1 Vector space

Definition 1.1. A vector space V over a field K is a set V with two operations
called addition 4+ and multiplication - such that the following axioms are satisfied:
(1) (i) u+veV forall u,v € V. (Addition is closed)
(ii) u+v=v+u forall u,v € V. (Addition is commutative)
(i) u+ (v+w) = (u+v)+w for all u,v,w € V. (Addition is associative)

(iv) There exists an element 0 € V, called the zero vector, such that

u+0=0+u=u forallucV.

(v) For all u € V there exists an element —u € V', called the additive

inverse of u, such that u + (—u) =0 = —u + u.

(2) (i) a-ueV foralueVandae K.
(i) a-(u+v)=a-u+a-v foralu,v e Vand a € K.
(i) (a+08) - u=a-u+F-u. foralueVand o,f€ K.
(iv) (af) - u=a-(f-u) foralueV and o, € K.

(v) For all u € V there exists an element 1 € K | called the multiplicative

identity of u, such that 1 -u=u-1=u.

Example 1.2. Let C be the set of complex numbers. Define addition in C by
(a+bi)+ (c+di)=(a+c)+ (b+d)i for all a,b,c,d € R, (1)
and define scalar multiplication by

a-(a+bi) =aa+ abi for all scalars a € R, and for all a,b € R.  (2)
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Show that (C, +,-) is a vector space over R.
Solution : Let u =a+bi, v =c+di, w=e+ fi € C, where a,b,c,d,e, f € R,

we have

(1)
(i) The addition is closed :

u+v=(a+bi)+ (c+ di)

=(a+c)+ (b+d)i by (1).

Since (a + ¢) and (b + d) are real numbers then u + v € C.

(ii) The addition is commutative:

u+v=(a+bi)+ (c+ di)
=(a+c)+(b+d)i by (1),
=(c+a)+ (d+b)i  because addition on R is commutative,
(c+ di) + (a + bi) by (1),

=v+u

(iii) The addition is associative: we have to prove that u+ (v+w) = (u+v)+w
for all u,v,w € C.

The left hand side (L.H.S):

u+ (v+w) =u+[(c+di) + (e + fi)]
=(a+bi)+[(c+e)+ (d+ f)i] by (1),
=la+(c+e)]+[b+(d+f)]i by (),

=[(a+c)+e+[(b+d)+ fli  because addition on R is associative.



The right hand side (R.H.S):

(u+v)+w=[(a+bi)+ (c+di)] +w
=[(a+c)+ (b+d)i] + (e + fi) by (1),
=[(a+c)+e]+[(b+d)+ f)]i by (1).

Then L.H.S=R.H.S
(iv) The additive identity : For all u = a + bi € C, we have

(@+bi)+(04+0i) =(a+0)+ (b+0)i by (1),

=a+bi because 0 is the additive identity in R.

Then the additive identity of C is (0 + 03).

(v) The additive inverse : For all u = a + bi € C, we have

(a+bi) + ( —a+ (—b)i) = (a + (—a)) + (b + (—b))i by (1),

=0+0: because (—a) is the additive inverse of a in R.

Then the additive inverse of a +bi € C is —a+ (—b)i.
(2) Let u=a+bi,v =c+di € Cand o € R.
(i) We have to prove that o - u € C.

a-u=a-(a+b)

= aa + abi

Since aa,ab € R, then o - u € C.

(ii) We have to prove that a- (u+v) =a-u+a-v forall u,v € C and a € R.



The left hand side (L.H.S) :

a-(utv)=a-|[(a+bi)+ (c+ di)]
=a-[(a+c)+ (b+d)i] by (1)
=ala+c)+alb+d)i by (2)

= (aa + ac) + (ab+ ad)i because multiplication distributes over addition in R.

The right hand side (R.H.S) :

= (a + abi) + (ac + adi) by (2),

= (aa + ac) + (ab + ad)i by (1),

Then L.H.S=R.H.S
(iii) We have to prove that (o +5)-u=«a-u+f-u forallu € C and o, 5 € R.
The L.H.S :

(a+p) -u=(a+ ) (a+bi)
= (a+p)a+ (a+ B)bi by (2),

= (aa + fBa) + (ab+ Sb)i because multiplication distributes over addition in R.

