
0.1 Vector space

Definition 0.1.1. A vector space V over a field K is a set V with two operations
called addition + and multiplication · such that the following axioms are satisfied:

(1) (i) u+ v ∈ V for all u, v ∈ V . (Addition is closed)

(ii) u+ v = v + u for all u, v ∈ V . (Addition is commutative)

(iii) u+ (v +w) = (u+ v) +w for all u, v, w ∈ V . (Addition is associative)

(iv) There exists an element 0 ∈ V , called the zero vector, such that
u+ 0 = 0 + u = u for all u ∈ V .

(v) For all u ∈ V there exists an element −u ∈ V , called the additive
inverse of u, such that u+ (−u) = 0 = −u+ u.

(2) (i) α · u ∈ V for all u ∈ V and α ∈ K .

(ii) α · (u+ v) = α · u+ α · v for all u, v ∈ V and α ∈ K .

(iii) (α + β) · u = α · u+ β · u. for all u ∈ V and α, β ∈ K .

(iv) (αβ) · u = α · (β · u) for all u ∈ V and α, β ∈ K .

(v) For all u ∈ V there exists an element 1 ∈ K , called the multiplicative
identity of u, such that 1 · u = u · 1 = u.

Example 0.1.2. Let C be the set of complex numbers. Define addition in C by

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i for all a, b, c, d ∈ R, (1)

and define scalar multiplication by

α · (a+ bi) = αa+ αbi for all scalars α ∈ R, and for all a, b ∈ R. (2)

Show that (C,+, ·) is a vector space over R.
Solution : Let u = a+ bi, v = c+ di, w = e+ fi ∈ C, where a, b, c, d, e, f ∈ R,

we have
(1)
(i) The addition is closed :

u+ v = (a+ bi) + (c+ di)

= (a+ c) + (b+ d)i by (1).

Since (a+ c) and (b+ d) are real numbers then u+ v ∈ C.
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(ii) The addition is commutative:

u+ v = (a+ bi) + (c+ di)

= (a+ c) + (b+ d)i by (1),

= (c+ a) + (d+ b)i because addition on R is commutative,

= (c+ di) + (a+ bi) by (1),

= v + u

(iii) The addition is associative: we have to prove that u+(v+w) = (u+v)+w
for all u, v, w ∈ C.

The left hand side (L.H.S):

u+ (v + w) = u+ [(c+ di) + (e+ fi)]

= (a+ bi) + [(c+ e) + (d+ f)i] by (1),

= [a+ (c+ e)] + [b+ (d+ f)]i by (1),

= [(a+ c) + e] + [(b+ d) + f ]i because addition on R is associative.

The right hand side (R.H.S):

(u+ v) + w = [(a+ bi) + (c+ di)] + w

= [(a+ c) + (b+ d)i] + (e+ fi) by (1),

= [(a+ c) + e] + [(b+ d) + f)]i by (1).

Then L.H.S=R.H.S
(iv) The additive identity : For all u = a+ bi ∈ C, we have

(a+ bi) + (0 + 0i) = (a+ 0) + (b+ 0)i by (1),

= a+ bi because 0 is the additive identity in R.

Then the additive identity of C is (0 + 0i).
(v) The additive inverse : For all u = a+ bi ∈ C, we have

(a+ bi) +
(
− a+ (−b)i

)
=
(
a+ (−a)

)
+
(
b+ (−b)

)
i by (1),

= 0 + 0i because (−a) is the additive inverse of a in R.

Then the additive inverse of a+ bi ∈ C is −a+ (−b)i.
(2) Let u = a+ bi, v = c+ di ∈ C and α ∈ R.
(i) We have to prove that α · u ∈ C.

α · u = α · (a+ bi)

= αa+ αbi
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Since αa, αb ∈ R, then α · u ∈ C.
(ii) We have to prove that α · (u+ v) = α · u+α · v for all u, v ∈ C and α ∈ R.
The left hand side (L.H.S) :

α · (u+ v) = α · [(a+ bi) + (c+ di)]

= α · [(a+ c) + (b+ d)i] by (1)

= α(a+ c) + α(b+ d)i by (2)

= (αa+ αc) + (αb+ αd)i because multiplication distributes over addition in R.

The right hand side (R.H.S) :

α · u+ α · v = α · (a+ bi) + α · (c+ di)

= (αa+ αbi) + (αc+ αdi) by (2),

= (αa+ αc) + (αb+ αd)i by (1),

Then L.H.S=R.H.S
(iii) We have to prove that (α+β) ·u = α ·u+β ·u for all u ∈ C and α, β ∈ R.

The L.H.S :

(α + β) · u = (α + β) · (a+ bi)

= (α + β)a+ (α + β)bi by (2),

= (αa+ βa) + (αb+ βb)i because multiplication distributes over addition in R.

