0.1 Vector space

Definition 0.1.1. A vector space V over a field K is a set V' with two operations
called addition + and multiplication - such that the following axioms are satisfied:

(1) (1) u+veV forall u,v € V. (Addition is closed)
(i)
) u
)

(iii
(iv) There exists an element 0 € V, called the zero vector, such that
u+0=0+u=u foralluecV.

u+v=v+u forall u,v € V. (Addition is commutative)

+(w4w)=(u+v)+w forall u,v,w € V. (Addition is associative)

(v) For all u € V there exists an element —u € V', called the additive
inverse of u, such that v+ (—u) =0 = —u + u.

(2) (i) a-ueV forallueVandae K.

(ii

)

Ja-(u+v)=a-u+a-v forallu,v € Vandae K.
(iii) (a+p) - u=a-u+pF-u. foralueVand a,f € K.
)

)

(iv) (af) - u=a-(f-u) forallue Vand a,f € K.

(v) For all u € V there exists an element 1 € K | called the multiplicative
identity of u, such that 1 -u=u-1=u.

Example 0.1.2. Let C be the set of complex numbers. Define addition in C by
(a+bi)+ (c+di)=(a+c)+ (b+d)i for all a,b,c,d € R, (1)

and define scalar multiplication by
a-(a+bi)=aa+abi  for all scalars o € R,and for all a,b € R.  (2)

Show that (C,+,-) is a vector space over R.
Solution : Let u = a+bi, v=c+di, w=e—+ fi € C, where a,b,c,d,e, f € R,
we have

(1)
(i) The addition is closed :

u+v=(a+bi)+ (c+ di)
=(a+c)+ (b+d)i by (1).

Since (a + ¢) and (b + d) are real numbers then u + v € C.



(ii) The addition is commutative:

u+v=(a+bi)+ (c+ di)
=(a+c)+(b+d)i by (1),
= (

c+a)+ (d+0b)i because addition on R is commutative,
= (c+ di) + (a + bi) by (1),
=v+u

(iii) The addition is associative: we have to prove that u+ (v+w) = (u+v) 4w
for all u,v,w € C.
The left hand side (L.H.S):

ut (v+w) =u+[(c+di) + (e + fi)]
= (a+bi) +{(c+e)+(d+f)] by (1),
=lat(cte+b+(d+ i by (1),
=[la+c)+el+[(b+d)+ fli because addition on R is associative.

The right hand side (R.H.S):
(u4v)+w=_[(a+bi)+ (c+di)] +w

=[(a+c)+ (b+d)i] + (e + fi) by (1),
=[(a+c)+e]+[(b+d)+ [ by (1).

Then L.H.S=R.H.S
(iv) The additive identity : For all u = a + bi € C, we have

(@+bi)+(04+0i) =(a+0)+ (b+0)i by (1),
=a+bi because 0 is the additive identity in R.

Then the additive identity of C is (0 + 03).
(v) The additive inverse : For all u = a + bi € C, we have

(a+bi) + ( —a+ (—b)z’> — (a + <—a)) + (b + (—b))z’ by (1),
=0+0¢ because (—a) is the additive inverse of a in R.

Then the additive inverse of a +bi € C is —a + (—b)i.
(2) Let u=a+bi,v =c+di € C and o € R.
(i) We have to prove that o - u € C.

a-u=a-(a+ bi)

= aa + abi



Since aa,ab € R, then o - u € C.
(ii) We have to prove that a- (u+v) =a-u+a-v forall u,v € C and o € R.
The left hand side (L.H.S) :

a-(utv)=a-|[(a+bi)+ (c+ di)]
=a-[(a+c)+ (b+d)i] by (1)
=afa+c)+alb+d)i by (2)
= (aa + ac) + (ab + ad)i because multiplication distributes over addition in R.

The right hand side (R.H.S) :

= (aa + abi) + (ac + adi) by (2),
= (va + ac) + (ab + ad)i by (1),
Then L.H.S=R.H.S

(iii) We have to prove that (a4 ) -u=a-u+p-u forallu € C and o, 5 € R.
The L.H.S :

(a+p) -u=(a+p)-(a+bi)
= (a+ B)a+ (a+ B)bi by (2),
= (aa + Ba) + (ab + Bb)i because multiplication distributes over addition in R.