The R.H.S :

a-u+pf-u=a-(a+bi)+p-(a+ bi)
= (aa + abi) + (Ba + pbi) by (2),
= (aa + pa) + (ab + pb)i by (1).



Then L.H.S=R.H.S
(iv) We have to prove that (a 8) -u=a - (5-u) forallu € C and a, 8 € R.
The L.H.S :

(@B) - u = (af) - (a + bi)
= (aB)a+(ab)bi by (2),

= afa+ afbi because multiplication is associative in R.

The R.H.S :

a-(f-u)=a-[3-(a+bi)
—a-[Ba+Bbi] by (2),
=afa+apbi by (2).

Then L.H.S=R.H.S

(v) The multiplicative identity : we have to show that 1-u = u for all
u=a+ bi € C. (Note that, 1 represents scalar from the field R and NOT from
the set C).

l-u=1-(a+ b)
= la+ 1b: by (2),

=a+bi

We have proved that all axioms hold in C. Hence, (C,+,-) is a vector space

over R.



a
Example 1.3. Let My, »(R) = {(
c d

. . . ap az bi by
two matrices with entries in R. For A = < ),B = (
a3 Qg b3 b4
a € R, addition and scalar multiplication of matrices defined by

ar a b1 b a1 +by ay+b
A+B:<1 2)+ 1 2>: 1 1 2 2)
as Qq b3 b4 as + bg a4 + b4

a-A:a-(al (12):(04@1 04&2>'

as ay aaz aay
Prove that (Maya, +,+) is a vector space over R.

by b
Solution: Let A = (Z; Zi),B = (b; bi),C’ = (: Z) € Moys.
(1)

(i)

by b +b + b
A+B:<a1 a2)+ 1 02 a1 1 A2 2

)-( ) we

as Qq bg b4 as + bg ay + b4

b
) | a,b,c,d € R} be the set of all two by

) € M2><2 and

Since aq, as, as, aq, by, bo, bz, by are real numbers, then a,+b1, as+by, as+bs, as+by €

R. Hence, A+ B € My s(R).



(ii)) We have to show that A+ B = B+ A for all A, B € Myys.

A+B:<&1 a2>+ by bz)

as Qq by by
B (@1 + by az+ by
B as+bs aq+ by
B by + a1 bs+ as
B <b3 + a3 bs+aq
OBt wo
by by as Qa4

—B+A

(iii) We have to show that A+ (B+C) = (A+ B)+ C for all A, B,C € Msys.
The L.H.S:

= ([0 50

a3 a4 by by C3 C4

a; Qs bi+c by+c
= + by (3),
(G3 ay <b3 +c3 ba+ C4>
(al + (bl + Cl) a9 + (bg + CQ)) b (3)
= y )

as + (bg + 63) a4 + (b4 + 64)

B ((al +b1)+c (ag+b2) +co

> because addition on R is associative.
(ag + bg) + c3 (a4 + b4) + 4



The R.H.S:

R (G R | R G

as ay bs by C3 ¢4
_ <a1 +b1 az+ b2> N (Cl 02> by (3).
as +bs as+ by 3 ¢4
(a1 + bl) + C1 (az + b2) + Co

= by (3).
(CL3 + bg) + C3 (CL4 + b4> “+ ¢y

Then L.H.S= R.H.S

a a
(iv) For all A = < ! 2) € Msyo, we have
a3 aq

S R B

as Qg4 a3 a4

0

0
) is the additive identity.
0 0

Then the zero matrix <

a a —a; —a
(v) For all A = ( ! 2) € Msya, we have (—A) = ( ! 2) € Moyo,

as Qg4 —az —aq
where
— — 0 0
area=(" (0 )= )

Then the matrix (—A) is the additive inverse for the matrix A.
(2)
(i) We have to show that o+ A € Mayo(R) for all A € Myys and a € R.

a a aa;p aa
Q.A:a.<1 2):( ! 2) by (4).
as ay aaz aay

Since «, aq, as, az, ay are real numbers then aaq, aas, aas, aay € R.