The R.H.S :

α · u+ β · u = α · (a+ bi) + β · (a+ bi)

= (αa+ αbi) + (βa+ βbi) by (2),

= (αa+ βa) + (αb+ βb)i by (1).

Then L.H.S=R.H.S
(iv) We have to prove that (α β) · u = α · (β · u) for all u ∈ C and α, β ∈ R.

The L.H.S :

(αβ) · u = (αβ) · (a+ bi)

= (αβ)a+ (αβ)b i by (2),

= αβa+ αβb i because multiplication is associative in R.

The R.H.S :

α · (β · u) = α · [β · (a+ bi)]

= α · [βa+ βb i] by (2),

= αβa+ αβb i by (2).
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Then L.H.S=R.H.S
(v) The multiplicative identity : we have to show that 1 · u = u for all

u = a + bi ∈ C. (Note that, 1 represents scalar from the field R and NOT from
the set C).

1 · u = 1 · (a+ bi)

= 1a+ 1bi by (2),

= a+ bi

= u

We have proved that all axioms hold in C. Hence, (C,+, ·) is a vector space
over R.

4



Example 0.1.3. Let M2×2(R) =
{(a b

c d

)
| a, b, c, d ∈ R

}
be the set of all two

by two matrices with entries in R. For A =
(a1 a2
a3 a4

)
, B =

(b1 b2
b3 b4

)
∈ M2×2 and

α ∈ R, addition and scalar multiplication of matrices defined by

A+B =
(a1 a2
a3 a4

)
+
(b1 b2
b3 b4

)
=
(a1 + b1 a2 + b2
a3 + b3 a4 + b4

)
(3)

α · A = α ·
(a1 a2
a3 a4

)
=
(αa1 αa2
αa3 αa4

)
. (4)

Prove that (M2×2,+, ·) is a vector space over R.

Solution: Let A =
(a1 a2
a3 a4

)
, B =

(b1 b2
b3 b4

)
, C =

(c1 c2
c3 c4

)
∈M2×2.

(1)
(i)

A+B =
(a1 a2
a3 a4

)
+
(b1 b2
b3 b4

)
=
(a1 + b1 a2 + b2
a3 + b3 a4 + b4

)
by (3).

Since a1, a2, a3, a4, b1, b2, b3, b4 are real numbers, then a1+b1, a2+b2, a3+b3, a4+b4 ∈
R. Hence, A+B ∈M2×2(R).

(ii) We have to show that A+B = B + A for all A,B ∈M2×2.

A+B =
(a1 a2
a3 a4

)
+
(b1 b2
b3 b4

)
=
(a1 + b1 a2 + b2
a3 + b3 a4 + b4

)
by (3),

=
(b1 + a1 b2 + a2
b3 + a3 b4 + a4

)
because addition on R is commutative

=
(b1 b2
b3 b4

)
+
(a1 a2
a3 a4

)
by (3),

= B + A

(iii) We have to show that A+ (B + C) = (A+B) + C for all A,B,C ∈M2×2.
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The L.H.S:

A+ (B + C) =
(a1 a2
a3 a4

)
+
[(b1 b2
b3 b4

)
+
(c1 c2
c3 c4

)]
=
(a1 a2
a3 a4

)
+
(b1 + c1 b2 + c2
b3 + c3 b4 + c4

)
by (3),

=
(a1 + (b1 + c1) a2 + (b2 + c2)
a3 + (b3 + c3) a4 + (b4 + c4)

)
by (3),

=
((a1 + b1) + c1 (a2 + b2) + c2

(a3 + b3) + c3 (a4 + b4) + c4

)
because addition on R is associative.

The R.H.S:

(A+B) + C =
[(a1 a2
a3 a4

)
+
(b1 b2
b3 b4

)]
+
(c1 c2
c3 c4

)
=
(a1 + b1 a2 + b2
a3 + b3 a4 + b4

)
+
(c1 c2
c3 c4

)
by (3),

=
((a1 + b1) + c1 (a2 + b2) + c2

(a3 + b3) + c3 (a4 + b4) + c4

)
by (3).

Then L.H.S= R.H.S

(iv) For all A =
(a1 a2
a3 a4

)
∈M2×2, we have

(a1 a2
a3 a4

)
+
(0 0

0 0

)
=
(a1 a2
a3 a4

)
Then the zero matrix

(0 0
0 0

)
is the additive identity.

(v) For all A =
(a1 a2
a3 a4

)
∈ M2×2, we have (−A) =

(−a1 −a2
−a3 −a4

)
∈ M2×2,

where

A+ (−A) =
(a1 a2
a3 a4

)
+
(−a1 −a2
−a3 −a4

)
=
(0 0

0 0

)
.

Then the matrix (−A) is the additive inverse for the matrix A.
(2)
(i) We have to show that α · A ∈M2×2(R) for all A ∈M2×2 and α ∈ R.

