1 Vector space

De nition 1.1. A vector spaceV over a eld K isaset V with two operations

called addition + and multiplication such that the following axioms are satis ed:
(1) (i) u+v2V foralu;v2 V. (Addition is closed)
() u+v=v+u forall uv2V. (Addition iscommutative)
(iii) u+ (v+ w)= (u+ v)+ w forall u;v;w 2 V. (Addition is associative)

(iv) There exists an element 0 2 V, called the zero vector, such that

U+ 0=0+u=u foralu2V.

(v) For all u 2 V there exists an element u 2 V, called the additive

inverseof u, suchthat u+ ( uy=0= u+ u.

(2) (1) u2V foralu2Vand 2 K.
(11) (U+ V) = u+ v foraluv2Vand 2 K.
(i) ( + ) u= u+ u foralu2Vand ; 2 K.
(iv) ( ) u= ( u) foralu2Vand ; 2 K.

(v) For all u2 V thereexistsan element 12 K , called the multiplicative

identity of u, suchthat 1 u=u 1= u.

Example 1.2. Let C be the set of complex numbers. De ne addition in C by
(a+ h)+ (c+ di)=(a+ ¢+ (b+ d)i for all a;bcd2R; (1)
and de ne scalar multiplication by

(a+hb)= a+ b for all scalars 2 R;and for all a;b2 R: (2)

1
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Show that (C;+; ) isa vector space over R.
Solution: Let u=a+h; v=c+di; w=e+fi 2 C,wheea:bcdef 2R,

we have

(1)
(i) The addition is closed :

u+ v=(a+ hb)+ (c+ di)

= (a+ ¢) + (b+ d)i by (1).

Snce (a+ c¢) and (b+ d) arereal numbersthen u+ v 2 C.

(if) The addition is commutative:

u+v=(a+h)+ (c+ d)

a+ c)+ (b+ d)i by (1),

(
(c+ a) + (d+ b)i because addition on R is commutative,
(

= (c+ di) + (a+ hi) by (1),

V+ U

(iii) The addition is associative: we haveto provethat u+ (v+ w) = (Uu+Vv)+w
for all u;v:w 2 C.
The left hand side (L.H.S):

u+ (V+ w)=u+[(c+ d)+ (e+fi)]
= (a+ b))+ [(c+ e+ (d+ f)i] by (1),
= [a+ (c+ e)]+ [b+ (d+ f)]i by (1),

=[(a+c)+ e+ [(b+d)+f] because addition on R is associative.
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The right hand side (R.H.S):

(u+Vv)+w=[(a+ hb)+ (c+ di)]+ w
= [(a+ c) + (b+ d)i]+ (e+ fi) by (1),
=[(a+ c)+ €]+ [(b+ d) + f)]i by (1).

Then L.H.SSR.H.S

(Iv) The additive identity : Forall u= a+ b 2 C, we have

(a+ b))+ (0+ 0i) = (a+ 0) + (b+ 0)i by (1),

= a+ b because O is the additive identity in R.

Then the additive identity of C is (0+ 0i).

(v) The additiveinverse: For all u= a+ b 2 C, we have

(a+ hb) + a+ ( b a+( a + b+ ( b i by (1),

O+ Oi because ( a) isthe additive inverse of a in R.

Then the additiveinverseof a+ b 2 C is a+ ( bi.
(2) Let u=a+hb;v=c+di2Cand 2R.
() We haveto provethat u2 C.

Hi= (a+ bi)

a+ b

Snce a b2 R, then uz2 C.

(ii) We haveto provethat (u+v)= u+ v forallu;v2Cand 2R.
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The left hand side (L.H.S) :

(Uu+ v) [(a+ b))+ (c+ di)]

[(a+ ¢) + (b+ d)i] by (1)
(a+ ¢+ (b+ d)i by (2)

(a+ o+ ( b+ d)i because multiplication distributes over addition in R.

Theright hand side (R.H.S) :

u+ v= (a+hb)+ (c+ di)
=( a+ b))+ ( c+ di) by (2),
=( a+ ¢+ ( b+ di by (1),

Then L.H.S=R.H.S
(i) We havetoprovethat ( + ) u= u+ wuforallu2Cand ; 2R.
The L.H.S:

( + )u=( + ) (a+ h)
=( + )a+( + )b by (2),

=( a+ a)+ ( b+ Db because multiplication distributes over addition in R.

