� : {Act : G × E −→ E} −→ Hom (G, SE)

� �−→
[

� : G −→ SE

g �−→ �(g, x)

]

As � is an action � is a permutation (�g) of elements of E, which makes � meaningful.
We have to show that � is indeed a homomorphism:
Let g, g′ be two elements of G.

�(gg′) = [
x �→ �(gg′, x)

]
= [

x �→ �
(
g, �(g′, x)

)]
= [

x �→ �(g′, x) �→ �
(
g, �(g′, x)

)]
= [x �→ �(g, x)] ◦ [

x �→ �(g′, x)
]

= �(g)�(g′)

so � is a group homomorphism.
And  and � are reciprocal bijections. �

(6.1) Corollary.
Every group is isomorphic to a subgroup of a group of permutations.
In particular, every finite subgroup is isomorphic to a subgroup of Sn provided n is correctly chosen.
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To demonstrate the validity of this statement we consider the canonical left action � of the group onto
itself. This action corresponds to the inner law of the group. This inner law is homomorphic to the
permutations in SE . The group is thus isomorphic to a subgroup (the image of the homomorphism) of
SE .

This theorem is known under the name of Cayley’s theorem, named in honor of Arthur Cayley. Its
importance cannot be underestimated. It expresses the fact that everything to be learned about groups
is basically contained in the groups of permutations. It equally implies that every finite group can
be endowed with the canonical representation we have found for Sn. This is an extremely important
result for the application of group theory to symmetry questions as those rely to a large extent on
representations.

Example.
• Let us consider the quotient group Z/2Z of the integer numbers modulo 2. It is a cyclic group of order

2 that partitions Z into even and odd numbers.
Its carrier thus consists of the two elements {2Z, 1 + 2Z}.
This group is isomorphic to the symmetric group of two elements S2.
The even numbers 2Z correspond to the identity permutation in S2 and the odd numbers 1 + 2Z
correspond to the interchange of two elements in S2.

• Let us augment the complexity slightly by considering the quotient group Z/3Z of the integer
numbers modulo 3. Its carrier thus consists of the three elements {3Z, 1 + 3Z, 2 + 3Z}.
There is no symmetric group of order 3. We thus have to search among the subgroups of the symmetric
groups. We find that Z/3Z is isomorphic to a subgroup of the symmetric group of three elements S3.
The multiples of 3 given by 3Z correspond to the identity permutation in S3:

3Z �−→ �1 =
(

a b c

a b c

)

The numbers with remainder 1 given by 1 + 3Z can be identified with the cyclic change of elements
in S3:

1 + 3Z �−→ �6 =
(

a b c

b c a

)

The numbers with remainder 2 given by 2 + 3Z have then to be identified with the inverse of �6, i.e.
with the anti-cyclic change of elements in S3:

2 + 3Z �−→ �5 =
(

a b c

c a b

)

We indeed verify that

(1 + 3Z) · (2 + 3Z) = 3Z = e

In addition

(1 + 3Z) · (1 + 3Z) = (2 + 3Z)

in accordance with

�6 · �6 = �5

as required by the isomorphism.
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With the help of the isomorphism we may immediately write down a three dimensional representation
for Z/3Z using the canonical representation of S3:

� : Z/3Z→ GL3(R) :

3Z �−→ A1 =

1 0 0

0 1 0
0 0 1




1 + 3Z �−→ A2 =

0 1 0

0 0 1
1 0 0




2 + 3Z �−→ A3 =

0 0 1

1 0 0
0 1 0




We indeed verify that A2 · A3 = A1 = e. A2 is thus the inverse of A3 (obtained by the inversion of
columns and rows in the matrix). Equally, A2 · A2 = A3.
We conclude this example by reminding the reader that the subgroup �1, �5, �6 and thus the group
Z/3Z is isomorphic to the symmetry conserving rotations of an equilateral triangle in the plane.

We now turn our attention to the effect of group actions on subsets of E.

(6.3) Definition.
Let � : G × E −→ E be a group action.
(1) A subset H of E is called invariant under � if the set {h′ = g · h : h ∈ H and g ∈ G} is identical
to H .
(2) A subset H of E is called fixed under � if ∀h ∈ H and ∀g ∈ G it holds that g · h = h.

Remark.
Any fixed subset is an invariant subset. The inverse is not necessarily true.

We now turn our attention to specific subsets created by the group action itself.

(6.4) Definition.
Let � : G × E → E be a group action of G on E. Take x ∈ E, then

Orb(x) = {g · x}g∈G

is the orbit of x in E.

