1 Vector space

De nition 1.1. A vector space V over a eld K is a set V with two operations called addition + and multiplication such that the following axioms are satis ed:

- (1) (i) u + v 2 V for all u; v 2 V. (Addition is closed)
 - (ii) u + v = v + u for all $u; v \ge V$. (Addition is commutative)
 - (iii) u + (v + w) = (u + v) + w for all u; v; w 2 V. (Addition is associative)
 - (iv) There exists an element 0.2 V, called the zero vector, such that u + 0 = 0 + u = u for all u.2 V.
 - (v) For all u 2 V there exists an element u 2 V, called the additive inverse of u, such that u + (u) = 0 = u + u.
- (2) (i) u 2 V for all u 2 V and 2 K.
 - (ii) (u+v) = u+ v for all $u; v \ge V$ and $\ge K$.
 - (iii) (+) u = u + u. for all $u \ge V$ and $; \ge K$.
 - (iv) () u = (u) for all $u \ge V$ and ; 2 K.
 - (v) For all u 2 V there exists an element 12 K, called the multiplicative identity of u, such that 1 u = u 1 = u.

Example 1.2. Let C be the set of complex numbers. De ne addition in C by

$$(a + bi) + (c + di) = (a + c) + (b + d)i$$
 for all a; b; c; d 2 R; (1)

and de ne scalar multiplication by

$$(a + bi) = a + bi$$
 for all scalars 2 R; and for all a; b 2 R: (2)

Show that (C;+;) is a vector space over R.

Solution: Let u = a + bi; v = c + di; w = e + fi 2 C, where a; b; c; d; e; f 2 R, we have

- (1)
- (i) The addition is closed:

$$u + v = (a + bi) + (c + di)$$

= $(a + c) + (b + d)i$ by (1).

Since (a + c) and (b + d) are real numbers then u + v 2 C.

(ii) The addition is commutative:

$$u + v = (a + bi) + (c + di)$$

$$= (a + c) + (b + d)i \qquad by (1),$$

$$= (c + a) + (d + b)i \qquad because addition on R is commutative,$$

$$= (c + di) + (a + bi) \qquad by (1),$$

$$= v + u$$

(iii) The addition is associative: we have to prove that u + (v + w) = (u + v) + w for all u; v; w 2 C.

The left hand side (L.H.S):

$$u + (v + w) = u + [(c + di) + (e + fi)]$$

= $(a + bi) + [(c + e) + (d + f)i]$ by (1),
= $[a + (c + e)] + [b + (d + f)]i$ by (1),
= $[(a + c) + e] + [(b + d) + f]i$ because addition on R is associative.

The right hand side (R.H.S):

$$(u + v) + w = [(a + bi) + (c + di)] + w$$

= $[(a + c) + (b + d)i] + (e + fi)$ by (1),
= $[(a + c) + e] + [(b + d) + f]i$ by (1).

Then L.H.S=R.H.S

(iv) The additive identity: For all u = a + bi 2 C, we have

$$(a + bi) + (0 + 0i) = (a + 0) + (b + 0)i$$
 by (1),
= $a + bi$ because 0 is the additive identity in R.

Then the additive identity of C is (0 + 0i).

(v) The additive inverse: For all u = a + bi 2 C, we have

$$(a + bi) + a + (b)i = a + (a) + b + (b)i$$
 by (1),
= $0 + 0i$ because (a) is the additive inverse of a in R.

Then the additive inverse of a + bi 2 C is a + (b)i.

- (2) Let u = a + bi; v = c + di 2 C and 2 R.
- (i) We have to prove that u 2 C.

$$u = (a + bi)$$

= $a + bi$

Since a; b2 R, then u2 C.

(ii) We have to prove that (u + v) = u + v for all $u; v \ge C$ and z = C.

The left hand side (L.H.S):

$$(u+v) = [(a+bi)+(c+di)]$$

$$= [(a+c)+(b+d)i] \quad \text{by (1)}$$

$$= (a+c)+(b+d)i \quad \text{by (2)}$$

$$= (a+c)+(b+d)i \quad \text{because multiplication distributes over addition in R.}$$

The right hand side (R.H.S):

$$u + v = (a + bi) + (c + di)$$

= $(a + bi) + (c + di)$ by (2),
= $(a + c) + (b + d)i$ by (1),

Then L.H.S=R.H.S

(iii) We have to prove that (+) u = u + u for all u 2 C and ; 2 R.
The L.H.S:

$$(+)$$
 $u = (+)$ $(a + bi)$
= $(+)$ $a + (+)$ bi by (2) ,
= $(a + a) + (b + b)i$ because multiplication distributes over addition in R.

The R.H.S:

$$u + u = (a + bi) + (a + bi)$$

= $(a + bi) + (a + bi)$ by (2),
= $(a + a) + (b + b)i$ by (1).

Then L.H.S=R.H.S

(iv) We have to prove that () u = (u) for all $u \ge C$ and ; $\ge R$. The L.H.S:

The R.H.S:

$$(u) = [(a + bi)]$$

= [a + bi] by (2),
= a + bi by (2).

Then L.H.S=R.H.S

(v) The multiplicative identity: we have to show that 1 u = u for all $u = a + bi \ 2$ C. (Note that, 1 represents scalar from the eld R and NOT from the set C).

1
$$u = 1$$
 (a + bi)
= 1a + 1bi by (2),
= a + bi
= u

We have proved that all axioms hold in C. Hence, (C;+;) is a vector space over R.

