
1. Natural Number

A natural number is a number that occurs commonly and obviously in nature.

Definition 1.1. The natural numbers, denoted as N, is the set of the positive
whole numbers. We denote it as follows:

N = {0, 1, 2, ...}

A possible second definition for N, that addresses the above criticism, is the
following:

N = |We can write x as the sum 1 + 1 + ... + 1, for some number of1′s.}

.

Example 1.1. Is 5 ∈ N? Since 5 = 1 + 1 + 1 + 1 + 1 then, 5 ∈ N .

Theorem 1.1. For all natural numbers m,n, and p we have

1. m + n ∈ N (closure +).

2. (m + n) + p = m + (n + p) (commutativity +).

3. m + n = n + m (associativity +).

4. n + 0 = 0 (identity +).

5. nm ∈ N (closure .).

6. (mn)p = m(np) (commutativity .).

7. mn = nm (associativity .).

8. m1 = m (identity .).

Example 1.2. Let n,m and b be natural numbers. Then

(mn)b = (mb)n.

Sol: Based on Theorem 1.1

(mn)b = m(nb)

then,
m(nb) = m(bn)

and,
m(bn) = (mb)n.

Then,
(mn)b = (mb)n.
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Remark 1.1. Each n ∈ N has a successor n + 1. For example, the successor
of 5 is 6.

Proposition 1.1. The set N satisfies the following properties:

N1 0 ∈ N ;

N2 if n ∈ N , then its successor n + 1 ∈ N;

N3 0 is not the successor of any element in N ;

N4 if n and m have the same successor, then n = m;

N5 suppose S is a subset of N satisfying: 1 ∈ N and if n ∈ S then n + 1 ∈ S,
then S = N.

Definition 1.2. Natural number is either the value zero or the successor of
some other natural numbers.

Theorem 1.2. Let m and n be natural numbers. There exactly one of the
following three statement is true:

1. m > n

2. n > m

3. m = n

1.1. Some result on Natural number (counting numbers)

1. Sum of all first n natural numbers is

1 + 2 + · · ·+ n =
n(n + 1)

2
.

2. Sum of square of all first n natural numbers is

12 + 22 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
.

3. Sum of all cube of all first n natural numbers is

13 + 23 + · · ·+ n3 =
n2(n + 1)2

4
.

4. Sum of first n odd natural numbers is

1 + 3 + 7 + · · · = n2.

5. Sum of first n even natural numbers is

2 + 4 + 6 + · · · = n(n + 1).
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2. Mathematical Induction

2.1. The Principle of Mathematical Induction

Suppose we have some statement P(n) and we want to demonstrate that P(n) is
true for all n ∈ N . Even if we can provide proofs for

P(1), P(2), · · ·P(k)

where kis some large number, we have accomplished very little. However, there
is a general method, the Principle of Mathematical Induction.
Induction is a defining difference between discrete and continuous mathematics.
Principle of Induction. In order to show that ∀n, P(n), holds, it suffices to
establish the following two properties:

1. Base case: Show that P(n) holds.

2. Induction step: Assume that P(n) holds, and show that P(n+1) also holds.

2.2. Induction Examples

Example 2.1. By using mathematical induction prove

3n − 1

a multiple of 2, ∀n ∈ N .

1. Step one: for n = 1
31 − 1 = 3− 1 = 2

Since 2 is multiple of 2 then, 31 − 1 is true

2. Assume it is true for n = k
3k − 1

is true.
Now, prove that 3k+1 − 1 is multiple of 2

3k+1 − 1 = 3k3− 1 = 3k(2 + 1)− 1 = 23k + (3k − 1)

Example 2.2. Prove for n ≥ 1

1× 1! + 2× 2! + 3× 3! + · · ·+ n× n

!= (n+1)!-1

Step one: for n = 1 The left hand side is 1 × 1! = 1. The right hand side is
2!− 1 + 1. They are equal.
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Assume it is true for n = k

