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Preface to the Second Edition

I approached revising Topics in Algebra with a certain amount of
trepidation. On the whole, I was satisfied with the first edition and did
not want to tamper with it. However, there were certain changes I felt
should be made, changes which would not affect the general style or
content, but which would make the book a little more complete. I
hope that I have achieved this objective in the present version.

For the most part, the major changes take place in the chaptgr on
group theory. When the first edition was written it was fairly un-
common for a student learning abstract algebra to have had any
previous exposure to linear algebra. Nowadays quite the opposite is
true; many students, perhaps even a majority, have learned something
about 2 x 2 matrices at this stage. Thus I felt free here to draw on
2 X 2 matrices for examples and problems. These parts, which
depend on some knowledge of linear algebra, are indicated with a #.

In the chapter on groups I have largely expanded one section, that
on Sylow’s theorem, and added two others, one on direct products and
one on the structure of finite abelian groups.

In the previous treatment of Sylow’s theorem, only the existence of a
Sylow subgroup was shown. This was done following the proof of
Wielandt. The conjugacy of the Sylow subgroups and their number
were developed in a series of exercises, but not in the text proper.
Now all the parts of Sylow’s theorem are done in the text material.
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In addition to the proof previously given for the existence, two other
proofs of existence are carried out. One could accuse me of overkill
at this point, probably rightfully so. The fact of the matter is that Sylow’s
theorem is important, that each proof illustrates a different aspect of group
theory and, above all, that I love Sylow’s theorem. The proof of the con-
Jugacy and number of Sylow subgroups exploits double cosets. A by-product
of this development is that a means is given for finding Sylow subgroups in a
large set of symmetric groups.

For some mysterious reason known only to myself, I had omitted direct
products in the first edition. Why is beyond me. The material is easy,
straightforward, and important. This lacuna is now filled in the section
treating direct products. With this in hand, 1 go on in the next section to
prove the decomposition of a finite abelian group as a direct product of
cyclic groups and also prove the uniqueness of the invariants associated with
this decomposition. In point of fact, this decomposition was already in the
first edition, at the end of the chapter on vector spaces, as a consequence of
the structure of finitely generated modules over Euclidean rings. However,
the case of a finite group is of great importance by itself; the section on finite
abelian groups underlines this importance. Its presence in the chapter on
groups, an early chapter, makes it more likely that it will be taught.

One other entire section has been added at the end of the chapter on field
theory. T felt that the student should see an explicit polynomial over an
explicit field whose Galois group was the symmetric group of degree 5, hence
one whose roots could not be expressed by radicals. In order to do 50, a
theorem is first proved which gives a criterion that an irreducible poly-
nomial of degree p, p a prime, over the rational field have S, as its Galois
group. As an application of this criterion, an irreducible polynomial of
degree 5 is given, over the rational field, whose Galois group is the symmetric
group of degree 5.

There are several other additions. More than 150 new problems are to be
found here. They are of varying degrees of difficulty. Many are routine
and computational, many are very difficult. Furthermore, some inter-
polatory remarks are made about problems that have given readers a great
deal of difficulty. Some paragraphs have been inserted, others rewritten, at
places where the writing had previously been obscure or too terse.

Above I have described what I have added. What gave me greater
difficulty about the revision was, perhaps, that which I have not added. I
debated for a long time with myself whether or not to add a chapter on
category theory and some elementary functors, whether or not to enlarge the
material on modules substantially. After a great deal of thought and soul-
searching, I decided not to do so. The book, as stands, has a certain concrete-
ness about it with which this new material would not blend. It could be
made to blend, but this would require a complete reworking of the material
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of the book and a complete change in its philosophy—something I did not
want to do. A mere addition of this new material, as an adjunct with no
applications and no discernible goals, would have violated my guiding
principle that all matters discussed should lead to some clearly defined
objectives, to some highlight, to some exciting theorems. Thus I decided to
omit the additional topics.

Many people wrote me about the first edition pointing out typographical
mistakes or making suggestions on how to improve the book. I should like to
take this opportunity to thank them for their help and kindness.






Preface to the First Edition

The idea to write this book, and more important the desire to do so, is
a direct outgrowth of a course I gave in the academic year 1959-1960 at
Cornell University. The class taking this course consisted, in large part,
of the most gifted sophomores in mathematics at Cornell. It was my
desire to experiment by presenting to them material a little beyond that
which is usually taught in algebra at the junior-senior level.

I have aimed this book to be, both in content and degree of sophisti-
cation, about halfway between two great classics, A4 Survey of Madern
Algebra, by Birkhoff and MacLane, and Modern Algebra, by Van der
Waerden.

The last few years have seen marked changes in the instruction given
in mathematics at the American universities. This change is most
notable at the upper undergraduate and beginning graduate levels.
Topics that a few years ago were considered proper subject matter for
semiadvanced graduate courses in algebra have filtered down to, and
are being taught in, the very first course in abstract algebra. Convinced
that this filtration will continue and will become intensified in the next
few years, I have put into this book, which is designed to be used as the
student’s first introduction to algebra, material which hitherto has been
considered a little advanced for that stage of the game.

There is always a great danger when treating abstract ideas to intro-
duce them too suddenly and without a sufficient base of examples to
render them credible or natural. In order to try to mitigate this, I have
tried to motivate the concepts beforehand and to illustrate them in con-
cretesituations. One of the most telling proofs of the worth of an abstract

vii



Preface to the First Edition

concept is what it, and the results about it, tells us in familiar situations. In
almost every chapter an attempt is made to bring out the significance of the
general results by applying them to particular problems. For instance, in the
chapter on rings, the two-square theorem of Fermat is exhibited as a direct
consequence of the theory developed for Euclidean rings.

The subject matter chosen for discussion has been picked not only because
it has become standard to present it at this level or because it is important in
the whole general development but also with an eye to this “concreteness.”
For this reason I chose to omit the Jordan-Hélder theorem, which certainly
could have easily been included in the results derived about groups. How-
ever, to appreciate this result for its own sake requires a great deal of hind-
sight and to see it used effectively would require too great a digression. True,
one could develop the whole theory of dimension of a vector space as one of
its corollaries, but, for the first time around, this seems like a much too fancy
and unnatural approach to something so basic and down-to-earth. Likewise,
there is no mention of tensor products or related constructions. There is so
much time and opportunity to become abstract; why rush it at the
beginning?

A word about the problems. There are a great number of them. It would
be an extraordinary student indeed who could solve them all. Some are
present merely to complete proofs in the text material, others to illustrate
and to give practice in the results obtained. Many are introduced not so
much to be solved as to be tackled. The value of a problem is not so much
in coming up with the answer as in the ideas and attempted ideas it forces
on the would-be solver. Others are included in anticipation of material to
be developed later, the hope and rationale for this being both to lay the
groundwork for the subsequent theory and also to make more natural ideas,
definitions, and arguments as they are introduced. Several problems appear
more than once. Problems that for some reason or other seem difficult to me
are often starred (sometimes with two stars). However, even here there will
be no agreement among mathematicians; many will feel that some unstarred
problems should be starred and vice versa.

Naturally, I am indebted to many people for suggestions, comments and
criticisms. To mention just a few of these: Charles Curtis, Marshall Hall,
Nathan Jacobson, Arthur Mattuck, and Maxwell Rosenlicht. T owe a great
deal to Daniel Gorenstein and Irving Kaplansky for the numerous con-
versations we have had about the book, its material and its approach.
Above all, I thank George Seligman for the many incisive suggestions and
remarks that he has made about the presentation both as to its style and to
its content. I am also grateful to Francis McNary of the staff of Ginn and
Company for his help and cooperation. Finally, I should like to express my
thanks to the John Simon Guggenheim Memorial Foundation; this book was
in part written with their support while the author was in Rome as a
Guggenheim Fellow.
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1

Preliminary Notions

One of the amazing features of twentieth century mathematics has
been its recognition of the power of the abstract approach. This has
given rise to a large body of new results and problems and has, in fact,
led us to open up whole new areas of mathematics whose very existence
had not even been suspected.

In the wake of these developments has come not only a new
mathematics but a fresh outlook, and along with this, simple new
proofs of difficult classical results. The isolation of a problem into its
basic essentials has often revealed for us the proper setting, in the whole
scheme of things, of results considered to have been special and apart
and has shown us interrelations between areas previously thought to
have been unconnected.

The algebra which has evolved as an outgrowth of all this is not
only a subject with an independent life and vigor—it is one of the
important current research areas in mathematics—but it also serves as
the unifying thread which interlaces almost all of mathematics—
geometry, number theory, analysis, topology, and even applied
mathematics.

This book is intended as an introduction to that part of mathematics
that today goes by the name of abstract algebra. The term “abstract”
is a highly subjective one; what is abstract to one person is very often
concrete and down-to-earth to another, and vice versa. In relation to
the current research activity in algebra, it could be described as
“not too abstract”; from the point of view of someone schooled in the
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calculus and who is seeing the present material for the first time, it may very
well be described as “quite abstract.”

Be that as it may, we shall concern ourselves with the introduction and
development of some of the important algebraic systems—groups, rings,
vector spaces, fields. An algebraic system can be described as a set of objects
together with some operations for combining them.

Prior to studying sets restricted in any way whatever—for instance, with
operations—it will be necessary to consider sets in general and some notions
about them. At the other end of the spectrum, we shall need some informa-
tion about the particular set, the set of integers. It is the purpose of this
chapter to discuss these and to derive some results about them which we can
call upon, as the occasions arise, later in the book.

1.1 Set Theory

We shall not attempt a formal definition of a set nor shall we try to lay the
groundwork for an axiomatic theory of sets. Instead we shall take the
operational and intuitive approach that a set is some given collection of
objects. In most of our applications we shall be dealing with rather specific
things, and the nebulous notion of a set, in these, will emerge as something
quite recognizable. For those whose tastes run more to the formal and
abstract side, we can consider a set as a primitive notion which one does
not define.

A few remarks about notation and terminology. Given a set S we shall
use the notation throughout a € S to read “a is an element of §.” In the same
vein, a ¢ § will read “a is not an element of S.”” The set 4 will be said to be
a subset of the set S if every element in 4 is an element of S, that is, if a € 4
implies @ € S. We shall write this as 4 = § (or, sometimes, as S > 4),
which may be read “4 is contained in §” (or, S contains 4). This notation
is not meant to preclude the possibility that 4 = 5. By the way, what is
meant by the equality of two sets? For us this will always mean that they
contain the same elements, that is, every element which is in one is in the
other, and vice versa. In terms of the symbol for the containing relation, the
two sets 4 and B are equal, written 4 = B, if both 4 = B and B — 4.
The standard device for proving the equality of two sets, something we shall
be required to do often, is to demonstrate that the two opposite containing
relations hold for them. A subset 4 of S will be called a proper subset of S
if4 < Sbutd # S (4is not equal to $).

"The null set is the set having no elements; it is a subset of every set. We
shall often describe that a set S is the null set by saying it is empty.

One final, purely notational remark: Given a set § we shall constantly
use the notation 4 = {a € S| P(a)} to read “4 is the set of all elements in
§ for which the property P holds.” For instance, if § is the set of integers
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and if 4 is the subset of positive integers, then we can describe 4 as
A = {ae S|a > 0}. Another example of this: If § is the set consisting of
the objects (1), (2),..., (10), then the subset 4 consisting of (1), (4), (7),
(10) could be described by 4 = {(i) e §|i =3n + 1, n =0, 1, 2, 3}.

Given two sets we can combine them to form new sets. There is nothing
sacred or particular about this number two; we can carry out the same pro-
cedure for any number of sets, finite or infinite, and in fact we shall. We
do so for two first because it illustrates the general construction but is not
obscured by the additional notational difficulties.

DEFINITION The union of the two sets 4 and B, written as A U B, is the
set {x | x € 4 or x € B}.

A word about the use of “or.” In ordinary English when we say that
something is one or the other we imply that it is not both. The mathematical
“or” is quite different, at least when we are speaking about set theory. For
when we say that x is in A or x is in B we mean x is in at least one of A or B, and
may be in both.

Let us consider a few examples of the union of two sets. For any set 4,
A U A = A4;in fact, whenever Bis a subset of 4, 4 U B = A. If 4is the
set {x;, x5, x3} (i.e., the set whose elements are x,, x,, x3) and if B is the set
{91, 92, %.}, then A U B = {x;, x;, %3, 91, 9,}. If 4 is the set of all blonde-
haired people and if B is the set of all people who smoke, then 4 U B
consists of all the people who either have blonde hair or smoke or both.
Pictorially we can illustrate the union of the two sets 4 and B by

Here, 4 is the circle on the left, B that on the right, and 4 U B is the shaded
part.

DEFINITION The intersection of the two sets A and B, written as 4 N B,
is the set {x | x € 4 and x € B}.

The intersection of 4 and B is thus the set of all elements which are both
in 4 and in B. In analogy with the examples used to illustrate the union of
two sets, let us see what the intersections are in those very examples. For
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any set 4, A 0N A = A4; in fact, if B is any subset of 4,then 4 N B = B.
If 4 is the set {x;, x5, x3} and B the set {y;,7,, %}, then 4 N B = {x,}
(we are supposing no y is an x). If 4 is the set of all blonde-haired people
and if B is the set of all people that smoke, then 4 N B is the set of all
blonde-haired people who smoke. Pictorially we can illustrate the inter-
section of the two sets 4 and B by

Here A is the circle on the left, B that on the right, while their intersection
is the shaded part.

Two sets are said to be disjoint if their intersection is empty, that is, is
the null set. For instance, if 4 is the set of positive integers and B the set of
negative integers, then 4 and B are disjoint. Note however that if C is the
set of nonnegative integers and if D is the set of nonpositive integers, then
they are not disjoint, for their intersection consists of the integer 0, and so is
not empty.

Before we generalize union and intersection from two sets to an arbitrary
number of them, we should like to prove a little proposition interrelating
union and intersection. This is the first of a whole host of such resuylts that
can be proved; some of these can be found in the problems at the end of this
section.

PROPOSITION  For any three sets, A, B, C we have
An(BuC)=AnB)udnC).

Proof. 'The proof will consist of showing, to begin with, the relation
(AnB)uU(ANC)cAn(BuC) and then the converse relation
An(BuC)c(AnB)u((4dnC).

We first dispose of (AnB)u(A4NnC)cdn (Bu C). Because
B = Bu C, it is immediate that An B c An (BuUC). In a similar
manner, 4 " C < 4 n (B u C). Therefore

(AnB)U(ANnC)c(AnBUC)UM@AABUC) =4n (BuC).

Now for the other direction. Given an element x e 4 M (Bu (),
first of all it must be an element of A. Secondly, as an element in B U C it
is either in B or in C. Suppose the former; then as an element both of 4 and
of B, x must be in 4 n B. The second possibility, namely, x € C, leads us
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to x € A n C. Thus in either eventuality x € (4 n B) U (4 n C), whence
AnBuC)c(AnB)u (4nC).

The two opposite containing relations combine to give us the equality
asserted in the proposition.

We continue the discussion of sets to extend the notion of union and of
intersection to arbitrary collections of sets.

Given a set T we say that T serves as an index set for the family # = {4,}
of sets if for every a € T there exists a set of 4, in the family #. The index
set T can be any set, finite or infinite. Very often we use the set of non-
negative integers as an index set, but, we repeat, T can be any (nonempty)
set.

By the union of the sets 4,, where « is in 7, we mean the set {x|xeAd,
for at least one o in 7T'}. We shall denote it by (J,er 4, By the intersection
of the sets 4,, where a is in 7, we mean the set {x | x € 4, for every a € T'};
we shall denote it by (V,er 4, The sets A, are mutually disjoint if fora # B,
A, n A is the null set.

For instance, if § is the set of real numbers, and if 7 is the set of rational
numbers, let, for a € T, 4, = {xe€ S|x > a}. Itis an easy exercise to see
that (J,er 4, = S whereas (J,er 4, is the null set. The sets 4, are not
mutually disjoint.

DEFINITION Given the two sets 4, B then the difference set, A — B, is the
set {xe A|x¢ B}.

Returning to our little pictures, if 4 is the circle on the left, B that on the
right, then A — B is the shaded area.

A

Note that for any set B, the set A satisfies 4 = (A n B) U (4 — B).
(Prove! Note further that B n (4 — B) is the null set. A particular case
of interest of the difference of two sets is when one of these is a subset of the
other. In that case, when B is a subset of 4, we call 4 — B the complement
of Bin A.

We still want one more construct of two given sets 4 and B, their Carlesian
product A x B. This set A x B is defined as the set of all ordered pairs
(a, b) where a € A and b € B and where we declare the pair (a,, b;) to be
equal to (a,, b,) if and only if 4, = a, and &; = b,.
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A few remarks about the Cartesian product. Given the two sets 4 and B
we could construct the sets 4 X B and B x A4 from them. As sets these are
distinct, yet we feel that they must be closely related. Given three sets 4,
B, C we can construct many Cartesian products from them: for instance, the
set A x D, where D = B x C; the set E x C, where E = A x B; and
also the set of all ordered triples (a, b, ¢) where ae€ 4, b € B, and ¢ e C.
These give us three distinct sets, yet here, also, we feel that these sets must
be closely related. Of course, we can continue this process with more and
more sets. To see the exact relation between them we shall have to wait
until the next section, where we discuss one-to-one correspondences.

Given any index set 7" we could define the Cartesian product of the sets
4, as o varies over T; since we shall not need so general a product, we do
not bother to define it.

Finally, we can consider the Cartesian product of a set 4 with itself,
4 x A. Note that if the set 4 is a finite set having n elements, then the set
4 x Ais also a finite set, but has n? elements. The set of elements (a, a) in
A x Ais called the diagonal of A x A.

A subset Rof A x A is said to define an equivalence relation on A if

1. (a,a) e Rforall a € A.
2. (a, b) € R implies (b, a) € R.
3. (a,6) € R and (b, ¢) € R imply that (g,¢) € R.

Instead of speaking about subsets of 4 x 4 we can speak about a binary
relation (one between two elements of 4) on 4 itself, defining b to be related
to aif (a, b) € R. The properties 1, 2, 3 of the subset R immediately translate
into the properties 1, 2, 3 of the definition below.

DEFINITION The binary relation ~ on 4 is said to be an equivalence
relation on A if for all @, b, ¢ in 4

l.a ~a.
2. a ~ bimplies b ~ a.
3. a~bandb ~ cimply a ~ .

The first of these properties is called reflexivity, the second, symmetry, and
the third, transitivity.

The concept of an equivalence relation is an extremely important one
and plays a central role in all of mathematics. We illustrate it with a few
examples.

Example 1.1.1 Let § be any set and define a ~ b, for a, b € S, if and
only if ¢ = b. This clearly defines an equivalence relation on S. In fact, an
equivalence relation is a generalization of equality, measuring equality up
to some property.
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Example 1.1.2 Let S be the set of all integers. Given a4, € S, define
a ~ bifa — bisan even integer. We verify that this defines an equivalence
relation of §.

1. Since 0 = a — aiseven,a ~ a.

9. Ifa ~ b, thatis, ifa — b is even, then b — a = —(a — b) is also even,
whence b ~ a.

3. Ifa~band b ~ ¢, then both @ — b and b — ¢ are even, whence
a —¢ = (a—b) + (b — ¢)is also even, proving that a ~ ¢.

Example 1.1.3 Let S be the set of all integers and let n > 1 be a fixed
integer. Define for a,b € S, a ~ b if a — b is a multiple of n. We leave it
as an exercise to prove that this defines an equivalence relation on S.

Example 1.1.4 Let S be the set of all triangles in the plane. Two
triangles are defined to be equivalent if they are similar (i.e., have corre-
sponding angles equal). This defines an equivalence relation on §.

Example 1.1.5 Let S be the set of points in the plane. Two points 2 and
b are defined to be equivalent if they are equidistant from the origin. A
simple check verifies that this defines an equivalence relation on §.

There are many more equivalence relations; we shall encounter a few as
we proceed in the book.

DEFINITION If 4 is a set and if ~ is an equivalence relation on 4, then
the equivalence class of a € A is the set {x € A |a ~ x}. We write it as cl(a).

In the examples just discussed, what are the equivalence classes? In
Example 1.1.1, the equivalence class of a consists merely of a itself. In
Example 1.1.2 the equivalence class of a consists of all the integers of the
form a + 2m, where m = 0, +1, +2, ... ; in this example there are only
two distinct equivalence classes, namely, c1(0) and cl(1). In Example 1.1.3,
the equivalence class of a consists of all integers of the form a + kn where
k =0, +1, +2,...; here there are n distinct equivalence classes, namely
cl(0), cI(1),...,cl(rn — 1). In Example 1.1.5, the equivalence class of a
consists of all the points in the plane which lie on the circle which has its
center at the origin and passes through a.

Although we have made quite a few definitions, introduced some concepts,
and have even established a simple little proposition, one could say in all
fairness that up to this point we have not proved any result of real substance.
We are now about to prove the first genuine result in the book. The proof
of this theorem is not very difficult—actually it is quite easy—but nonetheless
the result it embodies will be of great use to us.
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THEOREM 1.1.1  The distinct equivalence classes of an equivalence relation on A
provide us with a decomposition of A as a union of mutually disjoint subsets. Conversely,
given a decomposition of A as a union of mutually disjoint, nonempty subsets, we can
define an equivalence relation on A for which these subsets are the distinct equivalence
classes.

Proof.  Let the equivalence relation on 4 be denoted by ~.

We first note that since for any a € 4, a ~ a, @ must be in cl(a), whence
the union of the cl(a)’s is all of A. We now assert that given two equivalence
classes they are either equal or disjoint. For, suppose that cl(a) and cl(b)
are not disjoint; then there is an element x € cl(a) n cl(b). Since x € cl(a),
a ~ x; since x e cl(b), b ~ x, whence by the symmetry of the relation,
x ~ b. However, a ~ x and x ~ b by the transitivity of the relation forces
a ~ b. Suppose, now that y e cl(h); thus b ~ 3. However, from a ~ b
and b ~ y, we deduce that a ~ 3, that is, that y €cl(a). Therefore, every
element in cl(b) is in cl(a), which proves that cl(b) < cl(a). The argument
is clearly symmetric, whence we conclude that cl(a) = cl(b). The two
opposite containing relations imply that cl{a) = cl(b).

We have thus shown that the distinct cl(a)’s are mutually disjoint and
that their union is 4. This proves the first half of the theorem. Now for
the other half!

Suppose that 4 = () 4, where the 4, are mutually disjoint, nonempty
sets (o is in some index set 7). How shall we use them to define an equiva-
lence relation? The way is clear; given an element 4 in 4 it is in exactly one
A,. We define for a,b e 4, a ~ b if a and b are in the same 4,. We leave
it as an exercise to prove that this is an equivalence relation on 4 and that
the distinct equivalence classes are the 4,’s.

Problems

1. (a) If 4 is a subset of B and B is a subset of C, prove that 4 is a subset
of C.
(b) If B c 4, prove that A U B = 4, and conversely.
(c) If B = A, prove that for any set ¢ both B U C c 4 U C and
BnCcAnC.
2. (a) Provethat AnB=BnAdandAUB = B U 4.
(b) Prove that (A " B) n C = 4 n (Bn Q).
3. Prove that AU (BN C) = (4 U B) n (4vu0).
4. For a subset C of S let €’ denote the complement of C in §. For any
two subsets 4, B of S prove the De Morgan rules:
(a) (AnB)Y =4 u B.
(b) (AU B) =4 nB.
5. For a finite set C let 0o(C) indicate the number of elements in C. If 4
and B are finite sets prove o(4 U B) = o(4) + o(B) — o(4 n B).
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If A is a finite set having 7 elements, prove that 4 has exactly 2" distinct
subsets.

A survey shows that 63%, of the American people like cheese whereas
769, like apples. What can you say about the percentage of the
American people that like both cheese and apples? (The given statistics
are not meant to be accurate.)

Given two sets 4 and B their symmetric difference is defined to be

(4 — B) u (B — A). Prove that the symmetric difference of 4 and B

equals (4 U B) — (4 n B).

Let S be a set and let $* be the set whose elements are the various sub-

sets of S. In S* we define an addition and multiplication as follows: If

A, B € §* (remember, this means that they are subsets of ) :

() 44+ B=(4— B)u (B — 4).

(2) A-B=4n B.

Prove the following laws that govern these operations:

(@) A4+ B)+C=4+ (B+C).

(b) A-(B+ C) =A-B + A-C.

(c) 4-4 = A.

(d) 4 + 4 = null set.

() If4A+B=A4+ Cthen B = C.

(The system just described is an example of a Boolean algebra.)

For the given set and relation below determine which define equivalence

relations.

(a) S is the set of all people in the world today, a ~ b if a and b have
an ancestor in common.

(b) S is the set of all people in the world today, a ~ b if a lives within
100 miles of b. '

(c) S is the set of all people in the world today, a ~ b if @ and b have
the same father.

(d) Sis the set of real numbers, a ~ bif a = +b.

(e) Sis theset of integers, a ~ bifbotha > band b > a.

(f) Sis the set of all straight lines in the plane, a ~ bifais parallel to b.

(a) Property 2 of an equivalence relation states that if @ ~ b then
b ~ a; property 3 states that if a ~ b and b ~ ¢ then a ~ ¢
What is wrong with the following proof that properties 2 and 3
imply property 1? Let a ~ b; then b ~ a, whence, by property 3
(using a = ¢), a ~ a.

(b) Can you suggest an alternative of property 1 which will insure us
that properties 2 and 3 do imply property 1?

In Example 1.1.3 of an equivalence relation given in the text, prove

that the relation defined is an equivalence relation and that there are

exactly n distinct equivalence classes, namely, c1(0), cl(1), ..., cl(r — 1).

Complete the proof of the second half of Theorem 1.1.1.
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1.2 Mappings

We are about to introduce the concept of a mapping of one set into another.
Without exaggeration this is probably the single most important and uni-
versal notion that runs through all of mathematics. It is hardly a new thing
to any of us, for we have been considering mappings from the very earliest
days of our mathematical training. When we were asked to plot the relation
» = x? we were simply being asked to study the particular mapping which
takes every real number onto its square.

Loosely speaking, a mapping from one set, .S, into another, 7, is a “rule”
(whatever that may mean) that associates with each element in S a unique
element ¢ in 7. We shall define a mapping somewhat more formally and
precisely but the purpose of the definition is to allow us to think and speak
in the above terms. We should think of them as rules or devices or mech-
anisms that transport us from one set to another.

Let us motivate a little the definition that we will make. The point of
view we take is to consider the mapping to be defined by its “graph.” We
illustrate this with the familiar example y = x? defined on the real numbers
§ and taking its values also in S. For this set S, § x §, the set of all pairs
(a, b) can be viewed as the plane, the pair (a, b) corresponding to the point
whose coordinates are a and b, respectively. In this plane we single out all
those points whose coordinates are of the form (%, %) and call this set of
points the graph of y = x%. We even represent this set pictorially as

To find the “value” of the function or mapping at the point ¥ = a, we look
at the point in the graph whose first coordinate is a and read off the second
coordinate as the value of the function at ¥ = a.

This is, no more or less, the approach we take in the general setting to
define a mapping from one set into another.

DEFINITION If S and T are nonempty sets, then a mapping from S to T
is a subset, M, of § x T such that for every s € S there is a unique t € T such
that the ordered pair (s, ¢) is in M.

This definition serves to make the concept of a mapping precise for us but
we shall almost never use it in this form. Instead we do prefer to think of a
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mapping as a rule which associates with any element s in § some element
tin T, the rule being, associate (or map) s € S with t € T if and only if (s, t) € M.
We shall say that ¢ is the image of s under the mapping.