Example 1.3. Let M_2 $_2(R) = \begin{bmatrix} n & a & b \\ & c & d \end{bmatrix}$ j a; b; c; d 2 R be the set of all two by

two matrices with entries in R. For A = $\begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix}$; B = $\begin{pmatrix} b_1 & b_2 \\ b_3 & b_4 \end{pmatrix}$ 2 M_{2 2} and 2 R, addition and scalar multiplication of matrices de ned by

$$A + B = \begin{bmatrix} a_1 & a_2 & b_1 & b_2 \\ & & + & \\ & & a_3 & a_4 & b_3 & b_4 & a_3 + b_3 & a_4 + b_4 \end{bmatrix} = \begin{bmatrix} a_1 + b_1 & a_2 + b_2 \\ & & & \\ & & a_3 + b_3 & a_4 + b_4 \end{bmatrix}$$
(3)

Prove that $(M_{2};+;)$ is a vector space over R.

Solution: Let
$$A = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix}$$
; $B = \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix}$; $C = \begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix}$ $2 M_2$ 2.

(1)

(i)

$$A + B = \begin{bmatrix} a_1 & a_2 & b_1 & b_2 & a_1 + b_1 & a_2 + b_2 \\ a_3 & a_4 & b_3 & b_4 & a_3 + b_3 & a_4 + b_4 \end{bmatrix} by (3).$$

Since a_1 ; a_2 ; a_3 ; a_4 ; b_1 ; b_2 ; b_3 ; b_4 are real numbers, then $a_1 + b_1$; $a_2 + b_2$; $a_3 + b_3$; $a_4 + b_4$ 2 R. Hence, A + B 2 M_{2 2}(R).

(ii) We have to show that A + B = B + A for all A; B 2 M_{2 2}.

$$A + B = \begin{cases} a_1 & a_2 \\ a_3 & a_4 \end{cases} + \begin{cases} b_1 & b_2 \\ b_3 & b_4 \end{cases}$$

$$= \begin{cases} a_1 + b_1 & a_2 + b_2 \\ a_3 + b_3 & a_4 + b_4 \end{cases} \text{ by (3),}$$

$$= \begin{cases} b_1 + a_1 & b_2 + a_2 \\ b_3 + a_3 & b_4 + a_4 \end{cases} \text{ because addition on R is commutative}$$

$$= \begin{cases} b_1 & b_2 \\ b_3 & b_4 \end{cases} + \begin{cases} a_1 & a_2 \\ a_3 & a_4 \end{cases} \text{ by (3),}$$

$$= B + A$$

(iii) We have to show that A + (B + C) = (A + B) + C for all A; B; C 2 M_{2 2}. The L.H.S:

$$\begin{array}{lll} A+(B+C) = & \begin{array}{lll} a_1 & a_2 & + & h & b_1 & b_2 & + & c_1 & c_2 & i \\ \\ a_3 & a_4 & + & b_3 & b_4 & + & c_3 & c_4 & \end{array} \\ \\ = & \begin{array}{lll} a_1 & a_2 & + & b_1 + c_1 & b_2 + c_2 \\ \\ a_3 & a_4 & + & b_3 + c_3 & b_4 + c_4 & \end{array} & \text{by (3),} \\ \\ = & \begin{array}{lll} a_1 + (b_1 + c_1) & a_2 + (b_2 + c_2) \\ \\ a_3 + (b_3 + c_3) & a_4 + (b_4 + c_4) & \end{array} & \text{by (3),} \\ \\ = & \begin{array}{lll} (a_1 + b_1) + c_1 & (a_2 + b_2) + c_2 \\ \\ (a_3 + b_3) + c_3 & (a_4 + b_4) + c_4 & \end{array} & \text{because addition on R is associative.} \end{array}$$

The R.H.S:

$$(A + B) + C = \begin{pmatrix} h & a_1 & a_2 & b_1 & b_2 & i & c_1 & c_2 \\ a_3 & a_4 & b_3 & b_4 & c_3 & c_4 \end{pmatrix}$$

$$= \begin{pmatrix} a_1 + b_1 & a_2 + b_2 & c_1 & c_2 \\ a_3 + b_3 & a_4 + b_4 & c_3 & c_4 \end{pmatrix} \quad \text{by (3)},$$

$$= \begin{pmatrix} (a_1 + b_1) + c_1 & (a_2 + b_2) + c_2 \\ (a_3 + b_3) + c_3 & (a_4 + b_4) + c_4 \end{pmatrix} \quad \text{by (3)}.$$

Then L.H.S= R.H.S

(iv) For all A =
$$a_1$$
 a_2 a_3 a_4 a_4 a_2 a_4 a_4 a_4 a_4 a_4 a_4 a_4 a_4 a_4 a_4

Then the zero matrix $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ is the additive identity.

$$A + (A) = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} + \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Then the matrix (A) is the additive inverse for the matrix A.

(2)

(i) We have to show that $A 2 M_2 {}_2(R)$ for all $A 2 M_2 {}_2$ and 2 R.

$$A = \begin{bmatrix} a_1 & a_2 & a_1 & a_2 \\ a_3 & a_4 & a_3 & a_4 \end{bmatrix}$$
 by (4).

Since ; a_1 ; a_2 ; a_3 ; a_4 are real numbers then a_1 ; a_2 ; a_3 ; a_4 2 R.

Hence, A 2 M_2 ₂(R).

(ii) We have to show that (A + B) = A + B for all A; B 2 M_{2 2} and 2 R.

The L.H.S:

The R.H.S:

Then L.H.S= R.H.S

(iii) We have to show that (+) A = A + A for all A 2 M_{2} and ; 2 R.

The L.H.S:

The R.H.S:

$$A + A = \begin{bmatrix} a_1 & a_2 & & a_1 & a_2 \\ & a_3 & a_4 & & a_3 & a_4 \end{bmatrix}$$

$$= \begin{bmatrix} a_1 & a_2 & & a_1 & a_2 \\ & a_3 & a_4 & & a_3 & a_4 \end{bmatrix}$$
 by (4),
$$= \begin{bmatrix} a_1 + a_1 & a_2 + a_2 \\ & a_3 + a_3 & a_4 + a_4 \end{bmatrix}$$
 by (3).