Hence, o - A € Msyo(R).

(ii) We have to show that a- (A+ B) =a-A+a-B forall A, B € My, and
a e R.

The L.H.S:

s [ (0

as aq bg b4
ay +by az+ by
=a- by (3),
<a3 + b5 as + b4>
B (@(al +b1) alay + b2)> by (4)

Oé(CLg + bg) a(a4 + b4)

because multiplication distributes over addition in R.

<aa1 +ab; aas + aby

aas + abs  aay + aby

The R.H.S:

a-A+a-B:a-<al az)—i—a-(bl bQ)

as ay b3 b4
_ <aa1 aa2> N ab; ab2> by (4)
aas  oay abs aby ’
B <aa1 + ab; «aag + ab2> by (3)

aas + abs  aaq + aby

Then L.H.S= R.H.S
(iii) We have to show that (o« + ) - A=a-A+ - A for all A € My and
a, B eR.



The L.H.S:

(+8)-A=(+p) (")

(e (s

az a4

by (4),

(a+ Blag (a+ fag

-

The R.H.S:

aay + fay  aas + Pas

because multiplication distributes over addition in R.

aas + faz  aay + Bay

oz-A—i—B-A:oz-(al a2>+6'<a1 a2>

Then L.H.S =R.H.S

a3 Qa4 az Qa4

aa,  aas Bar Bay
- + by (4),
<aa3 06@4) Bas ﬁa4> v
_ (aa1 + Ba; «as + ﬁa2> by (3)

aas + faz  aay + Pay

(iv) We have to show that (af)-A = «a-(5-A) foralll A € Myys and o, 5 € R.

The L.H.S:

(@p)-A=(ap)- (" )

a3 Qaq
= (e
(aBas (af)as |
- (Oé(ﬁal) a(ﬁa2)> because multiplication on R is associative.
a(Baz) o(Bas)
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The R.H.S:

Then L.H.S= R.H.S
(v) For all A € Msys, we have 1 € R such that

a; a la; 1la
LA:L(I ﬁ: ! ﬁ:A.
a3 Qaq 1&3 1&4

Then 1 € R is the multiplicative identity .

Example 1.4. Let V = {x € R | z > 0}. For 2,y € V and a € R, we define

addition and scalar multiplication as following

Ty = 1y,

a®r =z
Show that (V, @, ®) is a vector space over R.

a
Example 1.5. Istheset V = { | a,b > 0} with the usual addition and scalar
b

multiplication of matrices define a vector space over R 7

a a —2a
Solution: Let a = —2 € R, then « =-2 = ¢ V.
b b —2b

Since a,b > 0 then —2a, —2b < 0.
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Proposition 1.6. Let V' be a vector space over K | then we have
(1) The additive identity, 0 € V', is unique.
(2) The additive inverse, (—u) € V, for u € V' is unique.
(3) For allu €V we have 0 -u = 0.
(4) For allu € V we have (—1) - u = —u.
(5) For all u,v,w €V, if u+v=u+w then v = w.
(6) For allu,v € V, the equation u+x = v has a unique solution t = v—u € V.

(7) For allu €V, we have —(—u) = u.
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2 Subspace

In this section we suppose that (V) +,-) is a vector space over K .

Definition 2.1. A non-empty subset U of V' is called a subspace of V' if (U, +,-)

is a vector space over K .

Proposition 2.2. A non-empty subset U of a vector space V' over K is a subspace

of V if and only if the following conditions are satisfied:
(1) 0eU.
(2) For all u,v € U, we have u+v € U.
(3) For allu € U and o € K , we have a-u € U.

Remark 2.3. Every vector space V' has two subspaces namely V' and {0}, which
are called trivial subspaces. Any other subspace of V is called a proper subspace

of V.

Example 2.4. Show that which of these sets are subspace of R?
(1) U={(z,9,0) | 7,y € R}.

(2) U=A{(z,y,1) | z,y € R}.