Now for some notation for these things. Let ¢ be a mapping from § to
T'; we often denote this by writing ¢:§ — T or § 5 T. Iftis the image of
s under ¢ we shall sometimes write this as ¢:s — {; more often, we shall
represent this fact by ¢ = so. Note that we write the mapping ¢ on the
right. There is no overall consistency in this usage; many people would
write it as ¢ = o(s). Algebraists often write mappings on the right; other
mathematicians write them on the left. In fact, we shall not be absolutely
consistent in this ourselves; when we shall want to emphasize the functional
nature of ¢ we may very well write ¢t = o(s).

Examples of Mappings

In all the examples the sets are assumed to be nonempty.

Example 1.2.1 Let S be any set; define 1:§ - § by s = s1 for any
s € S. This mapping 1 is called the identity mapping of S.

Example 1.2.2 Let S and T be any sets and let #, be an element of T.
Define 7:§ — T by 1:s — t, for every s € S.

Example 1.2.3 Let S be the set of positive rational numbers and let
T = J x J where J is the set of integers. Given a rational number s we
can write it as s = m/n, where m and n have no common factor. Define
78 = T by st = (m, n). -

Example 1.2.4 Let Jbethesetofintegersand S = {(m,n) e J x J|n # 0};
let T be the set of rational numbers; define 7:8 — T by (m, n)t = m/n for
every (m, n) in S. :

Example 1.2.5 Let J be the set of integers and § = J x J. Define
8 > Jby (myn)t = m + n.

Note that in Example 1.2.5 the addition in [ itself can be represented in
terms of a mapping of J x J into J. Given an arbitrary set § we call a
mapping of § x S into S a binary operation on S. Given such a mapping
78 x § = § we could use it to define a “product” # in § by declaring
axb =cif (a,b)r = c.

Example 1.2.6 Let § and T be any sets; define 7:5§ x T — § by
(a, b))t = a for any (a, b) € S x T. This 1 is called the projection of § x T
on S. We could similarly define the projection of § x T on T.

1
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Example 1.2.7 Let § be the set consisting of the elements Xy, Xy, X3
Define 725 — S by £, = x,, x,7 = 13, 3T = xq.

Example 1.2.8 Let S be the set of integers and let T be the set consisting
of the elements £ and 0. Define t:§ » T by declaring nt = E if n is even
and nt = 0 if n is odd.

If § is any set, let {x;,...,x,} be its subset consisting of the elements
X1, X35 - -, X, of §. In particular, {x} is the subset of § whose only element
is x. Given § we can use it to construct a new set S$*, the set whose elements
are the subsets of S. We call $* the set of subsets of S. Thus for instance, if
§ = {x;,x,} then $* has exactly four elements, namely, a; = null set,
a, = the subset, S, of S, a3 = {x,}, a, = {x2}. The relation of S to $*,
in general, is a very interesting one; some of its properties are examined in
the problems.

Example 1.2.9 Let § be a set, T = §*; define 7:5 » T by st =
complement of {s}in § = § — {s}.

Example 1.2.10 Let S be a set with an equivalence relation, and let
T be the set of equivalence classes in § (note that T is a subset of S$*).
Define 7:§ - T by st = cl(s).

We leave the examples to continue the general discussion. Given a
mapping 7:§ — T we define for t € T, the inverse image of t with respect to 1
to be the set {se S|t = st}. In Example 1.2.8, the inverse image of E is
the subset of S consisting of the even integers. It may happen that for some
tin T that its inverse image with respect to T is empty; that is, ¢ is not the
image under 7 of any element in S. In Example 1.2.3, the element (4, 2) is
not the image of any element in S under the 7 used; in Example 1.2.9, S,
as an element in $*, is not the image under the 7 used of any element in S.

DEFINITION The mapping t of § into 7T is said to be onto T if given
¢t € T there exists an element s € S such that ¢ = st.

If we call the subset ST = {x e T|x = s7 for some s € S} the image of S
under 7, then 7 is onto if the image of S under 7 is all of 7. Note that in
Examples 1.2.1, 1.2.4-1.2.8, and 1.2.10 the mappings used are all onto.

Another special type of mapping arises often and is important: the one-
to-one mapping.

DEFINITION The mapping  of S into 7 is said to be a one-to-one mapping
if whenever s; # s,, then 5,7 # s,1.
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In terms of inverse images, the mapping t is one-to-one if for any t e T
the inverse image of ¢ is either empty or is a set consisting of one element.
In the examples discussed, the mappings in Examples 1.2.1, 1.2.3, 1.2.7,
and 1.2.9 are all one-to-one.

When should we say that two mappings from S to 7 are equal? A natural
definition for this is that they should have the same effect on every element
of §; that is, the image of any element in § under each of these mappings
should be the same. In a little more formal manner:

DEFINITION  The two mappings ¢ and 7 of § into 7 are said to be equal
if so = st for every s € S.

Consider the following situation: We have a mapping ¢ from S to 7 and
another mapping 7 from 7 to U. Can we compound these mappings to
produce a mapping from § to U? The most natural and obvious way of
doing this is to send a given element s, in S, in two stages into U, first by
applying ¢ to s and then applying 7 to the resulting element s¢ in 7. This
is the basis of the

DEFINITION If ¢:§ - T and t:7 — U then the composition of ¢ and 7
(also called their product) is the mapping ¢ o S — U defined by means of
s(6 o 1) = (s0)7 for every s € S.

Note that the order of events reads from left to right; ¢ o 7 reads: first
perform ¢ and then follow it up with 7. Here, too, the left-right business is
not a uniform one. Mathematicians who write their mappings on the left
would read ¢ o7 to mean first perform 7 and then ¢. Accordingly,-in
reading a given book in mathematics one must make absolutely sure as to
what convention is being followed in writing the product of two mappings.
We reiterate, for us ¢ o t will always mean: first apply ¢ and then 7.

We illustrate the composition of ¢ and © with a few examples.

Example 1.2.11 Let S = {x;,%,,x,} and let T = S. Let ¢:5 - S be
defined by

xIO' = xz,

X0 = X3,

%30 = xy3
and 7:§ - S by

X1T = Xp,

xz‘[ = xs,

X3T = X5.

13
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Thus ,
x(001) = (%,0)T = 2,71 = x,,
%(001) = (%,0)T = %37 = x,,
%3(0 0 1) = (%36)T = ;T = x,.

At the same time we can compute 7 o ¢, because in this case it also makes
sense. Now

#(to0) = (7)o = (x,0) = x,,

(T 0 0) = (x,7)0 = %36 = xy,

%3(To0) = (%31)0 = %,6 = x;.

Note that x, = x,(7 o g), whereas x; = x,;(¢ o 1) whence 6 o7 # 7o 0.

Example 1.2.12  Let S be the set of integers, T the set S x S, and suppose
0:S — T is defined by me = (m — 1,1). Let U = S and suppose that
©:T — U(= S§) is defined by (m, n)t = m + n. Thus ¢ o 7:S — § whereas
t06:T — T; even to speak about the equality of ¢ o7 and 7 oo would
make no sense since they do not act on the same space. We now compute
6 o T as a mapping of § into itself and then 7 o ¢ as one on T into itself.

Givenme S, mg = (m — 1, 1) whencem(c o 1) = (mo)t = (m — 1, )7 =
(m — 1) + 1 = m. Thus o o 7 is the identity mapping of S into itself. What
about o a? Given (m, n) € T, (m,n)t = m + n, whereby (m, ) (t o 6) =
((m,n)t)6 = (m + n)a = (m + n — 1, 1). Note that 1 o ¢ is not the identity
map of 7 into itself; it is not even an onto mapping of 7.

Example 1.2.13 Let S be the set of real numbers, 7T the set of integers,
and U = {E,0}. Define ¢:§ - T by so = largest integer less than or
equal to 5, and 7:T — U defined by nt = Eifnis even, nt = 0 if z is odd.
Note that in this case 7 o ¢ cannot be defined. We compute o o 7 for two
real numbers s = § and s = 7. Now since § = 2 + %, (§)¢ = 2, whence
$)(eot) = B6)t = (2)7 = E; (n)o = 3, whence (6 o 1) = (no)T =
3)r = 0.

For mappings of sets, provided the requisite products make sense, a
general associative law holds. This is the content of

LEMMA 1.21 (AssociaTive Law) If 6:8 —» T,7:T — U, and pu:U — V,
then (G o) opu = ao(t0p).

Proof. Note first that ¢ o7 makes sense and takes S into U, thus
(@ °17) oy also makes sense and takes S into V. Similarly ¢ o (topy) is
meaningful and takes § into ¥. Thus we can speak about the equality, or
lack of equality, of (¢ 0 7) o g and & o (7 o ).

'To prove the asserted equality we merely must show that for any s e S,
5({(o © 1) o p) = s(0 o (t o u)). Now by the very definition of the composition
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of maps, s((¢°7)°p) = (s(6o1))p = ((s6)r)p whereas s(g o (t o p)) =
(so)(t o ) = ((s0)t)u. Thus, the elements s((6o1) op) and s(o o (1 0 p))
are indeed equal. This proves the lemma.

We should like to show that if two mappings ¢ and 7 are properly condi-
tioned the very same conditions carry over to ¢ o 7.

LEMMA 122 Lo 6:S - Tand 1:T — U; then

1. o o7 is onto if each of ¢ and 7 is onto.
2. 0 o T 15 one-to-one if each of 6 and T is one-to-one.

Proof. We prove only part 2, leaving the proof of part 1 as an exercise.

Suppose that s, 5, € § and that 5; # 5,. By the one-to-one nature of o,
510 # 5,0. Since 7 is one-to-one and s,¢ and s,6 are distinct elements of T,
(s10)t # (s5,0)t whence s5,(601) = (5,0)t # (520)t = s,(0 © 1), proving
that ¢ o 7 is indeed one-to-one, and establishing the lemma.

Suppose that ¢ is a one-to-one mapping of S onto T'; we call ¢ a one-to-one
correspondence between § and 7. Given any ¢ € 7, by the “onto-ness” of ¢
there exists an element s € S such that ¢ = sg; by the “one-to-oneness” of
o this s is unique. We define the mapping ¢~ ':7 — Sby s = t6~ ! if and
only if ¢ = so. The mapping ¢~ ! is called the inverse of 6. Let us compute
o6~ ! which maps § into itself. Given se S, let t = so, whence by
definition s = t6~ *; thus s(6 0 6™ 1) = (s6)¢™ ! = t6~! = 5. We have shown
that 6 o 67 ! is the identity mapping of S onto itself. A similar computation
reveals that 67! o g is the identity mapping of 7 onto itself,

Conversely, if 6:S — T is such that there exists a p:T — S with thg
property that ¢ o y and p o ¢ are the identity mappings on § and 7, respec-
tively, then we claim that ¢ is a one-to-one correspondence between S and 7.
First observe that ¢ is onto for, given te T, t = t(uoo) = (tu)o (since
Ko s the identity on 7") and so ¢ is the image under ¢ of the element ¢y in
§. Next observe that ¢ is one-to-one, for if 5,6 = 5,0, using that ¢ o g is the
identity on S, we have sp=s1(00op) = (510)p = (5,0) 4 = s(Gop) =s,.
We have now proved

LEMMA 1.23 Tk mapping 68 — T is a one-to-one correspondence between
S and T if und only if there exists a mapping u:T — S such that ¢ o p and y o ¢
are the identity mappings on S and T, respectively.

DEFINITION IfSis a nonempty set then A(S) is the set of all one-to-one
Mmappings of S onto itself.

Aside from its own intrinsic interest A(S) plays a central and universal
¥pe of role in considering the mathematical system known as a group

15
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(Chapter 2). For this reason we state the next theorem concerning its
nature. All the constituent parts of the theorem have already been proved
in the various lemmas, so we state the theorem without proof.

THEOREM 1.2.1 If o, 7, u are elements of A(S), then

oot isin A(S).
c(oet)op=o00(top).

There exists an element 1 (the identity map) in A(S) such that 6 o1 = 100 = 0.
There exists an element 6~ € A(S) such that 6 o6~ ' = 6" Yoo = 1.

BN

We close the section with a remark about A(S). Suppose that $ has more
than two elements; let x, x,, x; be three distinct elements in S; define the
mapping 6:8 - § by %6 = %,, %0 = x;, %36 = %, s6 = 5 for any
s € § different from xy, x,, x;. Define the mapping 7:§ — § by x,7 = x,,
X3T = %, and st = s for any 5 € § different from x,, x;. Clearly both ¢ and
T are in A(S). A simple computation shows that x;(¢ o 7) = x, but that
% (t1006) = x, # x3. Thus o7 # Tog. Thisis

LEMMA 1.2.4 If S has more that two elements we can find two elements o,
T in A(S) such that 6 o1 # 10 0.

Problems

1. In the following, where ¢:§ — T, determine whether the ¢ is onto
and/or one-to-one and determine the inverse image of any te T

under o.
(a) § = set of real numbers, T = set of nonnegative real numbers,
2
50 = s5°.

(b) § = set of nonnegative real numbers, 7' = set of nonnegative real

numbers, s¢ = 52,

(c) § = set of integers, T = set of integers, s = s2.

(d) § = set of integers, T' = set of integers, s6 = 2.

2. If § and T are nonempty sets, prove that there exists a one-to-one
correspondence between § x T and T x .

3. If §, T, U are nonempty sets, prove that there exists a one-to-one
correspondence between
(@) (§ x T) x Uand § x (T x U).
(b) Either set in part (a) and the set of ordered triples (s, t, u) where
sel,teT, ueU.

4. (a) If there is a one-to-one correspondence between § and T, prove
that there exists a one-to-one correspondence between 7 and S.
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(b) If there is a one-to-one correspondence between S and T and
between T and U, prove that there is a one-to-one correspondence
between S and U.

If 1 is the identity mapping on S, prove that for any ¢ e A(S),
gol =100 = 0. ‘

If § is any set, prove that it is impossible to find a mapping of § onto S*.
If the set S has n elements, prove that A(S) has ! (n factorial) elements.
If the set § has a finite number of elements, prove the following:

(a) If 0 maps S onto §, then o is one-to-one.

(b) If o is a one-to-one mapping of S onto itself, then ¢ is onto.

(c) Prove, by example, that both part (a) and part (b) are false if S
does not have a finite number of elements.

. Prove that the converse to both parts of Lemma 1.2.2 are false; namely,

(a) If o o 7 is onto, it need not be that both ¢ and 7 are onto.
(b) If ¢ 7 is one-to-one, it need not be that both ¢ and 7 are one-to-
one.

Prove that there is a one-to-one correspondence between the set of
integers and the set of rational numbers.

If 6:S§ - T and if 4 is a subset of S, the restriction of 0 to 4,0, is
defined by a6, = acg for any a € 4. Prove

(a) o4 defines a mapping of 4 into T.

(b) o, is one-to-one if ¢ is.

(c) 04 may very well be one-to-one even if ¢ is not.

If :§ - 8 and 4 is a subset of § such that dg < 4, prove that
(6e0), =0400,. -
A set S is said to be infinite if there is a one-to-one correspondence
between § and a proper subset of . Prove

(a) The set of integers is infinite.

(b) The set of real numbers is infinite.

(c) If a set S has a subset 4 which is infinite, then § must be infinite.

(Note : By the result of Problem 8, a set finite in the usual sense is not
infinite.)

If § is infinite and can be brought into one-to-one correspondence

with the set of integers, prove that there is one-to-one correspondence
between § and § x §.

Given two sets S and T we declare § < T (S is smaller than T) if
there is 2 mapping of 7 onto S but no mapping of § onto T. Prove that
ifS < Tand T < Uthen S < U.

If § and T are finite sets having m and elements, respectively, prove
thatif m < nthen § < T.



18

Preliminary Notions Ch. 1

1.3 The Integers

We close this chapter with a brief discussion of the set of integers. We shall
make no attempt to construct them axiomatically, assuming instead that we
already have the set of integers and that we know many of the elementary
facts about them. In this number we include the principle of mathematical
induction (which will be used freely throughout the book) and the fact that
a nonempty set of positive integers always contains a smallest element. As
to notation, the familiar symbols: a > b, a < b, |a|, etc., will occur with
their usual meaning. To avoid repeating that something is an integer, we
make the assumption that all symbols, in this section, written as lowercase Latin
letters will be integers.

Given a and b, with & # 0, we can divide a by & to get a nonnegative
remainder 7 which is smaller in size than b; that is, we can find m and r
such that @ = mb + r where 0 < r < |b|. This fact is known as the
Euclidean algorithm and we assume familiarity with it.

We say that b # O divides a if a = mb for some m. We denote that b
divides a by b | a, and that b does not divide a by b  a. Note thatifa| | then
a = =1, that when both a|b and b|a, then ¢ = +5, and that any &
divides 0. If ] a, we call b a divisor of a. Note that if b is a divisor of g
and of £, then it is a divisor of mg + nh for arbitrary integers m and n. We
leave the verification of these remarks as exercises.

DEFINITION The positive integer ¢ is said to be the greatest common divisor
of a and b if

1. ¢ is a divisor of @ and of 5.
2. Any divisor of g and 5 is a divisor of ¢.

We shall use the notation (a, b) for the greatest common divisor of a and
b. Since we insist that the greatest common divisor be positive, (a, b) =
(a, —b) = (~a, b) = (—a, —b). For instance, (60, 24) = (60, —24) = 12.
Another comment: The mere fact that we have defined what is to be meant
by the greatest common divisor does not guarantee that it exists. This will
have to be proved. However, we can say that if it exists then it is unique,
for, if we had ¢; and ¢, satisfying both conditions of the definition above,
then ¢; | ¢, and ¢, | ¢y, whence we would have ¢, = +¢,; the insistence on
positivity would then force ¢; = ¢,. Our first business at hand then is to
dispose of the existence of (4, b). In doing so, in the next lemma, we actually
prove a little more, namely that (e, b)) must have a particular form.

LEMMA 1.31 If a and b are integers, not both O, then (a, b) exisls; moreover,
we can find integers my and ny such that (a, b) = mya + nyb.
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Proof. Let ./ be the set of all integers of the form ma + nb, where m
and n range freely over the set of integers. Since one of a or & is not 0, there
are nonzero integers in 4. Because x = ma + nbisin M, —x = (—m)a +
(—n)b is also in / ; therefore, # always has in it some positive integers.
But then there is a smallest positive integer, ¢, in 4 ; being in ., ¢ has the
form ¢ = mya + ngb. We claim that ¢ = (q, b). :

Note first that if | @ and d | b, the d | (mga + nyb), whence d | ¢. We now
must show that ¢ | @ and ¢ | b. Given any element x = ma + nb in #, then
by the Euclidean algorithm, x = & + r where 0 < r < ¢. Writing this
out explicitly, ma + nb = t(moa + nob) + r, whence r = (m — tmy)a +
(n — tno)b and so must be in 4. Since 0 < r and r < ¢, by the choice of
¢, r = 0. Thus x = #&; we have proved that ¢|x for any x € .#. But
a=1la+0be# and b = 0a + 1b € #, whence ¢|aandc|b.

We have shown that ¢ satisfies the requisite properties to be (a, ) and
so we have proved the lemma.

DEFINITION The integers a and b are relatively prime if (a, b) = 1.
As an immediate consequence of Lemma 1.3.1, we have the

COROLLARY If a and b are relatively prime, we can find integers m and n such
that ma + nb = 1.

We introduce another familiar notion, that of prime number. By this
we shall mean an integer which has no nontrivial factorization. For technical
reasons, we exclude 1 from the set of prime numbers. The sequence 2, 3, 5,
7, 11,... are all prime numbers; equally, —2, —3, —5,... are printe
numbers. Since, in factoring, the negative introduces no essential differences,
for us prime numbers will always be positive.

DEFINITION The integer p > 1 is a prime number if its only divisors are
+1, +p.

Another way of putting this is to say that an integer p (larger than 1) is a
prime number if and only if given any other integer # then either (p, n) = 1
or p | n. As we shall soon see, the prime numbers are the building blocks of
the integers. But first we need the important observation,

LEMMA 1.3.2 If a is relatively prime to b but a | bc, then a | c.

Proof. Since a and b are relatively prime, by the corollary to Lemma
1.3.1, we can find integers m and n such that ma + nb = 1. Thus
Mmac + nbc = ¢. Now a|mac and, by assumption, a|nbc; consequently,
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a| (mac + nbc). Since mac + nbc = ¢, we conclude that a|¢, which is
precisely the assertion of the lemma.

Following immediately from the lemma and the definition of prime
number is the important

COROLLARY  If a prime number divides the product of certain integers it must
divide at least one of these integers.

We leave the proof of the corollary to the reader.

We have asserted that the prime numbers serve as the building blocks
for the set of integers. The precise statement of this is the unique factorization
theorem:

THEOREM 1.3.1  Any positive integer a > 1 can be factore;z’ in a unique way
as a = p\Mp,"2ccpl, where py > py > - > p, are prime numbers and
where each o; > 0.

Proof. The theorem as stated actually consists of two distinct sub-
theorems; the first asserts the possibility of factoring the given integer as a
product of prime powers; the second assures us that this decomposition is
unique. We shall prove the theorem itself by proving each of these sub-
theorems separately.

An immediate question presents itself: How shall we go about proving
the theorem? A natural method of attack is to use mathematical induction.
A short word about this; we shall use the following version of mathematical
induction: If the proposition P (my) is true and if the truth of P(r) for all 7
such that my < r < k implies the truth of P(k), then P(n) is true for all
n > my. This variant of induction can be shown to be a consequence of the
basic property of the integers which asserts that any nonempty set of positive
integers has 2 minimal element (see Problem 10).

We first prove that every integer a > 1 can be factored as a product of
prime powers; our approach is via mathematical induction.

Certainly my = 2, being a prime number, has a representation as a
product of prime powers.

Suppose that any integer 7, 2 < r < k can be factored as a product of
prime powers. If £ itself is a prime number, then it is a product of prime
powers. If £ is not a prime number, then & = uy, where | < u < £ and
I < v < k. By the induction hypothesis, since both u and v are less than £,
each of these can be factored as a product of prime powers. Thus & = uv
is also such a product. We have shown that the truth of the proposition for
all integers 7, 2 < r < k, implies its truth for k. Consequently, by the
basic induction principle, the proposition is true for all integersn > my, = 2;
that is, every integer n > 2 is a product of prime powers.
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Now for the uniqueness. Here, too, we shall use mathematical induction,
and in the form used above. Suppose that

a = plfhpzaz . .prar = qlﬂxqzﬂz cee qsﬂs>

where py > p2 > b 41 > gy >0 >4, are prime numbers, and
where each o; > 0 and each f; > 0. Our object is to prove

= J.
1 =41, P2 = Q255 by = G
1 =617 0(2=/32,...,Ot,=ﬁ,.

©ON =
Q> =

For a = 2 this is clearly true. Proceeding by induction we suppose it to
be true for all integers u, 2 < u < a. Now, since

a ___Pltxl,.,prar — qlﬂl...qsﬂs

and since o, > 0, p, | a, hence p, | ¢,%'---¢f>. However, since p; is a
prime number, by the corollary to Lemma 1.3.2, it follows easily that
p; = q; for some i. Thus ¢, > ¢; = p;- Similarly, since ¢, |a we get
q, = p; for some j, whence py > p; = ¢;- In short, we have shown that
p1 = q,- Therefore a = p"ip,"* - -p = p:#1g,P2 - - ¢ f>. We claim that
this forces «; = f;. (Prove!) But then

b= = =p20!2...pr¢r — qzﬂz...qsl-‘s_

If =1, then ay = **=a, =0 and B, =-+-= f; = 0; that is,
r = s = |, and we are done. Ifb > 1, then since b < a we can apply,our
induction hypothesis to & to get

1. The number of distinct prime power factors (in 4) on both sides is equal,
thatis,r — 1 = s — 1, hencer = s.

2. a = By..., 0 = p,.

3. p2 = %:---:Pr = {4,

Together with the information we already have obtained, namely, p;, = ¢,
and o, = B, this is precisely what we were trying to prove. Thus we see
that the assumption of the uniqueness of factorization for the integers less
than g implied the uniqueness of factorization for @. In consequence, the

induction is completed and the assertion of unique factorization is estab-
lished.

We change direction a little to study the important notion of congruence
modulo a given integer. As we shall see later, the relation that we now
introduce is a special case of a much more general one that can be defined
in 2 much broader context.
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DEFINITION Let n > 0 be a fixed integer. We define ¢ = b mod =z if
n|(a — b).

The relation is referred to as congruence modulo n, n is called the modulus of
the relation, and we read ¢ = b mod 2 as “a is congruent to b modulo 7.”
Note, for example, that 73 = 4 mod 23, 21 = —9 mod 10, etc.

This congruence relation enjoys the following basic properties:

LEMMA 1.3.3

1. The relation congruence modulo n defines an equivalence relation on the set of
integers.

2. This equivalence relation has n distinct equivalence classes.

3. Ifa=bmodnandc = dmod n, thena + ¢ = b + d mod n and ac
bd mod n.

4. If ab = ac mod n and a is relatively prime to n, then b = ¢ mod n.

il

Proof. We first verify that the relation congruence modulo z is an
equivalence relation. Since 7| 0, we indeed have that n | (¢ — @) whence
a = amod n for every a. Further, if a = b mod n then 2| (¢ — ), and so
n| (b —a) = —(a — b); thus b = a mod n. Finally, if a = b mod n and
b =c¢ mod n, then n|(a — b) and n| (b — ¢) whence n|{(a — b) +
(b — ¢)}, thatis, n| (a — ¢). This, of course, implies that ¢ = ¢ mod ».

Let the equivalence class, under this relation, of @ be denoted by [a];
we call it the congruence class (mod n) of a. Given any integer a, by the
Euclidean algorithm, ¢ = kn + r where 0 < r < n. But then, a € [r] and
so [a] = [r]. Thus there are at most 7 distinct congruence classes; namely,
[0], [1],..., [» — 1]. However, these are distinct, for if [i] = [j] with,
say, 0 < i <j < n, then n|(j — i) where j — 7 is a positive integer less
than n, which is obviously impossible. Consequently, there are exactly the
n distinct congruence classes [0], [1],..., [» — 1]. We have now proved
assertions 1 and 2 of the lemma.

We now prove part 3. Suppose that @ = b mod » and ¢ = d mod n;
therefore, n | (a — b) and n| (¢ — d) whencen| {(a — d) + (¢ — d)}, and
son|{(a +¢) — (b+ d)}. Butthena + ¢ = b + d mod n. In addition,
n|{(a — b)c + (¢ — d)b} = ac — bd, whence ac = bd mod n.

Finally, notice that if ab = ac mod n and if a is relatively prime to z,
then the fact that n | a(b — ¢), by Lemma 1.3.2, implies that n | (b — ¢) and
so b = ¢ mod n.

If a is not relatively prime to n, the result of part 4 may be false; for
instance, 2.3 = 4.3 mod 6, yet 2 # 4 mod 6.
Lemma 1.3.3 opens certain interesting possibilities for us. Let J, be the
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set of the congruence classes mod #; that is, J, = {[0], [1],..., [» — 1]}
Given two elements, [¢] and [j] in J,, let us define

(] + [J] = [+l (a)

[107] = [4]- (b)

We assert that the lemma assures us that this “addition” and “‘multipli-
cation” are well defined; that is, if [{] = [¢'] and [j] = [j'], then [] +[j]=
4] = [ +71 =[]+ [j] and that Q][] = [#1[j]. (Verify!)
These operations in J, have the following interesting properties (whose
proofs we leave as exercises): for any [i], [j], [£] in /,,

(] + [J] =[] + [z
i =['%][i] [£] = [ + ([J] + [£])

([ + L) + = L+ ]+ a 1ativ .
GILDIE = GIE) } ssoctative laws
1G] + [KD) = [A[j] + []1[#] distributive law.

[0] + [] = [

[11[] = []-

One more remark: if # = p is a prime number and if [¢] # [0] is in ],
then there is an element [6] in /, such that [4][6] = [1].

The set J, plays an important role in algebra and number theory. It is
called the set of integers mod n; before we proceed much further we will have
become well acquainted with it.

}commutative laws.