TheR.H.S:

u+ u= (a+ b))+ (a+ b)
=( a+ h)+( a+ h) by (2),
=(a+ a+( b+ Db by (1).
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Then LHS=R.H.S

(iv) We havetoprovethat ( ) u= ( u) foralu2Cand ; 2R.
TheL.H.S:
( )u=( ) (a+h)
=( )a+( )bl by (2),
= a+ bi because multiplication is associative in R.

TheR.H.S:

1 1
Q
+ o
+
O - o
o O
< <
— —
NN

Then L.H.S=R.H.S

(v) The multiplicative identity : we have to show that 1 u = u for all
u=a+ b 2 C. (Note that, 1 represents scalar from the eld R and NOT from
the set C).

1 u=1 (a+ h)
- 1a+ 16 by (2),
=a+ h

= Uu

We have proved that all axioms hold in C. Hence, (C;+; ) Is a vector space

over R.
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Example 1.3. Let M, »(R) = j a;bc,d2 R bethe set of all two by
c d
. ; il 2 di d2 by b
two matrices with entries in R. For A = ‘B = 2 M, , and
A A b; by

2 R, addition and scalar multiplication of matrices de ned by

A+ B = d1 az+b1th=a1+bl aZ'I'bZ (3)

az ay by by az+ by as+ by

d{ d d d
A — 1 82 1 2 (4)

dz a4 d3 4
Prove that (M, »;+; ) Isa vector space over R.
di d C
Solution: Let A= = ¢ :B = . |Dz;c:= Y TN
a3 a4 by by C3 Cy
(1)
(1)

. a 82+b1b2= a+b a+b by (3).

dy dy tb hq aa"'b!?, a4+h4

Snceay; ap; as; as; by; by; bs; by arereal numbers, then a + by; ax+ by; az+ bs; as+ by 2
R. Hence, A + B 2 M, ,(R).
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(i) Wehavetoshowthat A+ B=B + Aforall A;B2 M, ».

di a2 by by

-+

az a4 Dz by

ar+ b ax+ by

s+ b3 ag+ by

A+ B

by (3),

b1+8.1 th'l“ag

because addition on R is commutative

s+ a3 by+ a4
A 1)

b3 by as a
=B+ A

(ili) We havetoshowthat A+ (B+ C)=(A+B)+ C foral A;B;C2 M, ..
The L.H.S:

di do hb1b2 C102I
+ +

az au bz by G Cs

A+ (B+ C)

diy d + +
12+b101b202 by (3).

az a D3+ C I+ &

I

a1+ (bi+¢) ax+ (p+ )
az+ (3+ C3) as+ (bu+ 4

by (3),

(a+ b))+ (a+bp)+ o
(a3 + bp)+ 3 (as+ by) +

because addition on R is associative.
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The R.H.S:

h 5
(A+B)+ C = + +

a3 ay b; by C3 Gy

ai + by ®+m+ C G

az+ by as+ by Cz Gy

(ar+b)+c (2+bp)+
(as+ bs) + 3 (as+ by) + C4

Then L.HS R.H.S

dy d
(iv) Foral A= ' ° 2 M, ,, we have

as d4

Then the zero matrix IS the additive identity.

00
di do
(v) For all A = 2 M, 5, we have ( A) =
az d4
where
a; a a a
A A= =~ T & T Fg
di d4 ds dy

1 az by by | Gt &

by (3),

by (3).

d1

dj

0 0
00

Then the matrix ( A) isthe additive inverse for the matrix A.

(2)

do

dg

2 M, »,

(i) We have to show that A2 M, o(R)forall A2 M, and 2 R.

a, a a a
% e 1 & 1 2 by (4).

dz dy dz 4

Snce :aq;a:as; a4 arereal numbersthen as; a,: as; as 2 R.
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Hence, A 2 M, »(R).
(iil) Wehavetoshowthat (A+B)= A+ B foral A;B2 M, 5, and
2 R.

The L.H.S
h i
A+B)= 2 DD
dz dy by by
a + a +
_ 1+ b ax+ b by (3).
B+ s+ by
(a1 +by)  (a2+ by)
= 2 by (4),
(as+ b3) (as+ by)
ar+ by L+ b o . R
= because multiplication distributes over addition in R.
at+ b au+ by
The R.H.S:
A + B= " + b b2
as au b; by
a a
_ 1 E . b b by (4).
dz d4 by Iy
ar+ b a+ b
= by (3)
azt+ by a+ by
Then LH.S R.H.S
(i) We havetosnow that ( + ) A= A+ A forall A2 M, , and

= ZR,
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by (4),

because multiplication distributes over addition in R.