1× 1! + 2× 2! + 3× 3! + · · ·+ k × k! = (k + 1)!− 1

is true.
Now, prove that for n = k + 1

1× 1! + · · ·+ k × k! + (k + 1)× (k + 1)! = (k + 1)!− 1 + (k + 1)× (k + 1)!
= [(k + 1)! + (k + 1)× (k + 1)!]− 1
= (k + 1)![1 + (k + 1)]− 1
= (k + 1)![k + 2]− 1
= (k + 2)!− 1

3. Integer number

For several reasons, it is convenient to extend the set N of natural numbers to
the group Z of integers by throwing in the identity element 0 and an inverse
n for each natural number n. One reason for doing this is to ensure that the
difference m n of any two integers is meaningful. Thus Z is a set on which
all three operations +, , and × are defined. (The notation Z comes from the
German “Zahlen”, meaning “numbers”.)

Definition 3.1. An integer numbers is a whole number that can be positive,
negative, or zero. The set of integers, denoted Z, is formally defined as follows:

...,−2,−1, 0, 1, 2, ...

Theorem 3.1. Let a ∈ Z then,

1. a + 0 = a

2. a− 0 = a

3. a.0 = 0.a = 0

4.
a

0
is not defined.

5. a + a = 2a

6. a− a = 0

7. a× a = a2

8.
a

a
= 1 (except for a = 0, which is not defined, see rule 4)

9. a + (−a) = 0
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10. a− (−a) = 2a

11. a× (−a) = −a2

12.
a

−a
= −1 (except for a = 0, which is not defined, see rule 4)

Definition 3.2. Let a, b ∈ Z,

1. a < b if b− a ∈ Z.

2. a 6 b if a− b ∈ Z.

Theorem 3.2. Let a, b, c ∈ Z then,

1. If a < b and b < c then, a < c.

2. If a < b c > 0 then, ac < bc.

Example 3.1. By using the integers number’s properties prove if a < b and
b < c then, ac < bc.

Corollary 3.1. Let a and b be an integer numbers then,

1. if a + c = b + c → a = b

2. (−a)b = −(ab)

3. (−a)(−b) = ab

4. if a.b = a.c and c 6= 0 → a = b

Proof. 1.
a + c = b + c

a + c− c = b + c− c

Based on Theorem 3.1(6)
a + 0 = b + 0

Based on Theorem 3.1(1)
a = b

2. Based on Theorem 3.1(3)
a.0 = 0

Based on Theorem 3.1(6)
0.a = 0

Based on Theorem 3.1(9)

(b + (−b))a = −(ab) + (ab)

ba + (−b)a = (ab)− (ab)

Based on Corollary 3.1(1) then,

(−b)a = −(ab).
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3. Based on Corollary 3.1(2) then,

(−a)(−b) = −(−ab) = − · −(ab) = ab

4. if a.b = a.c and c 6= 0 → a = b

5. a · b = 0 → either a = 0 or b = 0

Theorem 3.3. Let a and b be an integer numbers then,

1. if a 6 b → −b 6 −a

2. if a 6 b c 6 0 → bc 6 ac

3. 0 6 a and 0 6 b → 0 6 ab

4. 0 6 a2
∨
a.

Proof. 1. Based on Corollary 3.1(1)

a +−b 6 b +−b.

Based on Theorem 3.1(6)
a +−b 6 0.

−a + a +−b 6 −a + 0.

−b 6 −a.

2. Based on Theorem 3.3(1) 0 6 −c and based on Corollary 3.1(1) then,

a · (−c) 6 b · (−c)

−(ac) 6 −(bc)

Based on Theorem 3.1(1)
−a 6 −b

3. Homework.

4. Homework.
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3.1. Well-ordering

In mathematics, the well-ordering principle states that every non-empty set of
positive integers contains a least element. In other words, the set of positive
integers is well-ordered.