NO @GN

Problems

1. If a| b and b | a, show thata = +b.
2. If b is a divisor of g and of 4, show it is a divisor of mg + nh.

- If @ and b are integers, the least common multiple of a and b, written as
[a, ], is defined as that positive integer d such that
(a) a|dand b | d.
(b) Whenever a | x and b | x then d | x.
Prove that [q, 4] exists and that [, b] = ab/(a, b), ifa > 0,4 > 0.

4. Ifa|xand b | x and (4, b) = 1 prove that (ab) | x.

5. If a = p* -+ p and b = p,’1---pPx where the p, are distinct
prime numbers and where each «; > 0, f; > 0, prove

(a) (a,b) = p,°* -+ p"* where §; = minimum of «; and B, for each i.
(b) [a, b] = p,"* - - - p,”* where y; = maximum of o; and ; for each i.
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6.

10.

11.
12,
13.

*14.
15.

16.
17.

Given a, b, on applying the Euclidean algorithm successively we have

a=gyb + r, 0<r <|b,
b=qrn +rn 0<n<r,
Ty = qu1, + 13, 0 <ry <y,
e = Qr+1Tk+1 T Thvos 0 < 7pap < 1y

Since the integers r, are decreasing and are all nonnegative, there is a
first integer » such that r,,, = 0. Prove that r, = (a, ). (We
consider, here, r, = [5].)

. Use the method in Problem 6 to calculate

(2) (1128,33).  (b) (6540, 1206).

. To check that # is a prime number, prove that it is sufficient to show

that it is not divisible by any prime number p, such that p < \/ 7.

. Show that n > 1 is a prime number if and only if for any a either

(a,n) = lorn]|a.
Assuming that any nonempty set of positive integers has a minimal
element, prove
(a) If the proposition P is such that
(1) P(my) is true,
(2) the truth of P(m — 1) implies the truth of P(m),
then P(n) is true for all n > m,.
(b) If the proposition P is such that
(1) P(my) is true,
(2) P(m) is true whenever P(a) is true for all a such that
my < a <m,
then P(n) is true for all n > m,.

Prove that the addition and multiplication used in [, are well defined.
Prove the properties 1-7 for the addition and multiplication in J,.

If (a, n) = 1, prove that one can find [6] € J, such that [a][b] = [1]
in J,.

If p is a prime number, prove that for any integer a, a’ = a mod p.

If (m,n) = 1, given a and b, prove that there exists an x such that
x = amod m and ¥ = b mod n.

Prove the corollary to Lemma 1.3.2.

Prove that » is a prime number if and only if in J,, [4][6] = [0]
implies that [a] = [6] = [0].
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Group Theory

In this chapter we shall embark on the study of the algebraic object
known as a group which serves as one of the fundamental building
blocks for the subject today called abstract algebra. In later chapters
we shall have a look at some of the others such as rings, fields, vector
spaces, and linear algebras. Aside from the fact that it has become
traditional to consider groups at the outset, there are natural, cogent
reasons for this choice. To begin with, groups, being one-operational
systems, lend themselves to the simplest formal description. Yet
despite this simplicity of description the fundamental algebraic con-
cepts such as homomorphism, quotient construction, and the like,
which play such an important role in all algebraic structures—in fact,
in all of mathematics—already enter here in a pure and revealing form.

At this point, before we become weighted down with details, let us
take a quick look ahead. In abstract algebra we have certain basic
systems which, in the history and development of mathematics, have
achieved positions of paramount importance. These are usually sets
on whose elements we can operate algebraically—by this we mean that
we can combine two elements of the set, perhaps in several ways, to
obtain a third element of the set—and, in addition, we assume that
these algebraic operations are subject to certain rules, which are
explicitly spelled out in what we call the axioms or postulates defining
the system. In this abstract setting we then attempt to preve theorems
about these very general structures, always hoping that when these
results are applied to a particular, concrete realization of the abstract
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system there will flow out facts and insights into the example at hand which
would have been obscured from us by the mass of inessential information
available to us in the particular, special case.

We should like to stress that these algebraic systems and the axioms
which define them must have a certain naturality about them. They must
come from the experience of looking at many examples; they should be rich
in meaningful results. One does not just sit down, list a few axioms, and
then proceed to study the system so described. This, admittedly, is done
by some, but most mathematicians would dismiss these attempts as poor
mathematics. The systems chosen for study are chosen because particular
cases of these structures have appeared time and time again, because some-
one finally noted that these special cases were indeed special instances of
a general phenomenon, because one notices analogies between two highly
disparate mathematical objects and so is led to a search for the root of
these analogies. To cite an example, case after case after case of the special
object, which we know today as groups, was studied toward the end of
the eighteenth, and at the beginning of the nineteenth, century, yet it was
not until relatively late in the nineteenth century that the notion of an
abstract group was introduced. The only algebraic structures, so far en-
countered, that have stood the test of time and have survived to become
of importance, have been those based on a broad and tall pillar of special
cases. Amongst mathematicians neither the beauty nor the significance of
the first example which we have chosen to discuss—groups—is disputed.

2.1 Definition of a Group

At this juncture it is advisable to recall a situation discussed in the first
chapter. For an arbitrary nonempty set § we defined 4(S) to be the set of
all one-to-one mappings of the set S onto itself. For any two elements o,
7 € A(S) we introduced a product, denoted by & o 7, and on further investi-
gation it turned out that the following facts were true for the elements of
A(S) subject to this product:

1. Whenever g, t € A(S), then it follows that ¢ o 7 is also in 4(S). This is
described by saying that A(S) is closed under the product (or, sometimes,
as closed under multiplication).

2. For any three elements o, 7, u € A(S), 6o (top) = (601)op This
relation is called the associative law.

3. There is a very special element 1 € 4(S) which satisfies 1006 = 601 = 0
for all o € A(S). Such an element is called an identity element for A(S).

4. For every o € A(S) there is an element, written as o~ 1, also in A4(S),
such that 6 o6~ 1 = 6”100 = 1. This is usually described by saying
that every element in A(S) has an inverse in A(S).
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One other fact about A(S) stands out, namely, that whenever § has
three or more elements we can find two elements o, 8 € A(S) such that
ao B # Boa. This possibility, which runs counter to our usual experience
and intuition in mathematics so far, introduces a richness into A(S) which
would have not been present except for it.

With this example as a model, and with a great deal of hindsight, we
abstract and make the

DEFINITION A nonempty set of elements G is said to form a group if in
G there is defined a binary operation, called the product and denoted by -,
such that

l. a, b € G implies that a-b € G (closed).

2. a, b, c € G implies that a-(b-¢c) = (a-b)-c (associative law).

3. There exists an element ¢ € G such that a'¢ = ¢-a = g for all ae G
(the existence of an identity element in G).

4. For every a € G there exists an element ¢~ ! € G such that g-a~! =

a”'-a = ¢ (the existence of inverses in G).

Considering the source of this definition it is not surprising that for every
nonempty set § the set 4(§) is a group. Thus we already have presented to
us an infinite source of interesting, concrete groups. We shall see later (in a
theorem due to Cayley) that these A(S)’s constitute, in some sense, a
universal family of groups. If § has three or more elements, recall that we
can find elements o, 7 € 4(S) such that 6 o7 # 70¢. This prompts us to
single out a highly special, but very important, class of groups as in the
next definition.

DEFINITION A group G is said to be abelian (or commutative) if for every
a,beG,ab = b-a.

A group which is not abelian is called, naturally enough, non-abelian;
having seen a family of examples of such groups we know that non-abelian
groups do indeed exist.

Another natural characteristic of a group G is the number of elements it
contains. We call this the order of G and denote it by o(G). This number is,
of course, most interesting when it is finite. In that case we say that G is a
Jfinite group.

To see that finite groups which are not trivial do exist just note that if the
set § contains # elements, then the group A(S) has n! elements. (Prove!)
This highly important example will be denoted by S, whenever it appears
in this book, and will be called the symmetric group of degree n.” In the next
section we shall more or less dissect S5, which is a non-abelian group of
order 6.
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2.2 Some Examples of Groups

Example 2.2.1 Let G consist of the integers 0, +1, +2,... where we
mean by a-b for a, b € G the usual sum of integers, that is, a-b = a + b.
Then the reader can quickly verify that G is an infinite abelian group in
which 0 plays the role of e and —a that of ™!

Example 2.2.2 Let G consist of the real numbers 1, —1 under the
multiplication of real numbers. G is then an abelian group of order 2.

Example 2.2.3 Let G = S5, the group of all 1-1 mappings of the set
{x,, %2, %3} onto itself, under the product which we defined in Chapter 1.
‘G is a group of order 6. We digress a little before returning to S;.

For a neater notation, not just in 3, but in any group G, let us define for
any a€G, a® =¢ a' =4a,a> =aa,a®> =ad®, ..., d" = ad" !, and
a2 =(a"YH?% a3 = (a )3, etc. The reader may verify that the usual
rules of exponents prevail; namely, for any two integers (positive, negative,
or zero) m, n,

am,an — am+n’ (1)

(@ = am. @)

(It is worthwhile noting that, in this notation, if G is the group of Example
2.2.1, @" means the integer na).

With this notation at our disposal let us examine §; more closely. Con-
sider the mapping ¢ defined on the set x,, x,, x; by

X > X -
o Xy = Xy
X3 = X35
and the mapping
Xy = X3
VR Xy > Xy
Xy = %

Checking, we readily see that ¢p2 = ¢, > = ¢, and that

X = Xy
oy X3 = X3
x3 b d xl,

whereas
xl - xl
Yo Xy = x4

X3 = X,
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It is clear that ¢y # - ¢ for they do not take x, into the same image.
Since Y3 = ¢, it follows that y *' = 2. Let us now compute the action
of gy~ ¢ on xy, x,, x;. Since Yy~ ! = Y2 and
X > x4
W2 X, = Xy
Xy > X,,
we have that
Xy o
Yol Xy = %
Xy = xq.
In other words, ¢y = Y~ '-¢. Consider the elements e, ¢, J, Y2, -,
Y+ ¢; these are all distinct and are in G (since G is closed), which only has
six elements. Thus this list enumerates all the elements of G. One might ask,
for instance, What is the entry in the list for s+ (¢ -4/)? Using -y = =1 ¢,
we see that Y- (p-y) = Y- (Y~ '¢) = Wy 1) ¢ = e/ = . Of more
interest is the form of (¢-¥) (Y ¢) = ¢-(Y-(Y-9)) = ¢ (Y*:¢) =
O W @) = (¢ Y) = ¢>¥ = ey = Y. (The reader should not be
frightened by the long, wearisome chain of equalities here. It is the last
time we shall be so boringly conscientious.) Using the same techniques as
we have used, the reader can compute to his heart’s content others of the
25 products which do not involve ¢. Some of these will appear in the
exercises.

Example 2.2.4 Let n be any integer. We construct a group of order z
as follows: G will consist of all symbols a’,i = 0,1,2,...,n — 1 where
we insist that a® = @" = ¢, a'*a’ = ' if i + j < n and d'+a/ = giti7"
if £ + j > n. The reader may verify that this is a group. It is called a
cyclic group of order n.

A geometric realization of the group in Example 2.2.4 may be achieved
as follows: Let S be the circle, in the plane, of radius 1, and let p, be a
rotation through an angle of 27/n. Then p, € A(S) and p,, in A(S) generates
a group of order n, namely, {e, p,, p,% .-, p," '}

Example 2.2.5 Let S be the set of integers and, as usual, let 4(S) be
the set of all one-to-one mappings of § onto itself. Let G be the set of all
elements in A(S) which move only a finite number of elements of S; that is,
o € G if and only if the number of x in § such that ¥¢ # x is finite. If
6, 7 € G, let o1 be the product of ¢ and 7 as elements of 4(S). We claim
that G is a group relative to this operation. We verify this now.

To begin with, if g, T € G, then ¢ and t each moves only a.finite number
of elements of §. In consequence, ¢ -1 can possibly move only those elements
in § which are moved by at least one of ¢ or 7. Hence ¢-t moves only a
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finite number of elements in S; this puts ¢-7 in G. The identity element, 1,
of A(S) moves no element of §; thus 1 certainly must be in G. Since the
associative law holds universally in A(S), it holds for elements of G. Finally,
ifo e Gand x6~ ' # x for some x € S, then (x6™ )6 # x0, which is to say,
x(6”'+0) # xo. This works out to say merely that x # xo. In other
words, 6~ ! moves only those elements of § which are moved by 6. Because
¢ only moves a finite number of elements of S, this is also true for ¢~ L
Therefore ¢~ ! must be in G.

We have verified that G satisfies the requisite four axioms which define a
group, relative to the operation we specified. Thus G is a group. The reader
should verify that G is an infinite, non-abelian group.

#Example 2.2.6 Let G be the set of all 2 x 2 matrices (a Z) where
¢

a, b, ¢, d are real numbers, such that ad — bc # 0. For the operation in G
we use the multiplication of matrices; that is,

a b w x\ _faw + by ax + bz

¢ d 9y 2z aw + dy ox + dz)
The entries of this 2 x 2 matrix are clearly real. To see that this matrix is
in G we merely must show that

(aw + by)(cx + dz) — (ax + bz2)(cw + dy) # 0
(this is the required relation on the entries of a matrix which puts it in G).
A short computation reveals that
(aw + by)(cx + dz) — (ax + b2)(cw + dy) = (ad — be)(wz — xy) # O

since both -

()= ()

are in G. The associative law of multiplication holds in matrices; therefore

it holds in G. The element
I - 1 0
0 1

isin G, since 11 — 0-0 = 1 # 0; moreover, as the reader knows, or
can verify, [ acts as an identity element relative to the operation of G.

. . b
Fmally, if (a d) € G then, since ad — bc # 0, the matrix
¢

d —b
ad — bc ad — be

~C a

ad — bc ad — be
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makes sense. Moreover,

d a _ —b —c _ad — b _ 1 20
ad — bc)\ad — be ad — bc)\ad — bc)  (ad — bc)®>  ad — bc ’

hence the matrix

d —b
ad — bc ad — bc

—C a

ad — bc ad — bc

isin G. An easy computation shows that

d -5 d —b

a b\ [ ad — bc ad — bc 1 0 ad — bc ad — bc\ (4 b
<‘ d) —c a _<0 l) —c a (0 d>,

ad — bc ad — bc ad — bc ad — b

a

thus this element of G acts as the inverse of ( Z) In short, G is a group.

¢
It is easy to see that G is an infinite, non-abelian group.

#Example 2.2.7 Let G be the set of all 2 x 2 matrices (a Z), where
¢

a, b, ¢, d are real numbers such that ad — b¢ = 1. Define the operation - in
G, as we did in Example 2.2.6, via the multiplication of matrices. We
leave it to the reader to verify that G is a group. It is, in fact, an infinite,
non-abelian group.

One should make a comment about the relationship of the group in
Example 2.2.7 to that in Example 2.2.6. Clearly, the group of Example 2.2.7
is a subset of that in Example 2.2.6. However, more is true. Relative to the
same operation, as an entity in its own right, it forms a group. One could
describe the situation by declaring it to be a subgroup of the group of Example
2.2.6. We shall see much more about the concept of subgroup in a few
pages.

#Example 2.2.8 Let G be the set of all 2 x 2 matrices ( ¢ b),

—b a
where a and b are real numbers, not both 0. (We can state this more
succinctly by saying that a® + 6% # 0.) Using the same operation as in
the preceding two examples, we can easily show that G becomes a group.
In fact, G is an infinite, abelian group.
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Does the multiplication in G remind you of anything? Write < N b)
—b a

as al + bJ where J = ( (l) :)) and compute the product in these terms.

Perhaps that will ring a bell with you.

#Example 2.2.9 Let G be the set of all 2 x 2 matrices (a I;) where
¢

a, b, ¢, d are integers modulo p, p a prime number, such that ad — bc # 0.
Define the multiplication in G as we did in Example 2.2.6, understanding
the multiplication and addition of the entries to be those modulo p. We
leave it to the reader to verify that G is a non-abelian finite group.

In fact, how many elements does G have? Perhaps it might be instructive
for the reader to try the early cases p = 2 and p = 3. Here one can write
down all the elements of G explicitly. (A word of warning! For p = 3,
G already has 48 elements.) To get the case of a general prime, p will require
an idea rather than a direct hacking-out of the answer. Try it!

2.3 Some Preliminary Lemmas

We have now been exposed to the theory of groups for several pages and as
yet not a single, solitary fact has been proved about groups. It is high time
to remedy this situation. Although the first few results we demonstrate are,
admittedly, not very exciting (in fact, they are rather dull) they will be
extremely useful. Learning the alphabet was probably not the most interesting
part of our childhood education, yet, once this hurdle was cleared, fascinating
vistas were opened before us.
We begin with

LEMMA 2.3.1 If G is a group, then

)

- The identity element of G is unique.

- Every a € G has a unique inverse in G.

- Foreveryae G, (a”)"! = a

. Foralla,beG, (a-b)"! = b~ 1 a1,

Qe O

Proor. Before we proceed with the proof itself it might be advisable to
see what it is that we are going to prove. In part (a) we want to show that if
two elements ¢ and f in G enjoy the property that for every ae G, a =
@'e=¢-a=af=fa then e = f Inpart (b) our aim is to show that
fxag=ag-x=c¢ and y-a = a-y = ¢, where all of g, x, y are in G, then
X = ¥.
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First let us consider part (a). Since ¢-a = a for every a € G, then, in
particular, ¢- f = f. But, on the other hand, since b-f = b for every
b € G, we must have that ¢- f = e. Piecing these two bits of information
together we obtain f = ¢- f = ¢, andso ¢ = f.

Rather than proving part (b), we shall prove something stronger which
immediately will imply part (b) as a consequence. Suppose that for g in G,
a-x = ¢and a-y = ¢; then, obviously, a-x = a-y». Let us make this our
starting point, that is, assume that a-x = a-y for g, %, y in G. There is an
element b € G such that b-a = ¢ (as far as we know yet there may be
several such &’s). Thus b- (a-x) = b (a-y); using the associative law this
leads to

x=¢x=((ba)yx=b-(a-x) =b-(a-y) =(b-a)-y=e¢y =1

We have, in fact, proved that a-x = a-y in a group G forces ¥ = y.
Similarly we can prove that - a = y-a implies that x = y. This says that
we can cancel, from the same side, in equations in groups. A note of caution,
however, for we cannot conclude that a- x = y-a implies x = y for we have
no way of knowing whether a - x = x - a. This isillustrated in S; with ¢ = ¢,
x=y,y =y L

Part (c) follows from this by noting that a™!-(a™!)"! = ¢ = a™ 1 g
canceling off the ™! on the left leaves us with (a™!)”! = a. This is the
analog in general groups of the familiar result —(—5) = 5, say, in the
group of real numbers under addition.

Part (d) is the most trivial of these, for

(@b a ) =a (b a ) =a e =ara =

and so by the very definition of the inverse, (a-b)~! = b7 1-47 1.

Certain results obtained in the proof just given are important enough to
single out and we do so now in

LEMMA 2.3.2 Given a, b in the group G, then the equations a-x = b and
y-a = b have unique solutions for x and y in G. In particular, the two cancellation
laws,

a-u = a wimpliesu = w
and

u-a = w-aimpliesu = w
hold in G.

r’

The few details needed for the proof of this lemma are left to the reader.
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Problems

1.

10.

11.

12,

In the following determine whether the systems described are groups.

If they are not, point out which of the group axioms fail to hold.

(a) G = set of all integers, a*b = a — b.

(b) G = set of all positive integers, a+b = ab, the usual product of
integers.

(c) G = ay, ay,...,as where

a-a; = a;,; if 1 4+j5<7,
aa; =a,;_ 4, if 14+5>7

(for instance, a5 ay, = a5, 4.7 = asince 5 + 4 =9 > 7).
(d) G = set of all rational numbers with odd denominators, a-b =
a + b, the usual addition of rational numbers.

. Prove that if G is an abelian group, then for all a, b € G and all integers

n, (a-b)" = a"- b".

. If G is a group such that (a-b)? = a?- b2 for all a, b € G, show that

G must be abelian.

. If G is a group in which (a-6)' = a'- b’ for three consecutive integers

1 for all a, b € G, show that G is abelian.

. Show that the conclusion of Problem 4 does not follow if we assume

the relation (a-b)’ = a': b’ for just two consecutive integers.

. In §; give an example of two elements x, y such that (x-)? # x? -2

. In §; show that there are four elements satisfying x*> = ¢ and three

elements satisfying y* = e.

. If G is a finite group, show that there exists a positive integer N such

that ¢ = eforall a e G.

. (a) If the group G has three elements, show it must be abelian.

(b) Do part (a) if G has four elements.
(c) Do part (a) if G has five elements.

Show that if every element of the group G is its own inverse, then G
is abelian.

If G is a group of even order, prove it has an element a # e satisfying
a? = e

Let G be a nonempty set closed under an associative product, which
in addition satisfies:

(a) There exists an ¢ € G such that a-¢ = afor all a € G.

(b) Give a € G, there exists an element y(a) € G such that a-y(a) = e.
Prove that G must be a group under this product.
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13.

14.

15.

16.

17.

18.

19.

#20.

#21.

#22.

#23.
#24.

#25

Prove, by an example, that the conclusion of Problem 12 is false if
we assume instead:

(a’) There exists an ¢ € G such thata-¢ = aforallae G.

(b’) Given a € G, there exists y(a) € G such that y(a) a = e.

Suppose a finite set G is closed under an associative product and that
both cancellation laws hold in G. Prove that G must be a group.

(a) Using the result of Problem 14, prove that the nonzero integers
modulo , p a prime number, form a group under multiplication
mod p.

(b) Do part (a) for the nonzero integers relatively prime to n under
multiplication mod 7.

In Problem 14 show by an example that if one just assumed one of
the cancellation laws, then the conclusion need not follow.

Prove that in Problem 14 infinite examples exist, satisfying the
conditions, which are not groups.

For any n > 2 construct a non-abelian group of order 2n. (Hint:
imitate the relations in Sj.)

If S is a set closed under an associative operation, prove that no
matter how you bracket a;a,---a,, retaining the order of the
elements, you get the same element in § (e.g., (g, - a;) - (a3 ay) =
a, - (ay - (a5 - a)); use induction on ).
. a
Let G be the set of all real 2 x 2 matrices <
¢
is a rational number. Prove that G forms a group under matrix
multiplication.

Let G be the set of all real 2 x 2 matrices <g Z where ad # 0.

Z), where ad — bc # 0

Prove that G forms a group under matrix multiplication. Is G
abelian?

Let G be the set of all real 2 x 2 matrices (g 0_ 1) where a # 0.
a

Prove that G is an abelian group under matrix multiplication.

Construct in the G of Problem 21 a subgroup of order 4.

Let G be the set of all 2 x 2 matrices (a, Z) where q, b, ¢, d are
¢

integers modulo 2, such that ad — b¢ # 0. Using matrix multi-
plication as the operation in G, prove that G is a group of order 6.

(a) Let G be the group of all 2 x 2 matrices (a Z) where
A¢

ad — bc # 0 and a, b, ¢, d are integers modulo 3, relative to
matrix multiplication. Show that o(G) = 48.



Sec. 2.4 Subgroups

(b) If we modify the example of G in part (a) by insisting that
ad — bc = 1, then what is ¢(G)?

4

#%26. (a) Let G be the group of all 2 X 2 matrices (a Z) where a, b, ¢, d
are integers modulo p, p a prime number, such that ad — b¢ # 0.
G forms a group relative to matrix multiplication. What is o(G)?
(b) Let H be the subgroup of the G of part (a) defined by

H={<" b)eGlad—bc: 1}.
c d

What is o(H)?

2.4 Subgroups

Before turning to the study of groups we should like to change our notation
slightly. It is cumbersome to keep using the - for the group operation;
henceforth we shall drop it and instead of writing a - b for a, b € G we shall
simply denote this product as ab.

In general we shall not be interested in arbitrary subsets of a group G for
they do not reflect the fact that G has an algebraic structure imposed on it.
Whatever subsets we do consider will be those endowed with algebraic
properties derived from those of G. The most natural such subsets are
introduced in the

DEFINITION A nonempty subset H of a group G is said to be a subgroup
of G if, under the product in G, H itself forms a group.

The following remark is clear: if H is a subgroup of G and X is a subgroup
of H, then K is a subgroup of G.

It would be useful to have some criterion for deciding whether a given

subset of a group is a subgroup. This is the purpose of the next two lemmas.

LEMMA 2.4.1 A nonempty subset H of the group G is a subgroup of G if and
only if

LLabeH implies that ab € H.
2. a € H implies that a=* € H.

N Proof. 1f H is a subgroup of G, then it is obvious that (1) and (2) must
old.

Suppose conversely that H is a subset of G for which (1) and (2) hold.
In order to establish that H is a subgroup, all that is needed is to verify that
€ € H and that the associative law holds for elements of H. Since the as-
Sociative law does hold for G, it holds all the more so for H, which is a
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subset of G. If ae H, by part 2, a~' € H and sobypart 1, ¢ = aa”' e H.
This completes the proof.

In the special case of a finite group the situation becomes even nicer for
there we can dispense with part 2.

LEMMA 2.4.2 If H is a nonempty finite subset of a group G and H is closed
under multiplication, then H is a subgroup of G.

Proof. In light of Lemma 2.4.1 we need but show that whenever a € H,
then a~'e H. Suppose that ae H; thus a® = aae H, a® = a’a € H,

.., a" e H,...since H is closed. Thus the infinite collection of elements
a,d®,...,a" ... must all fit into H, which is a finite subset of G. Thus
there must be repetitions in this collection of elements; that is, for some
integers 7, s with r > s > 0, a" = 4. By the cancellation in G, a f=c¢e
(whence ¢ is in H);sincer —s —1 >0, * 'eHanda ' =2a !
since ad’ *"! = 4% = ¢. Thus a~ ! e H, completing the proof of the

lemma.

The lemma tells us that to check whether a subset of a finite group is a
subgroup we just see whether or not it is closed under multiplication.

We should, perhaps, now see some groups and some of their subgroups.
G is always a subgroup of itself; likewise the set consisting of ¢ is a subgroup
of G. Neither is particularly interesting in the role of a subgroup, so we
describe them as trivial subgroups. The subgroups between these two
extremes we call nontrivial subgroups and it is in these we shall exhibit
the most interest.

Example 2.4.1 Let G be the group of integers under addition, H the
subset consisting of all the multiples of 5. The student should check that
H is a subgroup.

In this example there is nothing extraordinary about 5; we could similarly
define the subgroup H,, as the subset of G consisting of all the multiples of n.
H, is then a subgroup for every n. What can one say about H, n H,?
It might be wise to try it for Hg N H,.

Example 2.4.2 Let S be any set, A(S) the set of one-to-one mappings
of S onto itself, made into a group under the composition of mappings. If
xp €8, let H(xy) = {¢p € A(S) | xo¢ = xo}. H(x,) is a subgroup of A(S).
If for x;, # x, € S we similarly define H (x,), what is H(x,) n H(x;)?

Example 2.4.3 Let G be any group, a € G. Let (a) = {d|i =0, %1,
+2,...}. (a) is a subgroup of G (verify!); it is called the ¢yclic subgroup
generated by a. This provides us with a ready means of producing subgroups
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of G. If for some choice of a, G = (a), then G is said to be a ¢yclic group.
Such groups are very special but they play a very important role in the
theory of groups, especially in that part which deals with abelian groups.
Of course, cyclic groups are abelian, but the converse is false.

Example 2.4.4 Let G be a group, W a subset of G. Let (W) be the set
of all elements of G representable as a product of elements of W raised to
ositive, zero, or negative integer exponents. (W) is the subgroup of G
gemrated by W and is the smallest subgroup of G containing W. In fact, (W)
is the intersection of all the subgroups of G which contain W (this intersec-
tion is not vacuous since G is a subgroup of G which contains W).