dqy do
dz a4
d1 do
by (4),
d3 a4
d>+ do
by (3).
dg + dy

A) foralllA2 M, ,and

2 R,

because multiplication on R is associative.

di do
( + ) A=( + )
d3 dy
B ( + )a; ( + )a
( + )az ( + )ag
_ dq + dy do + do
d3+ dj dg+ dy
The R.H.S:
dy a
A + A= 1 ° +
dz d4
d1 do
= +
d3 a4
dq + di
d3+ ds
Then L.HS= R.H.S
(iv) Wehavetoshowthat ( ) A= (
The L.H.S:
dqi do
( ) A=( )
d3 d4
( Jar ( )a
= by (4),
( )as ( )as
(&) (&)
((as) ( &)

10
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The R.H.S:

h |
dqy do
( A)=
dz d4
di do
= by (4),
dz 4
(&) ( ap)
a by (4)
((a3) ( aq)
Then L.HS= R.H.S
(v) Forall A2 M, ,, we have 12 R such that
a; a 1a, 1a
i el T e 0 TE oA

asz au 123 1as

Then 12 R isthe multiplicative identity .

Example 1.4. Let V = fx 2 Rjx > 0g. Forx;y 2V and 2 R, wede ne

addition and scalar multiplication as following

X y=Xy,

X=X .

Show that (V; ; ) isa vector space over R.

2 3

n O

a
Example 1.5. Istheset V = 4 5 jab> 0 withtheusual addition and scalar

b

multiplication of matrices de ne a veckorgspace oyeR % 3

Solution: Let

b b 2b
Snceab> 0then 2a; 2b< 0.

i

a a 2a
22R, then 4 5= 245-4 52V,
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Proposition 1.6. Let V be a vector space over K , then we have
(1) The additive identity, 02 V, is unique.
(2) The additive inverse, ( u) 2 V, for u2 V is unique.
(3) Forallu2z V wehave O u= 0.
(4) Forallu2V wehave( 1) u= u.
(5) For all u;v;w2 V, ifu+v=u+ wthenv=w.
(6) For all u;v 2 V, the equation u+ x = v hasa unique solutionx=v u2 V.

(7) For allu2 V, wehave ( u)= u.

12
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2 Subspace

In this section we suppose that (V;+; ) isa vector space over K .

De nition 2.1. A non-empty subset U of V is called a subspace of V if (U;+; )

IS a vector space over K .

Proposition 2.2. A non-empty subset U of a vector space V over K is a subspace

of V if and only if the following conditions are satis ed:
(1) 02 U.
(2) For all u;v2 U, wehaveu+ v2 U.
(3) Forallu2zUand 2 K,wehave u2U.

Remark 2.3. Every vector space V has two subspaces namely V and f 0g, which

are called trivial subspaces. Any other subspace of V is called a proper subspace

of V.

Example 2.4. Show that which of these sets are subspace of R*
(1) U=1f(x;y;0)jx;y 2 Rg.

(2) U=1(x;y;1)jx;y 2 Rg.

Proposition 2.5. If W, and W, are subspaces of V, then Wy;\ W, is a subspace
of V.

Proof. We have to satisfy the three conditions in Proposition 2.2.
(1) Since W, and W, are subspaces of V, then 02 W, and 02 W,.

Hence,
02 W1 \ WQ:

13
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(2) Let u;v2 Wi\ Wy, thenu;v2 Wy and u;v 2 Wo.
Since W; and W, are subspaces of V, thenu+ v2 Wy andu+ v2 W..

Hence,
u+vaW,\ W,

(3) Let 2 K andu2 W;\ Wy, thenu2 W; andu 2 Ws,.
Since W; and W, are subspacesof V then u2 W;and u2 W,.

Hence,
u2 W1 \ Wg:

Example 2.6. Show that if Wy and W, are subspaces of a vector space V, then
Wi [ W, isNOT a subspace of V.

To prove this, we have W; = f(a;0) ja2 Rgand W, = f(0;b) ] b2 Rg are
both subspaces of R%. But W[ W5 isnot a subspace of R because (1;0) 2 W;[ W5
and (0;1) 2 Wy [ W, while (1;0)+ (0;1) = (1;1) 2 W, [ W..

Proposition 2.7. Let W4; W5, W, are subspaces of a vector space V over a
eld K, then we have

(1) Wi\ Wo\  \ W, is a subspace of V.

(2) Wy + W5 + + W, = fw+ w, + +w, W 2W;;i=1,2 ngisa

subspace of V.

Proof.