The R.H.S :

a-u+pf-u=a-(a+bi)+p-(a+ b)
= (aa + abi) + (Ba + Bbi) by (2),
= (aa + Ba) + (ab + Bb)i by (1).
Then L.H.S=R.H.S

(iv) We have to prove that (o f) -u=a-(f-u) forallu € C and «, 5 € R.
The L.H.S :

(afB)-u=(af) - (a+bi)
= (aB)a+ (aB)b i by (2),

= afa+ apfbi because multiplication is associative in R.

The R.H.S :

a-(f-u)=a-[3-(a+bi)
—a-[fa+Bbi] by (2).
=afa+apbi by (2).



Then L.H.S=R.H.S

(v) The multiplicative identity : we have to show that 1-u = u for all
u=a+ bt € C. (Note that, 1 represents scalar from the field R and NOT from
the set C).

l-u=1-(a+ b)
= la+ 1b: by (2),
=a+bi

=Uu

We have proved that all axioms hold in C. Hence, (C,+,-) is a vector space
over R.



a b

Example 0.1.3. Let My,.o(R) = {(c ) | a,b,c,d € R} be the set of all two

d
. . . . ap das b1 bg
by two matrices with entries in R. For A = ( ),B = ( ) € Msyo and
a3z Qa4 by by
a € R, addition and scalar multiplication of matrices defined by
by b a;+b; ay+b
A B:<CL1 CL2> (1 2>:<1 1 G2 2)
+ as ay * bg b4 a3—|—b3 CL4+b4 (3)

Ck-AZOé’(al ag):(aal Ofag)' (4)

as aq aas aaq
Prove that (Maya, +, ) is a vector space over R.

. . __ (a1 ag . b1 b2 (G (2
Solution: Let A = <a3 a4)’B = (bg b4)’0 = <C3 c4> € Myyo.
(1)

(i)

by b a; +by ay+ by
A B:<6L1 a2> (1 2>:<1 1 Q2 ) '
* as ay - bz by az+bs as+ by by (3)

Since a1, as, az, as, by, ba, b3, by are real numbers, then a;+b1, as+be, az+bs, as+by €
R. Hence, A+ B € My (R).
(ii) We have to show that A+ B = B+ A for all A, B € Msys.

aem= (e (0

ag Qa4 bs b4

_ <a1+b1 as + by
a3+b3 a4+b4

_ <b1+a1 bz+a2
b3+a3 b4—|—a4

G o)+ (o o) v

—B+ A

) by @),

) because addition on R is commutative

(iii) We have to show that A+ (B+ C) = (A+ B) + C for all A, B,C € Myys.



The L.H.S:

arro= () [ e )
as ay bs by C3 C4
(a1 ao by + ¢ b2+02>
o (ag ) + (bg + C3 b4 + Cyq by (3)’
_(a+ (b + 1) a2+(b2+02))
B (ag + bg + 63 Qy + (b4 + 64) by (3)’
. a1+b1 +Cl (a2+b2)+02) .. . ..
= ( (a5 +bs) +¢s (ay+by) + 4 because addition on R is associative.
The R.H.S:
a; Qs by by 1 Co
asm o= )+ G )+ (o)
as ay bs by C3 C4

a; +b; ax+ bz) (Cl C2>
<6L3 +b3 ag+ by + C3 C4 by (3),

(a1 4+ b))+ (ag+ba) + ¢
<(CL3 +b3) +c3 (ag+bs) + 04) by (3).

Then L.H.S= R.H.S
. . aq
(iv) For all A = <a3

a
2) € Msyo, we have

7
(al a2> i (O O) _ (al (12)
as ay 0 0/ \ag a4

Then the zero matrix < 8) is the additive identity.

