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Group theory 

In this lecture we give outline and it is not limited about group theory which we must 

take it in this course  

Syllabus : 

1- Group , definition and examples explain it . 

2- Some important theories on group and properties of its  . 

3- Important group , symmetric group , group of integer number modulo n (i.e. Zn) . 

4- A belian group . 

5- Cyclic group . 

6- Subgroups . 

7- Centre of group . 

References : 

1- Introduction to modern algebra by David Burton  . 

2- Group theory by M.Suzuki . 

3- A first course in abstract algebra by J.B.Fraleigh . 
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I- Definition (1.1) : Semigroup  

Let A be anon-empty set . A binary operation * is a function from the Cartesian 

product A A into A . This means that * : A A   A is a binary operation iff : 

1- a*b   A for each a,b   A  (closure condition ) . 



2 
 

2- If a,b,c,d   A such that a = c , and b = d , then a*b = c*d (well-define condition) . 

Exampes(1.2): 

1- (+, - ,   ) are binary operations on R , Z , Q , ₵ . 

2- (+ , - ) are not binary operation on odd integer number . 

3-( -) is not binary operation on N ( natural number ) . 

Homework :  

1- Let a*b = a+b+2 for each a,b    Z . Is * binary operation on Z . 

2- a  b = a
b
 , for each a,b    Z .  

3- a*b = a+b-2  , a,b    N .  

Definition(1.3): Mathematical system  

A mathematical system is a non-empty set of elements with one or more binary 

operation defined on this set .  

Examples(1.4): 

1- (R, +) , (R, -) , (R-{0}, ) . 

2- (R, +,×) , (R,  , ×) , (N,+) and ( Ze , × , +) are mathematical systems . 

3- (N,-) ,(R,  ) , (ZOdd , +,-) are not mathematical systems .  

Definition(1.5): Semigroup  

A semigroup is a non-empty set with an associative binary operation * defined on A .  

Examples(1.6): 

1- (Z, ×) , (Z,+) , (N,+),(N,×) , (Ze , +) and ( Ze , ×) are semigroups . 

2- (ZOdd , +) , (Z , -) ,(Ze , -) and (R-{0}, ) are not semigroups .  
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Definition(1.7): Group  

A group is a non-empty set with binary operation * define on its such that it is satisfy 

the following : 

1- The closure : for each a,b   G  we have a*b   G  . 

2- The associative : for each a,b,c   G  , we have (a*b)*c = a*(b*c)  

3- The identity element : there exists identity element e   G   such that for each a   G   

, we have a * e = e*a = a . 

4- The inverse : for each a   G   , there exists a
-1

   G   such that a* a
-1

 = a
-1

*a = e . 

Note: Every group is semigroup , but the converse is not true in general for example 

(N,+) is semgroup but not group because there is no inverse element belong to N .  

  Definition(1.8): commutative group (Abelian group )   

 A group is called commutative iff a *b = b*a for each a, b   G   . 

Examples(1.9):  

1- Each of (Z,+) , (Ze , +) , (R,+) , (Q,+) and (₵ , +) are commutative group . 

2- ({1,0,-1,2},+) is not group  

3- ({-1,1}, •) is a commutative group .  

Homework : 

1- Let G = {a,b,c,d} . Define * a binary operation on G as the following table shows : 

* a b c d 

a a b c d 

b b c d a 

c c d a b 
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d d a b c 

 

Is (G,*) commutative group or not . 

2- Let G = { 1,-1,i,-i} be a mathematical system with multiplication ( i.e. (G,•)) . Show 

that G is commutative group . 

3- Is (Z , *) group , such that a* b = a+b+2 for each a,b   Z . 

Definition(1.9): Symmetric group  

Let A be a non-empty set , then every (1-1) and onto map from A into itself  is called 

permutation or symmetric on A , and it is denoted by symm(A) . 

Example(1.10): 

1- (Symm(A), ∘) is group . (H.W.) .  