14
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3 Linear Combinations and Span

De nition 3.1. L&t vq; Vo, ,V, be vectors in a vector space V over K . A

linear combination of these vectors is any expression of the form
1V1 + 2Vo + + nVh

for some scalars ¢; »; =2 K.

Example 3.2. Consider the vector space R%. Thevectorv= ( 7; 13)isalinear

combination of vy = ( 2;1) and v, = (1;5), where
V=2V + ( 3)va:

Example 3.3. Consider the vector space R?. The vector v = (1; 3) is a linear

combination of vy = (0;1) , vo = (2, 1),vs= (1, 2) and v4 = (0;3) where

v=( 2vi+ (O)vo + 1v3 + (%)w:

Sometimes we cannot write a vector v in a vector space V as a linear combi-

nation of vq;vo; Vv, 2 V, asexplained in this example.

Example 3.4. Let vi = (2.5;3);vo = (1;1;1), and v = (4;2;0). Because there
exist noscalars ¢; » 2 K suchthat v= 4vi+ v, then v isnot a linear

combination of v4 and vs,.

De nition 3.5. Let V beavector spaceover K , and let S = fvy; vo; ,VnQ be
asubset of V. Wesay that S spans V, or S generates V, if every vector v in V
can be written as a linear combination of vectorsin S. That i1s, for all v2 V, we
have

V= 4V + o2V ot + nVh

19
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for some scalars ¢; »; = w2 K.

Example 3.6. Show that theset S = f(1;0);(0; 1)g spans the vector space R* =
f(a;b) ja;b2 Rag.

Solution: We have to show that for all v= (a;b) 2 R? thereexists 1; 22 R
such that v= 1(1;0) + 5(0;1).

(&b = 1(1;0)+ 2(0;1)

= ( 1,0+ (0 2)
=( 1; 2)
Then 1=a and 5= b So, any vector v = (a;b) 2 R? can be written in the
form (a;b) = a(1;0) + b(0; 1). Thus S spans R?.
2 3 2 3
Example 3.7. Let S = nv1 = 4" Vo = 4° 050, and
> 3 00 0 1
V = nv: 4° b5ja;b;c;d2 RO
c d

(1) Does S spans 'V ?
(2) De ne a vector space U such that S spans U.
(3) Find a set that spans V.
Solution: (1) If S spansV then for all v2 V, thereexists ¢; 22 R such that
2 3 2 3 zZ 2
4 5- .4 O
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SO, =aand -, = d But if bor cisnon-zero then v cannot be written as a

linear combination of the vectorsin S. Hegce, Sqnot spans V.
N 9 0 O
(2) From (1), wecan seethat if U= 4 S ja;b2 R then S spansU.

2 320%2 3 2 3

n 10 0 1 0 0 0 0.©
(3) The set that spansV is 4 95:4 5:4° 5:4° 5

0 0 0 0 10 0 1

17
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Example 3.8. Show that theset S = f(0;1;1);(1;0;1);(1;1;0)g spans R® and
write the vector (2; 4; 8) as a linear combination of vectorsin S.

Solution:

A vector in R® hasthe form v = (X;y;z).

Hence we need to show that, for some scalars 4; 2; 32 R, every such v can

be written as

(x;v;2) = 1(0;1;1)+ 2(1;0;1)+ 3(1;1;0)

= 2% & i+ & i# 3

This give us system of equations

X= 2+ 3
Y= 1+ 3
Z= 1+ 2

This system of equations can be written in matrix form

2 32 3 2 3
B (N P X

i1 0 164 £- B

1 10 3 Z

We can writeit asA = b. Since det(A) = 2 then this system has a solution.

Now, to write (2; 4; 8) as a linear combination of vectorsin S, we nd that

2 3
s U5 0:5

A 1=§0:5 0:5 0:52
05 05 0:5

18
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Then

= A b
2 3 2 3 2 3
1 05 05 2
E zz 505 0:5 052 Eﬁl
3 0:5 8

(2;4,8) = 5(0;1;1) + 3(1;0;1) + ( 1)(1;1;0):

4 Linear independence

De nition 4.1. Let V beavector spaceover a eld K . A subset fvq; vs; 'VnQ
In V islinearly dependent over K if thereexistsscalars +1; o; . e IS 5 et
all zero), such that

1V +  oVo + + LVp = O:

De nition 4.2. Let V beavector spaceovera eld K. A subset fvy; vy,  ;Vv,Q
In V islinearly independent over K if 4vi+ ovo+ + oV, = 0then 4=

2 = = n=0

Example 4.3. Show that theset 1(1;0;1);(1; 1;1);(2, 1;2);(0;0;1)g
Is linearly dependent over R .
Solution: We haveto show that thereexists 4 5 3; 42 R not all zero such

that
1(10,1)+ 1 1,1+ (2 1,2+ 4(0,0,1) = (0;0;0)

19
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We have the following system of equations

1+ 2+2 3=0

> 3=0

1+ 2+2 3+ 4=0

0.
From the second equation, we have , = 3.Let ,=1then 3= 1and
1=1.Hence, (1;0;1)+ (1; 1,1)+ ( 1)(Z 1,2+ (0)(0;0;1) = (0;; 0).