Proposition 2.5. If Wi and Wy are subspaces of V', then W1 N Wy is a subspace
of V.

Proof. We have to satisfy the three conditions in Proposition 2.2.
(1) Since W; and W, are subspaces of V', then 0 € W; and 0 € W5,
Hence,

0eW,nNWs.
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(2) Let u,v € Wy N Wy, then u,v € Wi and u,v € Ws.
Since W7 and W5 are subspaces of V, then u +v € Wy and u +v € Wh.
Hence,

u—+ve W, NWs.

(3) Let « € K and uw € Wi N Wy, then uw € Wy and u € W.
Since W7 and W5 are subspaces of V then a-u € W7 and o - u € Wh.
Hence,

a-u e WinNWws.
O

Example 2.6. Show that if W} and W, are subspaces of a vector space V', then
W1 U W,y is NOT a subspace of V.

To prove this, we have W; = {(a,0) | a € R} and Wy = {(0,0) | b € R} are
both subspaces of R%. But W;UW, is not a subspace of R? because (1,0) € W,UW,
and (0,1) € Wy, U Wy while (1,0) + (0,1) = (1,1) ¢ Wy U Wha.

Proposition 2.7. Let Wi, Ws,--- W, are subspaces of a vector space V' over a
field K | then we have

(1) WinWyn---NW, is a subspace of V.

)Wy +Wo+ -+ W, ={w+we+ - 4+w, |w; € W;,i =1,2,---n} is a
subspace of V.

Proof. O]
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3 Linear Combinations and Span

Definition 3.1. Let v, vs, -+ ,v, be vectors in a vector space V over K . A

linear combination of these vectors is any expression of the form
Q1U1 + QoUg + -+ - + Uy,

for some scalars aq, a9, -+ ,a, € K .

Example 3.2. Consider the vector space R?. The vector v = (=7, —13) is a linear

combination of v; = (=2, 1) and vy = (1,5), where
v =201 + (=3)vs.

Example 3.3. Consider the vector space R?. The vector v = (1, —3) is a linear

combination of v; = (0,1) , vo = (2, —1), v3 = (1, —2) and vy = (0, 3) where
1
v = (—2)7}1 + (0)@2 + 1U3 + (5)7)4.

Sometimes we cannot write a vector v in a vector space V as a linear combi-

nation of vy, v, -+ ,v, € V, as explained in this example.

Example 3.4. Let v; = (2,5,3),v2 = (1,1,1), and v = (4,2,0). Because there
exist no scalars aq,as € K such that v = a1v1 + asvy then v is not a linear

combination of v; and ws.

Definition 3.5. Let V' be a vector space over K, and let S = {vy,va,--+ ,v,} be
a subset of V. We say that S spans V', or S generates V, if every vector v in V
can be written as a linear combination of vectors in S. That is, for all v € V', we
have

V= QU1 + QoUy + -+ + U,
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for some scalars aq, a9, -+ ,a, € K.

Example 3.6. Show that the set S = {(1,0), (0,1)} spans the vector space R? =
{(a,b) | a,b € R}.

Solution: We have to show that for all v = (a,b) € R? there exists aj,ay € R
such that v = a;(1,0) + a2(0, 1).

(a,b) = a1(1,0) + a(0,1)
= (a1,0) 4+ (0, a2)

= (a1, az)

Then a; = a and s = b. So, any vector v = (a,b) € R? can be written in the

form (a,b) = a(1,0) + b(0,1). Thus S spans R

10 0 0
Example 3.7. Let S = {vl = ,Ug = }, and
0 0 01

V:{U |a,b,c,d€]R}

(1) Does S spans V 7
(2)

(3) Find a set that spans V.

Define a vector space U such that S spans U.

Solution: (1) If S spans V' then for all v € V| there exists ay, ay € R such that

a b 1 0 0 0
= 1 —|—062
c d 0 0 01
] 0 (6)
aq
0 (6%)
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So, a; = a and oy = d. But if b or ¢ is non-zero then v cannot be written as a

linear combination of the vectors in S. Hence, S not spans V.