2- Let A ={1,2,3} be a set and S3 = { f1,f2 ,f3 ,f4 ,f5 ,f6 } . (S3 , ∘) is symmetric group  , 

where f1 = (
   
   

) , f2 = (
   
   

) , f3 = (
   
   

) , f4 = (
   
   

) 

f5 = (
   
   

) , f6 = (
   
   

) . 

Definition(1.11): Let a,b   Z , n   N , then we said that a congruent to b modulo n iff 

a-b =nk , where k   Z , and denoted by a   b or a   b(mod n) . 

Examples(1.12):  

1- Is 30   2(mod 4) . 

Sol. : 30 – 2= 28 = 4 *7 , so k =7   Z and 30   2(mod 4) 

2- Is -5   2 (mod 7) . (H.W.) 

3- Is 3  1(mod 3) . (H.W.) 
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Definition(1.13): Congruence class  

Let a   Z , then the set of all integer congruent to a modulo n is denoted by [a] , where  

[a] =  ̅ = { x   Z : x   a (mod n)} . Then [a] ( or  ̅ ) is called congruence class of a . 

Examples(1.14): 

1- If n = 3 , then find [1] , [7] . (H.W.)  

2- If n = 4 , then find [-2] . 

Sol. :  [-2] = {  x   Z : x   -2 (mod 4)} = { x   Z : x = -2 +4k , k = 0 , ± 1 , ± 2 , …} = 

{ …, -10 , -6 , -2 , 2 , 6 , 10 , …} . 

Definition(1.15) : Division algorithm  

Let a,b   Z such b ≠ 0 , then there exists r,t   Z such that a = bt+ r ,   0 ≤ r < | b |  .  

Note : 

1- The set of all congruence classes is denoted by Zn , where Zn = { [0] , [1] , … , [n-

1]}. 

2- (Zn , +n) is group . H.W.  

3- (Zn-{0} , ×n) is group if n is prime number . 

Example(1.16) :  

1- Show that (Z4 , +4) is a commutative group . 

Some properties of group : 

Theorem(1.17): If (G , *) is a group , then : 

1- The identity element of a group (G ,*) is unique . 

2- The inverse element of each element of G is unique . 
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3- e
-1

 = e . 

4- (a
-1

)
-1

 = a  , for each a   G . 

5- (a*b)
-1

 = b
-1

 * a
-1

 for each a, b   G . 

Proof : H.W. 

Theorem(1.18):Cancellation laws   

Let (G , *) be a group , then for each a,b   G : 

1- If a*b = a*c , then b = c . 

2- If b*a = c*a , then b = c . 

Proof :  

1- Let a ,b,c   G , then a
-1

   G 

a
-1

 * (a*b) = a
-1

 *(a*c) . As * is associative , so we have (a
-1

 *a)*b = (a
-1

 *a)*c . Thus,  

e *b = e *c which implies that b = c . 

Theorem(1.19): In a group (G,*) , the equations a*x = b and y *a = b have unique 

solutions .  

Proof : H.W. 

Theorem(1.20): Let (G,*) be a group . Then : 

1- (a*b)
-1

 = a
-1

* b
-1

 iff G is abelian group . 

2- If a = a
-1

 , then G is commutative group . The converse of this part is not true in 

general (find example H.W. ). 

Proof: H.W. 

Definition(1.21) : Let (G,*) is a group  . The power of a   G , is defined by :  
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1- a
k
 = a *a*…*a (k-times) . 

2- a
0
 = e . 

3- a
-k

 = (a
-1

)
k
 , k   Z+ . 

4- a
k+1

 = a
k
 * a , k   Z+ . 

Examples(1.22) : 

1- In (R , +) , we have : 

3
0
=0 , 3

2
 = 3+3 =6 , 3

-4
 = (3

-1
)

4
 = (-3)

4
 = -3+(-3)+(-3)+(-3) = -12 . 