Remark.
• The orbit Orb(x) is thus a function that associates to every element x ∈ E a subgroup of E, i.e. an

element of the power set P(E).
• The orbit indicates the range of the action � when applied to x. This range is minimal if x is left

invariant (fixed) by all elements g ∈ G. This is e.g. the case if G is the symmetry group of x. The
range is maximum if the orbit of x coincides with E, i.e. if ∀y ∈ E, ∃g ∈ G such that g · x = y. This
is necessarily the case for all transitive actions.

• The orbits are by definition invariant subsets of E.
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• The group acts on these orbits by definition transitively as for every y ∈ Orb(x) we find at least one
g ∈ G such that g · x = y.

Terminology.
The set of orbits {Orb(x) : x ∈ E} is called the quotient or equally the orbit space of the action and
denoted by E/G.

We now show that a group action via its orbits partitions a set into equivalent classes. Two elements x

and y of E are equivalent if and only if they belong to the same orbit of �, i.e. if there exists a g ∈ G

that moves x to y.

(6.1) Proposition.
Let � : G × E → E be a group action of G on the set E. Then the relationR� on E defined by

R�(x, y) = T ⇔ ∃g ∈ G s.t. g · x = y [⇔ y ∈ Orb(x)]

is an equivalence relation and the orbits are the equivalence classes.

Proof.
We have to show that the relation is reflexive, symmetric and transitive.

1) Reflexivity: ∀x ∈ E, R�(x, x) = T ?
i.e. ∃?g s.t. g · x = x : yes, with g = eG.

2) Symmetry: ∀x, y ∈ E, R�(x, y) = T
?⇒ R�(y, x) = T .

R�(x, y) = T ⇒ ∃g s.t. y = g · x.
Therefore, x = g−1y, i.e.R�(y, x) = T .

3) Transitivity: Let there be x, y, z s.t.R�(x, y) = T andR�(y, z) = T . Do we haveR�(x, z) = T ?
R�(x, y) = T ⇒ ∃g s.t. y = g · x

R�(y, z) = T ⇒ ∃g′ s.t. z = g′ · y

so z = g′ · (g · x) = g′g · x, which meansR�(x, z) = T . �

(6.2) Corollary.
Every action � : G × E → E defines a partition of E, in orbits of the action.
In particular, it the action is transitive, the equivalence relation is trivial and defines only one class.

Terminology.
Let G be a group and

� : G × G −→ G

(g, g′) �−→ gg′g−1

the canonical conjugation action.
Then Orb(h) = Orb�(h) = conjugacy class of h.
The conjugacy class of e is reduced to e : Orb(e) = {e}.
If the group is commutative, the conjugacy class of every element is reduced to itself.
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Orbits are sets that indicate the potential of an action � to disperse x in E. We now define
complementary sets that tell us about the resilience of an element x ∈ E to be moved by the action
�. It associates to every x ∈ E the subset of G that leaves x invariant (or stable) under the action �.

(6.5) Definition.
Let � : G × E → E be a group action of G on the set E. Let x ∈ E.
Then

Stab�(x) = {g ∈ G s.t. g · x = x}
is the stabilizer of x.

(6.2) Proposition.

∀x ∈ E, Stab�(x) is a subgroup of G.

In addition,
Orb�(x) � {right cosets or left cosets of G modulo Stab�(x)} .

This theorem is known as the orbit-stabilizer theorem as it establishes a close relation between the orbits
and the stabilizer of an element x ∈ E (see Fig. 8).

Proof.
(1) Is Stab(x) a subgroup of G?
Let � : G × E → E be an action. Let x ∈ E.
Indeed, e · x = x. Therefore, x ∈ Stab(x) 
= ∅.
Let a, b ∈ Stab(x): b · x = x.
Then b−1b · x = e · x = x and also, b−1b · x = b−1 · x because b ∈ Stab(x).
Therefore b−1 · x = x, i.e. b−1 ∈ Stab(x).
So ab−1 · x = a · (b−1 · x) = a · x = x, which shows that ab−1 ∈ Stab(x).
It follows that Stab(x) is is indeed a subgroup of G.