Put the rst equation in the last equation, we get 4

Example 4.4. Show that the set f(1;0;1);(0;0;1)g is linearly independent over
R.
Solution:

1(1,0,1) + 2(0;0;1) = (0;0; 0)
( 1;0; 1)+ (0;0; 2) = (0;0;0)
( 10, 1+ 2)=(0;0;0)

So, =0, 1+ ,=0then ,=0. Then it islinearly independent over R.

Example 4.5. Show that theset S= fi;i + 1gislinearly dependent over C, but
It is linearly independent over R.
Solution: Since( 1+ i)i+ (1)(1+ i) =0, so, S islinearly dependent over C.
Let (i))+ (1+1i)= 0, where ; 2R
Then

1+ + 1 =0+ 0

+( + )i=0+ 0

20
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So, =0, + = 0andthen = 0. Hence, Sislinearly independent over R.

Theorem 46. If A= (a;) 2 M, o( K),and G = fay;ay; an9,] =
1;2; ;n are the n columns of A then fC4;C,; ;C,g is linearly dependent
over K if and only if detA = 0.

Corollary 4.7. The n rows of a matrix A 2 M, »( K ) are linearly dependent
over K if and only if detA = 0.

5 Basis and dimension

De nition 5.1. Let V beavector spaceover K. A subset S= fvy;Vvo; ;Vh(Q

IS called a basisfor V |If

(i) Visspanned by S, that is, for every v 2 V thereexistsscalars 1; ,; ; 5 2

K such that v = 1V1 + Vo + + nVh.
(ii) The set S islinearly independent over K .

Example 5.2. Show that theset S= f(1;0;0);(0;1;0); (0;0; 1)g isabasis for the
vector space R°.
Solution: (i) we have to show that S spans R3. That is, f or all v= (x;y;z) 2

R3, wehaveto ndscalars 1; 5, 32 R3suchthatv= vi+ oVo+ 3V3

(X;y;2) = 1(1;0,00+ 2(0;1;0) + 3(0;0; 1)

(X;¥;2) = ( 1; 25 3)

So, (x;y;z) = x(1;0;0) + y(0; 1;0) + z(0; 0; 1) and, hence, R® is generated by S.

21
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2 3
100

(i) To show that S is linearly independent, Let A = §0 1 og

0 0 1
Since det(A) 6 0 then S is linearly independent.

Finally, we get S isa basis for R>.

Example 5.3. Let ¢, = (1;0;0; :0):;e=1(0;1;0,0;, ;0); e, = (0;0; 1)«

Then B = fe;e; ;e,gisabasisfor R". This basis called the standard basis
for R".

Theorem 5.4. Let V bea vector spaceover a eld K,andS = fvy;ve;  ;vh,ghbe

a basis of V containing n vectors. Then any subset containing more than n vectors

in V is linearly dependent.

De nition 5.5. Let V be a vector space with a basis S = fvy;vy; ;Vog has n

vectors. Then, we say n isthe dimension of V and we writedim(V) = n.

Theorem 5.6. Any vector space V has a basis. All bases for V are of the same

dimension.
Example 5.7. The following vector spaces over R have dimensions:
(1) dim(R") = n.
(2) dmR = 1.
(3) dim C = 2.
(4) dim M,.,(R) = nZ.

Theorem 5.8. Let V be avector space suchthat dm(V) = n. Let S = fvy; vo;
be a subset of V. Then we have

(1) If S spans V, then S is also linearly independent hence a basis for V.

22
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(2) If S islinearly independent, then S also spans V hence is a basis for V.

Example 5.9. Showthat Sisnot abasisfor R®>whereS = (6;4;1);(3; 5;1);(8;13;6);(0; 6;9)g.

Solution: Since dim(R?®) = 3, then any basis for R® must have 3 vectors, while

here S has four.
8 2 3 2 3 2 3 2 39

Example 5.10. Showthat S= 4 5:4 5:4 5:4 95 jsabasis
for Mz;z(R).