2- In (R,•) , we have : 

2
0
 = 1 , 2

3
 = 2 *2*2 = 8 , 2

-4
 = (2

-1
)

4
 = (1/2)

4
 = 1/16 . 

Definitions(1.23) :  

1- Order of group : The order of a finite group (G,*) is the number of all its elements 

and we denoted by │G│( or O(G)) . 

2- Order of element : The order of an element a     G is the least positive integer n 

such that a
n
 = e , where e is the identity element of G . We denoted order of a by │a│( 

or O(a) ) .  

Example(1.24):  

If (G ,•) is a group , such that G = { 1,-1,i,-i }, then │G│= 4 . │a│ = 2 if a =-1 . 

Homework: 

1- Find order of the rest of the group's elements G above . 

2- Find the order  of each element of the following groups ( if exists) : 

(Z6 , +6) , (Z8 , +8) and (S3 , ∘) .  
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II- Subgroups  

Definition(2.1) : Let (G,*) be a group and A   G , A is a non-empty subset of G . 

Then (A,*) is a subgroup of (G,*) if (A,*) is itself group . 

Or: 

Let (G,*) be a group and A   G , A is a non-empty subset of G . Then (A,*) is a 

subgroup of (G,*) if : 

1- For each a,b      A , we have a*b     A . 

2- e    A , e is the identity element of G . 

3- For each a    A , there exists a
-1   A .  

Remark :Each group (G,*) has at least two subgroups ({e},*) and (G,*) , which are 

called trivial subgroups and any subgroup different from these subgroups known 

proper subgroup . 

Examples(2.2):  

1- (Ze ,+) is subgroup of the group (Z,+) . 

2- (Q,+) is not subgroup of (R,•) .  

3- A={[0] , [2] ,[4] }   Z6 , then (A, +6) is subgroup of Z6 .  

Theorem (2.3) : 

Let (G,*) be a group and A ≠   , A   G . Then , (A,*) is a subgroup of (G,*) iff a*b
-1

 

  A  for each a,b   A . 

Proof : Let (A,*) is a subgroup and a,b   A , then a,b
-1  A and so a*b

-1
   A (by 

closure property ) . Conversely , let a*b
-1

   A . As A ≠   , so there exists b   A which 

implies that b *b
-1   A . Hence , e   A . Now , since b   A and e   A , so e*b

-1  A 
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and then b
-1

   A . Finally , let a   A and b
-1

   A , so a *(b
-1

)
-1

   A which implies that 

a*b    A . Therefore , (A,*) is subgroup of (G,*) . 

Example(2.4):  

Let (Z,+)  be a group and A = {5A , a    Z} . Then A is subgroup of Z . 

Theorem(2.5): If (Ai , *) is the collection of subgroups of (G,*) , then (  Ai , *) is 

also subgroup of G . 

Proof : 

1-   Ai     , since there exists e   Ai , for each i , so e     Ai . 

2- Let x,y     Ai  , then x,y   Ai for each i . Thus x*y
-1

   Ai for each i (since each Ai 

is subgroup) . Then x*y
-1

     Ai and (   Ai , *) is subgroup of  G . 

Theorem (2.6): Let (A1,*) and (A2,*) are two subgroups of (G,*) , then (A1 A2 , *) is 

subgroup of (G,*) iff A1   A2 or A2   A1 .  

Proof: Let A1 A2 is subgroup and A1   A2 and A2   A1 . Then, there exists a   A1 

and a   A2 and b   A2 , b   A1 . This implies that a,b    A1 A2 and then a*b
-1  

A1 A2 . Thus, a*b
-1

   A1 or  a*b
-1

   A2 . Now, a,b   A1 or  a,b   A2 and this means 

that A1   A2 or A2   A1 . Conversely, let A1   A2 or A2   A1 . If A1   A2 , then 

A1 A2 = A2 . If A2   A1 , then A1 A2 = A1 . Therefore (A1 A2, *) is subgroup of G. 