(2) From (1), we can see that if U = { | a,b € R} then S spans U.

0 b

Sl o] o] Joof oo
(3) The set that spans V' is { : ) ) }

0 0 0 0 10 01
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Example 3.8. Show that the set S = {(0,1,1),(1,0,1),(1,1,0)} spans R* and
write the vector (2,4,8) as a linear combination of vectors in S.

Solution:

A vector in R3 has the form v = (x,v, 2).

Hence we need to show that, for some scalars ay, as, a3 € R, every such v can

be written as

(xvwa) = a1<07 17 1) + 042(1705 1) + @3(1, 170)

= (g + a3, 1 + ag, 1 + )

This give us system of equations

T = Q+ Qg
y=0a1+as

Z=qQ1+ Qs

This system of equations can be written in matrix form

01 1] |y T
1 0 1] |ao| = |y
1 1 0f |as z

We can write it as Aa = b. Since det(A) = 2 then this system has a solution.

Now, to write (2,4,8) as a linear combination of vectors in S, we find that

05 05 0.5
Alt=105 —05 05
05 05 —05
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Then

a=A"1D
o —-0.5 0.5 0.5 2
as| =105 =05 051" |4
Qs 0.5 05 —-0.5 8

So, a1 = 5,0 = 3,a3 = —1, and

(2,4,8) = 5(0,1,1) +3(1,0,1) + (=1)(1,1,0).

4 Linear independence

Definition 4.1. Let V' be a vector space over a field K. A subset {vy,vq,- -+, v,}
in V is linearly dependent over K if there exists scalars ay, g, -+ ,a, € K | (not
all zero), such that

a1V + aovs + - - + v, = 0.

Definition 4.2. Let V' be a vector space over a field K. A subset {vy,vq, -+ ,v,}
in V is linearly independent over K if ajv; + agvg + -+ 4+ v, = 0 then oy =

g =--=aq,=0

Example 4.3. Show that the set {(1,0,1),(1,-1,1),(2,-1,2),(0,0,1)}
is linearly dependent over R .
Solution: We have to show that there exists aq, as, a3, ay € R not all zero such
that
a1(1,0,1) + as(1,—=1,1) + a3(2,—1,2) + 4(0,0,1) = (0,0,0)
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We have the following system of equations

O{1+O[2+2043:O
—042—043:0

a1+ ag+ 203+ a4 =0

Put the first equation in the last equation, we get ay = 0.
From the second equation, we have ap = —a3 . Let apy = 1 then a3 = —1 and

ay = 1. Hence, (1,0,1) + (1, —1,1) 4+ (=1)(2, —1,2) + (0)(0,0,1) = (0,0,0).

Example 4.4. Show that the set {(1,0,1),(0,0,1)} is linearly independent over
R.

Solution:

a1(1,0,1) + a2(0,0,1) = (0,0,0)
(ala Oa (1/1) + (Oa 07 aQ) = (07 Oa 0)

(ozl, 0, oy + Oéz) = (0, O, 0)

So, a1 = 0, a; + as = 0 then ap = 0. Then it is linearly independent over R.

Example 4.5. Show that the set S = {i,i+ 1} is linearly dependent over C, but
it is linearly independent over R.
Solution: Since (—1+1)i+ (1)(1 +4) =0, so, S is linearly dependent over C.
Let a(i)+ (1 +14) =0, where a, f € R
Then

ai+ B+ Gi =0+ 0i

B+ (a+p)i=0+0:
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So, =0, a4+ =0 and then o = 0. Hence, S is linearly independent over R.

Theorem 4.6. .[fA = (aij) € Mnxn(K ), and Cj = {alj,agj,--- ,anj} s ] =
1,2,--- ,n are the n columns of A then {Cy,Cs,--- ,C,} is linearly dependent
over K if and only if detA = 0.

Corollary 4.7. The n rows of a matrix A € M,x,( K ) are linearly dependent
over K if and only if detA = 0.

