1. Natural numbers (ℕ):

1, 2, 3, 4, 5,...

2. Integer numbers (\mathbb{Z}):

0, ±1, ±2, ±3, ±4, ±5,...

3. Rational numbers (Q):

 $r = \frac{m}{n}$, where $m \in \mathbb{Z}, n \in \mathbb{N}$

4. Irrational Numbers (\mathbb{R}/\mathbb{Q}) :

These are numbers that cannot be expressed as a ratio of integers.

5. Real Numbers (\mathbb{R}): The set of all real numbers is denoted by \mathbb{R} .

$$\mathbb{R} = \{x: -\infty < x < \infty\}$$

The real numbers can be represented by points on a line which is called a **coordinate line**, or a **real number line**, or simply a **real line**:

Properties of Real Numbers

	-		-	-					-			-					-				
2	D	\mathbf{n}	D	Ξ.	21	112		10	۱E	•		Δ.		M		M			1.5	14	
		9		-			-	() ·		1.	-		-	Α.	•	90		4.5	1.4		

Property	Example	Description					
Commutative Properties							
a+b=b+a	7 + 3 = 3 + 7	When we add two numbers, order doesn't matter.					
ab = ba	$3 \cdot 5 = 5 \cdot 3$	When we multiply two numbers, order doesn't matter.					
Associative Properties							
(a + b) + c = a + (b + c)	(2+4) + 7 = 2 + (4+7)	When we add three numbers, it doesn't matter which two we add first.					
(ab)c = a(bc)	$(3\cdot 7)\cdot 5=3\cdot (7\cdot 5)$	When we multiply three numbers, it doesn't matter which two we multiply first.					
Distributive Property							
a(b+c) = ab + ac	$2 \cdot (3+5) = 2 \cdot 3 + 2 \cdot 5$	When we multiply a number by a sum of two numbers,					
(b+c)a = ab + ac	$(3+5)\cdot 2 = 2\cdot 3 + 2\cdot 5$	we get the same result as multiplying the number by each of the terms and then adding the results.					

Addition and Subtraction

The number 0 is special for addition; it is called the additive identity because

a + 0 = a

for any real number *a*. Every real number *a* has a **negative**, -a, that satisfies

$$a + (-a) = 0$$

Subtraction is the operation that undoes addition; to subtract a number from another, we simply add the negative of that number. By definition

$$a - b = a + (-b)$$

To combine real numbers involving negatives, we use the following properties.

Properties of Zero

Let a and b be real numbers, variables, or algebraic expressions.

- **1.** a + 0 = a and a 0 = a **2.** $a \cdot 0 = 0$ **3.** $\frac{0}{a} = 0$, $a \neq 0$ **4.** $\frac{a}{0}$ is undefined.
- 5. Zero-Factor Property: If ab = 0, then a = 0 or b = 0.

PROPERTIES OF NEGATIVES

Property	Example
1. $(-1)a = -a$	(-1)5 = -5
2. $-(-a) = a$	-(-5) = 5
3. $(-a)b = a(-b) = -(ab)$	$(-5)7 = 5(-7) = -(5 \cdot 7)$
4. $(-a)(-b) = ab$	$(-4)(-3) = 4 \cdot 3$
5. $-(a+b) = -a-b$	-(3+5) = -3-5
6. $-(a-b) = b - a$	-(5-8) = 8-5

Multiplication and Division

PROPERTIES OF FRACTIONS						
Property	Example	Description				
1. $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$	$\frac{2}{3} \cdot \frac{5}{7} = \frac{2 \cdot 5}{3 \cdot 7} = \frac{10}{21}$	When multiplying fractions , multiply numerators and denominators.				
2. $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}$	$\frac{2}{3} \div \frac{5}{7} = \frac{2}{3} \cdot \frac{7}{5} = \frac{14}{15}$	When dividing fractions , invert the divisor and multiply.				
$a. \ \frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$	$\frac{2}{5} + \frac{7}{5} = \frac{2+7}{5} = \frac{9}{5}$	When adding fractions with the same denominator , add the numerators.				
$4. \ \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$	$\frac{2}{5} + \frac{3}{7} = \frac{2 \cdot 7 + 3 \cdot 5}{35} = \frac{29}{35}$	When adding fractions with different denomina- tors , find a common denominator. Then add the numerators.				
5. $\frac{ac}{bc} = \frac{a}{b}$	$\frac{2\cdot 5}{3\cdot 5} = \frac{2}{3}$	Cancel numbers that are common factors in the numerator and denominator.				
6. If $\frac{a}{b} = \frac{c}{d}$, then $ad = bc$	$\frac{2}{3} = \frac{6}{9}$, so $2 \cdot 9 = 3 \cdot 6$	Cross multiply.				