Example 245 Let G be the group of nonzero real numbers under
multiplication, and let /1 be the subset of positive rational numbers. Then
H is a subgroup of G.

Example 2.4.6 Let G be the group of all real numbers under addition,
and let H be the set of all integers. Then H is a subgroup of G.

#Example 2.4.7 Let G be the group of all real 2 x 2 matrices (a Z)
¢

with ad — bc # 0 under matrix multiplication. Let

ne (¢ Yeetonal

Then, as is easily verified, H is a subgroup of G.

#Example 2.4.8 Let H be the group of Example 2.4.7, and let

K = {((1) f)} Then K is a subgroup of H.

Example 2.4.9 Let G be the group of all nonzero complex numbers
a + bi (a, b real, not both 0) under multiplication, and let

H={a+becG|a*>+b>=1}

Verify hat H is a subgroup of G.

DEFINITION Let G be a group, H a subgroup of G; for a, b € G we say
a is congruent to b mod H, written as ¢ = b mod Hifab™ ' € H.

LEMMA 2.4.3 The relation a = b mod H is an equivalence relation.
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Proof. If we look back in Chapter 1, we see that to prove Lemma 2.4.3
we must verify the following three conditions: For all a, b, c € G,

1. a = a mod H.

2. @ = b mod H implies b = a mod H.

3. 2 = bmod H, b = ¢ mod H implies a = ¢ mod H.
Let’s go through each of these in turn.

1. To show that @ = a mod H we must prove, using the very definition
of congruence mod H, that aa~' € H. Since H is a subgroup of G, ee H,
and since aa~! = ¢, aa~ ! € H, which is what we were required to demon-
strate.

2. Suppose that @ = b mod H, that is, suppose ab~ 1 e H; we want to
get from this b = a mod H, or, equivalently, ba™! € H. Since ab~' e H,
which is a subgroup of G, (ab~ ')~ ! € H; but, by Lemma 2.3.1, (ab~ H-1 =
(b"1)"'a~' = ba ', andso ba”' € Hand b = amod H.

3. Finally we require that ¢ = b mod H and b = ¢ mod H forces
e = ¢ mod H. The first congruence translates into ab™ ! ¢ H, the second
into be~ ! € H; using that H is a subgroup of G, (ab™")(b¢™") € H. How-
ever, ac= ! = aec™' = a(b™1b)c™ ! = (ab™ ') (be” 1y; hence ac~ ' € H, from
which it follows that ¢ = ¢ mod H.

This establishes that congruence mod H is a bona fide equivalence
relation as defined in Chapter 1, and all results about equivalence relations
have become available to us to be used in examining this particular relation.

A word about the notation we used. If G were the group of integers under
addition, and H = H, were the subgroup consisting of all multiples of 7,
then in G, the relation @ = b mod H, that is, ab™ 1 e H, under the additive
notation, reads “a — bisa multiple of n.”” This is the usual number theoretic
congruence mod z. In other words, the relation we defined using an
arbitrary group and subgroup is the natural generalization of a familiar
relation in a familiar group.

DEFINITION If H is a subgroup of G, a € G, then Ha = {ha | h e H}.
Ha is called a right coset of H in G.

LEMMA 244 ForallaceG,
Ha = {xeG|a = xmod H}.

Proof. Let[d] = {x € G|a = x mod H}. We first show that Ha < [a].
For, if & € H, then a(ha)~! = a(a” '~ ') = k™' € H since H is a subgroup
of G. By the definition of congruence mod H this implies “that ha € [a]
for every h € H, and so Ha < [a].

Suppose, now, that x € [a]. Thus ax™ e H, so (ax~ 7!

= xa~ ! is
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also in H. That is, xa™' = h for some » € H. Multiplying both sides by a
from the right we come up with ¥ = hg, and so x € Ha. Thus [a] < Ha.
Having proved the two inclusions [¢] < Ha and Ha < [a], we can conclude
that [a] = Ha, which is the assertion of the lemma.

In the terminology of Chapter 1, [4], and thus Ha, is the equivalence class
of ain G. By Theorem 1.1.1 these equivalence classes yield a decomposition
of G into disjoint subsets. Thus any two right cosets of H in G either are identical
or have no element in common.

We now claim that between any two right cosets Ha and Hb of H in G
there exists a one-to-one correspondence, namely, with any element ka € Ha,
where h € H, associate the element kb € Hb. Clearly this mapping is onto
Hb. We aver that it is a one-to-one correspondence, for if b b = h,b, with
hy, by € H, then by the cancellation law in G, k, = %, and so ha = h,a.
This proves

LEMMA 2.4.5 There is a one-to-one correspondence between any two right cosets
of HinG.

Lemma 2.4.5 is of most interest when H is a finite group, for then it merely
states that any two right cosets of H have the same number of elements.
How many elements does a right coset of H have? Well, note that H = He
is itself a right coset of H, so any right coset of H in G has o(H) elements.
Suppose now that G is a finite group, and let £ be the number of distinct
right cosets of H in G. By Lemmas 2.4.4 and 2.4.5 any two distinct right
cosets of H in G have no element in common, and each has o(H) elements.

Since any a € G is in the unique right coset Ha, the right cosets fill out.G.
Thus if  represents the number of distinct right cosets of H in G we must
have that ko(H) = o(G).  We have proved the famous theorem due to
Lagrange, namely,

THEOREM 241 If G is a finite group and H is a subgroup of G, then o(H)
s a divisor of o(G).

DEFINITION IfHisa subgroup of G, the index of H in G is the number of
distinct right cosets of H in G.

We shall denote it by ig(H). In case G is a finite group, ig(H) =
°(G)/o(H), as became clear in the proof of Lagrange’s theorem. It is quite
Possible for an infinite group G to have a subgroup H # G which is of finite
Index in G.

It might be difficult, at this point, for the student to see the extreme
importance of this result. As the subject is penetrated more deeply one will
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become more and more aware of its basic character. Because the theorem
is of such stature it merits a little closer scrutiny, a little more analysis,
and so we give, below, a slightly different way of looking at its proof. In
truth, the procedure outlined below is no different from the one already
given. The introduction of the congruence mod H smooths out the listing
of elements used below, and obviates the need for checking that the new
elements introduced at each stage did not appear before.

So suppose again that G is a finite group and that H is a subgroup of G.
Let Ay, ky, ..., k, be a complete list of the elements of H, r = o(H). If
H = G, there is nothing to prove. Suppose, then, that H # G; thus there
isan ae G, a ¢ H. List all the elements so far in two rows as

hl’ h2)"'> hn

hya, hya, . .., ha.

We claim that all the entries in the second line are different from each other
and are different from the entries in the first line. If any two in the second
line were equal, then k@ = h;a with i # j, but by the cancellation law this
would lead to #; = h;, a contradiction. If an entry in the second line were
equal to one in the first line, then ka = kj, resulting in a = ;" 'h;e H
since H is a subgroup of G; this violates a ¢ H.

Thus we have, so far, listed 20(H) elements; if these elements account
for all the elements of G, we are done. If not, there is a b € G which did not
occur in these two lines. Consider the new list

hl: h29 MR hr:
hqa, hya, ..., ha,

hb, hyb, ..., hb.

As before (we are now waving our hands) we could show that no two
entries in the third line are equal to each other, and that no entry in the
third line occurs in the first or second line. Thus we have listed 30(H)
elements. Continuing in this way, every new element introduced, in fact,
produces o(H) new elements. Since G is a finite group, we must eventually
exhaust all the elements of G. But if we ended up using & lines to list all the
elements of the group, we would have written down ko(H) distinct elements,
and so ko( H) = o(G).

It is essential to point out that the converse to Lagrange’s theorem is
false—a group G need not have a subgroup of order m if m is a divisor of
o(G). For instance, a group of order 12 exists which has no subgroup of
order 6. The reader might try to find an example of this phenomenon; the
place to look is in §,, the symmetric group of degree 4 which has a sub-
group of order 12, which will fulfill our requirement. p

Lagrange’s theorem has some very important corollaries. Before we
present these we make one definition.
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DEFINITION If G is a group and a € G, the order (or period) of a is the
least positive integer m such that a™ = e.

If no such integer exists we say that a is of infinite order. We use the
notation o(a) for the order of a. Recall our other notation: for two integers
u, v, u | v reads “u is a divisor of v.”

COROLLARY 1 If G is a finite group and a € G, then o(a) | o(G).

Proof. With Lagrange’s theorem already in hand, it seems most natural
to prove the corollary by exhibiting a subgroup of G whose order is o(a).
The element a itself furnishes us with this subgroup by considering the
cyclic subgroup, (a), of G generated by a; (a) consists of ¢, a, a?,.... How
many elements are there in (a)? We assert that this number is the order of a.
Clearly, since a°® = ¢, this subgroup has at most o(a) elements. If it
should actually have fewer than this number of elements, then o' = o’
for some integers 0 < i < j < o(a). Then @'~ = ¢, yet 0 < j — i < o(a)
which would contradict the very meaning of ¢(a). Thus the cyclic sub-
group generated by a has o(a) elements, whence, by Lagrange’s theorem,

o(a) | o(G).

COROLLARY 2 If G is a finite group and a € G, then a®®) = e.

Proof. By Corollary 1, o(a) | o(G); thus o(G) = mo(a). Therefore,
ao(G) — amo(a) — (ao(a))m = ™ = ¢.

A particular case of Corollary 2 is of great interest in number thegry.
The Euler ¢-function, ¢(n), is defined for all integers n by the following:
¢(1) = 1; for n > 1, ¢(n) = number of positive integers less than n and
relatively prime to n. Thus, for instance, ¢(8) = 4 since only 1,3,5,7
are the numbers less than 8 which are relatively prime to 8. In Problem 15(b)
at the end of Section 2.3 the reader was asked to prove that the numbers
less than 7 and relatively prime to # formed a group under multiplication
mod n. This group has order ¢(n). If we apply Corollary 2 to this group
we obtain

COROLLARY 3 (EuLErR) If n is a positive integer and a is relatively prime
to n, then a*™ = 1 mod n.

In order to apply Corollary 2 one should replace a by its remainder on
division by . If # should be a prime number p, then ¢(p) = p — 1. Ifa
is an integer relatively prime to p, then by Corollary 3, a?~! = 1 mod p,
whence a? = a mod p. If, on the other hand, a is not relatively prime to p,
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since p is a prime number, we must have that p | a, so that ¢ = 0 mod p;
hence 0 = a” = a mod p here also. Thus

COROLLARY 4 (Fermat) If pis a prime number and a is any integer, then

a’ = a mod p.

COROLLARY 5 If G is a finite group whose order is a prime number p, then
G is a cyclic group.

Proof. First we claim that G has no nontrivial subgroups H; for o(H)
must divide o(G) = p leaving only two possibilities, namely, o(H) = 1 or
o(H) = p. The first of these implies H = (¢), whereas the second implies
that H = G. Suppose now that a # ¢ € G, and let H = (a). H is a sub-
group of G, H # (¢) since a # ¢ e H. Thus H = G. This says that G is
cyclic and that every element in G is a power of a.

This section is of great importance in all that comes later, not only for its
results but also because the spirit of the proofs occurring here are genuinely
group-theoretic. The student can expect to encounter other arguments
having a similar flavor. It would be wise to assimilate the material and
approach thoroughly, now, rather than a few theorems later when it will
be too late.

2.5 A Counting Principle

As we have defined earlier, if H is a subgroup of G and a € G, then Ha
consists of all elements in G of the form ha where h € H. Let us generalize
this notion. If H, K are two subgroups of G, let

HK = {xeG|x =hk,he H, ke K}.

Let’s pause and look at an example; in S5 let H = {¢, ¢}, K = {¢, oy}
Since ¢2 = (¢)? = ¢, both H and K are subgroups. What can we say
about HK? Just using the definition of HK we can see that HK consists of
the elements e, ¢, ¢y, ¢%y = . Since HK consists of four elements and
4 is not a divisor of 6, the order of Sy by Lagrange’s theorem HK could not
be a subgroup of §;. (Of course, we could verify this directly but it does
not hurt to keep recalling Lagrange’s theorem.) We might try to find out
why HK is not a subgroup. Note that KH = {e, ¢, oy, ¢ = Yy~ '} # HK.
This is precisely why HK fails to be a subgroup, as we see in the next lemma.

LEMMA 25.1 HK is a subgroup of G if and only if HK = KH.

Proof. Suppose, first, that HK = KH; that is, if k€ H and ke K,
then hk = khy for some k, € K, h; € H (it need not be that k; = k or
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by = hY)- To prove that HK is a subgroup we must verify that it is closed
and every element in HK has its inverse in HK. Let’s show the closure
first; so suppose x = hk € HK and y = W'k’ € HK. Then xy = hkh'k,
put since kb’ € KH = HK, ki' = hyk, with h, € H, k, € K. Hence xy =
h(hok2)K = (khy) (kyk') € HK, and HK is closed. Also x = (hk)"! =
¢t 1eKH = HK,so x"' € HK. Thus HK is a subgroup of G.

On the other hand, if HK is a subgroup of G, then for any & € H, k € K,
h~k e HK and so kh = (k"% ')"' e HK. Thus KH < HK. Now if
x is any element of HK, x™! = hke HK and so x = (x~1)~! = (hk) 1=
k~ 1 1e KH, so HK c KH. Thus HK = KH.

An interesting special case is the situation when G is an abelian group
for in that case trivially HK = KH. Thus as a consequence we have the

COROLLARY If H, K are subgroups of the abelian group G, then HK is a
subgroup of G. '

If H, K are subgroups of a group G, we have seen that the subset HK
need not be a subgroup of G. Yet it is a perfect meaningful question to ask:
How many distinct elements are there in the subset HK? If we denote this
number by ¢(HK), we prove

THEOREM 25.1 If H and K are finite subgroups of G of orders o(H) and
o(K), respectively, then
o(H)o(K)

) = K

Proof.  Although there is no need to pay special attention to the particular
case in which H n K = (e), looking at this case, which is devoid of some
of the complexity of the general situation, is quite revealing. Here we
should seek to show that o(HK) = o(H)o(K). One should ask oneself: How
could this fail to happen? The answer clearly must be that if we list all the
elements hk, h € H, k € K there should be some collapsing; that is, some
element in the list must appear at least twice. Equivalently, for some
h# hieH, hk = hk,. But then h~'h = kk~'; now since h, € H,
h™! must also be in H, thus k,~'he H. Similarly, k4~ ' e K. Since
M7 = bk T Yhe HA K = (), so hy"'h = e, whence k = h,, a
Contradiction. We have proved that no collapsing can occur, and so, here,
o(HK) is indeed o(H)o(K).

With this experience behind us we are ready to attack the general case.

above we must ask: How often does a given element hk appear as a
Product in the list of HK? We assert it must appear o(H n K) times!
© see this we first remark that if £, € H n K, then

hk = (hhy) (k™ 1K), (1)
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where hh, € H, since he H, hye Hn K < H and h,” 'k e K since
h,"'e Hn K < K and ke K. Thus Ak is duplicated in the product at
least o(H n K) times. However, if hk = A'K, then k™0 = k(k)™! = 4,
and ue HN K, and so b’ = hu, k' = u” 'k; thus all duplications were
accounted for in (1). Consequently hk appears in the list of HK exactly
o(H n K) times. Thus the number of distinct elements in HK is the total
number in the listing of HK, that is, o(H)o(K) divided by the number of
times a given element appears, namely, o(H N K). This proves the theorem.

Suppose H, K are subgroups of the finite- group G and o(H) > \/O(G),
o(K) > \/o(G). Since HK < G, o(HK) < o(G). However,

0o(G) > o(HK) = o(H)o(K) Vo(G)Vo(G) _ o0 ,
olH n K) o(H n K) olH n K)

thus o(H n K) > 1. Therefore, H n K # (¢). We have proved the

COROLLARY If H and K are subgroups of G and o(H) > Jo(G), o(K) >
Vo(G), then H n K # (e).

We apply this corollary to a very special group. Suppose G is a finite
group of order pg where p and ¢ are prime numbers with p > ¢. We claim
that G can have at most one subgroup of order p. For suppose H, K are
subgroups of order p. By the corollary, H n K # (¢), and being a sub-
group of H, which having prime order has no nontrivial subgroups, we
must conclude that H n K = H, and so H « Hn K < K. Similarly
K < H, whence H = K, proving that there is at most one subgroup of
order p. Later on we shall see that there is at least one subgroup of order p,
which, combined with the above, will tell us there is exactly one subgroup
of order p in G. From this we shall be able to determine completely the
structure of G.

Problems

1. If H and K are subgroups of G, show that H n K is a subgroup of G.
(Can you see that the same proof shows that the intersection of any
number of subgroups of G, finite or infinite, is again a subgroup of G?)

2. Let G be a group such that the intersection of all its subgroups which
are different from (¢) is a subgroup different from (¢). Prove that
every element in G has finite order. P

3. If G has no nontrivial subgroups, show that G must be finite of
prime order.



10.

11.
12.

1.

14.

15,

16.

17.
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. (a) If His a subgroup of G, and a € Glet aHa™' = {aha™' | h € H}.

Show that aHa™ ! is a subgroup of G.
(b) If H is finite, what is o(aHa™')?

. For a subgroup H of G define the left coset aH of H in G as the set

of all elements of the form a#k, 2 € H. Show that there is a one-to-one
correspondence between the set of left cosets of H in G and the set of
right cosets of H in G.

. Write out all the right cosets of H in G where

(a) G = (a) is a cyclic group of order 10 and H = (a?) is the
subgroup of G generated by a2.

(b) G as in part (a), H = (a°) is the subgroup of G generated by a°.

() G = A(S),S = {5, %3, %3}, and H = {6 € G | x,0 = x,}.

. Write out all the left cosets of H in G for H and G as in parts (a),

(b), (c) of Problem 6.

. Is every right coset of H in G a left coset of H in G in the groups of

Problem 67?

. Suppose that H is a subgroup of G such that whenever Ha # Hb

then aH{ # bH. Prove that gHg™! < Hfor allg e G.

Let G be the group of integers under addition, H, the subgroup
consisting of all multiples of a fixed integer n in G. Determine the
index of H, in G and write out all the right cosets of H, in G.

In Problem 10, what is H, n H,,?

If G is a group and H, K are two subgroups of finite index in G,
prove that H n K is of finite index in G. Can you find an upper
bound for the index of H n K in G? T

If ae G, define N(a) = {xe G| xa = ax}. Show that N(a) is a
subgroup of G. N(a) is usually called the normalizer or centralizer of
ain G.

If H is a subgroup of G, then by the centralizer C(H) of H we mean
the set {x € G| xh = hx all h € H}. Prove that C(H) is a subgroup
of G.

The center Z of a group G is defined by Z = {z e G| zx = xz all
x € G}. Prove that Z is a subgroup of G. Can you recognize Z as
C(T) for some subgroup T of G?

If H is a subgroup of G, let N(H) = {ae G|aHa ' = H} [see
Problem 4(a)]. Prove that
(a) N(H) is a subgroup of G. (b) N(H) o H.

Give an example of a group G and a subgroup H such that N(H) #
C(H). Is there any containing relation between N(H) and C(H)?
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18.

*19.

*20.

21.

22.

23.

*24.

*25.

*%26.

27.
28.

If H is a subgroup of G let
N = () xHx™ 1.

xeG
Prove that N is a subgroup of G such that aNa~! = NforallaeG.

If H is a subgroup of finite index in G, prove that there is only a
finite number of distinct subgroups in G of the form aHa™!.

If H is of finite index in G prove that there is a subgroup N of G,
contained in H, and of finite index in G such that aNa™! = N for
all ae G. Can you give an upper bound for the index of this
Nin G?

Let the mapping 7,, for a, b real numbers, map the reals into the
reals by the rule 7,2 - ax + b. Let G = {r,,]|a = 0}. Prove
that G is a group under the composition of mappings. Find the
formula for t,,7,.

In Problem 21, let H = {z,, € G| ais rational}. Show that H is
a subgroup of G. List all the right cosets of H in G, and all the left
cosets of H in G. From this show that every left coset of Hin G is a
right coset of H in G.

In the group G of Problem 21, let N = {zy, € G}. Prove
(a) Nis a subgroup of G.
(b) Ifae G, ne N, then ana™! € N.

Let G be a finite group whose order is not divisible by 3. Suppose
that (ab)® = a3b3 for all a, b € G. Prove that G must be abelian.

Let G be an abelian group and suppose that G has elements of orders
m and n, respectively. Prove that G has an element whose order is
the least common multiple of m and .

If an abelian group has subgroups of orders m and =, respectively,
then show it has a subgroup whose order is the least common multiple
of m and n. (Don’t be discouraged if you don’t get this problem with
what you know about group theory up to this stage. I don’t know
anybody, including myself, who has done it subject to the restriction
of using material developed so far in the text. But it is fun to try.
T’ve had more correspondence about this problem than about any
other point in the whole book.)

Prove that any subgroup of a cyclic group is itself a cyclic group.

How many generators does a cyclic group of order n have? (beC
is a generator if () = G.)

4

Let U, denote the integers relatively prime to n under multiplication
mod n. In Problem 15(b), Section 2.3, it is indicated that U, is a group-
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In the next few problems we look at the nature of U, as a group for some
specific values of n.

29.
30.
31.
32.
33.
34.
35.

36.
37.
*38.

39.

40.

41.

Show that Uy is not a cyclic group.

Show that Ug is a cyclic group. What are all its generators?
Show that U, , is a cyclic group. What are all its generators?
Show that U, is a cyclic group.

Show that U, is not a cyclic group.

Show that both U, 5 and U,, are cyclic groups.

Hazard a guess at what all the » such that U, is cyclic are. (You
can verify your guess by looking in any reasonable book on number
theory.)
If e € G and a™ = ¢, prove that o(a) | m.
If in the group G, a® = ¢, aba™"' = b for some 4, b € G, find o(b).
Let G be a finite abelian group in which the number of solutions in
G of the equation x" = ¢ is at most n for every positive integer n.
Prove that G must be a cyclic group.
Let G be a group and 4, B subgroups of G. If x, y € G define x ~
if y = axb for some a € 4, b € B. Prove
(a) The relation so defined is an equivalence relation.
(b) The equivalence class of x is AxB = {axb|a€ 4, b e B}.
(AxB is called a double coset of A and B in G.)
If G is a finite group, show that the number of elements in the double
coset AxB is
o(4)o(B) ™
, o(d n xBx™1).
If G is a finite group and 4 is a subgroup of G such that all double

cosets AxA4 have the same number of elements, show that gdg™! = 4 -

for all g € G.

2.6 Normal Subgroups and Quotient Groups

Let G be the group §; and let A be the subgroup {e, ¢}. Since the index
°f{1 in G is 3, there are three right cosets of H in G and three left cosets of
Hin G. We list them:

Right Cosets Left Cosets
H = {6, ¢} H = {e’ ¢}
Hy = {y, ¢y} VH = {, Yo = ¢y}

Hy? = (2, oy®y  YPH = (Y%, ¥°¢ = ¢y}
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A quick inspection yields the interesting fact that the right coset Hy is not
a left coset. Thus, at least for this subgroup, the notions of left and right
coset need not coincide.

In G = S, let us consider the subgroup N = {e, ¥, Y2}, Since the
index of N in G is 2 there are two left cosets and two right cosets of N in G.
We list these:

Right Cosets Left Cosets

N = {e) 'P, ll’z} N = {, l//> 11/2}
Np = {§, v, ¥2¢}  ON = (o, ¥, $U*}
= {¢, ¥*¢, v}

A quick inspection here reveals that every left coset of N in G is a right
coset in G and conversely. Thus we see that for some subgroups the notion
of left coset coincides with that of right coset, whereas for some subgroups
these concepts differ.

It is a tribute to the genius of Galois that he recognized that those sub-
groups for which the left and right cosets coincide are distinguished ones.
Very often in mathematics the crucial problem is to recognize and to discover
what are the relevant concepts; once this is accomplished the job may be
more than half done.

We shall define this special class of subgroups in a slightly different way,
which we shall then show to be equivalent to the remarks in the above
paragraph.

DEFINITION A subgroup N of G is said to be a normal subgroup of G if
for every ge Gand ne N, gng~' € N. :
Equivalently, if by gNg~! we mean the set of all gng™!, n€ N, then N
is a normal subgroup of G if and only if gNg=! = N for every g€ G.

LEMMA 2.6.1 N is a normal subgroup of G if and only if gNg~' = N for
every g € G.

Proof. If gNg~! = N for every g € G, certainly gNg™! = N, so N is
normal in G.

Suppose that Nis normal in G. Thusifge G, gNg~' = Nand g~ 'Ng
g IN(g)"! < N. Now, since g !Ng< N, N =g(g 'Nejg™!
gNg™! < N, whence N = gNg~ 1.

[

In order to avoid a point of confusion here let us stress that Lemma 2.6.1
does not say that for every n e N and every g€ G, gng~' = n. No! This
can be false. Take, for instance, the group G to be §; and N to be the sub-
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up {¢ Vs ¥2}. If we compute ¢ N¢p~ ! we obtain {e, o~ 1, pyy2¢p 1} =
{ Y2, ¥}, et dYdp~ ! # . All we require is that the set of elements
Ve~ 1 be the same as the set of elements N.

We now can return to the question of the equality of left cosets and

right cosets.

LEMMA 2.6.2 The subgroup N of G is a normal subgroup of G if and only if
every left coset of N in G is a right coset of N in G.

Proof. If N is a normal subgroup of G, then for every g€ G, gNg~ ! =
N, whence (gNg~ g = Ng; equivalently gN = Ng, and so the left coset
gN is the right coset Ng.

Suppose, conversely, that every left coset of N in G is a right coset of
N in G. Thus, for ge G, gN, being a left coset, must be a right coset.
What right coset can it be?

Since g = ge € gN, whatever right coset g/N turns out to be, it must
contain the element g; however, g is in the right coset Ng, and two distinct
right cosets have no element in common. (Remember the proof of Lagrange’s
theorem?) So this right coset is unique. Thus gN = Ng follows. In other
words, gNg~! = Ngg~! = N, and so N is a normal subgroup of G.

We have already defined what is meant by HK whenever H, K are
subgroups of G. We can easily extend this definition to arbitrary subsets,
and we do so by defining, for two subsets, 4 and B, of G, 4B = {x €e G | x =
ab,ae A, b e B}. As a special case, what can we say when 4 = B = H,
a subgroup of G? HH = {hh, | h, hy e H} = H since H is closed under
multiplication. But HH > He = H since ¢ € H. Thus HH = H.

Suppose that N is a normal subgroup of G, and that ¢, b € G. Consider
(Na)(Nb); since N is normal in G, aN = Na, and so

NaNb = N(aN)b = N(Na)b = NNab = Nab.

What a world of possibilities this little formula opens! But before we get
carried away, for emphasis and future reference we record this as

LEMMA 263 4 subgroup N of G is a normal subgroup of G if and only if the
Product of two right cosets of N in G is again a right coset of N in G.

_Proof. If Nis normal in G we have just proved the result. The proof of
the other half is one of the problems at the end of this section.

Suppose that N is a normal subgroup of G. The formula NaNb = Nab,
fora, p e G is highly suggestive; the product of right cosets is a right coset.
0 we use this product to make the collection of right cosets into a group?
Indeed we can! This type of construction, often occurring in mathematics
and usually called forming a quotient structure, is of the utmost importance.
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Let G/N denote the collection of right cosets of N in G (that is, the
elements of G/ N are certain subsets of G) and we use the product of subsets
of G to yield for us a product in G/N.

For this product we claim

1. X, Y € G/N implies XY € G/N; for X = Na, Y = Nb for some q, begG,
and XY = NaNb = Nab € G| N.

2. X,Y,ZeG|N, then X = Na, Y = Nb, Z = Nc with a,b,c€G,
and so (XY)Z = (NaNb)Nc = N(ab)Nc = N(ab)c = Na(be) (since G
is associative) = Na(Nbc) = Na(NbNc) = X(YZ). Thus the product
in G/ N satisfies the associative law.