5 Basis and dimension

Definition 5.1. Let V' be a vector space over K . A subset S = {vy,vq,- -+ ,v,}

is called a basis for V if

(i) V isspanned by S, that is, for every v € V there exists scalars oy, ag, - -+ , oy, €

K such that v = ayvy + vy + - - - + @, V,.
(ii) The set S is linearly independent over K .

Example 5.2. Show that the set S = {(1,0,0), (0,1,0),(0,0,1)} is a basis for the
vector space R3.
Solution: (i) we have to show that S spans R3. That is, f or all v = (z,y,2) €

R3, we have to find scalars o, o, a3 € R? such that v = aqv; + aeve + asvs

(l'a Y, Z) = (1/1(1, 07 O) + 042(07 17 O) + 013(07 07 1)

(x,y,2) = (a1, ag, )

So, (z,y,2) = x(1,0,0) + 5(0,1,0) + 2(0,0,1) and, hence, R? is generated by S.
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1 00
(ii) To show that S is linearly independent, Let A= {0 1 0

0 01
Since det(A) # 0 then S is linearly independent.

Finally, we get S is a basis for R3.

Example 5.3. Let e; = (1,0,0,---,0),e5 = (0,1,0,0,--- ,0),--- ,e, = (0,0,--- . 1).
Then B = {ej,eq, -+ ,e,} is a basis for R”. This basis called the standard basis
for R™.

Theorem 5.4. Let V' be a vector space over a field K, and S = {vy,vg, -+ ,v,} be
a basis of V' containing n vectors. Then any subset containing more than n vectors

m Vs linearly dependent.

Definition 5.5. Let V' be a vector space with a basis S = {vy,vg,-++ ,v,} hasn

vectors. Then, we say n is the dimension of V' and we write dim (V') = n.

Theorem 5.6. Any vector space V' has a basis. All bases for V are of the same

dimension.
Example 5.7. The following vector spaces over R have dimensions :
(1) dim(R™) =n.
(2) dim R = 1.
(3) dim C = 2.
(4) dim M, ,(R) = n?

Theorem 5.8. Let V' be a vector space such that dim(V') =n. Let S = {vy,va,- -+ ,v,}
be a subset of V.. Then we have

(1) If S spans V', then S is also linearly independent hence a basis for V.
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(2) If S is linearly independent, then S also spans V' hence is a basis for V.

Example 5.9. Show that S is not a basis for R® where S = {(6,4, 1), (3,—5,1),(8,13,6),(0,6,9)}.
Solution: Since dim(R?) = 3 , then any basis for R* must have 3 vectors, while

here S has four.

10 11
Example 5.10. Show that S = , , , is a basis

for M272 (R)
Solution: Since S has four vectors and dim(Ms5(R) = 4 then, by Theorem 5.8,

we have to show that either S spans V or S is linearly independent.

6 Dot and cross products

Definition 6.1. Let v = (ay,a9,--- ,a,) be a vector in a vector space V. The

length (or norm or magnitude) of v is

loll = \/a + a3 +--- +a,

Example 6.2. Suppose that the vector v = (2, —1,4, 1), then the length of v is

v]] = /22 + (—1)2 + 42+ 12 = V22.

Definition 6.3. Let u = (ay,as,- -+ ,a,) and v = (by, by, --- ,b,) are vectors in a

vector space V. The dot product of u and v is defined by

u-v = arby + asby + - - -+ a,yb,
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Definition 6.4. The angle 6 between two vectors u and v is determined by the
formula

u-v=||ul|||v] cos®

Example 6.5. Let u = (1,3,0) and v = (—2,1,5). The dot product of u and v is

u-v=1(-2)+3(1)+0(5) =1,

and the angle between them is

cosh= U — !
[ullllv]l - v/10 v/30
So,
0 = cos™* !

(5730

Some properties of the dot product : Let u,v and w are vectors in a vector

space V over K . The dot product has the following properties:

I

/‘\

w)=u-v+u-w

1)
)
) u
4) (« ) v=u-(aw) =a(u-v), wherea € K.
)
)
)

Definition 6.6. Let u and v are vectors in a vector space V. If

u-v=>0
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then we say that u and v are orthogonal.