Then L.H.S = R.H.S

(iv) We have to show that () A = (A) for all I A 2 M $_2$ and ; 2 R. The L.H.S:

The R.H.S:

$$(A) = \begin{cases} h & a_1 \ a_2 \end{cases}$$

$$= \begin{cases} a_1 & a_2 \ a_3 & a_4 \end{cases}$$

$$= \begin{cases} (a_1) & (a_2) \ (a_3) & (a_4) \end{cases}$$
by (4).

Then L.H.S= R.H.S

(v) For all A 2 M_2 2, we have 1 2 R such that

$$1 A = 1$$
 $a_1 a_2 = 1a_1 1a_2 = A:$
 $a_3 a_4 1a_3 1a_4 = A:$

Then 12 R is the multiplicative identity.

Example 1.4. Let $V = fx \ 2 \ R \ j \ x > 0g$. For $x; y \ 2 \ V$ and $\qquad 2 \ R$, we de ne addition and scalar multiplication as following

$$x y = xy;$$

 $x = x :$

Show that (V; ;) is a vector space over R.

Example 1.5. Is the set $V = \begin{pmatrix} n & a_5 \\ 4^{a_5} & j \\ b \end{pmatrix}$ a; b > 0 with the usual addition and scalar multiplication of matrices de ne a vector3space oxer3 R ?2 3

Solution: Let = 22 R, then
$$4^{a_5} = 24^{a_5} = 4^{2a_5} \ge V$$
.

Since a; b > 0 then 2a; 2b < 0.

Proposition 1.6. Let V be a vector space over K, then we have

- (1) The additive identity, 02 V, is unique.
- (2) The additive inverse, (u) 2 V, for u 2 V is unique.
- (3) For all $u \ge V$ we have $0 \quad u = 0$.
- (4) For all $u \ge V$ we have (1) u = u.
- (5) For all u; v; w 2 V, if u + v = u + w then v = w.
- (6) For all $u; v \ge V$, the equation u + x = v has a unique solution x = v $u \ge V$.
- (7) For all $u \ge V$, we have (u) = u.

2 Subspace

In this section we suppose that (V;+;) is a vector space over K.

De nition 2.1. A non-empty subset U of V is called a subspace of V if (U;+;) is a vector space over K.

Proposition 2.2. A non-empty subset U of a vector space V over K is a subspace of V if and only if the following conditions are satis ed:

- (1) 02 U.
- (2) For all u; v 2 U, we have u + v 2 U.
- (3) For all u 2 U and 2 K, we have u 2 U.

Remark 2.3. Every vector space V has two subspaces namely V and f 0g, which are called trivial subspaces. Any other subspace of V is called a proper subspace of V.

Example 2.4. Show that which of these sets are subspace of R3

- (1) U = f(x; y; 0) j x; y 2 Rg.
- (2) U = f(x; y; 1) j x; y 2 Rg.

.

Proposition 2.5. If W_1 and W_2 are subspaces of V, then $W_1 \setminus W_2$ is a subspace of V.

Proof. We have to satisfy the three conditions in Proposition 2.2.

(1) Since W₁ and W₂ are subspaces of V, then 0.2 W₁ and 0.2 W₂. Hence,

 $02 W_1 \setminus W_2$:

(2) Let u; v 2 W₁ \ W₂, then u; v 2 W₁ and u; v 2 W₂.
Since W₁ and W₂ are subspaces of V, then u + v 2 W₁ and u + v 2 W₂.
Hence,

$$u + v 2 W_1 \setminus W_2$$
:

(3) Let 2 K and $u 2 \text{ W}_1 \setminus \text{W}_2$, then $u 2 \text{ W}_1$ and $u 2 \text{ W}_2$. Since W_1 and W_2 are subspaces of V then $u 2 \text{ W}_1$ and $u 2 \text{ W}_2$. Hence,

$$u 2 W_1 \setminus W_2$$
:

Example 2.6. Show that if W_1 and W_2 are subspaces of a vector space V, then W_1 [W_2 is NOT a subspace of V.

To prove this, we have $W_1 = f(a; 0) j$ a 2 Rg and $W_2 = f(0; b) j$ b 2 Rg are both subspaces of R^2 . But $W_1[W_2 \text{ is not a subspace of } R^2 \text{ because } (1; 0) 2 W_1[W_2 \text{ and } (0; 1) 2 W_1[W_2 \text{ while } (1; 0) + (0; 1) = (1; 1) 2 W_1[W_2.$

Proposition 2.7. Let $W_1;W_2; \quad ;W_n$ are subspaces of a vector space V over a eld K, then we have

- (1) $W_1 \setminus W_2 \setminus W_n$ is a subspace of V.
- (2) $W_1 + W_2 + W_n = f w_1 + w_2 + W_n j w_i 2 W_i; i = 1; 2;$ ng is a subspace of V.

Pr∞f.

3 Linear Combinations and Span

De nition 3.1. Let $v_1; v_2; ; v_n$ be vectors in a vector space V over K . A linear combination of these vectors is any expression of the form

$$_{1}V_{1} + _{2}V_{2} + _{n}V_{n}$$

for some scalars 1; 2; ; n 2 K.

Example 3.2. Consider the vector space R^2 . The vector v = (7; 13) is a linear combination of $v_1 = (2; 1)$ and $v_2 = (1; 5)$, where

$$v = 2v_1 + (3)v_2$$
:

Example 3.3. Consider the vector space R^2 . The vector v=(1; 3) is a linear combination of $v_1=(0;1)$, $v_2=(2; 1)$, $v_3=(1; 2)$ and $v_4=(0;3)$ where

$$v = (2)v_1 + (0)v_2 + 1v_3 + (\frac{1}{3})v_4$$
:

Sometimes we cannot write a vector v in a vector space V as a linear combination of $v_1; v_2; v_n \ge V$, as explained in this example.