3. Consider the element N = Nee G/N. If Xe G/N, X = Na, a€Q,
so XN = NaNe = Nae = Na = X, and similarly NX = X. Con-
sequently, Ne is an identity element for G/N.

4. Suppose X = Na e G/N (where ae€ G); thus Na~ ! e G|N, and
NaNa~! = Naa™! = Ne. Similarly Na~'Na = Ne. Hence Na~ ' is
the inverse of Na in G/N.

But a system which satisfies 1, 2, 3, 4 is exactly what we called a group.
That is,

THEOREM 2.6.1 If G is a group, N a normal subgroup of G, then G|N is also
a group. 1t is called the quotient group or factor group of G by N.

If, in addition, G is a finite group, what is the order of G/N? Since G/N
has as its elements the right cosets of N in G, and since there are precisely
ig{N) = o(G)[o(N) such cosets, we can say

LEMMA 2.6.4 If G is a finite group and N is a normal subgroup of G, then
o(G|N) = o(G)Jo(N).

We close this section with an example.

Let G be the group of integers under addition and let N be the set of
all multiplies of 3. Since the operation in G is addition we shall write the
cosets of N in G as N + a rather than as Na. Consider the three cosets
N, N + 1, N + 2. We claim that these are all the cosets of N in G. For,
givenae G,a = 3b + ¢wherebe Gand ¢ = 0, 1, or 2 (¢ is the remainder
of a on division by 3). Thus N +a =N+ 3b +¢= (N +3b) +¢ =
N + ¢ since 36 € N. Thus every coset is, as we stated, one of N, N + 1,
or N+ 2,and G/N = {N,N + 1, N + 2}. How do we add elements in
G/N? Our formula NaNb = Nab translates into: (N + 1) + (N + 2) =
N+3=Nsnce 3¢ N; N+2) +(N+2) =N+4=N+1and
so on. Without being specific one feels that G/N is closely related to the
integers mod 3 under addition. Clearly what we did for 3 we could emulate
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for any integer n, in which case the factor group should suggest a relation
to the integers mod # under addition. This type of relation will be clarified
in the next section.

Problems

1.

10.

11,

*12.

13.

*14.

15.

If H is a subgroup of G such that the product of two right cosets of
H in G is again a right coset of H in G, prove that H is normal in G.

If G is a group and H is a subgroup of index 2 in G, prove that H is
a normal subgroup of G.

If N is a normal subgroup of G and H is any subgroup of G, prove
that NH is a subgroup of G.

Show that the intersection of two normal subgroups of G is a normal
subgroup of G.

. If His a subgroup of G and N is a normal subgroup of G, show that

H n N is a normal subgroup of H.
Show that every subgroup of an abelian group is normal.

Is the converse of Problem 6 true? If yes, prove it, if no, give an
example of a non-abelian group all of whose subgroups are normal.

Give an example of a group G, subgroup H, and an element 2 € G
such that aHa~! <« Hbut aHa ' # H.

Suppose H is the only subgroup of order () in the finite group G.

Prove that H is a normal subgroup of G.

If H is a subgroup of G, let N(H) = {ge G| gHg™'! = H}. Proye

(a) N(H) is a subgroup of G.

(b) His normal in N(H).

(c¢) If His a normal subgroup of the subgroup K in G, then K = N(H)
(that is, N(H) is the largest subgroup of G in which H is normal).

(d) His normal in G if and only if N(H) = G.

If N and M are normal subgroups of G, prove that NM is also a

normal subgroup of G.

Suppose that N and M are two normal subgroups of G and that
N M = (¢). Show that for any ne N, me M, nm = mn.

J€ a cyclic subgroup 7T of G is normal in G, then show that every
subgroup of 7 is normal in G.

Prove, by an example, that we can find three groups £ < F < G,
where E is normal in F, F is normal in G, but E is nof normal in G.

If Nis normal in G and a € G is of order o(a), prove that the order,
m, of Na in G/N is a divisor of o(a).
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16.

17.

18.

19.

20.

#21.

2.7

If N is a normal subgroup in the finite group such that ig(N) and
o(N) are relatively prime, show that any element x € G satisfying
2™ = ¢ must be in N.

Let G be defined as all formal symbols x'/, i = 0, i, = 0,1,2,...,
n — 1 where we assume

.

xpl = x7yf ifand only ifi = i',j = j

2=y =e n>2

=yt
(a) Find the form of the product (x7)(x*)") as x%*.
(b) Using this, prove that G is a non-abelian group of order 2n.
(c¢) If n is odd, prove that the center of G is (¢), while if n is even

the center of G is larger than (¢).

This group is known as a dihedral group. A geometric realization of
this is obtained as follows: let » be a rotation of the Euclidean plane
about the origin through an angle of 27/n, and x the reflection about
the vertical axis. G is the group of motions of the plane generated by
y and x.

X.

Let G be a group in which, for some integer n > 1, (ab)" = a"5"
for all a, b € G. Show that

(a) G™ = {x"| x € G} is a normal subgroup of G.

(b) G~V = {x"~ 1| x € G} is a normal subgroup of G.

Let G be as in Problem 18. Show

(a) a" 1" = b"a" " foralla, b eG.

(b) (aba= 6~ )™~V = ¢forallag, beG.

Let G be a group such that (ab)? = aPb® for all a, b € G, where p is
a prime number. Let § = {x € G| 4" = ¢ for some m depending
on x}. Prove

(a) S is a normal subgroup of G.

(b) If G = G/S and if % € G is such that #7 = ¢ then & = é.

Let G be the set of all real 2 x 2 matrices (8 Z,) where ad # 0,

under matrix multiplication. Let N = {((l) lb ) } . Prove that
(a) Nis a normal subgroup of G.
(b) G/N is abelian.

Homomorphisms

The ideas and results in this section are closely interwoven with those of the
preceding one. If there is one central idea which is common to all aspects
of modern algebra it is the notion of homomorphism. By this one means
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a mapping from one algebraic system to a like algebraic system which
preserves structure. We make this precise, for groups, in the next definition.

DEFINITION A mapping ¢ from a group G into a group G is said to be a
homomorphism if for alla, b € G, ¢p(ab) = ¢(a)p ().

_Notice that on the left side of this relation, namely, in the term ¢(ab),
the product ab is computed in G using the product of elements of G, whereas
on the right side of this relation, namely, in the term ¢(a)¢(b), the product
is that of elements in G.

Example 2.7.0 ¢(x) = ¢ all xe G. This is trivially a homomorphism.
Likewise ¢(x) = x for every x € G is a homomorphism.

Example 2.7.1 Let G be the group of all real numbers under addition
(i.e., ab for a, b € G is really the real number a + 6) and let G be the group
of nonzero real numbers with the product being ordinary multiplication of
real numbers. Define ¢:G — G by ¢(a) = 2° In order to verify that
this mapping is a homomorphism we must check to see whether ¢(ad) =
¢(a)p(b), remembering that by the product on the left side we mean the
operation in G (namely, addition), that is, we must check if 297 = 292°,
which indeed is true. Since 2° is always positive, the image of ¢ is not all
of G, 50 ¢ is a homomorphism of G into G, but not onto G.

Example 2.7.2 Let G = S; = {e, ¢, ¥, Y2, ¢, ¢y?} and G = {¢, ¢}.
Define the mapping f :G — G by f(¢'y/) = ¢'. Thus f(e) = ¢, f(¢) =

&S W) = e, f(U?) =¢ f($Y) = ¢, f($¥*) = ¢. The reader should
verify that fso defined is a homomorphism.

Example 2.7.3 Let G be the group of integers under addition and let
G = G. For the integer x € G define ¢ by ¢(x) = 2x. That ¢ is a homo-
morphism then follows from @(x + ) = 2(x + ) = 2% + 2y = d(x) + d ().

Example 2.7.4 Let G be the group of nonzero real numbers under
multiplication, G = {1, —1}, where 1.1 = 1, (=1)(=1) =1, 1(=1) =
(=1)1 = —1. Define ¢:G — G by ¢(x) = 1 if x is positive, ¢p(x) = — 1 if
x is negative. The fact that ¢ is a homomorphism is equivalent to the
Statements: positive times positive is positive, positive times negative is
liegative, negative times negative is positive.

Example 2.7.5 Let G be the group of integers under addition, let G, be
the group of integers under addition modulo n. Define ¢ by ¢(x) =
Témainder of x on division by #. One can easily verify this is a homo-
morphism.
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Example 2.7.6 Let G be the group of positive real numbers under
multiplication and let G be the group of all real numbers under addition,
Define ¢:G — G by ¢(x) = log,ox. Thus

P(xy) = logio(xp) = logio(x) + logio(y) = ¢(*)¢()

since the operation, on the right side, in G is in fact addition. Thus ¢ is a
homomorphism of G into G. In fact, not only is ¢ a homomorphism but,
in addition, it is one-to-one and onto.

#Example 2.7.7 Let G be the group of all real 2 x 2 matrices ((z 3)

such that ad — b¢ # 0, under matrix multiplication. Let G be the group

of all nonzero real numbers under multiplication. Define ¢:G — G by
a b

¢(c d) = ad — bc.

We leave it to the reader to check that ¢ is a2 homomorphism of G onto G.

The result of the following lemma yields, for us, an infinite class of
examples of homomorphisms. When we prove Theorem 2.7.1 it will turn
out that in some sense this provides us with the most general example of a
homomorphism.

LEMMA 2.7.1 Suppose G is a group, N a normal subgroup of G; define the
mapping ¢ from G to G|N by ¢(x) = Nx for all xe G. Then ¢ is a homo-
morphism of G onto G| N.

Proof. 1In actuality, there is nothing to prove, for we already have
proved this fact several times. But for the sake of emphasis we repeat it.

That ¢ is onto is trivial, for every element X € G/N is of the form
X =Ny, yeG, so X = ¢(y). To verify the multiplicative property
required in order that ¢ be a homomorphism, one just notes that if
x, y€G,

¢(») = Nxy = NxNy = ¢(x)p().

In Lemma 2.7.1 and in the examples preceding it, a fact which comes
through is that a homomorphism need not be one-to-one; but there is 2
certain uniformity in this process of deviating from one-to-oneness. This
will become apparent in a few lines.

DEFINITION If ¢ is a homomorphism of G into G, the kernel of ¢, K, is
defined by K; = {x € G| ¢(x) = ¢, ¢ = identity element of G}.

Before investigating any properties of K it is advisable to establish that,
as a set, K is not empty. This is furnished us by the first part of
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LEMMA 2.7.2  If ¢ is a homomorphism of G into G, then

1. ¢(e) = & the unit element of G.
2. ¢p(x~ 1) = ¢(x)" forall x € G.

Proof. To prove (1) we merely calculate ¢(x)¢ = ¢p(x) = P(xe) =

(x)¢(e), so by the cancellation property in G we have that ¢(e) = é.

To establish (2) one notes that ¢ = ¢(e) = Pp(ax™ 1) = p(x)p(x™ 1), so
by the very definition of ¢(x) ™! in G we obtain the result that ¢(x~!) =

dx) "

The argument used in the proof of Lemma 2.7.2 should remind any
reader who has been exposed to a development of logarithms of the argument
used in proving the familiar results thatlog 1 = 0 and log (1/x) = —log x;
this is no coincidence, for the mapping ¢:x — log x is a homomorphism of
the group of positive real numbers under multiplication into the group of
real numbers under addition, as we have seen in Example 2.7.6.

Lemma 2.7.2 shows that ¢ is in the kernel of any homomorphism, so any
such kernel is not empty. But we can say even more.

LEMMA 2.7.3 If ¢ is a homomorphism of G into G with kernel K, then K is a
normal subgroup of G.

Proof.  First we must check whether K is a subgroup of G. To see this
one must show that K is closed under multiplication and has inverses in it
for every element belonging to K.

If x, y € K, then ¢(x) = ¢, ¢(y) = ¢ where ¢ is the identity element of
G, and so ¢(xy) = ¢p(x)P(y) = & = ¢, whence xy e K. Also, if x € K,
¢(*) = ¢, so, by Lemma 2.7.2, ¢(x" 1) = ¢p(x)"! =¢"! = ¢; thus
x~1 e K. K is, accordingly, a subgroup of G.

To prove the normality of K one must establish that for any g € G,

ke K, gkg=' € K; in other words, one must prove that ¢(gkg™?) = é

whenever ¢(k) = & But ¢(ghe™") = ¢(e)p(R)p(¢™") = d(e)é(e) ™' =
#(2)¢p(g)~! = & This completes the proof of Lemma 2.7.3.

Let ¢ now be a homomorphism of the group G onto the group G, and
Suppose that K is the kernel of ¢. If 7 € G, we say an element x € G is an
tnverse image of g under ¢ if ¢(x) = 3. What are all the inverse images of
& For 7 = ¢ we have the answer, namely (by its very definition) K.
What wbout elements g # é? Well, suppose x € G is one inverse image of g;
€an we write down others? Clearly yes, for if k € K, and if y = kx, then
$(y) = ¢(kx) = ¢(k)p(x) = ¢§ = 5 Thus all the elements Kx are in

€ inverse image of g whenever x is. Can there be others? Let us suppose
that ¢(z) = 7 = ¢(x). Ignoring the middle term we are left with

9(2) = ¢(»), and so G(2)Pp(x)"! = ¢ But ¢(x)”! = p(x~!), whence
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E= ¢(2)Pp(x)" ' = p(2)Pp(x 1) = Pp(zx™!), in consequence of which
zx~ 1 e K; thus z € Kx. In other words, we have shown that Kx accounts
for exactly all the inverse images of § whenever x is a single such inverse
image. We record this as

LEMMA 2.7.4 If ¢ is a homomorphism of G onto G with kernel K, then the set
of all inverse images of g € G under ¢ in G is given by Kx, where x is any particular
inverse image of g in G.

A special case immediately presents itself, namely, the situation when
K = (¢). But here, by Lemma 2.7.4, any § € G has exactly one inverse
image. That is, ¢ is a one-to-one mapping. The converse is trivially true,
namely, if ¢ is a one-to-one homomorphism of G into (not even onto) G, its
kernel must consist exactly of e.

DEFINITION A homomorphism ¢ from G into G is said to be an isomor-
phism if ¢ is one-to-one.

DEFINITION Two groups G, G* are said to be isomorphic if there is an
isomorphism of G onfo G*. In this case we write G & G*.

We leave to the reader to verify the following three facts:

1. G~ G.
2. G = G* implies G* ~ G.
3. G = G*, G* = G** implies G =& G**.

When two groups are isomorphic, then, in some sense, they are equal.
They differ in that their elements are labeled differently. The isomorphism
gives us the key to the labeling, and with it, knowing a given computation
in one group, we can carry out the analogous computation in the other.
The isomorphism is like a dictionary which enables one to translate a
sentence in one language into a sentence, of the same meaning, in another
language. (Unfortunately no such perfect dictionary exists, for in languages
words do not have single meanings, and nuances do not come through in a
literal translation.) But merely to say that a given sentence in one language
can be expressed in another is of little consequence; one needs the dictionary
to carry out the translation. Similarly it might be of little consequence to
know that two groups are isomorphic; the object of interest might very well
be the isomorphism itself. So, whenever we prove two groups to be iso-
morphic, we shall endeavor to exhibit the precise mapping which yields
this isomorphism.

Returning to Lemma 2.7.4 for a moment, we see in it a means of character-
izing in terms of the kernel when a homomorphism is actually an isomor-
phism.
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COROLLARY A homomorphism ¢ of G into G with kernel K, is an isomorphism
of G into G if and only f Ky = (e).

This corollary provides us with a standard technique for proving two

oups to be isomorphic. First we find a homomorphism of one onto the
other, and then prove the kernel of this homomorphism consists only of
the identity element. This method will be illustrated for us in the proof
of the very important

THEOREM 2.7.1 Let ¢ be a homomorphism of G onto G with kernel K. Then
G/K ~ G.

Proof. Consider the diagram

c—2? ¢

a l
G
K

where o(g) = Kg.
We should like to complete this to

c l lk/’/
¢~
K

It seems clear that, in order to construct the mapping ¥ from G/K to G,
we should use G as an intermediary, and also that this construction should

be relatively uncomplicated. What is more natural than to complete the
diagram using
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With this preamble we formally define the mapping  from G/K to G by:
if Xe G/K, X = Kg, then y(X) = ¢(g). A problem immediately arises:
is this mapping well defined? If X € G/K, it can be written as Kg in several
ways (for instance, Kg = Kkg, ke K); but if X = Kg = K¢', g,¢' €G,
then on one hand ¥(X) = ¢(g), and on the other, Y(X) = ¢(g’). For
the mapping ¥ to make sense it had better be true that ¢(g) = ¢(g).
So, suppose Kg = Kg’; then g = kg, where k € K, hence ¢(g) = ¢(kg') =
Pk)p(g) = ép(g’) = @(g’) since k € K, the kernel of ¢.

We next determine that  is onto. For, if ¥ e G, ¥ = ¢(g), g € G (since
¢ is onto) so ¥ = ¢(g) = Y (Kg).

If X, YeG/K, X =Kg, Y =Kf, g,f€G, then XY = KgKf = Kgf,
so that y(XY) = Y(Kgf) = ¢(gf) = ¢(g)9(f) since ¢ is a homomorphism
of G onto G. But $(X) = Y(Ke) = ¢(8), ¥(¥) = W(KS) = $(f), 50 we
see that Yy (XY) = Y(X)Y(Y), and ¢ is a homomorphism of G/K onto G.

To prove that y is an isomorphism of G/K onto G all that remains is to
demonstrate that the kernel of ¥ is the unit element of G/K. Since the unit
element of G/K is K = Ke, we must show that if yy(Kg) = ¢, then Kg =
Ke = K. This is now easy, for ¢ = y(Kg) = ¢(g), so that ¢(g) = ¢,
whence g is in the kernel of ¢, namely K. But then Kg = K since K is a
subgroup of G. All the pieces have been put together. We have exhibited
a one-to-one homomorphism of G/K onto G. Thus G/K =~ G, and Theorem
2.7.1 is established.

Theorem 2.7.1 is important, for it tells us precisely what groups can be
expected to arise as homomorphic images of a given group. These must be
expressible in the form G/K, where K is normal in G. But, by Lemma 2.7.1,
for any normal subgroup N of G, G/N is a homomorphic image of G. Thus
there is a one-to-one correspondence between homomorphic images of G
and normal subgroups of G. If one were to seek all homomorphic images of
G one could do it by never leaving G as follows: find all normal subgroups
N of G and construct all groups G/N. The set of groups so constructed
yields all homomorphic images of G (up to isomorphisms).

A group is said to be simple if it has no nontrivial homomorphic images,
that is, if it has no nontrivial normal subgroups. A famous, long-standing
conjecture was that a non-abelian simple group of finite order has an even
number of elements. This important result has been proved by the two
American mathematicians, Walter Feit and John Thompson.

We have stated that the concept of a homomorphism is a very important
one. To strengthen this statement we shall now show how the methods and
results of this section can be used to prove nontrivial facts about groups.
When we construct the group G/N, where N is normal in G, if we should
happen to know the structure of G/N we would know that of G “up to N
True, we blot out a certain amount of information about G, but often
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‘enough is left so that from facts about G/N we can ascertain certain ones
;5bout G. When we photograph a certain scene we transfer a three-
dimensional object to a two-dimensional representation of it. Yet, looking
-at the picture we can derive a great deal of information about the scene
yhotographed.

" In the two applications of the ideas developed so far, which are given
Jbelow, the proofs given are not the best possible. In fact, a little later in
ﬁus chapter these results will be proved in a more general situation in an
‘easier manner. We use the presentation here because it does illustrate
f-‘}‘gﬁ'ectively many group-theoretic concepts.

;{APPLICATION 1 (Caucuy’s THEOREM FOR ABELIAN GROUPS) Suppose G
is a finite abelian group and p | o(G), where p is a prime number. Then there is an
Mnt a # ¢ € G such that a? = e.

~ Proof. We proceed by induction over o(G). In other words, we assume
that the theorem is true for all abelian groups having fewer elements than
‘G. From this we wish to prove that the result holds for G. To start the
induction we note that the theorem is vacuously true for groups having a
“single element.

If G has no subgroups H # (¢), G, by the result of a problem earlier in
the chapter, G must be cyclic of prime order. This prime must be p, and
G certainly has p — 1 elements a # e satisfying a®? = 2°©@ = .

So suppose G has a subgroup N # (¢), G. If p | o(N), by our induction
hypothesis, since o(N) < 0(G) and N is abelian, there is an element 4 € N,
b # e, satisfying b7 = ¢; since be N = G we would have exhibited an
element of the type required. So we may assume that p J o(N). Since G
is abelian, N is a normal subgroup of G, so G/N is a group. Moreover,
o(G/N) = o(G)[o(N), and since p } o(N),

Y/ o(G) < o(G).
o(N)

Also, since G is abelian, G/N is abelian. Thus by our induction hypothesis
there is an element X € G/N satisfying X? = ¢,, the unit element of G|N,
X # . By the very form of the elements of G/N, X = Nb, b € G, so that
XP = (Nb)? = NbP. Since eg = Ne, XP = ¢, X # ¢; translates into
Nor — N, Nb # N. Thus b € N, b ¢ N. Using one of the corollaries to
Lagrange’s theorem, (67)°M = ¢, That is, b*M? = ¢ Let. ¢ = 6°™,
rtainly ¢ = ¢. In order to show that ¢ is an element that satisfies the
- Conclusion of the theorem we must finally show that ¢ # ¢. However, if
¢=1¢ 0™ = ¢, and so (Nb)°™ = N. Combining this with (Nb)? = N,
LXo(N),pa prime number, we find that Nb = N, and so b € N, a contra-
_diction. Thus ¢ # e, ¢ = ¢, and we have completed the induction. This

/Proves the result.
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APPLICATION 2 (Svrow’s THEOREM FOR ABELIAN Groups) If G is an
abelian group of order o(G), and if p is a prime number, such that p* | o(G), p*** ¥
0(G), then G has a subgroup of order p*.

Proof. If ¢ = 0, the subgroup (¢) satisfies the conclusion of the result.
So suppose a # 0. Then p|o(G). By Application 1, there is an element
a # ¢ € G satisfying a? = ¢. Let § = {xe G|x” = ¢ some integer n}.
Since a € S, a # e, it follows that § # (¢). We now assert that S is a sub-
group of G. Since G is finite we must only verify that S is closed. If
,9€S8, x =¢ )" =e so that ()P = 2" = ¢ (we have
used that G is abelian), proving that xy € §.

We next claim that o(S) = p* with f an integer 0 < f < «. For, if some
prime ¢ | o(S), ¢ # p, by the result of Application 1 there is an element
cesS, ¢ # e satisfying ¢? = ¢. However, ¢* = ¢ for some n since ¢ € S.
Since p", ¢ are relatively prime, we can find integers A, u such that 1g +
" = 1, so that ¢ = ¢! = M¥YEP" = ((HA(P")# = ¢, contradicting ¢ # e.
By Lagrange’s theorem o(S) | o(G), so that § < a. Suppose that § < «;
consider the abelian group G/S. Since B < o and o(G/S) = o(G)/o(S),
p|0(G/S), there is an element Sx, (x € G) in G/ satisfying Sx # S,
(Sx)?" = S for some integer n > 0. But § = (Sx)?" = Sx?", and so x”" € §;
consequently ¢ = (x?")°® = (x?")?" = x?""?. Therefore, x satisfies the
exact requirements needed to put it in §; in other words, x € S. Con-
sequently Sx = § contradicting Sx # S. Thus f < a is impossible and we
are left with the only alternative, namely, that f = «. S is the required
subgroup of order p*.

We strengthen the application slightly. Suppose 7 is another subgroup
of G of order p*, T # S. Since G is abelian ST = T, so that ST is a sub-
group of G. By Theorem 2.5.1

5Ty  AAT) _ _rr
oSnT) oSnT)

and since § # T, o(Sn T) < p* leaving us with o(ST) = p*, y > o
Since ST is a subgroup of G, o(ST') | o(G); thus p” | o(G) violating the fact
that o is the largest power of p which divides 0(G). Thus no such subgroup
T exists, and S is the unique subgroup of order p*. We have proved the

COROLLARY If G is abelian of order o(G) and p* | o(G), p*** ¥ o(G), there
is a unique subgroup of G of order p*.

If we look at G = S5, which is non-abelian, o(G) = 2.3, we see that G
has 3 distinct subgroups of order 2, namely, {e, ¢}, {&, pY}, {e, PP}, s0
that the corollary asserting the uniqueness does not carry over to non-
abelian groups. But Sylow’s theorem holds for all finite groups.
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We leave the application and return to the general development. Suppcse
pisa homom_orphism of G onto G with ke{nel K, and suppose that H is a
subgroup of G. Let H = {x € G| ¢(x) € H}. We assert that H is a sub-
group of G and that H > K. That H > K is trivial, for if x € K, ¢(x) =
is in A, so that K < H follows. Suppose now that x, y € H; hence ¢(x) €
() € A from which we deduce that ¢(xy) = ¢(x)p(y) € A There-
fore, xy € H and H is closed under the product in G. Furthermore, if
xe H, ¢(x) € Hand so ¢(x~ ") = ¢(x)~' € H from which it follows that
%~ 1 e H Allin all, our assertion has been established. What can we say
in addition in case H is normal in G? Let g€ G, h e H; then ¢(h) € H,
whence ¢(ghg™!) = ¢(g)p(h)p(g)~ ! € H, since H is normal in G. Other-
wise stated, ghg~! € H, from which it follows that H is normal in G. One
other point should be noted, namely, that the homomorphism ¢ from G
onto G, when just considered on elements of H, induces a homomorphism
of H onto H, with kernel exactly K, since K < H; by Theorem 2.7.1 we
have that A ~ H|K.

Suppose, conversely, that L is a subgroup of G and K < L. Let L =
{#e G| % = ¢(), e L}. The reader should verify that L is a subgroup
of G. Can we explicitly describe the subgroup 7' = {y e G| ¢(») € L}?
Clearly L = T. Is there any element ¢ € T which is not in L? So, suppose
te T; thus ¢(¢) € L, so by the very definition of L, ¢(¢) = ¢({) for some
leL Thus ¢ ') = ¢(t)p()~' = ¢ whence ' e K = L, thus ¢ is
in Li = L. Equivalently we have proved that T < L, which, combined
with L < T, yields that L = T.

Thus we have set up a one-to-one correspondence between the set of
all subgroups of G and the set of all subgroups of G which contain K. More-
over, in this correspondence, a normal subgroup of G corresponds to a
normal subgroup of G.

We summarize these few paragraphs in

LEMMA 275 Le ¢ be a homomorphism of G onto G with kernel K. For H a
subgroup of G let H be defined by H = {x € G| ¢(x) € H}. Then H is a sub-
&roup of G and H > K; if H is normal in G, then H is normal in G. Moreover,
this association sets up a one-to-one mapping from the set of all subgroups of G onto
the set of all subgroups of G which contain K.

We wish to prove one more general theorem about the relation of two
~Broups which are homomorphic.

THEOREM 2.7.2. Let ¢ be a homomorphism of G onto G with kernel K, and let
be a normal subgroup of G, N = {x e G| ¢(x) € N}. Then G|N ~ G|N.
Lquivalently, G/N =~ (G/K)[(N/K).

63



64

Group Theory Ch. 2

Proof. As we already know, there is a homomorphism 6 of G onto
G|N defined by 0(3) = Ni. We define the mapping ¥:G —» G/N by
Y(g) = N¢(g) for all ge G. To begin with, ¥ is onto, for if e G,
Z = ¢(g) for some ge G, since ¢ is onto, so the typical element Ng in
G/ N can be represented as N¢(g) = y(g).