1. Every nonempty subset S of the positive integers has a least element.

2. The set of positive integers does not contain any infinite strictly decreasing
sequences.

Theorem 3.4. There are no positive integers strictly between 0 and 1.

Proof. Let S be the set of integers x such that 0 < x < 1 Suppose S is nonempty;
let n be its smallest element. Multiplying both sides of n < 1 by n gives n2 < n
The square of a positive integer is a positive integer, so n2 is an integer such
that 0 < n < n2 < 1. This is a contradiction of the minimality of n. Hence S
is empty.

Theorem 3.5. 1 is the least positive integer.

Proof. Let A = {x ≥ 1|x ∈ Z+}. We proceed by induction on n ∈ Z+.
Base Case: For n = 1, we have 1 ≥ 1, which works.
Induction Hypothesis: Assume that the claim is true for n = k, where k is a
positive integer. That is, assume that k ≥ 1.
It remains to prove the claim true for n = k + 1. Since k ∈ Z+, we know by
the definition of the positive integers that k + 1 ∈ Z+. Recall that k + 1 > k.
But by the induction hypothesis, we know that k ≥ 1. Hence, k + 1 ≥ 1, so the
claim is true for n = k + 1. This completes the induction.

Elementary Divisibility Properties

Definition 3.3. d | n means there is an integer k such that n = dk. d - n
means that d | n is false.

Note that a | b 6= a/b. Recall that a/b represents the fraction a
b .

The expression d | n may be read in any of the following ways:

1. d divides n.

2. d is a divisor of n.

3. d is a factor of n.

4. n is a multiple of d.

Thus, the following five statements are equivalent, that is, they are all dif-
ferent ways of saying the same thing.

1. 2 | 6.
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2. 2 divides 6.

3. 2 is a divisor of 6.

4. 2 is a factor of 6.

5. 6 is a multiple of 2.

Theorem 3.6. Division algorithm Given integers m,n with n > 0 then,
there exist positive integers q, r such that (m = qn + rwith0 6 r < n)

Example 3.2. Find the q and r of the Division Algorithm for the following
values of a and b:

1. Let b = 3 and a = 0, 1,−1, 10,−10.

2. Let b = 345 and a = 0,−1, 1, 344, 7863,−7863.

Example 3.3. Find the q and r of the Division Algorithm for the following
values of a and b:

1. Let b = 3 and a = 0, 1,−1, 10,−10.

2. Let b = 345 and a = 0,−1, 1, 344, 7863,−7863.

Example 3.4. Find the q and r of the Division Algorithm for the following
values of a and b:

1. Let b = 3 and a = 0, 1,−1, 10,−10.

2. Let b = 345 and a = 0,−1, 1, 344, 7863,−7863.

Example 3.5. Use the Division Algorithm to prove that every odd integer is
either of the form 4k + 1 or of the form 4k + 3 for some integerk.
Let n ∈ Z be odd. By the division algorithm, there exists unique q and r in Z
such that n = 4q + r and 0 6 r < 4. Clearly 4q is even, and thus 0 6= r 6= 2
(otherwise n = 4q or n = 4q + 2, both of which are even). Thus we conclude
that n = 4k + 1 or n = 4k + 3 as required.

Theorem 3.7. Let a, b, c be positive integers then,

1. if a|b and b|c then, a|c.

2. if d|m and d|n, then d|(m + n).

Proof. 1. Since a|b and b|c then, there are q1, q2 such that b = q1a and
c = q2b. It follows that c = q1q2a. So, a|c.

2. Let m = ad and n = bd, then (m + n) = (a + b)d.

Definition 3.4. Let a, b ∈. If a 6= 0 or b 6= 0, we define (a, b) to be the largest
integer d such that d | a and d | b. We define (0, 0) = 0.
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In order not to have to avoid the special case a = b = 0, we also define (0,0)
as the number 0. By above definition, if at least one of the numbers a and b is
nonzero, then

d = (a, b)⇐⇒ d|a ∧ d|b ∧ (x|a ∧ x|b⇒ x 6 d).