Example 3.4. Let $v_1 = (2; 5; 3); v_2 = (1; 1; 1)$, and v = (4; 2; 0). Because there exist no scalars $_1; _2 2$ K such that $v = _1v_1 + _2v_2$ then v is not a linear combination of v_1 and v_2 .

De nition 3.5. Let V be a vector space over K, and let $S = fv_1; v_2; ; v_n g$ be a subset of V. We say that S spans V, or S generates V, if every vector v in V can be written as a linear combination of vectors in S. That is, for all v 2 V, we have

$$V = {}_{1}V_{1} + {}_{2}V_{2} + {}_{n}V_{n}$$

for some scalars 1; 2; ; n 2 K.

Example 3.6. Show that the set S = f(1; 0); (0; 1)g spans the vector space $R^2 = f(a; b) j a; b 2 Rg$.

Solution: We have to show that for all $v = (a; b) 2 R^2$ there exists $_1$; $_2 2 R$ such that $v = _1(1; 0) + _2(0; 1)$.

$$(a; b) = {}_{1}(1; 0) + {}_{2}(0; 1)$$
$$= ({}_{1}; 0) + (0; {}_{2})$$
$$= ({}_{1}; {}_{2})$$

Then $_1$ = a and $_2$ = b. So, any vector v = (a; b) 2 R² can be written in the form (a; b) = a(1; 0) + b(0; 1). Thus S spans R². $_2$ $_3$ $_2$ $_3$

- (1) Does S spans V ?
- (2) De ne a vector space U such that S spans U.
- (3) Find a set that spans V.

Solution: (1) If S spans V then for all v 2 V, there exists 1; 2 2 R such that

2 3 2 3 2 3

$$4^{a} \quad {}^{b}5 = {}^{1}4^{1} \quad {}^{0}5 + {}^{2}4^{0} \quad {}^{0}5$$

 $c \quad d \quad 0 \quad 0 \quad 0 \quad 1$
 $= 4^{1} \quad {}^{0}5 + 4^{0} \quad {}^{0}5$
 $= 4^{1} \quad {}^{0}5 + 4^{0} \quad {}^{0}5$
 $= 4^{1} \quad {}^{0}5$
 $= 4^{1} \quad {}^{0}5$
 $= 4^{1} \quad {}^{0}5$

So, $_1$ = a and $_2$ = d. But if b or c is non-zero then v cannot be written as a linear combination of the vectors in S. Henzce, Sanot spans V.

Example 3.8. Show that the set S = f(0; 1; 1); (1; 0; 1); (1; 1; 0)g spans R^3 and write the vector (2; 4; 8) as a linear combination of vectors in S.

Solution:

A vector in R^3 has the form v = (x; y; z).

Hence we need to show that, for some scalars 1; 2; 3 2 R, every such v can be written as

$$(x; y; z) = {}_{1}(0; 1; 1) + {}_{2}(1; 0; 1) + {}_{3}(1; 1; 0)$$

= $({}_{2} + {}_{3}; {}_{1} + {}_{3}; {}_{1} + {}_{2})$

This give us system of equations

$$X = {}_{2} + {}_{3}$$
 $Y = {}_{1} + {}_{3}$
 $Z = {}_{1} + {}_{2}$

This system of equations can be written in matrix form

2 32 3 23

$$6^{0}$$
 1 $\frac{1}{7}$ 6 $\frac{1}{7}$ 6 $\frac{x}{7}$ 6 $\frac{x}{7}$ 6 $\frac{x}{7}$ 6 $\frac{x}{7}$ 6 $\frac{x}{7}$ 6 $\frac{x}{7}$ 7 6 $\frac{x}{7}$ 7 6 $\frac{x}{7}$ 8 $\frac{x}{7}$ 8 $\frac{x}{7}$ 9 $\frac{x}{7}$ 1 1 0 3 $\frac{x}{7}$ 2

We can write it as A = b. Since det(A) = 2 then this system has a solution.

Now, to write (2; 4; 8) as a linear combination of vectors in S, we nd that

Then

So,
$$_1 = 5$$
; $_2 = 3$; $_3 = 1$, and

$$(2; 4; 8) = 5(0; 1; 1) + 3(1; 0; 1) + (1)(1; 1; 0)$$
:

4 Linear independence

De nition 4.1. Let V be a vector space over a eld K . A subset $fv_1; v_2; ; v_n g$ in V is linearly dependent over K if there exists scalars $_1; _2; ; _n 2$ K , (not all zero), such that

$$_{1}V_{1} + _{2}V_{2} + _{n}V_{n} = 0$$
:

De nition 4.2. Let V be a vector space over a eld K. A subset $f v_1; v_2; ; v_n g$ in V is linearly independent over K if $_1v_1 + _2v_2 + _nv_n = 0$ then $_1 = _2 = _n = 0$

Example 4.3. Show that the set f(1;0;1); (1; 1;1); (2; 1;2); (0;0;1)g is linearly dependent over R.

Solution: We have to show that there exists $_1$; $_2$; $_3$; $_4$ 2 R not all zero such that

$$_{1}(1; 0; 1) + _{2}(1; 1; 1) + _{3}(2; 1; 2) + _{4}(0; 0; 1) = (0; 0; 0)$$

We have the following system of equations

$$_{1} + _{2} + 2 _{3} = 0$$
 $_{2} \quad _{3} = 0$
 $_{1} + _{2} + 2 _{3} + _{4} = 0$

Put the rst equation in the last equation, we get $_4 = 0$.

From the second equation, we have $_2 = _3$. Let $_2 = 1$ then $_3 = _1$ and $_1 = 1$. Hence, (1; 0; 1) + (1; 1; 1) + (1)(2; 1; 2) + (0)(0; 0; 1) = (0; 0; 0).

Example 4.4. Show that the set f(1;0;1); (0;0;1)g is linearly independent over R .