If a, b € G, y(ab) = N¢(ab) by the definition of the mapping yy. How-
ever, since ¢ is a homomorphism, ¢(ab) = ¢(a)@(d). Thus Y(ab) =
Np(a)p(b) = Np(a)Np(b) = y(a)y(b). So far we have shown that V is
a homomorphism of G onto G/N. What is the kernel, 7, of y? Firstly, if
ne N, ¢(n) e N, so that Y(n) = N¢p(n) = N, the identity element of
G/|N, proving that N = T. On the other hand, if ¢t € T, y(t) = identity
element of G/N = N;but (1) = N¢(¢). Comparing these two evaluations
of y(t), we arrive at N = N¢(t), which forces ¢(¢) € N; but this places
¢tin N by definition of N. Thatis, 7" = N. The kernel of y has been proved
to be equal to N. But then y is a homomorphism of G onto G/N with
kernel N. By Theorem 2.7.1 G/N ~ G/N, which is the first part of the
theorem. The last statement in the theorem is immediate from the
observation (following as a consequence of Theorem 2.7.1) that G ~ G/K,
N ~ N|K, GI/N ~ (G/K)|(N|K).

Problems

1. In the following, verify if the mappings defined are homomorphisms,
and in those cases in which they are homomorphisms, determine the
kernel.

(a) G is the group of nonzero real numbers under multiplication,
G =G, ¢(x) = x*allxeG.

(b) G, G asin (a), ¢p(x) = 2~

(c) G is the group of real numbers under addition, G = G, ¢(x) =
x + lallxeG.

(d) G, Gasin (c), ¢p(x) = 13x for x € G.

(e) G is any abelian group, G = G, ¢(x) = x° allx € G.

2. Let G be any group, g a fixed element in G. Define ¢:G — G by
¢(x) = gxg~'. Prove that ¢ is an isomorphism of G onto G.

3. Let G be a finite abelian group of order o(G) and suppose the integer
n is relatively prime to o(G). Prove that every g € G can be written
as g = x" with x e G. (Hint: Consider the mapping ¢:G - G
defined by ¢(y) = »", and prove this mapping is an isomorphism
of G onto G.)

4. (a) Given any group G and a subset U, let U be the smallest sub-
group of G which contains U. Prove there is such a subgroup U
in G. (U is called the subgroup generated by U.)



13.

14.
15.

#16.
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() If gug™' e U for all ge G, ue U, prove that U is a normal
subgroup of G.

Let U = {xpx~ 9" ' | x,y € G}. In this case U is usually written as

G’ and is called the commutator subgroup of G.

(a) Prove that G’ is normal in G.

(b) Prove that G/G’ is abelian.

(c) If G/N is abelian, prove that N > G'.

(d) Prove that if H is a subgroup of G and H > G’, then H is normal
in G.

. If N, M are normal subgroups of G, prove that NM/M ~ N/N n M.
. Let V be the set of real numbers, and for a4, b real, a # 0 let

TV — V defined by 7,(x) = ax + 6. Let G = {1, | a, b real,
a # 0} and let N = {r,, € G}. Prove that N is a normal subgroup
of G and that G/N & group of nonzero real numbers under multi-
plication. '

. Let G be the dihedral group defined as the set of all formal symbols

i, i =0,1, j=0,1,...,n — 1, where x2 = ¢, y" = ¢, xy =
9~ 1x. Prove

(a) The subgroup N = {e,», »2,..., 5" '} is normal in G.

(b) That G/N = W, where W = {1, —1} is the group under

‘the multiplication of the real numbers.

. Prove that the center of a group is always a normal subgroup.
10.
11
12.

Prove that a group of order 9 is abelian.
If G is a non-abelian group of order 6, prove that G ~ S;.

If G is abelian and if N is any subgroup of G, prove that G/N is
abelian.

Let G be the dihedral group defined in Problem 8. Find the center
of G.

Let G be as in Problem 13. Find G’, the commutator subgroup of G.

Let G be the group of nonzero complex numbers under multiplication
and let NV be the set of complex numbers of absolute value 1 (that is,
a + bie Nif a®> + b2 = 1). Show that G/N is isomorphic to the
group of all positive real numbers under multiplication.

Let G be the group of all nonzero complex numbers under multi-
plication and let G be the group of allreal 2 x 2 matrices of the form

a b . R
( 5 » where not both @ and b are 0, under matrix multiplication.
~b a

Show that G and G are isomorphic by exhibiting an isomorphism of
G onto G.

65



Group Theory Ch.2

#17. Let G be the group of real numbers under addition and let N be the
subgroup of G consisting of all the integers. Prove that G/N is
isomorphic to the group of all complex numbers of absolute value ]
under multiplication.

#18. Let Gbe the group ofall real 2 x 2 matrices ("

b), with ad — bc # 0,
¢ d

under matrix multiplication, and let

N={(a b)eG|ad—bc= l}.
c d

Prove that N o G’, the commutator subgroup of G.
*#19. In Problem 18 show, in fact, that N = G".

#20. Let G be the group of all real 2 x 2 matrices of the form (g Z),

where ad # 0, under matrix multiplication. Show that G’ is precisely

the set of all matrices of the form <(1) T)

21. Let S, and S, be two sets. Suppose that there exists a one-to-one
mapping ¥ of §; into S,. Show that there exists an isomorphism of
A(S,) into A(S,), where A(S) means the set of all one-to-one mappings
of .S onto itself.

2.8 Automorphisms

In the preceding section the concept of an isomorphism of one group into
another was defined and examined. The special case in which the isomor-
phism maps a given group into itself should obviously be of some importance.
We use the word “into” advisedly, for groups G do exist which have iso-
morphisms mapping G into, and not onto, itself. The easiest such example
is the following: Let G be the group of integers under addition and define
$:G - G by ¢:x— 2x for every x€ G. Since ¢:x +y = 2(x +) =
2x + 2, ¢ is a homomorphism. Also if the image of x and y under ¢ are
equal, then 2x = 2y whence x = y. ¢ is thus an isomorphism. Yet ¢ is
not onto, for the image of any integer under ¢ is an even integer, so, for
instance, 1 does not appear an image under ¢ of any element of G. of
greatest interest to us will be the isomorphisms of a group onto itself.

DEFINITION By an automorphism of a group G we shall mean an isomorphism
of G onto itself.

As we mentioned in Chapter 1, whenever we talk about mappings of a set
into itself we shall write the mappings on the right side, thus if 7:§ — S,
x € 8, then xT is the image of x under 7.
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Let I be the mapping of G which sends every element onto itself, that s,
. xl = xforall x € G. Trivially I is an automorphism of G. Let &/(G) denote
~the set of all automorphisms of G; being a subset of A(G), the set of one-
to-one mappings of G onto itself, for elements of & (G) we can use the product
f A(G), namely, composition of mappings. This product then satisfies the
issociative law in A(G'), and so, a fortiori, in &/ (G). Also I, the unit element
f A(G), is in 4 (G), so H(G) is not empty.

An obvious fact that we should try to establish is that &/ (G) is a subgroup
f A(G), and so, in its own rights, &/ (G) should be a group. If T}, T, are
4n #(G) we already know that 7,7, € A(G). We want it to be in the
“smaller set o/(G). We proceed to verify this. For all x, y € G,

)Ty = xT)(yTy),
)T, = xT,)(»Ty),

‘therefore
: W TT, = () T)T, = (¢T)(T)) T,
= (¢T)TL))((OT)T,) = Ty T,) (T, Ty).

‘{?I‘hat is, 71T, € &/(G). There is only one other fact that needs verifying
~in order that &/ (G) be a subgroup of 4(G), namely, that if 7 e #(G), then
T~ 'ed(G). Ifx,y€G, then

L (GTTHOT™NT = (T HTHOT™NT) = (NH(]) = »,
thus
T™HOT™) = ()T,

‘placing 77! in & (G). Summarizing these remarks, we have proved

LEMMA 281 If G is a group, then 4(G), the set of automorphisms of G, is
“also a group.

- Of course, as yet, we have no way of knowing that &#(G), in general, has

”"elements other than I. If G is a group having only two elements, the reader

should convince himself that o (G) consists only of I. For groups G with
, ‘Zlnore than two elements, &/ (G) always has more than one element.

What we should like is a richer sample of automorphisms than the ones
€ have (namely, I). If the group G is abelian and there is some element
0 € G satisfying x, # %, !, we can write down an explicit automorphism,
€ mapping 7 defined by xT = x~ ! for all x € G. For any group G, T is
; for any abelian G, (x) T = (1) " ' =y~ 4™ ' =2~ Y~ = T\ (HT).
Aso %07 = x," ' # xp,50 T # I
However, the class of abelian groups is a little limited, and we should
€ to have some automorphisms of non-abelian groups. Strangely enough
€ task of finding automorphisms for such groups is easier than for abelian
oups.
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Let G be a group; for g € G define T,:G — G by «T, = g 'xg for all
x € G. We claim that T, is an automorphism of G. First, T, is onto, for
given y € G, let x = gyg~'. Then xT, = g~ '(x)g = g Yagvg Ng =0,
T,is onto. Now consider, forx,yeG, (x)T, =g Yx)g = g~ Y(xgg g =
(g7 'xg) (g g) = (xT,)(»T,). Consequently T, is a homomorphism of G
onto itself. We further assert that 7, is one-to-one, for if x7, = »T,, then
g 'xg = g~ 'yg, so by the cancellation laws in G, x = . T, is called the
inner automorphism corresponding to g. If G is non-abelian, there is a pair
a,b € G such that ab # ba; but then 67, = a” 'ba # b, so that T, # L
Thus for a non-abelian group G there always exist nontrivial automorphisms.

Let #(G) = {T,e (G) | g€ G}. The computation of T, for g, h € G,
might be of some interest. So, suppose x € G; by definition,

2T, = (gh) " 'x(gh) = h™'g" 'xgh = (g7 'xg) Ty = (xT) Ty = xT, T,

Looking at the start and finish of this chain of equalities we find that
T,, = T,T, This little remark is both interesting and suggestive. It is of
interest because it immediately yields that #(G) is a subgroup of & (G).
(Verify!) S(G) is usually called the group of inner automorphisms of G. It is
suggestive, for if we consider the mapping ¥:G — &/ (G) defined by
¥(g) = T, for every g € G, then Y(gh) = Ty = T,T, = Y(g)y(h). That
is, ¥ is a homomorphism of G into &/(G) whose image is J(G). What is
the kernel of y? Suppose we call it K, and suppose g, € K. Then y(g) = 1,
or, equivalently, 7, = I. But this says that for any x € G, xT,, = x;
however, T, = g 'xgy, and so x = 8o 'xgo for all x € G. Thus gox =
2080~ ‘%80 = xgo; go must commute with all elements of G. But the center
of G, Z, was defined to be precisely all elements in G which commute with
every element of G. (See Problem 15, Section 2.5.) Thus K = Z. However,
if zeZ, then xT, = 27 'xz = 2z~ "(2x) (since zx = xz) = x, whence
T, = I and so z € K. Therefore, Z ¢ K. Having proved both K = Z
and Z = K we have that Z = K. Summarizing, ¥ is a homomorphism of
G into &/(G) with image #(G) and kernel Z. By Theorem 2.7.1

#(G) ~ G|Z. In order to emphasize this general result we record it as

LEMMA 282 #(G) = G|Z, where F(G) is the group of inner automorphisms
of G, and Z is the center of G.

Suppose that ¢ is an automorphisms of a group G, and suppose that
a € G has order n (that is, a" = e but for no lower positive power). Then
la)" = ¢(a") = ¢p(e) = ¢, hence ¢(a)" =e If ¢(a)" = ¢ for some
0 < m < n, then ¢(a™) = ¢(a)™ = e, which implies, since ¢ is one-to-oné,
that a™ = e, a contradiction. Thus

LEMMA 283 Let G be a group and ¢ an automorphism 0fb IfaeG s
of order o(a) > 0, then o(¢(a)) = o(a).
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Automorphisms of groups can be used as a means of constructing new

ups from the original group. Before explaining this abstractly, we con-
slder a particular example.

Let G be a cyclic group of order 7 that 1s, G consists of all a’, where we

:assume a’ = e. The mapping ¢:a' — a?!, as can be checked trivially, is
an automorphism of G of order 3, that is, ¢> = I. Let x be a symbol which
‘Twe formally subject to the following conditions: x> = ¢, x 'alx = ¢(d') =
4%, and consider all formal symbols x'a’, where i =0, 1,2 and
j=0,1,2...,6. Wedeclare that x'al = x*d" if and only 1fz = kmod 3
and j = [ mod 7. We multiply these symbols using the rules x> = al =
x~lax = a®. For instance, (xa)(xa®) = x(ax)a® = x(xa®)a® = x%a*. The
reader can verify that one obtains, in this way, a non-abelian group of
‘order 21.

Generally, if G is a group, T an automorphism of order r of G which is
not an inner automorphism, pick a symbol x and consider all elements
#g, i =0, +1, £2,..., g€ G subject to x'g = x"¢’ if and only if i =
#modr, g =g and x~ 'g'x = gT" for all i. This way we obtain a larger

- group {G, T}; Gis normal in {G, T} and {G, T}/G ~ group generated by
T = cyclic group of order r.
~ We close the section by determining &/ (G) for all cyclic groups.

Example 2.8.1 Let G be a finite cyclic group of order 7, G = (a), a" = e.
Suppose T is an automorphism of G. If aT is known, since a'T = (aT)’,
@'T is determined, so g7 is determined for all g € G = (a). Thus we need
‘consider only possible images of @ under 7. Since aT € G, and since every
element in Gis a power of a, aT = ' for some integer 0 < ¢ < 7. However,
since T is an automorphism, a7 must have the same order as a (Lemma
2.8.3), and this condition, we claim, forces ¢ to be relatively prime to r. For
ifd|t d|r, then (aT)" = " = gD = (4)""* = ¢; thus aT has order
a divisor of r/d, which, combined with the fact that a7 has order r, leads
us to d = 1. Conversely, for any 0 < s < r and relatively prime to 7, the
mapping S:a’ — ¢*! is an automorphism of G. Thus &/(G) is in one-to-one

-Correspondence with the group U, of integers less than r and relatively
_Prime to 7 under multiplication modulo r. We claim not only is there such
2 one-to-one correspondence, but there is one which furthermore is an
rwomorphlsm Let us label the elements of &/(G) as T; where T;:a — a
O<i<y and relatively prlme to r; T;T;:a —» a' > (a' N = q¥ thus
il; = T,;. The mapping i > T} thlblts the isomorphism of U, onto
(G). Here then, #(G) ~ U..

Example 2.8.2 G is an infinite cyclic group. That is, G consists of all a’,
=0, +1, +2,..., where we assume that &’ = ¢ if and only if i = 0.
uppose that 7 is an automorphism of G. As in Example 2.8.1, aT = d".
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The question now becomes, What values of ¢ are possible? Since T is an
automorphism of G, it maps G onto itself, so that ¢ = gT for some g € G,
Thus a = 'T = (aT)’ for some integer i. Since a7 = a', we must have
that a = 4%, so that ¢’ = ¢. Hence &z — 1 = 0; thatis, ti = 1. Clearly,
since ¢ and ¢ are integers, this must force { = +1, and each of these gives
rise to an automorphism, ¢ = 1 yielding the identity automorphism ],
t = —1 giving rise to the automorphism 7T:g — g~ ! for every g in the
cyclic group G. Thus here, &/(G) = cyclic group of order 2.

Problems

1. Are the following mappings automorphisms of their respective groups?
(a) G group of integers under addition, T:x — —x.
(b) G group of positive reals under multiplication, T:x — x2.
(c) G cyclic group of order 12, T:x — x3.
(d) G is the group S, T:x — x~ 1.

2. Let G be a group, H a subgroup of G, T an automorphism of G.
Let (H)T = {hT | h e H}. Prove (H)T is a subgroup of G.

3. Let G be a group, T an automorphism of G, N a normal subgroup of
G. Prove that (N) T is a normal subgroup of G.

4. For G = §; prove that G ~ J£(G).

5. For any group G prove that #(G) is a normal subgroup of & (G) (the
group & (G)[F(G) is called the group of outer automorphisms of G).

6. Let G be a group of order 4, G = {¢, a, b, ab}, a®> = b2 = ¢, ab = ba.
Determine &/ (G).

7. (a) A subgroup C of G is said to be a characteristic subgroup of G if
(C)T < C for all automorphisms 7" of G. Prove a characteristic
subgroup of G must be a normal subgroup of G.

(b) Prove that the converse of (a) is false.

8. For any group G, prove that the commutator subgroup G’ is a
characteristic subgroup of G. (See Problem 3, Section 2.7).

9. If G is a group, N a normal subgroup of G, M a characteristic sub-
group of N, prove that M is a normal subgroup of G.

10. Let G be a finite group, T an automorphism of G with the property
that xT = x for x € G if and only if x = ¢. Prove that every ge G
can be represented as g = x~ !(x7") for some x € G.

that x7" = x if and only if x = ¢. Suppose further that 72 = L
Prove that G must be abelian.

1. Let G be a finite group, T an automorphism of G with the property
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#12. Let G be a finite group and suppose the automorphism 7" sends more
- than three-quarters of the elements of G onto their inverses. Prove
that x7 = x~ ! for all x € G and that G is abelian.

. In Problem [2, can you find an example of a finite group which is
non-abelian and which has an automorphism which maps exactly
three-quarters of the elements of G onto their inverses?

. Prove that every finite group having more than two elements has a
nontrivial automorphism.

. Let G be a group of order 2z. Suppose that half of the elements of G
are of order 2, and the other half form a subgroup H of order n. Prove
that H is of odd order and is an abelian subgroup of G.

#16. Let ¢(n) be the Euler ¢-function. If ¢ > 1 is an integer, prove that
oonl @ = 1),

17. Let G be a group and Z the center of G. If T is any automorphism
of G, prove that (Z)T < Z.

. Let G be a group and 7 an automorphism of G. If, for a € G, N(a) =
{x € G| xa = ax}, prove that N(aT) = (N(a))T.

. Let G be a group and 7T an automorphism of G. If N is a normal
subgroup of G such that (V)T < N, show how you could use 7 to
define an automorphism of G/N.

. Use the discussion following Lemma 2.8.3 to construct

(a) a non-abelian group of order 55.

(b) a non-abelian group of order 203.

. Let G be the group of order 9 generated by elements a, b, where a* =
b* = ¢. Find all the automorphisms of G.

N

29 Cayley’'s Theorem

urce and in some very concrete form. Very often it was in the form of a

of transformations of some particular mathematical object. In fact,
st finite groups appeared as groups of permutations, that is, as subgroups
S, (S, = A(S) when S is a finite set with # elements.) The English
thematician Cayley first noted that every group could be realized as a
bgt‘oup of A(S) for some S. Our concern, in this section, will be with a
esentation of Cayley’s theorem and some related results.

EOREM 2.9.1 (Caviey) FEvery group is isomorphic to a subgroup of
S) for some appropriate S.

Proof. Let G be a group. For the set § we will use the elements of G;
tis, put § = G. If ge G, define 7,:5(= G) - S(= G) by xT, = xg

hen groups first arose in mathematics they usually came from some specific
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for every xe G. If ye G, theny = (pg" Vg = (yg~ Y1, so that T, maps
S onto itself. Moreover, 7, is one-to-one, for if x, y € § and xT, = 1,
then xg = yg, which, by the cancellation property of groups, 1mplles that
x = ». We have proved that for every g € G, 1, € A(S).

If g, h e G, consider 1,,. For any xe§ = G, x1,, = x(gh) = (xg)h =
(xt,)T, = x7,7,. Note that we used the associative law in a very essential
way here. From xt, = xt,7, we deduce that 1, = 7,7,. Therefore, if
Y:G — A(S) is defined by y(g) = 1,, the relation 7,, = 7,7, tells us that
is a homomorphism. What is the kernel Kofy? Ifgye K, then Y(g,) = T,
is the identity map on S, so that for x € G, and, in particular, for ¢ e G
et,, = e. But etr, = egy = go. Thus comparing these two expressions for
6Ty, We conclude that 8 = ¢, whence K = (¢). Thus by the corollary to
Lemma 2.7.4  is an isomorphism of G into A(S), proving the theorem.

The theorem enables us to exhibit any abstract group as a more concrete
object, namely, as a group of mappings. However, it has its shortcomings;
for if G is a finite group of order 0(G), ‘then, using § = G, as in our proof,
A(S) has o(G)! elements. Our group G of order o(G) is somewhat lost in
the group A(S) which, with its 0(G)! elements, is huge in comparison to G.
We ask: Can we find a more economical S, one for which 4(S) is smaller?
This we now attempt to accomplish.

Let G be a group, H a subgroup of G. Let S be the set whose elements
are the right cosets of Hin G. Thatis, S = {Hg|ge G}. § need not be a
group itself, in fact, it would be a group only if H were a normal subgroup
of G. However, we can make our group G act on § in the following natural
way: for g € G let £,:S — § be defined by (Hx)t, = Hxg. Emulating the
proof of Theorem 2.9.1 we can easily prove

1. t, € A(S) for every g € G.
2. by = Lty

Thus the mapping 0:G — A(S) defined by 0(g) = ¢, is a homomorphism of
G into A(S). Can one always say that 6 is an isomorphism? Suppose that K
is the kernel of 6. If g, € K, then 0(g,) = ¢, is the identity map on S, so
that for every X € S, Xt,, = X. Since every element of S is a right coset of
H in G, we must have that Hat,) = Ha for every a € G, and using the de-
finition of #,, namely, Hat, = Hag,, we arrive at the identity Hag, = Ha
for every a € G. On the other hand, if b € G is such that Hxb = Hx for
every x € G, retracing our argument we could show that b € K. Thus

= {be G| Hxb = Hx all x € G}. We claim that from this character-
ization of K, K must be the largest normal subgroup of G which is contained
in H. We first explain the use of the word largest; by this we mean that if
N is a normal subgroup of G which is contained in H, then N must be con-
tained in K. We wish to show this is the case. That K is a normal subgroup
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of G follows from the fact that it is the kernel of a homomorphism of G.
Now we assert that K < H, for if b € K, Hab = Ha for every a € G, so,
in particular, Hb = Heb = He = H, whence be H. Finally, if N is a
npormal subgroup of G which is contained in H, if ne€ N, a € G, then
‘gna”' € N < H, so that Hana™' = H; thus Han = Ha for all a€ G.
Therefore, n € K by our characterization of K. ’

" We have proved

,fHEOREM 29.2 If G is a group, H a subgroup of G, and S is the set of all
nght cosets of H in G, then there is a homomorphism 0 of G into A(S) and the kernel
of 0 is the largest normal subgroup of G which is contained in H.

~ The case H = (¢) just yields Cayley’s theorem (Theorem 2.9.1). If H
should happen to have no normal subgroup of G other than (¢) in it, then
6 must be an isomorphism of G into 4(S). In this case we would have cut
down the size of the § used in proving Theorem 2.9.1. This is interesting
mostly for finite groups. For we shall use this observation both as a means
of proving certain finite groups have nontrivial normal subgroups, and also
as a means of representing certain finite groups as permutation groups on
small sets.

We examine these remarks a little more closely. Suppose that G has a
‘subgroup H whose index i(H) (that is, the number of right cosets of H in G)
satisfies i(H)! < o(G). Let S be the set of all right cosets of H in G. The
“mapping, 0, of Theorem 2.9.2 cannot be an isomorphism, for if it were,
0(G) would have 0(G) elements and yet would be a subgroup of 4(S) which
has i(H)! < o(G) elements. Therefore the kernel of § must be larger than
{); this kernel being the largest normal subgroup of G which is contained
in H, we can conclude that H contains a nontrivial normal subgroup of G.
" However, the argument used above has implications even when i(H)! is
Rotless than o(G). Ifo(G) does not divide i(H) ! then by invoking Lagrange’s
theorem we know that A(S) can have no subgroup of order o(G), hence no
subgroup isomorphic to G. However, A(S) does contain 6(G), whence 6(G)
‘tannot be isomorphic to G; that is, § cannot be an isomorphism. But then,
8 above, H must contain a nontrivial normal subgroup of G.

We summarize this as

EMMA 291 If G is a finite group, and H # G is a subgroup of G such that
(G) i (H)! then H must contain a nontrivial normal subgroup of G. In particular,
cannot be simple.

1. Let G be a group of order 36. Suppose that G has a subgroup H of
der 9 (we shall see later that this is always the case). Then i(H) = 4,
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4! = 24 < 36 = 0o(G) so that in H there must be a normal subgroup
N # (¢), of G, of order a divisor of 9, that is, of order 3 or 9.

2. Let G be a group of order 99 and suppose that H is a subgroup of G
of order 11 (we shall also see, later, that this must be true). Then i(H) = 9,
and since 99 4 9! there is a nontrivial normal subgroup N # (¢) of G in A,
Since H is of order 11, which is a prime, its only subgroup other than (¢) is
itself, implying that N = H. That is, H itself is a normal subgroup of G.

3. Let G be a non-abelian group of order 6. By Problem 11, Section 2.3,
there is an a # ¢ € G satisfying a*> = e. Thus the subgroup H = {e, a} is
of order 2, and ¢(H) = 3. Suppose, for the moment, that we know that 4
is not normal in G. Since H has only itself and (¢) as subgroups, H has no
nontrivial normal subgroups of G in it. Thus G is isomorphic to a subgroup
T of order 6 in A(S), where S is the set of right cosets of H in G. Since
0(A(S)) = i(H)! = 3! =6, T = 8. Inother words, G =& A(S) = S;. We
would have proved that any non-abelian group of order 6 is isomorphic to
S;. All that remains is to show that H is not normal in G. Since it might be
of some interest we go through a detailed proof of this. If H = {e, a} were
normal in G, then for every g e G, since gag~! € H and gag™! # ¢, we
would have that gag™! = a, or, equivalently, that ga = ag for every g€ G.
Let beG, b¢ H, and consider N(b) = {x € G| xb = bx}. By an earlier
problem, N(b) is a subgroup of G, and N(b) o H; N(b) # H since
be N(b), b ¢ H Since H is a subgroup of N(b), o(H) | o(N(d)) | 6. The
only even number n, 2 < n < 6 which divides 6 is 6. So o(N (b)) = 6;
whence b commutes with all elements of G. Thus every element of G com-
mutes with every other element of G, making G into an abelian group,
contrary to assumption. Thus H could not have been normal in G. This
proof is somewhat long-winded, but it illustrates some of the ideas already
developed.

Problems

1. Let G be a group; consider the mappings of G into itself, 1, defined
for g € G by x4, = gx for all x e G. Prove that 1, is one-to-one and
onto, and that 4,, = 4,4,.

2. Let 4, be defined as in Problem 1, 7, as in the proof of Theorem 2.9.1.
Prove that for any g, h € G, the mappings A,, 1, satisfy 1,7, = 7,4,
(Hint : For x € G consider x(4,1,) and x(1,,4,).)

3. If 0 is a one-to-one mapping of G onto itself such that 1,0 = 64,
for all g € G, prove that 8 = 1, for some & € G.

4. (a) If H is a subgroup of G show that for every g€ G, gHg 1 is a
subgroup of G.
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(b) Prove that W = intersection of all gHg~ ! is a normal subgroup
of G.

5. Using Lemma 2.9.1 prove that a group of order p?, where p is a prime
number, must have a normal subgroup of order p.

" 6. Show that in a group G of order p? any normal subgroup of order p
must lie in the center of G.

7. Using the result of Problem 6, prove that any group of order p? is
abelian.

8. If p is a prime number, prove that any group G of order 2p must have
a subgroup of order p, and that this subgroup is normal in G.

9. If o(G) is pg where p and ¢ are distinct prime numbers and if G has
a normal subgroup of order p and a normal subgroup of order ¢, prove
that G is cyclic.

#10. Let o(G) be pg, p > q are primes, prove
(a) G has a subgroup of order p and a subgroup of order q.
(b) If ¢ ¥ p — 1, then G is cyclic.
(c) Given two primes p, ¢, ¢ |p — 1, there exists a non-abelian group
of order pgq.
(d) Any two non-abelian groups of order pq are isomorphic.