Other properties of Real Numbers

Let x,y, and z be real numbers, then:

- 1. Precisely one of x < y or x = y or x > y holds (Trichotomy Law).
- 2. If x < y and y < z, then x < z (Transitive Law).
- 3. If x < y then x+z < y+z (Addition Law for Order).
- 4. If x < y and z > 0, then xz < yz (Multiplication Law for Order).

If x < y and z < 0, then xz > yz

5. If x>y then –x<-y

6- If x>y then $\frac{1}{x} < \frac{1}{y}$

Sets and Intervals

A set is a collection of objects, and these objects are called the elements of the set.

If S is a set, the notation $a \in S$ means that a is an element of S

Some sets can be described by listing their elements within braces. For instance, the set A that consists of all positive integers less than 7 can be written as

$$A = \{1, 2, 3, 4, 5, 6\}$$

We could also write A in set-builder notation as

 $A = \{x \mid x \text{ is an integer and } 0 < x < 7\}$

which is read "A is the set of all x such that x is an integer and 0 < x < 7. Certain sets of real numbers, called **intervals**, occur frequently in calculus and correspond geometrically to line segments.

If a < b, then the **open interval** from a to b consists of all numbers between a and b and is denoted by the symbol (a,b). $(a,b) = \{x: a < x < b\}$

The **closed interval** from *a* to *b* includes the endpoints and is denoted [*a*,*b*]. Using set-builder notation, we can write

 $[a, b] = \{x : a \le x \le b\}$

The half open from the left or half closed from the right (a,b] $(a,b] = \{x: a < x \le b\}$ The half open from the right or half closed from the left [a,b), $[a,b) = \{X: a \le x < b\}$ The following table lists the possible types of intervals.

Notation	Set description	Graph
(a, b)	$\{x \mid a < x < b\}$	$a \qquad b$
[a, b]	$\{x \mid a \le x \le b\}$	$a \qquad b$
[a, b)	$\{x \mid a \le x < b\}$	$a \qquad b$
(a, b]	$\{x \mid a < x \le b\}$	$a \qquad b$
(a,∞)	$\{x \mid a < x\}$	
$[a,\infty)$	$\{x \mid a \le x\}$	
$(-\infty, b)$	$\{x \mid x < b\}$	$ \xrightarrow{h} b $
$(-\infty, b]$	$\{x \mid x \le b\}$	$ \xrightarrow{b} $
$(-\infty,\infty)$	\mathbb{R} (set of all real numbers)	

EXAMPLE: Express each interval in terms of inequalities, and then graph the interval:

Inequalities: Find the set of all the following inequalities:

$$Example(1): \frac{7}{x} > 2, x \neq 0$$
, $x \in \mathbb{R}$

The first case : if x>0

$$7 > 2x \Rightarrow \frac{7}{2} > x \Rightarrow x < \frac{7}{2}$$

The solution of the first case is $(0, \frac{7}{2})$

The second case : if x<0

$$\frac{7}{x} > 2 \quad \Rightarrow 7 < 2x \ \Rightarrow \ \frac{7}{2} < x$$

The solution of the second case is = \emptyset

```
Example(2): (x+3)(x+4)>0
```

Sol:

```
1<sup>st</sup> case: (x+3)>0 ∧ (x+4)>0

x>-3 ∧ x>-4

sol. Set 1<sup>st</sup> case =(-3,∞)

2<sup>st</sup> case: (x+3)<0 ∧ (x+4)<0

X<-3 ∧ x<-4

sol. Set 2<sup>st</sup> case =(-∞,-4)

sol. set=(-3,∞) U (-∞,-4)=R/[-4,-3]

H.W: Find the sets of the following inequalities:

1- 2+3x<5x+8

2- 4<3x-2≤ 10

3- \frac{x}{x-3} < 4, x \neq 3, x \in R

4- \frac{x-1}{x^2+x-6} < 0
```

Absolute Value and Distance

The **absolute value** of a number a, denoted by |a|, is the distance from a to 0 on the real

number line.

Distance is always positive or zero, so we have $|a| \ge 0$ for every number a. Remembering that $-_a$ is positive when $_a$ is negative, we have the following definition.