Solution:

$$_{1}(1; 0; 1) + _{2}(0; 0; 1) = (0; 0; 0)$$
 $(_{1}; 0; _{1}) + (0; 0; _{2}) = (0; 0; 0)$
 $(_{1}; 0; _{1} + _{2}) = (0; 0; 0)$

So, $_1 = 0$, $_1 + _2 = 0$ then $_2 = 0$. Then it is linearly independent over R.

Example 4.5. Show that the set S = fi; i + 1g is linearly dependent over C, but it is linearly independent over R.

Solution: Since (1+i)i + (1)(1+i) = 0, so, S is linearly dependent over C.

Let
$$(i) + (1+i) = 0$$
, where ; 2 R

Then

$$i + i = 0 + 0i$$

+ $(+)i = 0 + 0i$

So, = 0; + = 0 and then = 0. Hence, S is linearly independent over R.

Theorem 4.6. If $A=(a_{ij})\ 2\ M_n\ _n(\ K\),$ and $C_j=fa_{1j};a_{2j};\ ;a_{nj}g\ ,$ j=1;2; ;n are the n columns of A then $fC_1;C_2;$; C_ng is linearly dependent over K if and only if det A=0.

Corollary 4.7. The n rows of a matrix A 2 M_n _n(K) are linearly dependent over K if and only if detA = 0.

5 Basis and dimension

De nition 5.1. Let V be a vector space over K. A subset $S = f v_1; v_2; ; v_n g$ is called a basis for V if

- (i) V is spanned by S, that is, for every v 2 V there exists scalars $_1$; $_2$; $_n$ 2 K such that $v = _1v_1 + _2v_2 + _nv_n$.
- (ii) The set S is linearly independent over K.

Example 5.2. Show that the set S = f(1; 0; 0); (0; 1; 0); (0; 0; 1)g is a basis for the vector space \mathbb{R}^3 .

Solution: (i) we have to show that S spans R³. That is, f or all v = (x; y; z) 2 R³, we have to nd scalars $_1$; $_2$; $_3$ 2 R³ such that $v = _1v_1 + _2v_2 + _3v_3$

$$(x; y; z) = {}_{1}(1; 0; 0) + {}_{2}(0; 1; 0) + {}_{3}(0; 0; 1)$$

 $(x; y; z) = ({}_{1}; {}_{2}; {}_{3})$

So, (x; y; z) = x(1; 0; 0) + y(0; 1; 0) + z(0; 0; 1) and, hence, R^3 is generated by S.

(ii) To show that S is linearly independent, Let
$$A = \begin{bmatrix} 2 & 3 \\ 6 & 1 & 0 & 0 \\ 7 & 4 & 0 & 7 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Since det(A) & 0 then S is linearly independent.

Finally, we get S is a basis for R3.

Example 5.3. Let $e_1 = (1;0;0; ;0); e_2 = (0;1;0;0; ;0); ;e_n = (0;0; ;1).$ Then $B = fe_1; e_2; ;e_n g$ is a basis for R^n . This basis called the standard basis for R^n .

Theorem 5.4. Let V be a vector space over a eld K, and $S = f v_1; v_2; ; v_n g$ be a basis of V containing n vectors. Then any subset containing more than n vectors in V is linearly dependent.

De nition 5.5. Let V be a vector space with a basis $S = f v_1; v_2; ; v_n g$ has n vectors. Then, we say n is the dimension of V and we write dim(V) = n.

Theorem 5.6. Any vector space V has a basis. All bases for V are of the same dimension.

Example 5.7. The following vector spaces over R have dimensions:

- (1) $\dim(R^n) = n$.
- (2) $\dim R = 1$.
- (3) $\dim C = 2$.
- (4) dim $M_{n;n}(R) = n^2$.

Theorem 5.8. Let V be a vector space such that dim(V) = n. Let $S = f v_1; v_2; ; v_n g$ be a subset of V. Then we have

(1) If S spans V, then S is also linearly independent hence a basis for V.

(2) If S is linearly independent, then S also spans V hence is a basis for V.

Example 5.9. Show that S is not a basis for R^3 where S = f(6; 4; 1); (3; 5; 1); (8; 13; 6); (0; 6; 9)g. Solution: Since dim(R^3) = 3, then any basis for R^3 must have 3 vectors, while

here S has four.

Example 5.10. Show that $S = \begin{bmatrix} 8 & 2 & 3 & 2 & 3 & 2 & 3 & 2 & 3 & 9 \\ 4 & 1 & 0 & 5 & 4 & 1 & 0 & 5 & 4 & 1 & 1 & 5 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 7 \end{bmatrix}$ is a basis for $M_{2;2}(R)$.

Solution: Since S has four vectors and $dim(M_{2;2}(R) = 4 \text{ then, by Theorem 5.8,}$ we have to show that either S spans V or S is linearly independent.

6 Dot and cross products

De nition 6.1. Let $v = (a_1; a_2; ; a_n)$ be a vector in a vector space V. The length (or norm or magnitude) of v is

$$q = \frac{q}{a_1^2 + a_2^2 + a_n^2}$$

Example 6.2. Suppose that the vector v = (2; 1; 4; 1), then the length of v is

$$kvk = p \frac{p}{2^2 + (1)^2 + 4^2 + 1^2} = p \frac{p}{22}$$

De nition 6.3. Let $u = (a_1; a_2; ; a_n)$ and $v = (b_1; b_2; ; b_n)$ are vectors in a vector space V. The dot product of u and v is de ned by

$$u v = a_1b_1 + a_2b_2 + a_nb_n$$

.