Definition 6.7. A subset S = {vy,v9,--+ ,v,} of a vector space V form an or-
thogonal set if all vectors in S are orthogonal to each other, v; - v; = 0 for @ # j.
In addition, if all vectors in an orthogonal set S has length one, ||v;|| = 1, then S

is called an orthonormal set.
Theorem 6.8. Any orthogonal set is linearly independent .

Gram-Schmidt process : If B = {vy,v,, -+ ,v,} is a basis for a vector space V.
Then we can define an orthogonal basis W = {wq, ws, - -+ ,w,} for V by using the

following steps:

Wy, = V1
w1 * V2
Wy = Vg — wq
w1+ Wy
wy - U3 Wy - U3
W3 = U3 — 1 2
w1 - W1 Wz + W
w1 - Uy Wy * Uy Wp—1* Up
Wy = Up — - - Wn—1
wy - Wy Wa - W2 Wp—1 * Wnp-1

In addition, the set

{ wq Wa Wn }
]| JJwall™ 7 [Jwal]
is an orthonormal basis for V.

Example 6.9. Let S = {v; = (1,1,0),v2 = (1,1,1),v3 = (3,1,1)} be a basis for
R3. We will use Gram-Schmidt process to find orthogonal and orthonormal bases

for R3.
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Wy - V2
W9y = Vg — w1
wy - Wy
(7 70)'(7 71)
=(1,1,1) — 1,1,0
( ) 770>' 770)( )
1+140
=(1,1,1) — 1,1,0
(7 Y ) 1 1+0(7 ? )
=(0,0,1)
w1y - Vs Wa * V3
W3 = Vg — w1 — 2
wy - Wy W2 - Wa
)'(7171)

B (1,1,0
=(3,1,1) — (1,1,0) - (1,1,0)

(1,1,0) — (8’8’ Y 23’(1)’ P (0,0,1)

4 1
- (Sa 17 1) - 5(17 170) - I(Ovo> 1)

=(3,1,1) — (2,2,0) — (0,0,1)
= (1,-1,0)

Then W = {wy, wq, w3} = {(1,1,0),(0,0,1),(1,—1,0)} is an orthogonal basis for
R3.
Since |lwi|| = V2, |[wa|| = 1, [|ws|| = v/2 then the set

1

w1 Wa W3 1
U:{ , , }:{—(1,1,0),(0,0,1),— 1,—1,0}
Twrll Teoall” Teoal > (1,-1,0)

[\

is an orthonormal basis for R3.



Definition 6.10. Let v = (ay,as,a3),v = (by,by,b3) € R® then we define the

cross product of u and v as following

i j ok
u X v = a; as as| = i(agbg — bgag) — j(a1b3 — b1a3> + k(a1b2 — blag).
b1 by b3

That iS, U XUV = (a263 — bg(lg, a3b1 — albg, a1b2 — blag).

Geometrically, the cross product of vectors u and v represents a vector that is

orthogonal to both of u and v.

Definition 6.11. The angle 6 between two vectors u and v is determined by the
formula

lu > olf = Jlull lv]| sin.

Note that, the length of u x v represents the area of the parallelogram that

spanned by u and v.
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Example 6.12. Find the area of the parallelogram that spanned by the vectors
u=(1,3,2) and v = (—2,1,0) .
Solution :

uxv=(—2,-4,7)

lu x v|| =v4+16 +49 = V69
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7 Eigenvalues and eigenvectors

Definition 7.1. Let A be an n X n matrix. If there is a number A € C and a
vector x # 0 such that Ax = Az, then we say that A is an eigenvalue for A, and x

is called an eigenvector for A with eigenvalue .

Example 7.2. If

A= , and =z = ,

then

4
Ax = =4z .
4

So, A = 4 is an eigenvalue of A, and x is an eigenvector for A with this eigenvalue.

We can write the equation Az = Az as a linear system. Since Az = Az, (where

I = I, is the identity matrix), we have that

Av=X <= Av - e =0« (A—- X))z =0

This linear system has a non-trivial solution z # 0 if and only if
det(A— M) =0, (why?).
Definition 7.3. The characteristic equation of a square matrix A is the equation

det(A — \I) = 0.