0
(a1 Qg . _(—a1 —ag
(v) For all A = (ag a4> € Msys, we have (—A) = (—CL3 —(14) € Moyo,

where
. __ (a1 ag —a; —ag2\ 0 0)
A+( A)_ <CL3 a4> + <—6L3 —CL4) - (O 0/
Then the matrix (—A) is the additive inverse for the matrix A.
(2)
(i) We have to show that oo+ A € Mayo(R) for all A € Myys and a € R.
o A—a- (al ag) _ (@al aa2> by (4).
as ay aaz  oay

Since «, aq, as, az, as are real numbers then aaq, aas, aas, aay € R.
Hence, a - A € Myy2(R).



(ii)) We have to show that av- (A+ B) =a-A+«- B forall A, B € Mo and
a € R.
The L.H.S:

a-(A+B)=a- (2 )+ ()]

o a; + bl as + bg

- (CL3 + bg ay + b4> by (3>7
o Oé((ll +b1) Oé(CLQ"i‘bQ)

N (CY(CLQ, + bg) Oé(CL4 + b4)> by (4)7

= (aal +ab aay + a62> because multiplication distributes over addition in R.

aas + abs  aay + aby

The R.H.S:

Oz~A+Oc~B:oz'<a1 a2>+

az a4

« (s 1)

(aal ozag) n <ab1 Oébg) by (4),

oaas oy abs  aby

B <aa1 + aby aay + Ozb2>
- \aas +abs aay + aby

Then L.H.S= R.H.S
(iii) We have to show that (¢ + ) - A=a-A+5-A forall A € My, and

a, B eR.
The L.H.S:
_ (01 Q2
(4 8)-A=(a+p)- ()
(a+Blar (a+Ba
= 4
((a + Blaz (a+ B)a4> by (4),
= (aa1 +Ba gy + B%) because multiplication distributes over addition in R.
aas + faz  aay + Bay
The R.H.S:

R i B

= (oo o)+ Gt Gy v

_ (04@1 + fa; «as + Ba2>
aas + Baz  aay + Bay



Then L.H.S = R.H.S
(iv) We have to show that (af5)-A = a-(5-A) foralll A € Msyys and o, f € R.
The L.H.S:

= (e ooy,
= (ZE?Z;; ggggjg) because multiplication on R is associative.
The R.ILS:
)
o (o ) w@

= (omy agomy) YO

Then L.H.S= R.H.S
(v) For all A € My, we have 1 € R such that

1.A:1.<a1 a2>:(1a1 1a2>:A'

as aq 1&3 1@4
Then 1 € R is the multiplicative identity .

Example 0.1.4. Let V = {z € R | 2 > 0}. For 2,y € V and a € R, we define
addition and scalar multiplication as following

r Dy =y,
a®@r = 1%

Show that (V, @, ®) is a vector space over R.

Example 0.1.5. Is the set V = { [Z} | a,b > O} with the usual addition and
scalar multiplication of matrices define a vector space over R 7

Solution: Let « = —2 € R, then « L)] =2 {b} - [—Qb} ¢v.

Since a,b > 0 then —2a, —2b < 0.



Proposition 0.1.6. Let V' be a vector space over K , then we have
(1) The additive identity, 0 € V', is unique.
(2) The additive inverse, (—u) € V, for uw € V' is unique.
(3) For allu €V we have 0 -u = 0.
(4) For allu € V we have (—1) - u = —u.
(5) For all u,v,w €V, if u+v=u+w then v = w.
(6) For allu,v € V, the equation u+x = v has a unique solutionx =v—u € V.

(7) For allu € V, we have —(—u) = u.



0.2 Subspace

In this section we suppose that (V) +,-) is a vector space over K .

Definition 0.2.1. A non-empty subset U of V' is called a subspace of V' if (U, +, )
is a vector space over K.

Proposition 0.2.2. Anon-empty subset U of a vector space V over K s a
subspace of V' if and only if the following conditions are satisfied:

(1) 0 € U.
(2) For all u,v € U, we have u+v € U.
(3) Forallue U and o € K, we have a-u € U.

