Group theory

In this lecture we give outline and it is not limited about group theory which we must take it in this course

Syllabus :

- 1- Group, definition and examples explain it.
- 2- Some important theories on group and properties of its .
- 3- Important group , symmetric group , group of integer number modulo n (i.e. Z_n) .
- 4- A belian group.
- **5-** Cyclic group .
- 6- Subgroups .
- 7- Centre of group.

References :

- 1- Introduction to modern algebra by David Burton .
- 2- Group theory by M.Suzuki.
- 3- A first course in abstract algebra by J.B.Fraleigh.
- . نظرية الزمر تأليف د. باسل عطا و د. عادل غسان

I- Definition (1.1) : Semigroup

Let A be anon-empty set . A binary operation * is a function from the Cartesian product A×A into A. This means that $* : A \times A \rightarrow A$ is a binary operation iff :

1- $a^*b \in A$ for each $a, b \in A$ (closure condition).

2- If $a,b,c,d \in A$ such that a = c, and b = d, then $a^*b = c^*d$ (well-define condition).

Exampes(1.2):

1- (+, - , \times) are binary operations on R , Z , Q , \mathbb{C} .

2- (+, -) are not binary operation on odd integer number.

3-(-) is not binary operation on N (natural number).

Homework :

1- Let $a^*b = a+b+2$ for each $a,b \in Z$. Is * binary operation on Z.

2- $a \oplus b = a^b$, for each $a, b \in Z$.

3- a*b = a+b-2 , $a,b \in N$.

Definition(1.3): Mathematical system

A mathematical system is a non-empty set of elements with one or more binary operation defined on this set .

Examples(1.4):

1- (R, +), (R, -), $(R-\{0\}, \div)$.

2- (R, +,×), (R, \div , ×), (N,+) and (Z_e, ×, +) are mathematical systems .

3- (N,-) ,(R, \div) , (Z_{Odd} , +,-) are not mathematical systems .

Definition(1.5): **Semigroup**

A semigroup is a non-empty set with an associative binary operation * defined on A.

Examples(1.6):

1- (Z, \times), (Z,+), (N,+),(N, \times), (Z_e, +) and (Z_e, \times) are semigroups .

2- $(Z_{Odd}, +), (Z, -), (Z_e, -)$ and $(R-\{0\}, \div)$ are not semigroups.

Definition(1.7): Group

A group is a non-empty set with binary operation * define on its such that it is satisfy the following :

1- The closure : for each $a, b \in G$ we have $a^*b \in G$.

2- The associative : for each $a,b,c \in G$, we have $(a^*b)^*c = a^*(b^*c)$

3- The identity element : there exists identity element $e \in G$ such that for each $a \in G$, we have $a * e = e^*a = a$.

4- The inverse : for each $a \in G$, there exists $a^{-1} \in G$ such that $a^* a^{-1} = a^{-1}*a = e$.

Note: Every group is semigroup, but the converse is not true in general for example (N,+) is semgroup but not group because there is no inverse element belong to N.

Definition(1.8): commutative group (Abelian group)

A group is called commutative iff a *b = b*a for each a, $b \in G$.

Examples(1.9):

1- Each of (Z,+), (Z_e, +), (R,+), (Q,+) and (\mathbb{C} , +) are commutative group.

2- ({1,0,-1,2},+) is not group

3- $(\{-1,1\}, \bullet)$ is a commutative group.

Homework :

1- Let $G = \{a, b, c, d\}$. Define * a binary operation on G as the following table shows :

*	а	b	с	d
а	а	b	С	d
b	b	С	d	а
с	с	d	а	b

d	d	а	b	С

Is (G,*) commutative group or not .

2- Let $G = \{1, -1, i, -i\}$ be a mathematical system with multiplication (i.e. (G, \bullet)). Show that G is commutative group.

3- Is (Z, *) group, such that $a^* b = a+b+2$ for each $a,b \in Z$.

Definition(1.9): Symmetric group

Let A be a non-empty set, then every (1-1) and onto map from A into itself is called permutation or symmetric on A, and it is denoted by symm(A).

Example(1.10):

1- (Symm(A), •) is group . (H.W.).

2- Let A = {1,2,3} be a set and S₃ = { f₁,f₂,f₃,f₄,f₅,f₆ } . (S₃, •) is symmetric group , where f₁ = $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$, f₂ = $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$, f₃ = $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$, f₄ = $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ f₅ = $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$, f₆ = $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$.