(2) Let us show that G/Stab(x) � Orb(x).
We note Stab(x) = S for the sake of simplicity. We define for every x the application

�x : G/S −→ Orb(x)

gS �−→ g · x = �(g, x)

from the cosets of G modulo S into the orbits of x under the action �.
We first have to show that this definition is unambiguous!
Let h be another representative of the coset gS.
Then we have hS = gS, which means that h−1g ∈ S.
Because h−1g ∈ S, we have (h−1g) · x = x by definition of the stabilizer S.
Consequently, h · x = h · ((h−1g) · x) = hh−1g · x = g · x, i.e., h · x = g · x.
The application G/S −→

�x

Orb(x) is thus well defined.

�x is surjective:
y ∈Orb(x) ⇔ y = g · x

⇒ ∃g ∈ G such that y = �x(gS).

�x is injective:
gS and hS two elements of G/S, such that g · x = h · x.
Then h−1g · x = h−1h · x = e · x = x, so h−1g ∈ S ⇔ gS = hS.
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Figure 8. Schematic representation of an orbit and a stabilizer. The group G acts on the set E via the group action
�. The element x1 ∈ E is left invariant by the action of the group elements eg and g2. The set {eg , g2} is thus
the stabilizer or little group of x1. The orbit of x1 is given by the set of points that x1 is moved to under the action
of �. The orbit-stabilizer theorem establishes a one-to-one correspondence between the cosets of the stabilizer and
the elements of the orbit.

By showing that G/Stab(x) � Orb(x), we have demonstrated that there exists a biunivoque
correspondence between every element of an orbit and an equivalence class modulo the stabilizer. This
is precisely what we had to prove. �

Terminology.
The stabilizer subgroup is equally called the isotropy or little group of x.

Remark.
The stabilizer is not necessarily a normal subgroup of G.

(6.3) Proposition.
Let � : G × E → E be a group action of G on E.
Let x ∈ E and Orb(x) its orbit, and y ∈ Orb(x).
Then Stab(x) and Stab(y) are conjugate.

Proof.
Let Sx = Stab(x) and Sy = Stab(y). We want to build an inner automorphism that “bridges” Sx to Sy

(then, they will be conjugate).

Sx

Inth−→ Sy

g �−→ hgh−1
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The difficulty is to find the “right” h.
Because y ∈Orb(x), ∃h such that y = h · x. Let g be an element of Sx , then g · x = x. Do we have
hgh−1 ∈ Sy? (If so, then we have found an h that fits)

hgh−1 · y = hgh−1 · (hx)

= hg · x

= h · x = y

And along the same spirit,

Sy

Int
h−1−→ Sx

g �−→ h−1gh

The two stabilizers are conjugate. �

(6.3) Corollary.
If the action is transitive, then all stabilizers are conjugate.
(Indeed, if � is transitive, we only have one orbit)

7. CONCLUSION

This short introduction to group theory aimed at exposing the notion of group structure, the way groups
can be mapped one onto another, and how groups can operate on ensembles. Although kept at a rather
simple level, this exposure is enough to prepare to the next step, i.e linear group representations.
Although the concept of representation of a group can be presented in a formal way, one should keep in
mind that from the physical point of view, the most common usage of group representations is through
an algebra of matrices. In physics, matrices are related to mappings between vector spaces or Hilbert
spaces, and are most often endomorphisms, i.e mapping of a vector space onto itself. When it comes to
symmetry, the idea is to translate the operation the physicist is dealing with into an algebraic object that
can be worked out with the tool set of group theory. Without the notion of group theory, one is most
often left with clever tricks or observations. For instance, observing that the dynamics of a spring can be
decompose into a symmetric and an antisymmetric component, or that Fourier transforming an operator
can sometimes diagonalize it. Actually, there are group arguments in both cases, that are much deeper
than it seems. In order to use the full power of group theory, one has to properly construct how an abstract
group can act onto a vector space, i.e, as will be shown hereafter, that it is possible to construct an action
of an abstract group onto the linear group of a given vector space. When done, this correspondence will
allow to map completely the whole set of the abstract group properties onto the vector space. Although
those remarks might sound like a little bit abstract here, one should keep in mind that the two examples
given above are nothing but the application of a projector onto functions or operators, and that these
projectors can be constructed systematically, given an abstract group, and almost independently of the
vector space it is acting on.

Put another way, when it comes to symmetry, you have two alternatives. First, if you are clever
enough, you find out by yourself how the symmetries of your problem can be translated into the
formalism you are using and how they can simplify and identify properly the physical properties:
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symmetry of an order parameter, quantum numbers, etc. Or, if you are like the authors, not clever at
all, identify what is the abstract group behind all the symmetries, use all the mechanics and systematics
of group theory and group actions, which will find for yourself everything that can be found.
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