29



Theorem 7.4. The eigenvalues of a square matriz A are the solutions of the

characteristic equation

det(A — \I) = 0.

How to find the eigenvalues and the eigenvectors:

To find the eigenvalues of a matrix A, we have to find the solution of the
characteristic equation det(A — AI) = 0, then to find the eigenvectors for A with
eigen value A we have to solve the linear system (A — A\l)z = 0, as explained in

this example.

Example 7.5. Find the eigenvalues and the eigenvectors of the matrix

2 3
3 —6
Solution: We have to find A — \I.
2 3 10
A—- M = -\
3 —6 01
2— A 3
3 —6— A
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Now, we have to find the solution to the characteristic equation det(A—\I) = 0.

=(2-A)(=6—-X)—33=X+4)\-21=0

Then
M+dr—21=A+T7)(A=3)=0

So, the eigenvalues of A are
)\1 = -7 and )\2 =3

X1

To find the eigenvector x = for \y = —7, we have to solve the following
T2
system
2— (—7) 3 X1 0
3 —6 — (—7) T 0
9 3 T 0
31 T 0

Using Gauss elimination, (R; — %Rl, Ry — —3R; + R»), we get

1
0

O Wi
8
[N}
e}

We have only one equation with two variables xy + %xz = 0, then z; = %lxg.
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—1 —1
. 3
Assume x5 = ¢ , gives us x = =0 , where ¢; € R.
C1 1

Similarly, we can show that the eigenvector for Ay = 3 is © = ¢ , Where
1

co € R.
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8 Linear transformation on vector spaces

Definition 8.1. Let V' and W are vector spaces over a field K . A linear trans-
formation 7" from V into W is a mapping T : V' — W such that

(i) T(u+v) =T(u) +T(v)

(ii) T(au) = aT'(u)

for all u,v € Vanda e K. If T': V — V then we say that T" is a linear

transformation on V.

Example 8.2. Show that T : R® — R? defined by T'(ay, as, a3) = (a1 + as, as — az)
is a linear transformation.

Solution:

(i) Let u = (ay,as, as),v = (by, by, b3) € R3. Then

u+ v = (a; + by, as + by, a3 + bs), and

T(u+v)=T(a; + by, as + by, az + bs)
= (a1 + by + az + be, as + by — ag — bs)
= (a1 + ag + by + by, as — az + by — b3)
= (a1 + a, a2 — ag) + (b1 + by, by — bs)
=T(u)+T(v)

(ii) Let « € K, then au = (aay, aag, aas).

T(ou) = T(oay, aay, aag)
= (aa; + aay, cvag — aag)
= a(ar + ag, az — ag)

= aT(u)
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Then T is a linear transformation.

Example 8.3. Let T': R® — R? is defined by T'(ay,as,a3) = (a1 — 1,a5). Is T a
linear transformation?

Solution: Let u = (a1, as,az) and v = (by, by, b3) € R3. Then

u+v:(a1+b1,a2+b2,a3+bg).

T(’LL —I— U) = T(a1 + bl,ag —f- bg,ag —I— bg)

= (a1+b1—1,a2+b2)

On the other hand,

T(U) + T(U) = T(al, as, CL3) + T(bl, bQ, b3)
= (CLl — 1, GQ) + (bl — 1, bg)
= (a1 —|—b1 —2,a2+b2)
So, T'(u +v) # T'(u) + T'(v), and hence, T'is NOT a linear transformation.

Example 8.4. Let M € M,, ,,( K ) and N € M, ,( K ). Define
T Myn( K) = Myn( K ) by T(A) = MAN for all A € M, (K ).

Show that 7T is a linear transformation.

Solution: Let A, B € M,,, ,( K ) and a € K.
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T(A+ B) = M(A+ B)N
— MAN + MBN
— T(A) + T(B)

(i) T(aA)=M(aA)N = a(MAN) =aT(A)

Then T is a linear transformation.
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