Definition(1.11): Let $a, b \in Z$, $n \in N$, then we said that a congruent to b modulo n iff a-b = nk, where $k \in Z$, and denoted by $a \equiv b$ or $a \equiv b \pmod{n}$.

Examples(1.12):

1- Is $30 \equiv 2 \pmod{4}$.

Sol. : $30 - 2 \equiv 28 \equiv 4 * 7$, so k = 7 \in Z and $30 \equiv 2 \pmod{4}$

2- Is $-5 \equiv 2 \pmod{7}$. (**H.W.**)

3- Is $3 \equiv 1 \pmod{3}$. (**H.W.**)

Definition(1.13): Congruence class

Let $a \in Z$, then the set of all integer congruent to a modulo n is denoted by [a], where

 $[a] = \overline{a} = \{ x \in Z : x \equiv a \pmod{n} \}$. Then $[a] (\text{ or } \overline{a})$ is called congruence class of a.

Examples(1.14):

1- If n = 3, then find [1], [7]. (**H.W.**)

2- If n = 4, then find [-2].

Sol.: $[-2] = \{ x \in \mathbb{Z} : x \equiv -2 \pmod{4} \} = \{ x \in \mathbb{Z} : x = -2 + 4k, k = 0, \pm 1, \pm 2, \ldots \} = \{ x \in \mathbb{Z} : x = -2 + 4k \}$

{ ..., -10 , -6 , -2 , 2 , 6 , 10 , ...} .

Definition(1.15) : **Division algorithm**

Let $a, b \in Z$ such $b \neq 0$, then there exists $r, t \in Z$ such that a = bt+r, $0 \leq r < |b|$.

Note :

1- The set of all congruence classes is denoted by Z_n , where $Z_n = \{ [0], [1], \dots, [n-1] \}$.

2- $(Z_n, +_n)$ is group . **H.W.**

3- $(Z_n - \{0\}, \times_n)$ is group if n is prime number.

Example(1.16) :

1- Show that $(Z_4, +_4)$ is a commutative group.

Some properties of group :

Theorem(1.17): If (G, *) is a group, then :

1- The identity element of a group (G,*) is unique.

2- The inverse element of each element of G is unique.

3-
$$e^{-1} = e$$
.

4- $(a^{-1})^{-1} = a$, for each $a \in G$.

5- $(a*b)^{-1} = b^{-1} * a^{-1}$ for each $a, b \in G$.

Proof : H.W.

Theorem(1.18):Cancellation laws

Let (G, *) be a group, then for each $a, b \in G$:

1- If $a^*b = a^*c$, then b = c.

2- If $b^*a = c^*a$, then b = c.

Proof:

1- Let a ,b,c \in G , then a⁻¹ \in G

 $a^{-1} * (a^{*}b) = a^{-1} * (a^{*}c)$. As * is associative, so we have $(a^{-1} * a)^{*}b = (a^{-1} * a)^{*}c$. Thus,

e *b = e *c which implies that b = c.

Theorem(1.19): In a group (G,*), the equations a*x = b and y *a = b have unique solutions.

Proof : H.W.

Theorem(1.20): Let (G, *) be a group . Then :

1- $(a^*b)^{-1} = a^{-1}*b^{-1}$ iff G is abelian group.

2- If $a = a^{-1}$, then G is commutative group. The converse of this part is not true in general (find example H.W.).

Proof: H.W.

Definition(1.21): Let (G, *) is a group. The power of $a \in G$, is defined by :

1- $a^{k} = a *a*...*a$ (k-times). 2- $a^{0} = e$. 3- $a^{-k} = (a^{-1})^{k}$, $k \in Z_{+}$. 4- $a^{k+1} = a^{k} * a$, $k \in Z_{+}$.

Examples(1.22) :

1- In (R, +), we have : $3^{0}=0$, $3^{2}=3+3=6$, $3^{-4}=(3^{-1})^{4}=(-3)^{4}=-3+(-3)+(-3)+(-3)=-12$. 2- In (R,•), we have : $2^{0}=1$, $2^{3}=2$ *2*2 = 8, $2^{-4}=(2^{-1})^{4}=(1/2)^{4}=1/16$.

Definitions(1.23) :

1- Order of group : The order of a finite group (G,*) is the number of all its elements and we denoted by |G| (or O(G)).