Example 3.6. Example 1 The number 102 has the positive divisors 1, 2, 3, 6,
17, 34, 51, 102, and the number 170 has the positive divisors 1, 2, 5, 10, 17,
34, 85, and 170. The common positive divisors are 1, 2, 17, and 34. Hence
(102,170) = 34. To determine the greatest common divisor by finding all com-
mon divisors is obviously not a feasible method if the given numbers are large.

Theorem 3.8. If (a, b) = 1 and a|bc, then a|c.

Definition 3.5. An integer n is even if n = 2k for some k, and is odd if
n = 2k + 1 for some k.

Definition 3.6. For b > 0 define a mod b = r where r is the remainder given by
the Division Algorithm when a is divided by b, that is, a = bq+r and 0 ≤ r < b.

For example 23 mod 7 = 2 since 23 = 7 · 3 + 2 and −4 mod 5 = 1 since
−4 = 5 · (−1) + 1.

Example 3.7. Calculate the following:

1. 0 mod 10

2. 123 mod 10

3. 10 mod 123

4. 457 mod 33

5. (−7) mod 3

6. (−3) mod 7

7. (−5) mod 5

4. Prime numbers

Definition 4.1. An integer > 1 is called a prime number or a prime if it has
only trivial divisors. An integer > 1 which is not a prime is called composite.
In simple language
prime numbers are all those numbers which are only divisible by it self and 1.
Thus

∀p > 1 is a prime number if and only if 1 > x > p→ x - p
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A prime number is a whole number greater than 1 whose only factors are 1
and itself. A factor is a whole numbers that can be divided evenly into another
number. The first few prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23 and 29.
Numbers that have more than two factors are called composite numbers. The
number 1 is neither prime nor composite.

• 1 is neither a prime nor a composite number.

• 2 is the only even number which is prime.

utf8 One is neither a prime nor a composite number. A prime number is one
with exactly two positive divisors, itself and one. One has only one positive
divisor. It cannot be written as a product of two factors, neither of which is
itself, so one is also not composite. It falls in a class of numbers called units.
These are the numbers whose reciprocals are also whole numbers. Zero is not
a prime or a composite number either. Zero has an infinite number of divisors
(any nonzero whole number divides zero). It cannot be written as a product of
two factors, neither of which is itself, so zero is also not composite. It falls
in a class of numbers called zero-divisors. These are numbers such that, when
multiplied by some nonzero
number, the product is zero.

Theorem 4.1. Let p be a prime number. If p|bc, then p|b or p|c.

Proof. Assume that p|bc but p - b. Since p has only trivial divisors, it follows
that (p, b) = 1. Hence p|c by Theorem 3.8.

Among the numbers 1 to 6, the numbers 2, 3, and 5 are the prime numbers,
while 1, 4, and 6 are not prime. 1 is excluded as a prime number, for reasons
explained below. 2 is a prime number, since the only natural numbers dividing it
are 1 and 2. Next, 3 is prime, too: 1 and 3 do divide 3 without remainder, but
3 divided by 2 gives remainder 1. Thus, 3 is prime. However, 4 is composite,
since 2 is another number (in addition to 1 and 4) dividing 4 without remainder:
4 = 2 · 2. 5 is again prime: none of the numbers 2, 3, or 4 divide 5. Next, 6
is divisible by 2 or 3, since 6 = 2 · 3. Hence, 6 is not prime.
Yet another way to say the same is: a number n ¿ 1 is prime if it cannot be
written as a product of two integers a and b, both of which are larger than 1:

n = a · b.

The smallest 168 prime numbers (all the prime numbers under 1000) are: 2, 3,
5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167,
173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257,
263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353,
359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449,
457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563,
569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653,
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659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761,
769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877,
881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991,
997

Lemma 4.1. Any natural number n > 1 is divisible by some prime number.