Remark 0.2.3. Every vector space V has two subspaces namely V' and {0}. Any
other subspace of V' is called a proper subspace of V.

Example 0.2.4. Show that which of these sets are subspace of R3
(1) U={(z,9,0)| 2,y € R}.
() U={(@y1)| 2,y R}

Proposition 0.2.5. If W, and W5 are subspaces of V', then W1 NWj is a subspace
of V.

Proof. We have to satisfy the three conditions in Proposition 0.2.2.
(1) Since W, and W are subspaces of V| then 0 € W; and 0 € Ws.
Hence,

0e W, NnWs.

(2) Let u,v € Wy N Wy, then u,v € Wy and u,v € Wa.
Since Wi and W5 are subspaces of V, then u + v € Wi and u+ v € Wh.
Hence,

u+ve W, NWs.

(3) Let « € K and u € Wy NWy, then u € Wy and u € Ws.
Since Wy and W5 are subspaces of V' then a-u € Wi and a - u € Wh.
Hence,

a-ue W, N Ws.
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Example 0.2.6. Show that if W; and W, are subspaces of a vector space V', then
W1 U W, is NOT a subspace of V.

To prove this, we have W; = {(a,0) | a € R} and W5 = {(0,b) | b € R} are
both subspaces of R2. But W;UW, is not a subspace of R? because (1,0) € W UW;
and (0,1) € W, U Wy while (1,0) + (0,1) = (1,1) ¢ W; U Wh.

0.3 Linear Combinations and Span

Definition 0.3.1. Let vy, vq,--- ,v, be vectors in a vector space V over K . A
linear combination of these vectors is any expression of the form

U1 + QU + - - -+ QU
for some scalars aq, a9, -+ ,a, € K .

Example 0.3.2. Consider the vector space R?. The vector v = (—7,—13) is a
linear combination of v; = (—2,1) and vy = (1,5), where

v =2v1 + (—3)vs.

Example 0.3.3. Consider the vector space R%. The vector v = (1, —3) is a linear
combination of v; = (0,1) , vo = (2, —1), v3 = (1, —2) and vy = (0, 3) where

v=(—2)vy + (0)vg + lus + (%)04.

Sometimes we cannot write a vector v in a vector space V as a linear combi-
nation of vy, v9, -+ ,v, € V, as explained in this example.

Example 0.3.4. Let v; = (2,5,3),v2 = (1,1,1), and v = (4,2,0). Because there
exist no scalars aq,as € K such that v = ajv1 + asvy then v is not a linear
combination of v; and ws.

Definition 0.3.5. Let V' be a vector space over K | and let S = {vy,vq, -+ ,v,}
be a subset of V. We say that S spans V', or S generates V, if every vector v in
V' can be written as a linear combination of vectors in S. That is, for all v € V,
we have

V= QU1 + QoUy + -+ - + U,

for some scalars aq, g, -+, € K.

11



Example 0.3.6. Show that the set S = {(0,1,1),(1,0,1),(1,1,0)} spans R and
write the vector (2,4, 8) as a linear combination of vectors in S.

Solution:

A vector in R3 has the form v = (x,v, 2).

Hence we need to show that, for some scalars aq, as, a3 € R, every such v can
be written as

(ZL’,y,Z) = 061(0, ]-7 1) + 0[2(1,0, ]-) + 053(]-7 170)

= (OéQ + a3, O + Qas, -+ Oég)
This give us system of equations

Tr = Qg+ Qs
Y= o1 + Q3

Z=qQ1+ Qs

This system of equations can be written in matrix form

= = O

11 T
0 1| |ag| = |y
10 z

We can write it as Aa = b. Since det(A) = 2 then this system has a solution.
Now, to write (2,4, 8) as a linear combination of vectors in S, we find that

=05 05 05
At=105 —-05 05
05 05 -05

Then
a=A"
Qq -0.5 05 05 2
as| =105 =05 051 |4
a3 0.5 05 -0.5 8
So, a1 = 5,9 = 3,3 = —1, and

(2,4,8) = 5(0,1,1) +3(1,0,1) + (—=1)(1,1,0).
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