2- Order of element : The order of an element $a \in G$ is the least positive integer n such that $a^n = e$, where e is the identity element of G. We denoted order of a by |a|(or O(a)).

Example(1.24):

If (G,•) is a group, such that $G = \{1,-1,i,-i\}$, then |G| = 4. |a| = 2 if a = -1.

Homework:

1- Find order of the rest of the group's elements G above .

2- Find the order of each element of the following groups (if exists):

 $(Z_6\,,\,+_6)$, $(Z_8\,,\,+_8)$ and $(S_3\,,\,\circ)$.

II- Subgroups

Definition(2.1) : Let (G,*) be a group and $A \subseteq G$, A is a non-empty subset of G. Then (A,*) is a subgroup of (G,*) if (A,*) is itself group.

Or:

Let (G,*) be a group and $A \subseteq G$, A is a non-empty subset of G. Then (A,*) is a subgroup of (G,*) if :

1- For each a, $b \in A$, we have $a^*b \in A$.

2- $e \in A$, e is the identity element of G.

3- For each $a \in A$, there exists $a^{-1} \in A$.

Remark :Each group (G,*) has at least two subgroups $(\{e\},*)$ and (G,*), which are called trivial subgroups and any subgroup different from these subgroups known proper subgroup.

Examples(2.2):

1- $(Z_e, +)$ is subgroup of the group (Z, +).

2- (Q,+) is not subgroup of (R,\bullet) .

3- A={[0], [2], [4]} $\subseteq Z_6$, then (A, +₆) is subgroup of Z_6 .

Theorem (2.3) :

Let (G,*) be a group and $A \neq \phi$, $A \subseteq G$. Then, (A,*) is a subgroup of (G,*) iff $a^*b^{-1} \in A$ for each $a, b \in A$.

Proof: Let (A,*) is a subgroup and $a,b \in A$, then $a,b^{-1} \in A$ and so $a^*b^{-1} \in A$ (by closure property). Conversely, let $a^*b^{-1} \in A$. As $A \neq \phi$, so there exists $b \in A$ which implies that $b^{*b^{-1}} \in A$. Hence, $e \in A$. Now, since $b \in A$ and $e \in A$, so $e^*b^{-1} \in A$

and then $b^{-1} \in A$. Finally, let $a \in A$ and $b^{-1} \in A$, so $a^{*}(b^{-1})^{-1} \in A$ which implies that $a^{*}b \in A$. Therefore, $(A,^{*})$ is subgroup of $(G,^{*})$.

Example(2.4):

Let (Z,+) be a group and $A = \{5A, a \in Z\}$. Then A is subgroup of Z.

Theorem(2.5): If $(A_i, *)$ is the collection of subgroups of (G, *), then $(\bigcap A_i, *)$ is also subgroup of G.

Proof:

1- $\bigcap A_i \neq \phi$, since there exists $e \in A_i$, for each i, so $e \in \bigcap A_i$.

2- Let $x, y \in \bigcap A_i$, then $x, y \in A_i$ for each i. Thus $x^*y^{-1} \in A_i$ for each i (since each A_i is subgroup). Then $x^*y^{-1} \in \bigcap A_i$ and $(\bigcap A_i, *)$ is subgroup of G.

Theorem (2.6): Let $(A_1, *)$ and $(A_2, *)$ are two subgroups of (G, *), then $(A_1 \cup A_2, *)$ is subgroup of (G, *) iff $A_1 \subseteq A_2$ or $A_2 \subseteq A_1$.

Proof: Let $A_1 \cup A_2$ is subgroup and $A_1 \not\subseteq A_2$ and $A_2 \not\subseteq A_1$. Then, there exists $a \in A_1$ and $a \notin A_2$ and $b \in A_2$, $b \notin A_1$. This implies that $a,b \in A_1 \cup A_2$ and then $a^*b^{-1} \in A_1 \cup A_2$. Thus, $a^*b^{-1} \in A_1$ or $a^*b^{-1} \in A_2$. Now, $a,b \in A_1$ or $a,b \in A_2$ and this means that $A_1 \subseteq A_2$ or $A_2 \subseteq A_1$. Conversely, let $A_1 \subseteq A_2$ or $A_2 \subseteq A_1$. If $A_1 \subseteq A_2$, then $A_1 \cup A_2 = A_2$. If $A_2 \subseteq A_1$, then $A_1 \cup A_2 = A_1$. Therefore $(A_1 \cup A_2, *)$ is subgroup of G.