Proof. If n is a prime number, then it is divisible by itself. If not, then it is a
composite number and is a product q1p1 of two numbers different from n and
1. They are smaller than n. If p1 is prime, then we are done: we found a
prime divisor p1 of n. If not, then p1 is a composite number, and there exist
natural numbers q2 and p2 such that p1 = q2p2 (and hence n = q1q2p2) and
1 < q2 < p1, 1 < p2 < p1. Acting in this way, we get eventually either a prime
divisor pk of n, or a sequence of factorizations

n = q1p1 = q1q2p2 = q1q2q3p3 = · · ·

. in which
n > p1 > p2 > p3 > · · · > 1.

A decreasing sequence of natural numbers cannot be infinite. The length is not
greater than n2. Thus we get a prime divisor of n.

Lemma 4.2. p · q+ 1 is not divisible by p for any natural numbers p and q with
p > 1.

Proof. Assume the opposite, then pq + 1 = pr for some natural r. Then

p(rq) = 1.

Since p > 1 and rq is a natural number,

p(rq) > 1.

Contradiction.

Theorem 4.2. The set of prime numbers is infinite.

Proof. Assume the opposite. Let p1, p2, · · · , pn be the list of all prime numbers.
Consider N = p1p2 · · · pn + 1. By Lemma 4.1, N is divisible by some prime
number. By Lemma 4.2, N is not divisible by any of p1, · · · , pn. By assumption,
any prime number is one of p1, · · · , pn. Contradiction.

5. Unique Factorization

Our goal in this chapter is to prove the following fundamental theorem.
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Theorem 5.1 (The Fundamental Theorem of Arithmetic). Every integer n > 1
can be written uniquely in the form

n = p1p2 · · · ps,

where s is a positive integer and p1, p2, . . . , ps are primes satisfying

p1 ≤ p2 ≤ · · · ≤ ps.

Remark 5.1. If n = p1p2 · · · ps where each pi is prime, we call this the prime
factorization of n. Theorem ?? is sometimes stated as follows:

Every integer n > 1 can be expressed as a product n = p1p2 · · · ps, for
some positive integer s, where each pi is prime and this factorization
is unique except for the order of the primes pi.

Note for example that

600 = 2 · 2 · 2 · 3 · 5 · 5
= 2 · 3 · 2 · 5 · 2 · 5
= 3 · 5 · 2 · 2 · 2 · 5

etc.

Perhaps the nicest way to write the prime factorization of 600 is

600 = 23 · 3 · 52.

In general it is clear that n > 1 can be written uniquely in the form n=pa1
1 pa2

2 · · · pas
s , some s ≥

1, wherep1 < p2 < · · · < ps and ai ≥ 1 for all i. Sometimes (∗) is written

n =

s∏
i=1

pai
i .

Here stands for product, just as stands for sum.

To prove Theorem ?? we need to first establish a few lemmas.

Lemma 5.1. If a | bc and gcd(a, b) = 1 then a | c.

Proof. Since gcd(a, b) = 1 by Bezout’s Lemma there are s, t such that

1 = as + bt.

If we multiply both sides by c we get

c = cas + cbt = a(cs) + (bc)t.

By assumption a | bc. Clearly a | a(cs) so, by Theorem ??, a divides the linear
combination a(cs) + (bc)t = c.
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Definition 5.1. We say that a and b are relatively prime if gcd(a, b) = 1.

So we may restate Lemma ?? as follows: If a | bc and a is relatively prime
to b then a | c.

Example 5.1. It is not true generally that when a | bc then a | b or a | c. For
example, 6 | 4 · 9, but 6 - 4 and 6 - 9. Note that Lemma ?? doesn’t apply here
since gcd(6, 4) 6= 1 and gcd(6, 9) 6= 1.
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