De nition 6.4. The angle between two vectors u and v is determined by the formula

$$u v = kukkvk cos$$

Example 6.5. Let u = (1; 3; 0) and v = (2; 1; 5). The dot product of u and v is

$$u v = 1(2) + 3(1) + 0(5) = 1;$$

and the angle between them is

$$\cos = \frac{u \ v}{kukkvk} = p \frac{1}{10} p \frac{1}{30}$$

So,

$$= \cos^{1} \frac{p}{10} \frac{1}{10} = \frac{1}{30}$$
:

Some properties of the dot product: Let u; v and w are vectors in a vector space V over K. The dot product has the following properties:

- (1) $v v = kvk^2$
- (2) u v = v u
- (3) u (v + w) = u v + u w
- (4) (u) v = u (v) = (u v), where 2 K.
- (5) If u v > 0 then the angle formed by the vectors (0 < < 90).
- (6) If u v < 0 then the angle formed by the vectors, (90 < 180).
- (7) If v = 0 then the angle formed by the vectors is 90 degrees.

De nition 6.6. Let u and v are vectors in a vector space V. If

$$u v = 0$$

then we say that u and v are orthogonal.

De nition 6.7. A subset $S = fv_1; v_2; ; v_n g$ of a vector space V form an orthogonal set if all vectors in S are orthogonal to each other, $v_i v_j = 0$ for i G j. In addition, if all vectors in an orthogonal set S has length one, K kv kv kv is called an orthonormal set.

Theorem 6.8. Any orthogonal set is linearly independent.

Gram-Schmidt process: If $B = f v_1; v_2;$; $v_n g$ is a basis for a vector space V. Then we can de ne an orthogonal basis $W = f w_1; w_2;$; $w_n g$ for V by using the following steps:

$$\begin{aligned} w_1 &= v_1 \\ w_2 &= v_2 & \frac{w_1 \quad v_2}{w_1 \quad w_1} w_1 \\ w_3 &= v_3 & \frac{w_1 \quad v_3}{w_1 \quad w_1} w_1 & \frac{w_2 \quad v_3}{w_2 \quad w_2} w_2 \\ &\vdots \\ w_n &= v_n & \frac{w_1 \quad v_n}{w_1 \quad w_1} w_1 & \frac{w_2 \quad v_n}{w_2 \quad w_2} w_2 & \frac{w_{n-1} \quad v_n}{w_{n-1} \quad w_{n-1}} w_{n-1} \end{aligned}$$

In addition, the set

$$n \frac{w_1}{kw_1k}; \frac{w_2}{kw_2k}; \quad ; \frac{w_n}{kw_nk} o$$

is an orthonormal basis for V.

Example 6.9. Let $S = f v_1 = (1; 1; 0); v_2 = (1; 1; 1); v_3 = (3; 1; 1)g$ be a basis for R^3 . We will use Gram-Schmidt process to nd orthogonal and orthonormal bases for R^3 .

$$\begin{split} w_1 &= v_1 = (1;1;0) \\ w_2 &= v_2 \quad \frac{w_1}{w_1} \frac{v_2}{w_1} w_1 \\ &= (1;1;1) \quad \frac{(1;1;0)}{(1;1;0)} \frac{(1;1;1)}{(1;1;0)} (1;1;0) \\ &= (1;1;1) \quad \frac{1+1+0}{1+1+0} (1;1;0) \\ &= (0;0;1) \\ w_3 &= v_3 \quad \frac{w_1}{w_1} \frac{v_3}{w_1} w_1 \quad \frac{w_2}{w_2} \frac{v_3}{w_2} w_2 \\ &= (3;1;1) \quad \frac{(1;1;0)}{(1;1;0)} \frac{(3;1;1)}{(1;1;0)} \frac{(1;1;0)}{(0;0;1)} \frac{(0;0;1)}{(0;0;1)} \frac{(0;0;1)}{(0;0;1)} (0;0;1) \\ &= (3;1;1) \quad \frac{4}{2} (1;1;0) \quad \frac{1}{1} (0;0;1) \\ &= (3;1;1) \quad (2;2;0) \quad (0;0;1) \\ &= (1;1;0) \end{split}$$

Then W = $f w_1$; w_2 ; $w_3 g = f(1; 1; 0)$; (0; 0; 1); (1; 1; 0)g is an orthogonal basis for \mathbb{R}^3 .

Since
$$kw_1k = p_{\overline{2}}$$
; $kw_2k = 1$; $kw_3k = p_{\overline{2}}$ then the set

$$U = {n \choose kw_1k}; {w_2 \over kw_2k}; {w_3 \over kw_3k}^0 = {n \choose p} {1 \over 2} (1; 1; 0); (0; 0; 1); {p \choose 2} (1; 1; 0)$$

is an orthonormal basis for R3.

De nition 6.10. Let $u = (a_1; a_2; a_3); v = (b_1; b_2; b_3)$ 2 R³ then we de ne the cross product of u and v as following

$$i$$
 j k u $v = a_1$ a_2 a_3 $= i(a_2b_3$ $b_2a_3)$ $j(a_1b_3$ $b_1a_3) + k(a_1b_2$ $b_1a_2)$: b_1 b_2 b_3

That is, $u v = (a_2b_3 b_2a_3; a_3b_1 a_1b_3; a_1b_2 b_1a_2).$

Geometrically, the cross product of vectors u and v represents a vector that is orthogonal to both of u and v.

De nition 6.11. The angle between two vectors u and v is determined by the formula

Note that, the length of u v represents the area of the parallelogram that spanned by u and v.

Example 6.12. Find the area of the parallelogram that spanned by the vectors u=(1;3;2) and v=(2;1;0).

Solution:

$$u v = (2; 4; 7)$$

ku
$$vk = {p \over 4 + 16 + 49} = {p \over 69}$$

7 Eigenvalues and eigenvectors

De nition 7.1. Let A be an n n matrix. If there is a number 2 C and a vector $x \in 0$ such that Ax = x, then we say that is an eigenvalue for A, and x is called an eigenvector for A with eigenvalue .

Example 7.2. If

then

$$Ax = {}^{0}{}^{4}A = 4x :$$

So, = 4 is an eigenvalue of A, and x is an eigenvector for A with this eigenvalue.