Note: $(A_1 \cup A_2, *)$ is not subgroup in general unless the condition of theorem (2.5) is satisfy. For example: Let $R^2 = R \times R$, $A = \{(a,0) \mid a \in R\}$ and $B = \{(0,b) \mid a \in R\}$. Then, (A,+) and (B,+) are subgroups of $R \times R$, but AUB is not subgroup, since $(1,0) \in A$ and $(0,1) \in B$, but $(1,1) \notin A \cup B$.

Definition(2.7): Let (G,*) be a group and (A,*), (B,*) are two subgroups of G, then the product of A and B is the set $A*B = \{ a*b : a \in A, b \in B \}$.

Theorem(2.8): Let (G,*) be group and (A,*), (B,*) be two subgroups of G, then :

1- $A^*B \neq \phi$ and $A^*B \subseteq G$.

2- If (G,*) is commutative group, then (A*B,*) is a subgroup of G.

Proof : H.W.

Note : $A^*B \neq B^*A$.

Example(2.9) :

1. In $(Z_8, +_8)$, let A = {[0], [6]} and B = {[0], [4], [8]}. Then A+B = {[0], [4], [8], [6], [2]}.

2- Is $H = \{ [0], [1], [2] \}$ subgroup of $(Z_4, +_4)$.

3- Is $A = \{f_1, f_2, f_3\}$ subgroup of (S_3, \circ) .

Definition (2.10): Center of the group

The center of the a group (G,*) which is denoted by C(G) is equal to the following set: { $c \in G : c^*x = x^*c$, $\forall x \in G$ }.

Note :

The set of the center of a group is always non-empty set since there exists $e \in G$ such that $a^*e = e^*a$ for each $a \in G$.

Example(2.11) :

1- In the group $(R-\{0\}, \bullet)$, C(R) = R (since R is commutative group with multiplication).

2- In the group (S_3, \circ) , $C(S_3) = f_1$ where f_1 is the identity element.

Theorem(2.12): Let (G,*) be a group. Then (C(G),*) is a subgroup of (G,*).

Proof: $C(G) \neq \phi$ since $e \in C(G)$. Let $a, b \in C(G)$.

If $a \in C(G)$, so $a^*x = x^*a$, $\forall x \in G$.

If
$$b \in C(G)$$
, so $b *x=x*b$, $\forall x \in G$.
 $(a*b^{-1})*x = a *(b^{-1}*x) = a * (x^{-1}*b)^{-1} = a * (b*x^{-1})^{-1}$ (since $b \in C(G)$)
 $= a *(x*b^{-1}) = (a*x)*b^{-1} = (x*a)*b^{-1}$ (since $a \in C(G)$)
 $= x * (a*b^{-1})$.

Thus, $a^*b^{-1} \in C(G)$ and C(G) is subgroup of G.

Theorem(2.13): Let (G, *) be a group. Then C(G) = G iff G is commutative group.

Proof : H.W.

Definition(2.14) : Cyclic group

Let (G,*) be a group and $a \in G$, the cyclic subgroup of G generated by a is denoted by (a) (or <a>) and defined as follows : { $a^k : k \in Z$ } where a is called generator of (a).

Examples(2.15): In $(\mathbb{Z}_9, +_9)$. Find the cyclic subgroup generated by [2], [3], [1].

Sol. : $\langle [3] \rangle = \{ [3]^k : k \in Z \} = \{ \dots, [3]^{-2}, [3]^{-1}, [3]^0, [3], [3]^2, \dots \} = \{ [0], [3], [6] \}$ $\langle [2] \rangle = \{ [2]^k : k \in Z \} = \{ \dots, [2]^{-2}, [2]^{-1}, [2]^0, [2], [2]^2, \dots \} = \{ [0], [1], [2], [3], [4], [5], [6], [7], [8] \} = Z_9 .$

 $<[1]> = \{ [1]^k : k \in Z \} = \{ \dots, [1]^{-2}, [1]^{-1}, [1]^0, [1], [1]^2, \dots \} = \{ [0], [1], [2], [3], [4], [5], [6], [7], [8] \} = Z_9 .$

Homework :

1- In (Z,+), find cyclic group generated by 1, -1, 2.

2- In $(\mathbb{Z}_6,+_6)$, find cyclic subgroup generated by [5], [2].