Solution: Since S has four vectors and dim(M..o(R) = 4 then, by Theorem 5.8,

we have to show that either S spans 'V or S islinearly independent.

6 Dot and cross products

De nition 6.1. Let v = (a1; az; ;a,) be a vector in a vector space V. The

length (or norm or magnitude) of v is

9
s 2 2 3.
kvk= af+as5+ + as.

Example 6.2. Suppose that the vector v= (2, 1;4;1), then the length of v is

P -
kvk = 224+ ( 1)2+ 42+ 12 = l322:

De nition 6.3. Let u = (a4; ay; ;an) and v = (by; bp; ;) are vectors in a
vector space V. The dot product of u and v isde ned by

u v=ab+ ab + + a b,

23
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De nition 6.4. The angle between two vectors u and v is determined by the
formula

u v = kukkvk cos

Example 6.5. Let u= (1;3;0) andv=( 21;5). Thedot product of uand v is

uv=1 2+ 3(1)+ 05 = 1;

and the angle between them is

e W g i
~ kukkvk T 10" 30
So,
—cos ' B he s
- "10 30

Some properties of the dot product : Let u;v and w are vectors in a vector

space V over K . The dot product has the following properties:

u v=u ( v)= (u v), where 2 K.
5) If u v > Othen the angle formed by the vectors (0 < < 90).
6) If u v < 0then the angle formed by the vectors, (90 < 180).

7) If u v = 0then the angle formed by the vectors is 90 degrees.

De nition 6.6. Let u and v are vectors in a vector space V. If

u v=20

24
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then we say that u and v are orthogonal.

De nition 6.7. A subset S = fvy;Vvy;, ;V,Q of a vector space V form an or-
thogonal set if all vectors in S are orthogonal to each other, v; v; = Ofori 6 j.
In addition, if all vectorsin an orthogonal set S has length one, kvik = 1, then S

IS called an orthonormal set.

Theorem 6.8. Any orthogonal set is linearly independent .

Gram-Schmidt process: If B = fvq;vo;  ;v,gisabasisfor avector spaceV.
Then we can de ne an orthogonal basisW = fwq;w,;  ;w,gfor V by using the
following steps:
Wi = Vq4
Wy V
Wso = Vo 1 < Wi
W1 Wy
Wy V Wy V
Wi = Vi 1 3 W 2 V3 Wo
W1 Wiy Ws W-
Wi Vj Wo Vj Wh 1 Vp
Wn = Vj Wi W5 Wh 1
Wi Wy Wo Wo> Wh 1 Wph 1

In addition, the set
W4 Wo Wh

kwik’ kwok®  * KwiK

IS an orthonormal basis for V.

Example 6.9. Let S=fvy = (1;1;0);vo = (1;1;1);vs = (3;1; 1)g be a basis for
R3. We will use Gram-Schmidt processto nd orthogonal and orthonormal bases
for R3.

25

Scanned by TapScanner



L
I
<
Il
=
—e
e

Il
—
k.
A
Wz
o

I
s
2
=
=

I
—
5
—_—
=

n

= (3;1;1) 5(1;1;0) %(0;0;1)

= (31,1 (220 (00;1)
= (1, 1,0
Then W = fwq;wy;wzg= f(1;1;0);(0;0;1); (1; 1;0)g is an orthogonal basis for

R
. P B .
Snce kwik = 2 kwok = 1:kwsk = 2 then the set

n O n

Wi Wo W3 1 1
2 2 — s 11 . . 1 5 - 1 1
kwik kwok ™ kwsk P (1:1:05:(0:0:1); p5(1; 1:0)

o)
U=

is an orthonormal basis for R3.

26
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De nition 6.10. Let u = (as;ay;a3);v = (b;;by;b;) 2 R® then we de ne the

cross product of u and v as following

ik
u V= g a, az = i(aEbB thafi) j(El1b3 b133) + k(a1b2 b132):
by b b

Thatis, u v=(axby bagahy abyai, ba).

Geometrically, the cross product of vectors u and v represents a vector that is

orthogonal to both of u and v.

De nition 6.11. Theangle between two vectors u and v is determined by the
formula
ku vk = kuk kvk sn :

Note that, the length of u v represents the area of the parallelogram that
gpanned by u and v.