We can write the equation Ax = x as a linear system. Since x = Ix, (where $I = I_n$ is the identity matrix), we have that

This linear system has a non-trivial solution x & 0 if and only if

$$det(A \quad I) = 0; \quad (why?):$$

De nition 7.3. The characteristic equation of a square matrix A is the equation

$$\det(A \quad I) = 0:$$

Theorem 7.4. The eigenvalues of a square matrix A are the solutions of the characteristic equation

$$det(A | I) = 0$$
:

How to nd the eigenvalues and the eigenvectors:

To not the eigenvalues of a matrix A, we have to not the solution of the characteristic equation det(A I) = 0, then to not the eigenvectors for A with eigen value we have to solve the linear system (A I)x = 0, as explained in this example.

Example 7.5. Find the eigenvalues and the eigenvectors of the matrix

$$A = \begin{pmatrix} 0 & 1 \\ 2 & 3 \\ 3 & 6 \end{pmatrix}$$

Solution: We have to nd A I.

Now, we have to $nd the solution to the characteristic equation <math>det(A \mid I) = 0$.

$$\begin{pmatrix} 2 & 3 \\ 3 & 6 \end{pmatrix} = \begin{pmatrix} 2 & (2) & (6) & (3) & (3) & (2) & (4$$

Then

$$^{2} + 4$$
 $21 = (+ 7)(3) = 0$

So, the eigenvalues of A are

$$_{1} = 7$$
 and $_{2} = 3$

To nd the eigenvector $x = {\textstyle \overset{@}{\otimes}^{X_1}A}$ for $_1 = 7$, we have to solve the following system

$$(A \quad _{1}I)x = 0$$

$$0 \quad 10 \quad 10 \quad 1$$

$$0^{2} \quad (7) \quad 3 \quad A \otimes^{X_{1}}A = \otimes^{0}A$$

$$3 \quad 6 \quad (7) \quad x_{2} \quad 0$$

$$0 \quad 10 \quad 1 \quad 0 \quad 1$$

$$0^{9} \quad ^{3}A \otimes^{X_{1}}A = 0^{0}A$$

$$3 \quad 1 \quad x_{2} \quad 0$$

We have only one equation with two variables $x_1 + \frac{1}{3}x_2 = 0$, then $x_1 = \frac{1}{3}x_2$.

Assume
$$x_2=c_1$$
, gives us $x=\frac{@^{-\frac{1}{3}}c_1}{c_1}A=c_1$ $e^{-\frac{1}{3}}A$, where c_1 2 R. $e^{-\frac{1}{3}}A$ $e^{-\frac{1}{3}}A$

c₂ 2 R.

8 Linear transformation on vector spaces

De nition 8.1. Let V and W are vector spaces over a eld K. A linear transformation T from V into W is a mapping T: V! W such that

(i)
$$T(u + v) = T(u) + T(v)$$

(ii)
$$T(u) = T(u)$$

for all u; v 2 V and 2 K . If T: V! V then we say that T is a linear transformation on V.

Example 8.2. Show that $T: R^3 ! R^2$ de ned by $T(a_1; a_2; a_3) = (a_1 + a_2; a_2 a_3)$ is a linear transformation.

Solution:

(i) Let
$$u = (a_1; a_2; a_3); v = (b_1; b_2; b_3) 2 R^3$$
. Then $u + v = (a_1 + b_1; a_2 + b_2; a_3 + b_3)$, and

$$T(u + v) = T(a_1 + b_1; a_2 + b_2; a_3 + b_3)$$

$$= (a_1 + b_1 + a_2 + b_2; a_2 + b_2 \quad a_3 \quad b_3)$$

$$= (a_1 + a_2 + b_1 + b_2; a_2 \quad a_3 + b_2 \quad b_3)$$

$$= (a_1 + a_2; a_2 \quad a_3) + (b_1 + b_2; b_2 \quad b_3)$$

$$= T(u) + T(v)$$

(ii) Let 2 K, then $u = (a_1; a_2; a_3)$.

$$T(u) = T(a_1; a_2; a_3)$$

= $(a_1 + a_2; a_2 a_3)$
= $(a_1 + a_2; a_2 a_3)$
= $T(u)$

Then T is a linear transformation.

Example 8.3. Let $T: R^3$! R^2 is de ned by $T(a_1; a_2; a_3) = (a_1 \ 1; a_2)$. Is T a linear transformation?

Solution: Let $u = (a_1; a_2; a_3)$ and $v = (b_1; b_2; b_3) 2 R^3$. Then

$$u + v = (a_1 + b_1; a_2 + b_2; a_3 + b_3)$$
:

$$T(u + v) = T(a_1 + b_1; a_2 + b_2; a_3 + b_3)$$

= $(a_1 + b_1 + 1; a_2 + b_2)$

On the other hand,

$$T(u) + T(v) = T(a_1; a_2; a_3) + T(b_1; b_2; b_3)$$

= $(a_1 1; a_2) + (b_1 1; b_2)$
= $(a_1 + b_1 2; a_2 + b_2)$

So, $T(u + v) \in T(u) + T(v)$, and hence, T is NOT a linear transformation.

Example 8.4. Let M 2 $M_{m;m}(K)$ and N 2 $M_{n;n}(K)$. De ne

 $T:M_{m;n}(K)!$ $M_{m;n}(K)$ by T(A)=MAN for all $A 2 M_{m;n}(K)$.

Show that T is a linear transformation.

Solution: Let A; B 2 $M_{m;n}(K)$ and 2 K.

(i)

$$T(A + B) = M(A + B)N$$

= $MAN + MBN$
= $T(A) + T(B)$

(ii)
$$T(A) = M(A)N = (MAN) = T(A)$$

Then T is a linear transformation.

9 Examples

Example 9.1. Find the eigenvalues and the eigenvectors for the matrix

Solution: To nd the eigenvalues of A we have to solve det(A I) = 0.

Then $_1 = 1$; $_2 = 2$ and $_3 = 1$ are the eigenvalues for A.