Theorem(2.16): Every cyclic group is commutative .

Proof : H.W.

Note: The converse of theorem(2.17) is not true in general, for example:

 $G = (\{e, a, b, c\}, *)$ such that $a^2 = b^2 = c^2 = e$. Since $a^2 = a^*a = e$, so $a = a^{-1}$. Similarly for other element of G. Thus $x = x^{-1}$, for each $x \in G$ and then G is commutative group. But G is not cyclic since :

 $\langle e \rangle = \{e\} \neq G$.

 $<a>=\{a^k:k \in Z \}=\{e,a\} \neq G$.

 $=\{b^k: k \in Z \}=\{b,e\} \neq G.$

 $\langle c \rangle = \{c^k : k \in \mathbb{Z}\} = \{c,e\} \neq G$. Thus G is not cyclic.

Theorem(2.17) : In a group G , $\langle a \rangle = \langle a^{-1} \rangle$, $\forall a \in G$.

Proof : H.W.

Theorem (2.18) : Every subgroup of cyclic group is cyclic .

Proof : Let (G,*) be cyclic group . Then there exists $a \in G$ such that $G = \langle a \rangle = \{a^k : k \in Z\}$. Let (H,*) be subgroup of G. Now , if H = G , then H is cyclic group .

If $H = \{e\}$, then $H = \langle e \rangle$ is cyclic. If $H \neq G$ and $H \neq \{e\}$, then H is proper subgroup of G. Let $x \in H$, so $x = a^m$, $m \in Z$ and $x^{-1} \in H$, then $x^{-1} = a^{-m}$, $-m \in Z$.

Let m be the least positive integer such that $a^m \in H$. To prove $H = \langle a^m \rangle = \{(a^m)^g : g \in Z \}$. Let $y \in H$, so $y = a^s$, $s \in Z$. By division algorithm of s and m, we have s = mg + r, r = s - mg. Now, $a^r = a^s * (a^m)^{-g}$, $0 \le r < m$. Then $a^r \in H$, but $0 \le r < m$, so r = 0 and s = mg. Thus $a^s = (a^m)^g \in \langle a^m \rangle$ which implies that $y = a^s \in \langle a^m \rangle$ and $H \subseteq \langle a^m \rangle \dots (1)$. Let $x \in \langle a^m \rangle$, then $x = (a^m)^g$ such that $g \in Z \cdot a^m \in H$, then $(a^m)^g \in H$. Thus, $x \in H$, then $\langle a^m \rangle \subseteq H \dots (2)$. From (1) and (2), we have $H = \langle a^m \rangle$ and (H,*) is cyclic subgroup.

Examples (2.19):

1- Find all subgroups of $(Z_{14}, +_{14})$.

$$\begin{split} &m=1,2,7,14 \ . \\ &m=1=<\!\![1]\!\!>=Z_{14} \ . \\ &m=2=<\!\![1]^2\!\!>=\{\ [0]\ ,\![2]\!,\![4]\ ,\ [6]\!,\![8]\!,\![10]\!,\![12]\} . \\ &M=7=<\!\![1]^7\!\!>=\{[0]\!,\![7]\} \ . \\ &M=14=<\!\![1]^{14}\!\!>=\{[0]\} \ . \end{split}$$

2- Find all subgroups of $(\mathbb{Z}_7, +_7)$. **H.W.**

Definition(2.20) : A positive integer c is said to be greatest common divisor of two non-zero numbers x,y iff :

$$1- c/x$$
 and c/y .

2- If a/x and a/y, then a/c.

Thus, g.c.d(x,y) = c.

Examples(2.21):

1- Find g.c.d(12,18)=6. Since 6/12 and 6/18.

Also 3/12 and 3/18 which implies that 3/6. Finally 1/12 and 1/18 which implies that 1/6.

2- Find g.c.d(12,24) . **H.W.**

Note : If (G,*) is finite cyclic group of order n generated by a , then the generator of G is a^k such that g.c.d(k,n) = 1.

Example(2.22): Find all generators of $(Z_6, +_6)$.

Sol. : g.c.d(k,6)=1 , k = 1,2,3,4,5.

g.c.d(1,6)=1 , g.c.d(2,6) $\neq 1$, g.c.d(3,6) $\neq 1$, g.c.d(4,6) $\neq 1$, g.c.d(5,6)=1 . Thus , the generators of Z_6 = {[1], [5] } .