27
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Example 6.12. Find the area of the parallelogram that spanned by the vectors
uy= fhdZand v { 2;1:0) -
Solution :
u v=4% 2 47

ku VK= I34+ 16 + 49 = p6_9

28
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/ Eigenvalues and eigenvectors

De nition 7.1. Let A beann n matrix. If thereisanumber 2 C and a
vector x & O such that Ax = x, then wesay that isan eigenvalue for A, and x

Is called an eigenvector for A with eigenvalue .

Example 7.2. If

0 1 0 1
1 3 1
A = @ A and X = @ A ]
6 2 1
then 0 1
4
Ax = @A - 4x :
4
SO, = 4isan eigenvalue of A, and x is an eigenvector for A with this eigenvalue.
We can write the equation Ax = X asalinear system. Since x = |Xx, (where

| = |, isthe identity matrix), we have that

Ax= x() Ax x=0() (A [ 3%= 0

This linear system has a non-trivial solution x & 0 if and only if

det(A 1)=0; (why?):

De nition 7.3. The characteristic equation of a square matrix A is the equation

det(A 1) =0:

29
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Theorem 7.4. The eigenvalues of a square matrix A are the solutions of the

characteristic equation

det(A 1)

I
<

How to nd the eigenvalues and the eigenvectors:

To nd the eigenvalues of a matrix A, we have to nd the solution of the
characteristic equation det(A |) = 0, then to nd the eigenvectors for A with
elgen value we have to solve the linear system (A | )x = 0, as explained in

this example.

Example 7.5. Find the eigenvalues and the eigenvectors of the matrix

0 1
ﬂ\=@2 3fﬁ\:
3 6
Solution: We haveto nd A .
0 1 0 1
A =@ A @
3 ¢ o
0 1
_ @° 3 A
;. 6
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Now, wehaveto ndthesolutiontothecharacteristicequationdet(A 1) = 0.

=2 )6 ) 33=°*+4 21=0

Then
25 4 21=( + 7)( =0

S0, the eigenvalues of A are

1= 7 and o= 3
0 1
X
To nd theegenvector x = @A for 1= 7, we haveto solve the following
X2
system
(A 11 )x=0

0 10 1 0 1

@ (7 3 ae¥a_e’a

3 6 ( 7) X2 0

0 10 1 0 1

@ 3A @A _ @A
31 x, 0

USlng Gauss elimination, (R-] ! %qu, R, ! 3R + Rz), we get
0 10 1 0 1

1
@' 3a @A - @A
0 0 x 0
We have only one equation with two variables x; + ;X2 = 0, then x4 = ='X.

31
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0 1 0 1

s N
Assume x, = G , givesusx = @3 A = ¢, @3 A wherec, 2 R.

1
“ 0 1

3
Similarly, we can show that the eigenvector for , = 3isx = ¢, @ A where
1

c 2 R.
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8 Linear transformation on vector spaces

De nition 8.1. Let V and W are vector spacesover a eld K . A linear trans-
formation T from V intoW isamapping T : V! W such that

(i) T(u+ v) = T(u) + T(v)

(i) T( u) = T(u)

foraluv2Vand 2K.IfT:V! Vthen wesay that T is a linear

transformation on V.

Example 8.2. Showthat T : R®! R?de nedby T(as;a;a3) = (a1+ az;a, ag)
IS a linear transformation.

Solution:

(i) Let u= (as;a;as);v = (bi;bp;b3) 2 R®. Then

u+v=(a;+ b;a+ bp;az + k), and

T(u+v)=T(as+ bj;a,+ by; a3 + by)

(a1 +by+ax+bya+b a3 b
(a1 +a+ b+ ba az+b b
(a1 + aga  a)+ (b + bbb
T(u)+ T(v)

(II) Let 2 K, then U=( dq, do2, 33).

1 1
o
+ +
S
Mo
r%‘}-.
Ay
(4}
Lol
Q)
ol

Il
_I
e

™
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Then T isa linear transformation.

Example 8.3. Let T: R®*! R?isde ned by T(a;a;a3) = (ay
linear transformation?
Solution: Let u= (as;az;a3) and v = (by;by; ) 2 R3. Then

U+ v=(a+ bja+ b az+ by):

T(u+v)=T(ar+ bj;a+ by;az + by)
(a1+ b 1,22+ by)

On the other hand,

T(u)+ T(v) = T(ay;a a3) + T(by; by; bs)
= (a1 Tiag)+ (b 1)
= (a1+ b 2a+ by

1;a). IsT a

So, T(u+v)e T(u)+ T(v), and hence, T is NOT a linear transformation.

Example84. Lee M 2 Mpm( K )and N 2 M,.n( K ). De ne

T:Mmn(K)! Mpn(K)by T(A)= MAN for all A2 Myn( K ).