Note: (A1 A2, *) is not subgroup in general unless the condition of theorem (2.5) is 

satisfy. For example: Let R
2
 = R×R , A = {(a,0)│a   R} and B = {(0,b)│a   R} . 

Then, (A,+) and (B,+) are subgroups of R×R , but A B is not subgroup , since (1,0)   

A and (0,1)   B , but (1,1)   A B .  

Definition(2.7): Let (G,*) be a group and (A,*) , (B,*) are two subgroups of G , then 

the product of A and B is the set A*B = { a*b : a   A , b   B }. 

Theorem(2.8): Let (G,*) be group and (A,*) ,(B,*) be two subgroups of G , then : 
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1- A*B      and A*B   G . 

2- If (G,*) is commutative group , then (A*B,*) is a subgroup of G . 

Proof : H.W. 

Note : A*B ≠ B*A .  

Example(2.9) : 

1- In (Z8 , +8) , let A = {[0] , [6]} and B ={[0],[4],[8]} . Then A+B 

={[0],[4],[8],[6],[2]}. 

2- Is H = { [0] , [1] , [2]} subgroup of (Z4 , +4) . 

3-  Is A = {f1 , f2 , f3} subgroup of (S3 , ∘) . 

Definition (2.10): Center of the group 

The center of the a group (G,*) which is denoted by C(G) is equal to the following  

set: { c   G : c*x = x*c ,   x   G} . 

Note : 

The set of the center of a group  is always non-empty set since there exists e   G such 

that a*e = e *a for each a   G . 

Example(2.11) :   

1- In the group (R-{0},•)  , C(R) = R (since R is commutative group with 

multiplication ) .  

2- In the group (S3 , ∘) , C(S3) = f1 where f1 is the identity element .  

Theorem(2.12): Let (G,*) be a group . Then (C(G),*) is a subgroup of (G,*) . 

Proof: C(G)      since e   C(G) . Let a,b   C(G) . 

If a   C(G) , so a*x = x*a ,   x   G . 



11 
 

If b   C(G) , so b *x=x*b ,   x   G . 

(a*b
-1

)*x = a *(b
-1

 *x)  = a * (x
-1

*b)
-1

 = a * (b*x
-1

)
-1

 (since b   C(G) )  

                 = a *(x*b
-1

) = (a*x)*b
-1

 = (x*a)* b
-1

 (since a    C(G))  

                 = x * (a*b
-1

) . 

Thus , a*b
-1

    C(G) and C(G) is subgroup of G . 

Theorem(2.13): Let (G,*) be a group . Then C(G) =G iff G is commutative group .  

Proof : H.W. 

Definition(2.14) : Cyclic group 

Let (G,*) be a group and a   G , the cyclic subgroup of G generated by a is denoted by 

(a) (or <a>) and defined as follows : { a
k
 : k   Z}  where a is called generator of (a) . 

Examples(2.15):  In (Z9 , +9) . Find the cyclic subgroup generated by [2] , [3] , [1] . 

Sol. : <[3]> = { [3]
k
 : k   Z } = { … , [3]

-2
  , [3]

-1
 , [3]

0
 , [3] ,[3]

2
 , …} = {[0],[3],[6]} 

<[2]> = { [2]
k
 : k   Z } = { … , [2]

-2
  , [2]

-1
 , [2]

0
 , [2] ,[2]

2
 , …} = {[0] , [1] , [2] , 

[3],[4],[5] , [6] , [7] , [8] } = Z9 . 

<[1]> = { [1]
k
 : k   Z } = { … , [1]

-2
  , [1]

-1
 , [1]

0
 , [1] ,[1]

2
 , …} = {[0] , [1] , [2] , 

[3],[4],[5] , [6] , [7] , [8] } = Z9 .  

 

Homework : 

1- In (Z,+) , find cyclic group generated by 1 , -1 , 2 .  