210 Permutation Groups

ZWe have seen that every group can be represented isomorphically as a sub-
group of A(S) for some set S, and, in particular, a finite group G can. be
represented as a subgroup of §,, for some n, where §, is the symmetric
group of degree n. This clearly shows that the groups S, themselves merit
€loser examination.

Suppose that S is a finite set having n elements x;, x,,..., %,
9 e A(S) = S,, then ¢ is a one-to-one mapping of § onto itself, and we
could write ¢ out by showing what it does to every element, e.g., ¢p:x; — x5,
*2 = x4, x, — x3, x3; — x;. But this is very cumbersome. One short cut
might be to write ¢ out as

® might be represented by

(xl Xy X3 x4)
X, X4 X X3

If
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While this notation is a little handier there still is waste in it, for there seems
to be no purpose served by the symbol x. We could equally well represent

the permutation as
1 2 - n
Z'1 z.2 T z'n '

Our specific example would read

1 2 3 4

2 41 3)°
Given two permutations 0, Y in §,, using this symbolic representation of §
and ¥, what would the representation of 6y be? To compute it we could
start and see what 6y does to ¥, (henceforth written as 1). 6 takes 1 into

i, while { takes ¢, into £, say, then 6 takes 1 into k. Then repeat this
procedure for 2, 3, ..., n. For instance, if 8 is the permutation represented

by
1 2 3 4
3 1 2 4
1 2 3 4
1 3 2 4)

then 7, = 3 and y takes 3 into 2, so £ = 2 and 0y takes I into 2. Similarly
0y:2 > 1, 3 - 3, 4 » 4. That is, the representation for 8 is

1 2 3 4
2 1 3 4)°

and y by

If we write

and

then
oy = 1 2 3 4(1 2 3 4 (1 2 3 4
“\3 1 2 4/\1 3 2 4/ \2 1 3 4)°

This is the way we shall multiply the symbols of the form

1 2 --- =n 12~-n)
ot o dy)] ky ky - ki)
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Let S be a set and 0 € A(S). Given two elements a, b € S we define
g = obif and only if & = af’ for some integer i (i can be positive, negative,
or 0). We claim this defines an equivalence relation on S. For

1. a = gasince a = af° = ae.

9. Ifa = ¢b, then b = ab’, so that a = b6™¢, whence b = 0@

g If a= b, b =4, then b = ab, ¢ = 60" = (a0")0’ = af'*/, which
'~ implies that a = 4.

~'This equivalence relation by Theorem 1.1.1 induces a decomposition of S
into disjoint subsets, namely, the equivalence classes. We call the equivalence
class of an element s € § the orbit of s under @; thus the orbit of s under 0
consists of all the elements 507, i = 0, +1, +2,....

" In particular, if § is a finite set and s € S, there is a smallest positive
integer [ = I(s) depending on s such that s6' = 5. The orbit of s under 0
then consists of the elements s, 50, 562, ..., s6''. By a ¢ycle of § we mean
the ordered set (s, s0, 582, . .., s6'=1). If we know all the cycles of 0 we
clearly know 0 since we would know the image of any element under 6.
Before proceeding we illustrate these ideas with an example. Let

gl 23456
“\2 13 5 6 4)

where S consists of the elements 1,2,..., 6 (remember 1 stands for x,,
2 for x,, etc.). Starting with 1, then the orbit of 1 consists of 1 = 19°,
18! = 2, 162 = 20 = 1, so the orbit of 1 is the set of elements 1 and 2.
This tells us the orbit of 2 is the same set. The orbit of 3 consists just of 3;
that of 4 consists of the elements 4, 40 = 5, 402 = 50 = 6, 40° = 60 = 4.
The cycles of 0 are (1, 2), (3), (4, 5, 6).

- We digress for a moment, leaving our particular 6. Suppose that by the
cycle (i1, i,,...,1,) we mean the permutation y which sends 7; into 1,,
i, into 4, - - {,~1 into %, and i, into i;, and leaves all other elements of §

fixed. Thus, for instance, if S consists of the elements 1, 2, ..., 9, then the -

symbol (1, 3, 4, 2, 6) means the permutation

1 2 3 45 6 7 89
3 6 4 2 51 7 8 9)°

~w€.multiply cycles by multiplying the permutations they represent. Thus
Again, if § has 9 elements,

3)(5 6 4 1 8

_(12
“\2 3

(1 2
—\2 3
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Let us return to the ideas of the paragraph preceding the last one, and
ask: Given the permutation

p_ (L 234567809
=2 381647509

what are the cycles of 67 We first find the orbit of 1; namely, 1, 10 = 2,
192 =20 =3, 16> =30 =8, 10* =80 =5, 10° =560 =6, 10° =60 = 4,
107 = 40 = 1. That is, the orbit of 1 is the set {I, 2, 3, 8, 5, 6,4}. The
orbits of 7 and 9 can be found to be {7}, {9}, respectively. The cycles of 6
thus are (7), (9), (1, 16, 10%,...,10° = (1,2,3,8,5,6,4). The reader
should now verify that if he takes the product (as defined in the last para-
graph) of (1,2,3,8,5,6, 4), (7), (9) he will obtain 6. That is, at least
in this case, 0 is the product of its cycles.
But this is no accident for it is now trivial to prove

LEMMA 2.10.1  Every permutation is the product of ils cycles.

Proof. Let @ be the permutation. Then its cycles are of the form
(s, 50, ..., s6'"1). By the multiplication of cycles, as defined above, and
since the cycles of @ are disjoint, the image of 5" € S under 0, which is 5’0,
is the same as the image of s’ under the product, ¥, of all the distinct cycles
of 6. So 0, Y have the same effect on every element of S, hence 8 =,
which is what we sought to prove.

If the remarks above are still not transparent at this point, the reader
should take a given permutation, find its cycles, take their product, and
verify the lemma. In doing so the lemma itself will become obvious.

Lemma 2.10.1 is usually stated in the form every permutation can be
uniquely expressed as a product of disjoint cycles.

Consider the m-cycle (1, 2,..., m). A simple computation shows that
1,2,...,m) = (1,2)(1,3)--- (1, m). More generally the m-cycle
(ag, agy - - > Q) = (a3, @3)(ay; a3)" " (ay, a,). This decomposition is not
unique; by this we mean that an m-cycle can be written as a product of
2-cycles in more than one way. For instance, (1,2, 3) = (1,2)(1,3) =
(3, 1)(3, 2). Now, since every permutation is a product of disjoint cycles
and every cycle is a product of 2-cycles, we have proved

LEMMA 2.10.2 Euvery permutation is~a product of 2-qyclés.
We shall refer to 2-cycles as transpositions.

DEFINITION A permutation 6 € S, is said to be an even permutation if it
can be represented as a product of an even number of transpositions.
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The definition given just insists that § have one representation as a product
of an even number of transpositions. Perhaps it has other representations
as a product of an odd number of transpositions. We first want to show
that this cannot happen. Frankly, we are not happy with the proof we give
of this fact for it introduces a polynomial which seems extraneous to the
matter at hand.

Consider the polynomial in n-variables

blrrs ooy x,) = ] (2 = x)).
i<j
If 6 € S, let 8 act on the polynomial p(x,, ..., x,) by
O:p(xy5. .5 x) = T (% — ) = I (o — Xo(j))-
i<j i<j
It is clear that 0:p(x,..., x,) > £p(x;,..., x,). For instance, in Ss,
0 = (134)(25) takes

Plxys oy x5) = (xp — %) (%, — x3)(%; — x4) (% — x5) (%, — %3)

) X (% — x4)(%; — x5)(x3 — x4) (%3 — x5)(xg — x5)
into

(v — x5) (%3 — %) (%3 — x1) (23 — %)) (x5 — x4) (x5 — x1)
X (x5 — x3) (x4 — 21)(%g — %) (%, — x3),

which can easily be verified to be —p(x,, ..., £5).

If, in particular, 6 is a transposition, 0:p(x;, . .., x,) > —p(x,. .., x,).
(Verify!) Thus if a permutation IT can be represented as a product of
an even number of transpositions in one representation, Il must leave
p(%y; - .., x,) fixed, so that any representation of IT as a product of trans-
position must be such that it leaves p(xy,..., x,) fixed; that is, in any
representation it is a product of an even number of transpositions. This
establishes that the definition given for an even permutation is a significant
one. We call a permutation odd if it is not an even permutation.

The following facts are now clear:

1. The product of two even permutations is an even permutation.

2. The product of an even permutation and an odd one is odd (likewise for
the product of an odd and even permutation).

3. The product of two odd permutations is an even permutation.

The rule for combining even and odd permutations is like that of com-
bining even and odd numbers under addition. This is not a coincidence
since this latter rule is used in establishing 1, 2, and 3.

Let 4, be the subset of S, consisting of all even permutations. Since the
product of two even permutations is even, 4, must be a subgroup of S,.
We claim it is normal in §,. Perhaps the best way of seeing this is as follows:
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let W be the group of real numbers 1 and —1 under multiplication. Define
y:S, » Wby y(s) = 1if s is an even permutation, Y(s) = —1if sis an
odd permutation. By the rules 1, 2, 3 above ¥ is a homomorphism onto ¥,
The kernel of y is precisely 4,; being the kernel of a homomorphism 4,
is a normal subgroup of S,. By Theorem 2.7.1 §,/4, = W, so, since

2 = o(W) = o(&) = ﬂ,
A" O(A")

we see that o(4,) = 4n!. A, is called the alternating group of degree n. We
summarize our remarks in

LEMMA 2.10.3 S, has as a normal subgroup of index 2 the alternating group,
A,,, consisting of all even permutations.

At the end of the next section we shall return to S, again.

Problems

1. Find the orbits and cycles of the following permutations:

1 293456 789
@l 34516 79 8

1 23 456
(b)(654312)'

9. Write the permutations in Problem 1 as the product of disjoint cycles.
3. Express as the product of disjoint cycles:
@) (1,2, 3)(4 5)(1, 6, 7, 8, 9)(L, 5).
(b) (1, 2)(1,2,3)(1, 2).
4, Prove that (1,2,...,71)_1 =(mn—1,n—2,...,2,1).
5. Find the cycle structure of all the powers of (1, 2,..., 8).
6. (a) What is the order of an n-cycle?
(b) What is the order of the product of the disjoint cycles of lengths
My, Myy oo, My
(c) How do you find the order of a given permutation?

7. Compute a~ 'ba, where
(1) a = (1,3,5)(1,2), b = (1,57,9).
2 a=(5719),b=(,23).
8. (a) Given the permutation x = (1, 2)(3, 4), » = (5, 6)(L; 3), find 2
permutation a such that ¢~ Ixa = y.
(b) Prove that there is no a such that a”1(1,2,3)a = (1,3)(5, 7, 8)-

=

(c) Prove that there is no permutation a such that a"1(1,2)a =
(3, 9 (1, 5).

9. Determine for what m an m-cycle is an even permutation.
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. Determine which of the following are even permutations:

(a) (1,2,3)(1,2).

(b) (1,2, 3,4,5)(1, 2, 3)(4, 5).

(o) (1,2)(1, 3)(1, 4)(2, 5).

. Prove that the smallest subgroup of §, containing (1,2) and
(1, 2,...,n) is §,. (In other words, these generate §,.)

. Prove that for » > 3 the subgroup generated by the 3-cycles is 4,.

. Prove that if a normal subgroup of 4, contains even a single 3-cycle
it must be all of 4,.

4. Prove that 45 has no normal subgroups N # (), 4.

5. Assuming the result of Problem 14, prove that any subgroup of A
has order at most 12.

. Find all the normal subgroups in S,.

. If n > 5 prove that 4, is the only nontrivial normal subgroup in §,.

Cayley’s theorem (Theorem 2.9.1) asserts that every group is isomorphic
a subgroup of A(S) for some . In particular, it says that every finite
oup can be realized as a group of permutations. Let us call the realization
the group as a group of permutations as given in the proof of Theorem
9.1 the permutation representation of G.

8. Find the permutation representation of a cyclic group of order .

9. Let G be the group {e, a, b, ab} of order 4, where a? = $2 = ¢,
ab = ba. Find the permutation representation of G.

0. Let G be the group ;. Find the permutation representation of S;.
(Note: This gives an isomorphism of S; into Sg.) -
1. Let G be the group {e, 0, a, b, ¢, 0a, 0b, 0c}, where a? = b2 = (2 = 0,
0% =¢, ab = Oba = ¢, be = Ocb = a, ca = Oac = b.

(a) Show that 0 is in the center Z of G, and that Z = {e, 6}.

(b) Find the commutator subgroup of G.

(c) Show that every subgroup of G is normal.

(d) Find the permutation representation of G.

(Note: G is often called the group of quaternion units; it, and algebraic
systems constructed from it, will reappear in the book.)

Let G be the dihedral group of order 2n (see Problem 17, Section 2.6).
Find the permutation representation of G.

Let us call the realization of a group G as a set of permutations given in
oblem 1, Section 2.9 the second permutation representation of G.

3. Show that if G is an abelian group, then the permutation representation
of G coincides with the second permutation representation of G (i.e.,
in the notation of the previous section, A, = t, for all g € G.)
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94. Find the second permutation representation of S;. Verify directly
from the permutations obtained here and in Problem 20 that 4,7, =
1,4, for all a, b € S;.

95. Find the second permutation representation of the group G defined in
Problem 21.

26. Find the second permutation representation of the dihedral group of
order 2n.

If H is a subgroup of G, let us call the mapping {t, | g € G} defined in
the discussion preceding Theorem 2.9.2 the coset representation of G by H.
This also realizes G as a group of permutations, but not necessarily iso-
morphically, merely homomorphically (see Theorem 2.9.2).

27. Let G = (a) be a cyclic group of order 8 and let H = (a*) be its
subgroup of order 2. Find the coset representation of G by H.

98. Let G be the dihedral group of order 2 generated by elements a, b
such that a® = b" = ¢, ab = b~ 'a. Let H = {¢, a}. Find the coset
representation of G by H.

29. Let G be the group of Problem 21 and let H = {¢, 8}. Find the
coset representation of G by H.

30. Let G be S, the symmetric group of order z, acting as permutations
on theset {1,2,...,n}. Let H= {ceG|no = n}.
(a) Prove that H is isomorphic to Su-1-
(b) Find a set of elements ay, ..., a, € G such that Ha,..., Ha,
give all the right cosets of H in G.
(c) Find the coset representation of G by H.

211 Another Counting Principle

Mathematics is rich in technique and arguments. In this great variety one
of the most basic tools is counting. Yet, strangely enough, it is one of the
most difficult. Of course, by counting we do not mean the creation of tables
of logarithms or addition tables; rather, we mean the process of precisely
accounting for all possibilities in highly complex situations. This can some-
times be done by a brute force case-by-case exhaustion, but such a routine
is invariably dull and violates a mathematician’s sense of aesthetics. One
prefers the light, deft, delicate touth to the hammer blow. But the most
serious objection to case-by-case division is that it works far too rarely.
Thus in various phases of mathematics we find neat counting devices which
tell us exactly how many elements, in some fairly broad context, satisfy
certain conditions. A great favorite with mathematicians is the process of
counting up a given situation in two different ways; the comparison of the




Sec. 2.11 Another Counting Principle

two counts is then used as a means of drawing conclusions. Generally
Speaking, one introduces an equivalence relation on a finite set, measures
the size of the equivalence classes under this relation, and then equates the
number of elements in the set to the sum of the orders of these equivalence
classes. This kind of an approach will be illustrated in this section. We
shall introduce a relation, prove it is an equivalence relation, and then find
a neat algebraic description for the size of each equivalence class. From this
simple description there will flow a stream of beautiful and powerful results
about finite groups.

DEFINITION Tfa, b € G, then b is said to be a conjugate of a in G if there
exists an element ¢ € G such that b = ¢ lac.

We shall write, for this, @ ~ b and shall refer to this relation as conjugacy.

LEMMA 2.11.1  Conjugacy is an equivalence relation on G.

Proof.  As usual, in order to establish this, we must prove that

1. a ~ g
2. a ~ b implies that b ~ a;
3. a~b, b~ cimplies thata ~ ¢

' for all a, b, ¢ in G.
We prove each of these in turn.

1. Since a = ¢ lae, a ~ a, with c = ¢ serving as the ¢ in the definition

of conjugacy. ”
2. If a ~ b, then b = x 'ax for some x e G, hence, a = (x~ )" 1h(x~ 1),
and since y = x" ' e Gand a = 3" by, b ~ a follows.

- 3. Suppose that a ~ b and b ~ ¢ where a,b,ce G. Then b = x " lax,
¢ =y~ by for some x, y € G. Substituting for b in the expression for ¢
we obtain ¢ = y~!(x"'ax) y = (x) " la(xy); since xy€ G, a ~¢ is a
consequence.

ForaeGlet C(a) = {xeGla ~ x}. C(a), the equivalence class of a
“in G under our relation, is usually called the conjugale class of a in G; it
' consists of the set of all distinct elements of the form »”'ay as y ranges
' over G.

Our attention now narrows to the case in which G is a finite group.
- Suppose that C(a) has ¢, elements. We seek an alternative description of

¢, Before doing so, note that o(G) = ¥ ¢, where the sum runs over a set
- of ¢ € G using one 4 from each conjugate class. This remark is, of course,
merely a restatement of the fact that our equivalence relation—conjugacy—
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induces a decomposition of G into disjoint equivalence classes—the conjugate
classes. Of paramount interest now is an evaluation of ¢,.

In order to carry this out we recall a concept introduced in Problem 13
Section 2.5. Since this concept is important—far too important to leave ¢,
the off-chance that the student solved the particular problem—we go over
what may very well be familiar ground to many of the readers.

DEFINITION If a e G, then N(a), the normalizer of a in G, is the se
N(a) = {xe G|xa = ax}.

N (a) consists of precisely those elements in G which commute with a.

LEMMA 2.11.2 N(a) is a subgroup of G.

Proof. 1In this result the order of G, whether it be finite or infinite, is of
no relevance, and so we put no restrictions on the order of G.

Suppose that x,y€ N(a). Thus xa = ax and ya = ay. Therefore,
(x9)a = x(ya) = x(ay) = (xa) y = (ax) y = a(xy), in consequence of which
xy € N(a). From ax = xa it follows that x " la=x" Y(ax)x ™' =x" (xa)x" ! =
ax™ 1!, so that x” ! is also in N(a). But then N(a) has been demonstrated
to be a subgroup of G.

We are now in a position to enunciate our counting principle.

THEOREM 2.11.1 If G is a finite group, then ¢, = o(G)[o(N(a)); in other
words, the number of elements conjugate to a in G is the index of the normalizer of
ainG.

Proof. 'To begin with, the conjugate class of a in G, C(a), consists exactly
of all the elements x~ 'ax as x ranges over G. ¢, measures the number of
distinct ™ 'ax’s. Our method of proof will be to show that two elements in
the same right coset of N(a) in G yield the same conjugate of a whereas
two elements in different right cosets of N(a) in G give rise to different
conjugates of a. In this way we shall have a one-to-one correspondence
between conjugates of a and right cosets of N (a). !

Suppose that x, y € G are in the same right coset of N(a) in G. Thus ;

_

y = nx, where n € N(a), and so na = an. Therefore, since y~! = (nx)”~ 1=
x"n71, y7lay = x 7 n" lanx = 7 'n" lnax = x” 'ax, whence x and J
result in the same conjugate of a.

If, on the other hand, x and y are in different right cosets of N(a) in G
we claim that x~Yax # »~ 'ay. Were this not the case, from x~ lax =y~ '@
we would deduce that yx~'a = apx™!; this in turn would imply that
yx~! € N(a). However, this declares x and y to be in the samg right coset
of N(a) in G, contradicting the fact that they are in different cosets. The
proof is now complete.
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o(G)

=L@

ere this sum runs over one element a in each conjugate class.

Proof. Since o(G) = Y¢,, using the theorem the corollary becomes
ediate.

The equation in this corollary is usually referred to as the class equation of G.
Before going on to the applications of these results let us examine these
ncepts in some specific group. There is no point in looking at abelian
groups because there two elements are conjugate if and only if they are
ual (that is, ¢, = 1 for every a). So we turn to our familiar friend, the
group S;. Its elements are ¢, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1,3,2). We
enumerate the conjugate classes: -

Cle) = {g}

C(1,2) = {(1,2), (1,3)"(1,2)(1, 3), (2,3)7'(1,2)(2, 3),
(1,2,3)71(1,2)(1,2,3), (1,3,2) 7 '(1,2)(1, 3, 2)}

= {(1,2), (1, 3), (2,3)} (Verify!)

Cc(1,2,3) = {(1,2,3), (1,3,2)} (after another verification).

"The student should verify that N((1
{8, (19 2, 3): (l, 3, 2) }) SO that 6(1,2)

2)) ={e (1,2)} and N((1,2,38)) =
% = 3, 6(1’2’3) = % = 2

-~

Applications of Theorem 2.11.1

Theorem 2.11.1 lends itself to immediate and powerful application. We
1eed no artificial constructs to illustrate its use, for the results below which
reveal the strength of the theorem are themselves theorems of stature and
mportance.

Let us recall that the center Z(G) of a group G is the set of all ae G
uch that ax = xa for all x € G. Note the

UBLEMMA ae Z if and only if N(a) = G. If G is finite, a € Z if and
nly if o(N(a)) = o(G).

- Proof. Ifae Z, xa = axforall x € G, whence N(a) = G. If, conversely,
a) = G, xa = ax for all xe G, so that ae Z. If G is finite, o(N(a)) =
) is equivalent to N(a) = G.
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APPLICATION 1 ,
THEOREM 2.11.2 If o(G) = p" where p is a prime number, then Z(G) # (¢).

Proof. 1f a € G, since N (a) is a subgroup of G, o(N(a)), being a divisor
of o(G) = p", must be of the form o(N(a)) = p"*; a € Z(G) if and only if
n, = n. Write out the class equation for this G, letting z = o(Z(G)). We
get p" = o(G) = X (p"/p™); however, since there are exactly z elements
such that n, = n, we find that

p"=z+zj—r:.

Now look at this! p is a divisor of the left-hand side; since n, < = for each
term in the Y of the right side,

p_n — p"_"a
p a

so that p is a divisor of each term of this sum, hence a divisor of this sum.

Therefore,
(r-Z5)-=

Since ¢ € Z(G), z # 0; thus z is a positive integer divisible by the prime .
Therefore, z > 1! But then there must be an element, besides ¢, in Z(G)!
This is the contention of the theorem.

?

?

Rephrasing, the theorem states that a group of prime-power order must
always have a nontrivial center.

We can now simply prove, as a corollary for this, a result given in an
earlier problem.

COROLLARY  Ifo(G) = p? where p is a prime number, then G is abelian.

Proof. Our aim is to show that Z(G) = G. At any rate, we already
know that Z(G) # (e) is a subgroup of G so that o(Z(G)) = porp® I
o(Z(G)) = p%,then Z(G) = G and we are done. Suppose that o(Z(G)) = ¢;
let aeG, a¢ Z(G). Thus N(a) is a subgroup of G, Z(G) = N(a);
a € N(a),so that o(N(a)) > p,yet by Lagrange’s theorem o(N(a)) [0(G) = p*
The only way out is for o(N(a)) = p?, implying that a € Z(G), a con-
tradiction. Thus o(Z(G)) = p is not an actual possibility.

APPLICATION 2 We now use Theorem 2.11.1 to prove an important
theorem due to Cauchy. The reader may remember that this theorem was
already proved for abelian groups as an application of the results Ueveloped
in the section on homomorphisms. In fact, we shall make use of this special
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e in the proof below. But, to be frank, we shall prove, in the very next
tion, a much stronger result, due to Sylow, which has Cauchy’s theorem
an immediate corollary, in a manner which completely avoids Theorem
1 1. To continue our candor, were Cauchy’s theorem itself our ultimate
d only goal, we could prove it, using the barest essentials of group theory,
a few lines. [The reader should look up the charming, one-paragraph
»of of Cauchy’s theorem found by McKay and published in the American
gthematical Monthly, Vol. 66 (1959), page 119.] Yet, despite all these
nter-arguments we present Cauchy’s theorem here as a striking illustration

EOREM 2.11.3 (Caucry) If p is a prime number and p | o(G), then
2 has an element of order p.

Proof. We seek an element a # ¢ € G satisfying a? = e¢. To prove its
stence we proceed by induction on ¢(G); that is, we assume the theorem
be true for all groups 7 such that o(7T") < o(G). We need not worry
t starting the induction for the result is vacuously true for groups of
er 1.

f for any subgroup W of G, W # G, were it to happen that p | o(W),
n by our induction hypothesis there would exist an element of order ¢ in
W, and thus there would be such an element in G. Thus we may assume that
not a divisor of the order of any proper subgroup of G. In particular, if
- Z(G), since N(a) # G, p Y o(N(a)). Let us write down the class
quation:

o(G)
o6) = o(Z(G)) + 3T T -

ince p | o(G), p & o(N(a)) we have that
o(G)
o(N(a))’

o(G) .
nétc o(N(a))
Ce we also have that p | o(G), we conclude that
o(G)
o(G) — ——_ ) = 0o(Z(G)).
< ) N(az);ec o(N(a))) ZE)

(G) is thus a subgroup of G whose order is divisible by p. But, after all,
e have assumed that p is not a divisor of the order of any proper subgroup
£ G, so that Z(G) cannot be a proper subgroup of G. We are forced to
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accept the only possibility left us, namely, that Z(G) = G. But then ¢
is abelian; now we invoke the result already established for abelian group
to complete the induction. This proves the theorem.

We conclude this section with a consideration of the conjugacy relatioy
in a specific class of groups, namely, the symmetric groups S,,.

Given the integer n we say the sequence of positive integers ny, n,, ...
n, ny < ny < -+ < n, constitute a partition of nif n =ny + ny + -+ 4 n,
Let p(n) denote the number of partitions of n. Let us determine p(n) for
small values of n:

p(l) = lsince 1 = 1 is the only partition of 1,
p(2) = 2since2 = 2and 2 =1 + 1,

p(3) = 3since 3 = 3,3

p(4)

14+2,3=1+4+1+1,

S5since4 =4,4=1+3,4=1+1+ 2,
4=14+1+1+1,4=2+4 2

Some others are p(5) = 7, p(6) = 11, p(61) = 1,121,505. There is a
large mathematical literature on p(n).

Every time we break a given permutation in §, into a product of disjoint
cycles we obtain a partition of z; for if the cycles appearing have lengths n,,
Ny, ..., n, respectively, n; < n, <---<n,thenn=mn +ny + -+ +n,
We shall say a permutation ¢ € 5, has the cycle decomposition {ny, n,,

.., n} if it can be written as the product of disjoint cycles of lengths
Mgy Mgy e ooy My By < 1y < -+ < m,. Thusin Sy

6=(i g g g 2 2 ; g g) = (1)(2. 3)(4, 5, 6)(7)(8, 9)

has cycle decomposition {1, 1, 2,2, 3}; notethat 1 + 1 + 2 + 2 + 3 =9.
We now aim to prove that two permutations in §, are conjugate if and
only if they have the same cycle decomposition. Once this is proved, then
S, will have exactly p(n) conjugate classes.

To reach our goal we exhibit a very simple rule for computing the con-
jugate of a given permutation. Suppose that ¢ € S, and that ¢ sends i — J-
How do we find 67 '66 where 6 € S,? Suppose that 6 sends i — s and
J — t; then 0760 sends s — t. In other words, to compute 6~ ‘a0 replace
every symbol in o by its image under 0. For example, to determine 6~ ‘o0
where 6 = (1,2,3)(4,7) and ¢ = (5, 6, 7)(3, 4, 2), then, since 6:5 — 5,
656,754 3->1,4->7 23, 8 160 is obtained from ¢ by re-
placing in ¢,5by 5, 6by 6, 7by4, 3byl, 4by 7, and 2 by 3, so that
0~ e = (5,6, 4)(1, 7, 3). .