Show that T isa linear transformation.

Solution: Let A;B 2 Mpmqo(K)and 2 K .
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T(A+B)=M(A+ B)N
= MAN + MBN
= T(A)+ T(B)

(i) T( A)=M( AIN= (MAN)= T(A)

Then T isa linear transformation.
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9 Examples

Example 9.1. Find the eigenvalues and the eigenvectors for the matrix

2 3
1 3 0

o 2 1f

0 O 1

Solution: To nd the eigenvalues of A we have to solve det(A 1}= 1.

2 3 2 3 2
1 3 0 10 0 1 3 0
A I=Eoz 12 Eo10§=§0 2 1
0 0 1 0 0 1 0 0 1
1 3 0
det(A )= 0 2 1 =1 )2 Y1 )=0
0 0 1

Then =1, »=2and 3= 1arethe egenvalues for A.
Now, to nd the eigenvectors for A, we have to solve the system (A
When ;= 1then

-
o
N
>
&
o

| Jox == 0
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So, we have

3)(2:0
Xo+ X3=0

2X3= 0

Then X2 = 0and x3 = 0, since X3 isgnot £xigts in the above equations so we can

X1 i
assumethat x4 = 1. Hence, x = EXEZ = Eoz
X3 0
When -, = 2then
2 32 84 23
1 3 0 X1 0
(A zl)><=E 0 1ZE>¢22=§0

S0, we have

s = Q)
X1 3}(2=O
2 3
1
Then x3=0and x4+ 3x2 = 0. Let x4 = 1then x2 = {,and hence, X = Eb‘%
0
When ;= 1 then
2 32 38 28
2 3 0, . X4 0
(A 3|)X=§0 3 9 x22=§0
0 0 0 X3 0

37
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So, we have

2)(1 3}(2= 0
3)(2'1" X3 = 0

2 3
:

Example 9.2. Find the eigenvalues and the eigenvectors for the matrix

Let X1 = 1then X, = %,andx3= 2. Hence,x:E

LI M2

2

2 3
A=45 05;
2 3
2 3 2 3 2 3
0 10 5 0
2 3 0 1 2 3
5 0
det(A 1) = = JB J=1
2 d
Then either 5 = Qar3 = 0. S0, the eigenvalues of A are
1 =5 and g = S

To nd the eigenvectors of A, we have to solve the system (A [ )3 = 0k

When 4 =45 then yvg haye to solve the system (A 3l )x = 0.

O O X
(A 5l)x =4 5475 = p.

2 2 X2
2 3

1
Then 2x; 2Xx,= 0. Let x4 = 1then xo, = 1. Hence, x = 4 9.
1
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When 5 = 3 then we have to solve the system (A 3l )x = 0.

2 32 3

2 0. .X
(A 3)x=4" 5475_9
2 0 X2
2 3

0
Thenx; = 0. Let x,= 1. Hence, x = 4 9.
1

39
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Example 9.3. Let B = f(1;2; 1);(4;1;0);(3;5;7)g be a basis for R®. Find an
orthonormal basis for R® by using Gram-Schmidt method.

Solution: vi= (1;2; 1);vo= (4,1;0);v3= (3,5,7).

wi= vy = (1,2, 1)
WiV
Hr=a w11:w21 W1
_ s (1;2, 1):(41,0 . ..
= AN 12 Ndt2d D L
4+ 2+ 0
= (4,1;0) 1+4+1(1’2’ 1)
= (41,0 (1,2 1)
= (3 1;1)
_ Wq:V3 W2.V3
= W1:W4 i W2 W> e
(2, NAS8 1 (3, 1,1):4(3;,57)
= (3;5; 12 1 -
e (L2 10):(1;2 1)(” ) (3, 1,1:(3 1;1) S
6 11
= (3: 557) 6 (1!2! 1) ﬂ(Sa 1! 1)
={3570 (12 1 & 11
=( 1,47)
Then W = fwqy;wo,wsg = f(1;2 1):;(3; 1;1):( 1:;4;7)g is an orthogonal
basis for R3.
kwiqk = g 124 22 4 ( 1)2=pé, kW2k=p32+( 1)2 + 12=p_1
kwsk = P ( 1)2+ 82+ P= p”s‘“s
Then Us=f_ 1. W2 . Ws ] (1:2: 1); 1 (3, 1:1); : ( 1:4:7)
= Rk Kk Rk Pgroe heggw LREl LS
is an orthonormal basis for R3.
40
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