α · A = α ·
(a1 a2
a3 a4

)
=
(αa1 αa2
αa3 αa4

)
by (4).

Since α, a1, a2, a3, a4 are real numbers then αa1, αa2, αa3, αa4 ∈ R.
Hence, α · A ∈M2×2(R).
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(ii) We have to show that α · (A+B) = α ·A+ α ·B for all A,B ∈M2×2 and
α ∈ R.

The L.H.S:

α · (A+B) = α ·
[(a1 a2
a3 a4

)
+
(b1 b2
b3 b4

)]
= α ·

(a1 + b1 a2 + b2
a3 + b3 a4 + b4

)
by (3),

=
(α(a1 + b1) α(a2 + b2)
α(a3 + b3) α(a4 + b4)

)
by (4),

=
(αa1 + αb1 αa2 + αb2
αa3 + αb3 αa4 + αb4

)
because multiplication distributes over addition in R.

The R.H.S:

α · A+ α ·B = α ·
(a1 a2
a3 a4

)
+ α ·

(b1 b2
b3 b4

)
=
(αa1 αa2
αa3 αa4

)
+
(αb1 αb2
αb3 αb4

)
by (4),

=
(αa1 + αb1 αa2 + αb2
αa3 + αb3 αa4 + αb4

)
by (3).

Then L.H.S= R.H.S
(iii) We have to show that (α + β) · A = α · A + β · A for all A ∈ M2×2 and

α, β ∈ R.
The L.H.S:

(α + β) · A = (α + β) ·
(a1 a2
a3 a4

)
=
((α + β)a1 (α + β)a2

(α + β)a3 (α + β)a4

)
by (4),

=
(αa1 + βa1 αa2 + βa2
αa3 + βa3 αa4 + βa4

)
because multiplication distributes over addition in R.

The R.H.S:

α · A+ β · A = α ·
(a1 a2
a3 a4

)
+ β ·

(a1 a2
a3 a4

)
=
(αa1 αa2
αa3 αa4

)
+
(βa1 βa2
βa3 βa4

)
by (4),

=
(αa1 + βa1 αa2 + βa2
αa3 + βa3 αa4 + βa4

)
by (3).
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Then L.H.S = R.H.S
(iv) We have to show that (αβ) ·A = α ·(β ·A) for all l A ∈M2×2 and α, β ∈ R.
The L.H.S:

(αβ) · A = (αβ) ·
(a1 a2
a3 a4

)
=
((αβ)a1 (αβ)a2

(αβ)a3 (αβ)a4

)
by (4),

=
(α(βa1) α(βa2)
α(βa3) α(βa4)

)
because multiplication on R is associative.

The R.H.S:

α · (β · A) = α ·
[
β ·
(a1 a2
a3 a4

)]
= α ·

(βa1 βa2
βa3 βa4

)
by (4),

=
(α(βa1) α(βa2)
α(βa3) α(βa4)

)
by (4).

Then L.H.S= R.H.S
(v) For all A ∈M2×2, we have 1 ∈ R such that

1 · A = 1 ·
(a1 a2
a3 a4

)
=
(1a1 1a2

1a3 1a4

)
= A.

Then 1 ∈ R is the multiplicative identity .

Example 0.1.4. Let V = {x ∈ R | x > 0}. For x, y ∈ V and α ∈ R, we define
addition and scalar multiplication as following

x⊕ y = xy,

α⊗ x = xα.

Show that (V,⊕,⊗) is a vector space over R.

Example 0.1.5. Is the set V =
{[a

b

]
| a, b > 0

}
with the usual addition and

scalar multiplication of matrices define a vector space over R ?

Solution: Let α = −2 ∈ R, then α

[
a
b

]
= −2

[
a
b

]
=

[
−2a
−2b

]
/∈ V .

Since a, b > 0 then −2a,−2b < 0.
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Proposition 0.1.6. Let V be a vector space over K , then we have

(1) The additive identity, 0 ∈ V , is unique.

(2) The additive inverse, (−u) ∈ V , for u ∈ V is unique.

(3) For all u ∈ V we have 0 · u = 0.

(4) For all u ∈ V we have (−1) · u = −u.

(5) For all u, v, w ∈ V , if u+ v = u+ w then v = w.

(6) For all u, v ∈ V , the equation u+x = v has a unique solution x = v−u ∈ V .

(7) For all u ∈ V , we have −(−u) = u.
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0.2 Subspace

In this section we suppose that (V,+, ·) is a vector space over K .

Definition 0.2.1. A non-empty subset U of V is called a subspace of V if (U,+, ·)
is a vector space over K .

Proposition 0.2.2. Anon-empty subset U of a vector space V over K is a
subspace of V if and only if the following conditions are satisfied:

(1) 0 ∈ U .