DEFINITION OF ABSOLUTE VALUE

If *a* is a real number, then the **absolute value** of *a* is

$$|a| = \begin{cases} a & \text{if } a \ge 0\\ -a & \text{if } a < 0 \end{cases}$$

EXAMPLES:

(a) |3| = 3 (b) |-3| = -(-3) = 3 (c) |0| = 0 (d) $|3 - \pi| = -(3 - \pi) = \pi - 3$

Properties of absolute value 1 - |x| < a if f - a < x < a

 $2 - |x| \le a \quad iff - a \le x \le a$ $3 - |x| \ge a \quad iff \quad x \ge a \quad or \quad x < -a$ $4 - |x| \ge a \quad iff \quad x \ge a \quad or \quad x \le -a$

PROPERTIES OF ABSOLUTE VALUE

Property	Example	Description
1. $ a \ge 0$	$ -3 =3\geq 0$	The absolute value of a number is always positive or zero.
2. $ a = -a $	5 = -5	A number and its negative have the same absolute value.
3. $ ab = a b $	$ -2 \cdot 5 = -2 5 $	The absolute value of a product is the product of the absolute values.
$4. \left \frac{a}{b} \right = \frac{ a }{ b }$	$\left \frac{12}{-3}\right = \frac{ 12 }{ -3 }$	The absolute value of a quotient is the quotient of the absolute values.

DISTANCE BETWEEN POINTS ON THE REAL LINE

If *a* and *b* are real numbers, then the **distance** between the points *a* and *b* on the real line is

d(a,b) = |b - a|

Ex: Find the set of all the following inequality:

$$|7 - 4x| \ge 1$$

Sol: $7 - 4x \ge 1$
 $x \le \frac{3}{2}$
Or
 $7 - 4x \le -1$
 $x \ge 2$
Sol. Set:= $(\infty, \frac{3}{2}] \cup [2, \infty) = \mathbb{R}/(\frac{3}{2}, 2)$

H.W: Find the set of each of the following inequalities:

$$1 - |x - 4| < 5$$

$$2 - |2x - 5| = 7$$

$$3 - |x - 2| = |3x + 4|$$

$$4 - |2x - 5| > 3$$

$$5 - \left|\frac{3x + 8}{2x - 3}\right| \le 4$$

$$6 - |x^2 + 2x - 24| > 0$$

Note: Let a be a real number, |a| can also be defined as follows:

$$|a| = \sqrt{(a)^2}$$

Theorem: Let a and b be real numbers then:

$$\begin{aligned} 1 - |a| &= |-a| \\ 2 - |a, b| &= |a| \cdot |b| \\ 3 - \left|\frac{a}{b}\right| &= \left|\frac{|a|}{|b|}\right| , b \neq 0 \\ 4 - |a + b| &\leq |a| + |b| \\ 5 - |a - b| &\leq |a| + |b| \\ 6 - |a - b| &\geq |a| - |b| \\ 7 - |a + b| &\geq |a| - |b| \\ \text{Proof:} \\ 1 - |a| &= \sqrt{(a)^2} &= \sqrt{(-a)^2} &= |-a| \\ 2 - |a, b| &= \sqrt{(ab)^2} &= \sqrt{a^2 b^2} &= \sqrt{a^2} \cdot \sqrt{b^2} &= |a||b| \\ 3 - \left|\frac{a}{b}\right| &= \sqrt{(ab)^2} &= \sqrt{\frac{a^2}{b^2}} &= \frac{\sqrt{a^2}}{\sqrt{b^2}} &= \frac{|a|}{|b|} \\ 4 - |a + b| &= \sqrt{(a + b)^2} &= \sqrt{a^2 + 2ab + b^2} \\ &\leq \sqrt{a^2 + 2\sqrt{a^2} \cdot \sqrt{b^2} + b^2} \\ &= \sqrt{(\sqrt{a^2} + \sqrt{b^2})^2} &= \sqrt{a^2} + \sqrt{b^2} &= |a| + |b| \\ 5 - |a - b| &\leq |a| + |b| \\ |a - b| &= |a + (-b)| \leq |a| + |-b| &= |a| + |b| \\ 6 - |a - b| &\geq |a| - |b| \\ &= |a + b - b| \leq |a - b| + |b| \rightarrow |a - b| \geq |a| - |b| \\ 7 - |a + b| &\geq |a| - |b| \end{aligned}$$

$$|a| = |a + b - b| \le |a + b| + |-b| \to |a + b| \ge |a| - |b|$$