Now, to not the eigenvectors for A, we have to solve the system (A I)x = 0.

When $_1 = 1$ then

$$(A \quad {}_{1}I)x = \begin{cases} 0 & 3 & 0 \\ 60 & 3 & 0 \\ 40 & 1 & 1 \\ 60 & 1 & 1 \\ 60 & 2 & 2 \\ 0 & 0 & 2$$

So, we have

$$3x_2 = 0$$

$$x_2 + x_3 = 0$$

$$2x_3 = 0$$

Then $x_2 = 0$ and $x_3 = 0$, since x_2 is anot sexists in the above equations so we can

assume that
$$x_1 = 1$$
. Hence, $x = \begin{cases} x_1 & 6^{17} \\ 6^{17} & 6^{17} \\ 6^{17} & 6^{17} \\ 6^{17} & 6^{17} \\ 6^{17} & 6^{17} \\ 6^{17} & 6^{17} \\ 6^{17} & 6^{17} \\ 6^{17} & 6^{17} \\ 7^{17} & 6^{1$

When $_2 = 2 \text{ then}$

$$(A 2) x = \begin{cases} 1 & 3 & 3 & 2 & 3 \\ 1 & 3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 3 & x_3 & 0 \end{cases}$$

So, we have

$$3x_3 = 0$$
$$x_1 \quad 3x_2 = 0$$

Then
$$x_3=0$$
 and $x_1+3x_2=0$. Let $x_1=1$ then $x_2=\frac{1}{3}$, and hence, $x=\begin{cases} 2&3\\ 6&\frac{1}{3}\\ 7&3\\ 0& \end{cases}$

When $_3 = 1 \text{ then}$

$$(A \quad 3I)x = \begin{cases} 2 & 3 & 2 & 3 & 2 & 3 \\ 2 & 3 & 0 & 2 & 1 \\ 4 & 3 & 1 & 2 & 2 \\ 0 & 3 & 1 & 2 & 2 \\ 0 & 0 & 0 & x_3 & 0 \end{cases}$$

So, we have

$$3x_2 + x_3 = 0$$

$$2 \quad 3$$

$$6 \quad \frac{1}{2} \quad \frac{7}{2} \quad \frac{7}{$$

Example 9.2. Find the eigenvalues and the eigenvectors for the matrix

 $2x_1$ $3x_2 = 0$

Then either 5 = 0 or 3 = 0. So, the eigenvalues of A are

$$_1 = 5$$
 and $_2 = 3$:

To not the eigenvectors of A, we have to solve the system (A = 1)x = 0. When $_1 = 25$ then $_3$ we have to solve the system (A = 51)x = 0.

(A 5I)
$$x = 4^0 \quad {0 \atop 2} \quad 5 \quad 4^{X_1} 5 = 0.$$

Then $2x_1$ $2x_2 = 0$. Let $x_1 = 1$ then $x_2 = 1$. Hence, x = 4 15.

When $_2 = 3$ then we have to solve the system (A 3I) x = 0.

$$(A \quad 3I)x = 4^{2} \quad {}^{0}54^{x_{1}}5 = 0.$$

$$2 \quad 0 \quad x_{2}$$

(A 3I)
$$x = 4^2 054^{X_1}5 = 0.$$

 $2 0 x_2$
 $2 3$
Then $x_1 = 0$. Let $x_2 = 1$. Hence, $x = 4^05$.

Example 9.3. Let B = f(1; 2; 1); (4; 1; 0); (3; 5; 7)g be a basis for R^3 . Find an orthonormal basis for R^3 by using Gram-Schmidt method.

Solution: $v_1 = (1; 2; 1); v_2 = (4; 1; 0); v_3 = (3; 5; 7).$

$$W_{1} = V_{1} = (1; 2; 1)$$

$$W_{2} = V_{2} \frac{W_{1}:V_{2}}{W_{1}:W_{1}} W_{1}$$

$$= (4; 1; 0) \frac{(1; 2; 1):(4; 1; 0)}{(1; 2; 1):(1; 2; 1)} (1; 2; 1)$$

$$= (4; 1; 0) \frac{4+2+0}{1+4+1} (1; 2; 1)$$

$$= (4; 1; 0) (1; 2; 1)$$

$$= (3; 1; 1)$$

$$w_3 = v_3 \quad \frac{w_1:v_3}{w_1:w_1} \ w_1 \quad \frac{w_2:v_3}{w_2:w_2} \ w_2$$

$$= (3;5;7) \quad \frac{(1;2; 1):(3;5;7)}{(1;2; 1):(1;2; 1)} \ (1;2; 1) \quad \frac{(3; 1;1):(3;5;7)}{(3; 1;1):(3; 1;1)} \ (3; 1;1)$$

$$= (3;5;7) \quad \frac{6}{6} \ (1;2; 1) \quad \frac{11}{11} (3; 1;1)$$

$$= (3;5;7) \ (1;2; 1) \ (3; 1;1)$$

$$= (1;4;7)$$

Then W = $f w_1$; w_2 ; $w_3 g = f(1; 2; 1)$; (3; 1; 1); (1; 4; 7)g is an orthogonal basis for \mathbb{R}^3 .

$$kw_1k = p \frac{1^2 + 2^2 + (1)^2}{1^2 + 2^2 + (1)^2} = p \frac{1}{6}, \quad kw_2k = p \frac{1}{3^2 + (1)^2 + 1^2} = p \frac{1}{11}$$

 $kw_3k = p \frac{1}{(1)^2 + 4^2 + 7^2} = p \frac{1}{66}$

Then $U = f \frac{w_1}{kw_1k}; \frac{w_2}{kw_2k}; \frac{w_3}{kw_3k}g = f \frac{1}{6} (1; 2; 1); \frac{1}{11} (3; 1; 1); \frac{1}{66} (1; 4; 7)g$ is an orthonormal basis for R^3 .