(2) For all u, v ∈ U , we have u+ v ∈ U .

(3) For all u ∈ U and α ∈ K , we have α · u ∈ U .

Remark 0.2.3. Every vector space V has two subspaces namely V and {0}. Any
other subspace of V is called a proper subspace of V .

Example 0.2.4. Show that which of these sets are subspace of R3

(1) U = {(x, y, 0) | x, y ∈ R}.

(2) U = {(x, y, 1) | x, y ∈ R}.

.

Proposition 0.2.5. If W1 and W2 are subspaces of V , then W1∩W2 is a subspace
of V .

Proof. We have to satisfy the three conditions in Proposition 0.2.2.
(1) Since W1 and W2 are subspaces of V , then 0 ∈ W1 and 0 ∈ W2.
Hence,

0 ∈ W1 ∩W2.

(2) Let u, v ∈ W1 ∩W2, then u, v ∈ W1 and u, v ∈ W2.
Since W1 and W2 are subspaces of V , then u+ v ∈ W1 and u+ v ∈ W2.
Hence,

u+ v ∈ W1 ∩W2.

(3) Let α ∈ K and u ∈ W1 ∩W2, then u ∈ W1 and u ∈ W2.
Since W1 and W2 are subspaces of V then α · u ∈ W1 and α · u ∈ W2.
Hence,

α · u ∈ W1 ∩W2.
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Example 0.2.6. Show that if W1 and W2 are subspaces of a vector space V , then
W1 ∪W2 is NOT a subspace of V .

To prove this, we have W1 = {(a, 0) | a ∈ R} and W2 = {(0, b) | b ∈ R} are
both subspaces of R2. But W1∪W2 is not a subspace of R2 because (1, 0) ∈ W1∪W2

and (0, 1) ∈ W1 ∪W2 while (1, 0) + (0, 1) = (1, 1) /∈ W1 ∪W2.

0.3 Linear Combinations and Span

Definition 0.3.1. Let v1, v2, · · · , vn be vectors in a vector space V over K . A
linear combination of these vectors is any expression of the form

α1v1 + α2v2 + · · ·+ αnvn

for some scalars α1, α2, · · · , αn ∈ K .

Example 0.3.2. Consider the vector space R2. The vector v = (−7,−13) is a
linear combination of v1 = (−2, 1) and v2 = (1, 5), where

v = 2v1 + (−3)v2.

Example 0.3.3. Consider the vector space R2. The vector v = (1,−3) is a linear
combination of v1 = (0, 1) , v2 = (2,−1), v3 = (1,−2) and v4 = (0, 3) where

v = (−2)v1 + (0)v2 + 1v3 + (
1

3
)v4.

Sometimes we cannot write a vector v in a vector space V as a linear combi-
nation of v1, v2, · · · , vn ∈ V , as explained in this example.

Example 0.3.4. Let v1 = (2, 5, 3), v2 = (1, 1, 1), and v = (4, 2, 0). Because there
exist no scalars α1, α2 ∈ K such that v = α1v1 + α2v2 then v is not a linear
combination of v1 and v2.

Definition 0.3.5. Let V be a vector space over K , and let S = {v1, v2, · · · , vn}
be a subset of V . We say that S spans V , or S generates V , if every vector v in
V can be written as a linear combination of vectors in S. That is, for all v ∈ V ,
we have

v = α1v1 + α2v2 + · · ·+ αnvn

for some scalars α1, α2, · · · , αn ∈ K .
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Example 0.3.6. Show that the set S = {(0, 1, 1), (1, 0, 1), (1, 1, 0)} spans R3 and
write the vector (2, 4, 8) as a linear combination of vectors in S.

Solution:
A vector in R3 has the form v = (x, y, z).
Hence we need to show that, for some scalars α1, α2, α3 ∈ R, every such v can

be written as

(x, y, z) = α1(0, 1, 1) + α2(1, 0, 1) + α3(1, 1, 0)

= (α2 + α3, α1 + α3, α1 + α2)

This give us system of equations

x = α2 + α3

y = α1 + α3

z = α1 + α2

This system of equations can be written in matrix form0 1 1
1 0 1
1 1 0

α1

α2

α3

 =

xy
z


We can write it as Aα = b. Since det(A) = 2 then this system has a solution.

Now, to write (2, 4, 8) as a linear combination of vectors in S, we find that

A−1 =

−0.5 0.5 0.5
0.5 −0.5 0.5
0.5 0.5 −0.5


Then

α = A−1bα1

α2

α3

 =

−0.5 0.5 0.5
0.5 −0.5 0.5
0.5 0.5 −0.5

 ·
2

4
8


So, α1 = 5, α2 = 3, α3 = −1, and

(2, 4, 8) = 5(0, 1, 1) + 3(1, 0, 1) + (−1)(1, 1, 0).
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