2- In (Z6,+6) , find cyclic subgroup generated by [5] , [2] . 
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Theorem(2.16) : Every cyclic group is commutative .  

Proof : H.W. 

Note : The converse of theorem(2.17) is not true in general , for example : 

G = ({e , a , b, c },*) such that a
2
 = b

2
 = c

2
 = e . Since a

2
 = a*a = e , so a = a

-1
 . 

Similarly for other element of G . Thus x = x
-1

 , for each x   G and then G is 

commutative group . But G is not cyclic since  :  

<e> = {e}   G .  

<a> ={a
k
 : k    Z }={e,a}   G . 

<b> ={b
k
 : k    Z }={b,e}   G . 

<c> ={c
k
 : k    Z }={c,e}   G . Thus G is not cyclic . 

Theorem(2.17) : In a group G  , <a> = <a
-1

> ,   a   G .  

Proof : H.W.  

Theorem (2.18) : Every subgroup of cyclic group is cyclic . 

Proof : Let (G,*) be cyclic group . Then there exists a   G such that G = <a> ={a
k
 : k  

  Z }. Let (H,*) be subgroup of G . Now , if H = G , then H is cyclic group . 

If H = {e} , then H =  <e> is cyclic . If H   G and H   {e} , then H is proper 

subgroup of G . Let x   H , so x = a
m
 , m   Z and  x

-1
   H , then x

-1
 = a

-m
 , -m   Z . 

Let m be the least positive integer such that a
m
   H . To prove H = <a

m
>  = {(a

m
)

g
 : g   

Z }. Let y   H , so y = a
s
 , s   Z . By division algorithm of s and m , we have s = mg+r 

, r = s-mg . Now, a
r
 = a

s
 *(a

m
)

-g
 , 0 ≤ r<m . Then a

r   H , but 0 ≤ r<m , so r = 0 and s = 

mg . Thus a
s
 = (a

m
)

g
   <a

m
>   which implies that  y = a

s
   <a

m
>  and H   <a

m
> …(1). 
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Let x    <a
m
> , then x = (a

m
)

g
  such that g    Z . a

m
   H , then (a

m
)

g
   H . Thus , x  H , 

then <a
m
>   H …(2) . From (1) and (2) , we have H = <a

m
> and (H,*) is cyclic 

subgroup .  

Examples (2.19): 

1- Find all subgroups of (Z14 , +14) . 

m = 1,2,7,14 . 

m = 1 = <[1]> = Z14 . 

m = 2 = <[1]
2
> = { [0] ,[2],[4] , [6],[8],[10],[12]}. 

M = 7 = <[1]
7
> = {[0],[7]} . 

M = 14 = <[1]
14

> = {[0]} .  

2- Find all subgroups of (Z7 , +7) . H.W. 

Definition(2.20) : A positive integer c is said to be greatest common divisor of two 

non-zero numbers x,y iff : 

1- c/x and c/y . 

2- If a/x and a/y , then a/c . 

Thus , g.c.d(x,y) = c .  

Examples(2.21): 

1- Find g.c.d(12,18)=6 . Since 6/12 and 6/18 . 

Also 3/12 and 3/18 which implies that 3/6  . Finally 1/12 and 1/18 which implies that 

1/6 . 

2- Find g.c.d(12,24) . H.W. 
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Note : If (G,*) is finite cyclic group of order n generated by a , then the generator of G 

is a
k
 such that g.c.d(k,n) = 1 . 

Example(2.22): Find all generators of (Z6 , +6) . 

Sol. : g.c.d(k,6)=1 , k = 1,2,3,4,5. 

g.c.d(1,6)=1 , g.c.d(2,6)≠1 , g.c.d(3,6)≠1 , g.c.d(4,6)≠1 , g.c.d(5,6)=1 . Thus , the 

generators of Z6 = {[1] , [5] } . 
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