With this algorithm for computing conjugates it becomes clear that two
permutations having the same cycle decomposition are conjugate. For if

T
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= (a1, Qg - o5 @y ) (bys by o ooy b)) -t (%y, %y, 000, %, ) and T = (0, oy,

am)(ﬁl; ﬂ23 cery ﬂnz) e (Xl: XZ: ceny an), thCD T = 9_ 1603 WhCI‘C
e could use as 0 the permutation

(a1 ay v oa, by o by o ox e xn,)
o o o Byt Bu X A

s, for instance, (1, 2)(3, 4, 5)(6, 7, 8) and (7, 5)(1, 3, 6)(2, 4, 8) can be
ibited as conjugates by using the conjugating permutation

-

1 2 3 45 6 7 8
751 3 6 2 4 8)°

That two conjugates have the same cycle decomposition is now trivial
or, by our rule, to compute a conjugate, replace every element in a given
wcle by its image under the conjugating permutation.

~ We restate the result proved in the previous discussion as

EMMA 211.3  The number of conjugate classes in S, is p(n), the number of
titions of n.

Since we have such an explicit description of the conjugate classes in
we can find all the elements commuting with a given permutation. We
lustrate this with a very special and simple case.

~ Given the permutation (1,2) in §,, what elements commute with it?
ertainly any permutation leaving both 1 and 2 fixed does. There are
n — 2)!such. Also (1, 2) commutes with itself. This way we get 2(n — 2)!
ements in the group generated by (1, 2) and the (n — 2)! permutations
caving 1 and 2 fixed. Are there others? There are n(n — 1)/2 trfans-
ositions and these are precisely all the conjugates of (1, 2). Thus the con-
ugate class of (I, 2) has in it n(n — 1)/2 elements. If the order of the
ormalizer of (1, 2) is r, then, by our counting principle,

nn — 1) _ 0(S,) _ n!
2 7 r

hus r = 2(n — 2)!. That is, the order of the normalizer of (I, 2) is
(n — 2)!. But we exhibited 2(n — 2)! elements which commute with
1, 2); thus the general element ¢ commuting with (1, 2) is ¢ = (1, 2)'r,
here i = 0 or 1, 7 is a permutation leaving both 1 and 2 fixed.

As another application consider the permutation (1,2, 3,...,n) € S,.
e claim this element commutes only with its powers. Certainly it does
ommute with all its powers, and this gives rise to n elements. Now, any
i7-cycle is conjugate to (1,2,...,n) and there are (n — 1)! distinct
~cycles in §,. Thus if # denotes the order of the normalizer of (1, 2, ..., n)
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in §,, since o(S,)/u = number of conjugates of (1,2,...,n) in §, <
(n - 1) !a
n!
I ==
(n — 1)!
So the order of the normalizer of (1, 2,...,n) in S, is n. The powers of
(1,2,..., n) having given us n such elements, there is no room left for

others and we have proved our contention.

Problems
1. List all the conjugate classes in S5, find the ¢,’s, and verify the class
equation.
2. List all the conjugate classes in S, find the ¢,’s and verify the class
equation.
3. List all the conjugate classes in the group of quaternion units (see
Problem 21, Section 2.10), find the ¢,’s and verify the class equation.
4. List all the conjugate classes in the dihedral group of order 2x, find
the ¢,’s and verify the class equation. Notice how the answer depends
on the parity of n.
!
5. (a) In §, prove that there are 1_n distinct 7 cycles.
r(n—r
(b) Using this, find the number of conjugates that the r-cycle
(1,2,...,r) hasin §,.
(c) Prove that any element ¢ in §, which commutes with (1,2, ...,r
is of the form ¢ = (1,2,...,7)%, where i =0,1,2,...,7, 1
is a permutation leaving all of 1, 2, ..., r fixed.
6. (a) Find the number of conjugates of (1, 2)(3, 4) in S,, n > 4.
(b) Find the form of all elements commuting with (1, 2)(3, 4) in S,.
7. If p is a prime number, show that in S, there are (p — I)! + 1
elements x satisfying x” = e.
8. If in a finite group G an element « has exactly two conjugates, prove
that G has a normal subgroup N # (e), G.
9. (a) Find two elements in A, the alternating group of degree 5, which
are conjugate in S5 but not in 4.
(b) Find all the conjugate classes in 45 and the number of elements
in each conjugate class.
10. (a) If Nis a normal subgroup of G and a € N, show that every con-

jugate of ¢ in G is also in N.
(b) Prove that o(N) = 3 ¢, for some choices of a in N.
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(c) Using this and the result for Problem 9(b), prove that in 45 there
is no normal subgroup N other than (¢) and 4.

. Using Theorem 2.11.2 as a tool, prove that if o(G) = p", p a prime
number, then G has a subgroup of order p* for all 0 < o < n.

. If o(G) = p", p a prime number, prove that there exist subgroups
N,i=0,1,...,r (for some r) such that G = Ny > N; o N, o --*
> N, = (¢) where N; is a normal subgroup of N;_; and where
Ni—1/Ni is abelian.

. If o(G) = p", p a prime number, and H # G is a subgroup of G,
show that there exists an ¥ € G, x ¢ H such that x~1Hx = H.

. Prove that any subgroup of order "~ ' in a group G of order p",
p a prime number, is normal in G.

- #15. Ifo(G) = p", p a prime number, and if N # (¢) is a normal subgroup
i of G, prove that N n Z # (¢), where Z is the center of G.

. If G is a group, Z its center, and if G/Z is cyclic, prove that G must
be abelian.

17. Prove that any group of order 15 is cyclic.
18. Prove that a group of order 28 has a normal subgroup of order 7.

19. Prove that if a group G of order 28 has a normal subgroup of order 4,
then G is abelian.

12 Sylow’s Theorem

grange’s theorem tells us that the order of a subgroup of a finite groyp is
‘a divisor of the order of that group. The converse, however, is false. There
-are very few theorems which assert the existence of subgroups of prescribed
rder in arbitrary finite groups. The most basic, and widely used, is a
~classic theorem due to the Norwegian mathematician Sylow. '
~ We present here three proofs of this result of Sylow. The first is a very
elegant and elementary argument due to Wielandt. It appeared in the
Journal Archiv der Matematik, Vol. 10 (1959), pages 401-402. The basic
ements in Wielandt’s proof are number-theoretic and combinatorial. It
as the advantage, aside from its elegance and simplicity, of producing the
bgroup we are seeking. The second proof is based on an exploitation of
duction in an interplay with the class equation. It is one of the standard
lassical proofs, and is a nice illustration of combining many of the ideals
developed so far in the text to derive this very important cornerstone due to
Sylow. The third proof is of a completely different philosophy. The basic
Idea there is to show that if a larger group than the one we are considering
satisfies the conclusion of Sylow’s theorem, then our group also must.
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This forces us to prove Sylow’s theorem for a special family of groups—the
symmetric groups. By invoking Cayley’s theorem (Theorem 2.9.1) we are
then able to deduce Sylow’s theorem for all finite groups. Apart from thig
strange approach—to prove something for a given group, first prove it for 5
much larger one—this third proof has its own advantages. Exploiting the
ideas used, we easily derive the so-called second and third parts of Sylow’s
theorem.

One might wonder: why give three proofs of the same result when, clearly,
one suffices? The answer is simple. Sylow’s theorem is that important that
it merits this multifront approach. Add to this the completely diverse
nature of the three proofs and the nice application each gives of different
things that we have learned, the justification for the whole affair becomes
persuasive (at least to the author). Be that as it may, we state Sylow’s
theorem and get on with Wielandt’s proof.

THEOREM 2.12.1 (Syrow) If p is a prime number and p* | o(G), then
G has a subgroup of order p°.

Before entering the first proof of the theorem we digress slightly to a
brief number-theoretic and combinatorial discussion.

The number of ways of picking a subset of £ elements from a set of 2
elements can easily be shown to be

n) _ n!
k) kK — k)Y
If n = p"m where p is a prime number, and if p" | m but p"* ! ¥ m, consider
(p“m) __ (rm)
" ) ('m — p)!

_pmpm = ) (p'm —d) - (pm — 7+ 1)
A AR R RN A A Y

(3
The question is, What power of p divides ([J , |7 Looking at this number,
j4
written out as we have written it out, one can see that except for the term
m in the numerator, the power of p dividing (*m — i) is the same as that
dividing p* — i, so all powers of p cancel out except the power which

divides m. Thus
-l p“m) but pr+1 *(p“m).
¥ ( # Y 7




Sec. 212 Sylow’s Theorem

First Proof of the Theorem. Let 4 be the set of all subsets of G which

ve p* elements. Thus .# has (p Zn> elements. Given M, M, € M

b
M is a subset of G having " elements, and likewise so is M,) define

L~ M, if there exists an element g € G such that M, = M,g. It is
amediate to verify that this defines an equivalence relation on 4. We
aim that there is at least one equivalence class of elements in . such that
e number of elements in this class is not a multiple of p"*1, for if p"* ! is
divisor of the size of each equivalence class, then p"* ! would be a divisor

the number of elements in .#. Since 4 has ([) m) elements and
[)rx

Pf"'i ,|/( >, this cannot be the case. Let {M,,..., M,} be such an

:sequlvalence class in 4 where p"* 1 } n. By our very definition of equivalence
in M, if g€ G, for each i = 1,...,n, Mg = M; for some j, | <j < n
We let H={geG|M,g = Ml} Clearly H is a subgroup of G, for if
b e H, then Mya = M,, M;b = M, whence Mab = (Mya)b = Mb =
;- We shall be vitally concerned with o(H). We claim that no(H) =
ﬁv(G), we leave the proof to the reader, but suggest the argument used in
the counting principle in Section 2.11. Now no(H) = o(G) = p*m; since
*1 ¥n and p**"|p*m = no(H), it must follow that p*|o(H), and so
o(H) > p*. However, if m; e M,, then for all he H, mh e M,. Thus
; has at least o(H) distinct elements. However, M,; was a subset of G
wontaining p* elements. Thus p* > o(H). Combined with o(H) > p* we
have that o(H) = p* But then we have exhibited a subgroup of G having exactly
1)’ elements, namely H. This proves the theorem; it actually has done more—
it has constructed the required subgroup before our very eyes! "

What is usually known as Sylow’s theorem is a special case of Theorem
12.1, namely that

:COROLLARY If p™ | o(G), p™* ' J o(G), then G has a subgroup of order p™.

A subgroup of G of order p™, where p™ | o(G) but p™* ! ¥ o(G), is called a
Sylow subgroup of G. The corollary above asserts that a finite group has
P-Sylow subgroups for every prime p dividing its order. Of course the
«&Onjugate of a p-Sylow subgroup is a p-Sylow subgroup. In a short while
€ shall see how any two p-Sylow subgroups of G—for the same prime p—
are related. We shall also get some information on how many p-Sylow
bgroups there are in G for a given prime p. Before passing to this, we want
give two other proofs of Sylow’s theorem.

We begin with a remark. As we observed just prior to the corollary,
€ corollary is a special case of the theorem. However, we claim that the
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theorem is easily derivable from the corollary. That is, if we know that ¢
possesses a subgroup of order p™, where p™|0(G) but p™* ' ¥ o(G), then
we know that G has a subgroup of order p* for any « such that p* | o(G).
This follows from the result of Problem 11, Section 2.11. This result stateg
that any group of order p”, p a prime, has subgroups of order p* for any
0 < o < m. Thus to prove Theorem 2.12.1—as we shall proceed to do,
again, in two more ways—it is enough for us to prove the existence of
p-Sylow subgroups of G, for every prime p dividing the order of G.

Second Proof of Sylow’s Theorem. We prove, by induction on the order
of the group G, that for every prime p dividing the order of G, G has a
p-Sylow subgroup.

If the order of the group is 2, the only relevant prime is 2 and the group
certainly has a subgroup of order 2, namely itself.

So we suppose the result to be correct for all groups of order less than
0(G). From this we want to show that the result is valid for G. Suppose,
then, that p™ | o(G), p™* ' ¥ o(G), where p is a prime, m > 1. If p™ | o(H)
for any subgroup H of G, where H # G, then by the induction hypothesis,
H would have a subgroup 7 of order p™. However, since T is a subgroup
of H, and H is a subgroup of G, T too is a subgroup of G. But then 7 would
be the sought-after subgroup of order p™.

We therefore may assume that p™ ¥ o(H) for any subgroup H of G, where
H # G. We restrict our attention to a limited set of such subgroups.
Recall that if a € G then N(a) = {x € G|xa = ax} is a subgroup of G;
moreover, if a ¢ Z, the center of G, then N(a) # G. Recall, too, that the
class equation of G states that

OEDY ﬁ_,
o(N(a))

where this sum runs over one element a from each conjugate class. We
separate this sum into two pieces: those a which lie in Z, and those which
don’t. This gives
0(G)
>
77 o(N(a))
where z = 0(Z). Now invoke the reduction we have made, namely, that

™ ¥ o(H) for any subgroup H # G of G, to those subgroups N (a) for a ¢ Z
Since in this case, p™ | o(G) and p™ ¥ o(N(a)), we must have that

o(G) =z +

o(G)
o(N(a))’

Restating this result,
0(G)
o(N(a))
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%‘ar every a € Gwhere a ¢ Z. Look at the class equation with this information
hand. Since p™ | o(G), we have that p | o(G); also

o(G
Z()

57 o(N(a)

us the class equation gives us that p | 2. Since p | 2 = o(Z), by Cauchy’s
eorem (Theorem 2.11.3), Z has an eclement b # ¢ of order p. Let
j (), the subgroup of G generated by b. B is of order p; moreover,
since b € Z, B must be normal in G. Hence we can form the quotient group
7 = G/B. We look at G. First of all, its order is o(G)/o(B) = o(G)/p,
hence is certainly less than o(G). Secondly, we have p™~ 110(G), but
Py o(G). Thus, by the induction hypothesis, G has a subgroup P of order
?”"1. Let P = {xe G|xB e P}; by Lemma 2.7.5, P is a subgroup of
4G. Moreover, P ~ P|B (Prove!); thus

This results in o(P) = p™. Therefore P is the required p-Sylow subgroup of
6. This completes the induction and so proves the theorem.

With this we have finished the second proof of Sylow’s theorem. Note
that this second proof can easily be adapted to prove that if p* | ¢(G), then
G has a subgroup of order p* directly, without first passing to the existence
of a p-Sylow subgroup. (This is Problem 1 of the problems at the end of
this section.)

We now proceed to the third proof of Sylow’s theorem.

Third Proof of Sylow’s Theorem. Before going into the details of the
proof proper, we outline its basic strategy. We will first show that the
Symmetric groups S,-, p a prime, all have p-Sylow subgroups. The next

group, then G has a p-Sylow subgroup. Finally we will show, via Cayley’s
theorem, that we can use S, for large enough &, as our M. With this we
1 have all the pieces, and the theorem will drop out.

In carrying out this program in detail, we will have to know how large
H-Sylow subgroup of S, should be. This will necessitate knowing what
power of p divides (p")!. This will be easy. To produce the p-Sylow sub-
oup of S, will be harder. To carry out another vital step in this rough
etch, it will be necessary to introduce a new equivalence relation in groups,
d the corresponding equivalence classes known as double cosets. This
11 have several payoffs, not only in pushing through the proof of Sylow’s
Jeorem, but also in getting us the second and third parts of the full Sylow
theorem.

step will be to show that if G is contained in M and M has a p-Sylow sub-
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So we get down to our first task, that of finding what power of a prime
p exactly divides (! Actually, it is quite easy to do this for n! for any
integer n (see Problem 2). But, for our purposes, it will be clearer and will
suffice to do it only for (p*)!.

Let n(k) be defined by p"® | (#*)! but PACRED AP

LEMMA 2124 n(k) =1 +p + -+ L

Proof. If k = 1 then, since p! = 1-2---(p — 1)+p, it is clear that
plp!but p? y p!. Hencen(l) = 1, asit should be.

What terms in the expansion of (*)! can contribute to powers of p
dividing (#*)!? Clearly, only the multiples of p; that is, p, 2p,....p k=1p,
In other words n(k) must be the power of p which divides
5(20)(3p) -+ (#71p) = p77'(#*" )L But then n(k) =71 + n(k — 1)
Similarly, n(k — 1) = n(k — 2) + p*~2, and so on. Write these out as

n(k) — n(k — 1) = $7%,
nk = 1) — n(k = 2) =%

n(2) — n(l) = p,
n(l) = L.

Adding these up, with the cross-cancellation that we get, we obtain
n(k) =1 + p + p> + -++ + p*~ 1. Thisis what was claimed in the lemma,
so we are done.

We are now ready to show that S, has a p-Sylow subgroup; that is, we
shall show (in fact, produce) a subgroup of order p"® in S..

LEMMA 2122 S has a p-Sylow subgroup.

Proof. We go by induction on k. If £ = 1, then the element (12 ...p),
in S, is of order p, so generated a subgroup of order p. Since n(l) =1
the result certainly checks out for k£ = 1.

Suppose that the result is correct for £ — 1; we want to show that it
then must follow for k. Divide the integers 1,2,..., " into p clumps,
each with p*~ ! elements as follows:

(0,2 .., L P LT 2,
p
. {(p — P+ 1,..., b4

The permutation ¢ defined by o= (L,p*7" + 1,267 +1,...,

(b= DAL+ 1) G LT A (- DT A L)
(P51, 26571, ..., (p — 1)p*7 1, ) has the following properties:

1. 67 = e.
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2. If 7 is a permutation that leaves all i fixed for i > p*~! (hence, affects
only 1,2,...,4*""), then ¢~ '16 moves only elements in {p*~ ! + 1,
P71 +2,...,24*7 1}, and more generally, 6 "1¢7 moves only elements
in (70 + Lt w2, G+ D

Consider 4 = {re S| 1(d) =iifi > p*"'}. 4 is a subgroup of Sk
and elements in 4 can carry out any permutation on 1,2,..., %" L.
From this it follows easily that 4 & S,-:. By induction, 4 has a subgroup
P, of order p"*~ 1),

Let T = Pi(¢7'Py0)(06™*Py6%) - (6~ P~ VPg?~ ') = P,P,---P,_,,
where P; = ¢7'P,¢’. Each P, is isomorphic to P, so has order p"*~ D,
Also elements in distinct P;’s influence nonoverlapping sets of integers,
hence commute. Thus T is a subgroup of Sy What is its order? Since
P,nP;=() if 0 <i#j<p— 1, weseethato(T) = o(P,)? = pPk= D,
We are not quite there yet. T is not the p-Sylow subgroup we seek!

Since 6" = ¢ and ¢ P’ =P, we have ¢ 'Toc = T. Let P =
{6/t|te T,0 <j<p— 1} Sinceo¢ T and 6" 'Te = T we have two
things: firstly, T is a subgroup of S, and, furthermore, o(P) = p-0o(T) =
p-p"*T VP = p"&DPHL Now we are finally there! P is the sought-after
p-Sylow subgroup of S .

Why? Well, what is its order? It is p"*¢~DrX1 But n(k — 1) =
L+p4+--+p7 2 hence prk — 1) + L =1+ p+ -+ + g1 = n(k).
Since now o(P) = p"®, P is indeed a p-Sylow subgroup of S e

Note something about the proof. Not only does it prove the lemma, it
actually allows us to construct the p-Sylow subgroup inductively. We
follow the procedure of the proof to construct a 2-Sylow subgroup in S,.

Divide 1,2, 3,4 into {I,2} and {3,4}. Let P, = ((12)) and ¢7=
(18)(24). Then P, = 67 'P,c = (34). Our 2-Sylow subgroup is then
the group generated by (1 3)(2 4) and

T =PP, ={(12),(34),(12)(34),¢}.

In order to carry out the program of the third proof that we outlined, we
now introduce a new equivalence relation in groups (see Problem 39,
Section 2.5).

DEFINITION Let G be a group, 4, B subgroups of G. If x, y € G define
x ~ yify = axb for some a e 4, b e B.

We leave to the reader the verification—it is easy—of

LEMMA 2123  The relation defined above is an equivalence relation on G.
The equivalence class of x € G is the set AxB = {axb |a € A, b € B).
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We call the set AxB a double coset of A, Bin G.

If A, B are finite subgroups of G, how many elements are there in the
double coset AxB? To begin with, the mapping T:AxB — AxBx~ ! given
by (axb)T = axbx™' is one-to-one and onto (verify). Thus o(4xB) =
o(AxBx~1). Since xBx™ !is a subgroup of G, of order o(B), by Theorem 2.5.1,

o(A)o(xBx~ 1) o(A)o(B)

o(AxB) = o(AxBx™ 1) = = .
(4xB) (dx ) o(d ~ xBx~1)  o(4 N xBx™1)

We summarize this in

LEMMA 2.12.4 If A, B are finite subgroups of G then

o(4)o(B)

o(dxB) = o(4 N xBx~ 1)’

We now come to the gut step in this third proof of Sylow’s theorem.

LEMMA 2.12.5 Let G be a finite group and suppose that G is a subgroup of the
finite group M. Suppose further that M has a p-Sylow subgroup Q. Then G has a
p-Sylow subgroup P. In fact, P = G N xQx~ L for some x € M.

Proof. Before starting the details of the proof, we translate the hypoth-
eses somewhat. Suppose that p™ | o(M), p™+! f o(M), @ is a subgroup
of M of order p™. Let o(G) = p"t where p f t. We want to produce a sub-
group P in G of order p".

Consider the double coset decomposition of M given by G and @;
M = |) GxQ. By Lemma 2.12.4,

yorg) = 2C0Q £
oG xQx ) oG xQx 1Y)

Since G n xQx~ ! is a subgroup of xQx~ !, its order is p™=. We claim that
m, = n for some x € M. If not, then

o(GxQ) =L = gpmenm

™
so is divisible by ™ 1. Now, since M = |} GxQ, and this is disjoint union,
o(M) = ¥ 0(GxQ), the sum running over one element from each double
coset. But p™*1|0(GxQ); hence p™* '|o(M). This contradicts p™* 1} o(M).
Thus m, = n for some x € M. But then o(G n xQx~ ') = p". Since
G N xQ x~ ! = Pisa subgroup of G and has order #", the lemma is proved.

bl

We now can easily prove Sylow’s theorem. By Cayley’s theorem
(Theorem 2.9.1) we can isomorphically embed our finite group G in Sps
the symmetric group of degree n. Pick £ so that n < p*; then we can iso-
morphically embed S, in S (by acting on 1,2,...,1n only in the set
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1,2,...,n,...,p%, hence G is isomorphically embedded in S By
Lemma 2.12.2, Sy has a p-Sylow subgroup. Hence, by Lemma 2.12.5,
G must have a p-Sylow subgroup. This finishes the third proof of Sylow’s
theorem.

This third proof has given us quite a bit more. From it we have the
machinery to get the other parts of Sylow’s theorem.

THEOREM 2.12.2 (Seconp Part oF Syrow’s THeOREM) If G is a finite
group, p a prime and p" | o(G) but p"*' ¥ o(G), then any two subgroups of G of
order p" are conjugate.

Proof. Let A, B be subgroups of G, each of order $*. We want to show
that A = gBg~*! for some g € G.

Decompose G into double cosets of 4 and B; G = U 4xB. Now, by
Lemma 2.12.4, ,

o(4)o(B)

o(4xB) = o(4 N xBx~ 1)’

If 4 # xBx~! for every x € G then o(4 N xBx~1) = p™ where m < n.
Thus

and 2z — m > n + 1. Since p"*! | o(4xB) for every x and since o(G) =
2. o(4xB), we would get the contradiction p"*!|o(G). Thus 4 = gBg~1
for some g € G. This is the assertion of the theorem. -

Knowing that for a given prime p all p-Sylow subgroups of G are conjugate
allows us to count up precisely how many such p-Sylow subgroups there
are in G. The argument is exactly as that given in proving Theorem 2.11.1.
In some earlier problems (see, in particular, Problem 16, Section 2.5) we
discussed the normalizer N(H), of a subgroup, defined by N(H) =
{x € G| xHx~' = H}. Then, as in the proof of Theorem 2.11.1, we have
that the number of distinct conjugates, xHx™*, of H in G is the index of N(H) in G.
Since all p-Sylow subgroups are conjugate we have

LEMMA 2.12.6 The number of p-Sylow subgroups in G equals o(G)/o(N(P)),
where P is any p-Sylow subgroup of G. In particular, this number is a divisor of 0(G).

However, much more can be said about the number of p-Sylow subgroups
there are, for a given prime p, in G. We go into this now. The technique
will involve double cosets again.

29
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THEOREM 2.12.3 (Tmrp Part oF Svrow’s THEOREM)  The number of
p-Sylow subgroups in G, for a given prime, is of the form 1 + kp.

Proof. Let P be a p-Sylow subgroup of G. We decompose G into double
cosets of P and P. Thus G = ) PxP. We now ask: How many elements
are there in PxP? By Lemma 2.12.4 we know the answer:

o(P)?
o(P n xPx~ 1)’
Thus, if P n xPx~' # P then p"*'|o(PxP), where p" = o(P). Para-
phrasing this: if x ¢ N(P) then p"*! | o(PxP). Also, if x € N(P), then PxP =
P(Px) = P%x = Px, so o(PxP) = p" in this case.
Now

o(PxP) =

o(G) = Y. o(PxP) + Y o(PxP),

xeN(P) xEN(P)
where each sum runs over one element from each double coset. However,
if x € N(P), since PxP = Px, the first sum is merely Y, ypy 0(Px) over
the distinct cosets of P in N(P). Thus this first sum is just o(N(P)). What
about the second sum? We saw that each of its constituent terms is divisible
by p"*!, hence

Pt Z o(PxP).

x¢N(P)

We can thus write this second sum as

Z o(PxP) = p"*lu.

x ¢ N(P)
Therefore o(G) = o(N(P)) + p"*'u, so
O(G) _ pn+ lu
o(N(P)) o(N(P))’

Now o(N(P)) | o(G) since N(P) is a subgroup of G, hence p"* 'ujo(N (P))
is an integer. Also, sincep"*! }f o(G), p"** can’t divide o(N (P)). But then
" uo(N(P)) must be divisible by p, so we can write p"* ufo(N(P)) as kp
where £ is an integer. Feeding this information back into our equation
above, we have
0(G)

o(N(F))
Recalling that o(G)/o(N(P)) is the number of p-Sylow subgroups in G,
we have the theorem.

=1+ kp.

In Problems 20-24 in the Supplementary Problems at the end of this
chapter, there is outlined another approach to proving the second and third
parts of Sylow’s theorem.

We close this section by demonstrating how the various prrts of Sylow’s
theorem can be used to gain a great deal of information about finite groups-
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Let G be a group of order 112132, We want to determine how many
11-Sylow subgroups and how many 13-Sylow subgroups there are in G.
The number of 11-Sylow subgroups, by Theorem 2.12.13, is of the form
1 + 11k By Lemma 2.12.5, this must divide 112-132; being prime to 11,
it must divide 13%. Can 132 have a factor of the form | + 11£? Clearly no,
other than 1 itself. Thus 1 + 11 = 1, and so there must be only one 11-
Sylow subgroup in G. Since all 11-Sylow subgroups are conjugate (Theorem
2.12.2) we conclude that the 11-Sylow subgroup is normal in G.

What about the 13-Sylow subgroups? Their number is of the form
1 + 13k and must divide 112-132, hence must divide 112, Here, too, we
conclude that there can be only one 13-Sylow subgroup in G, and it must
be normal.

We now know that G has a normal subgroup 4 of order 112 and a normal
subgroup B of order 132, By the corollary to Theorem 2.11.2, any group
of order p? is abelian; hence A and B are both abelian. Since 4 N B = (e),
we easily get AB = G. Finally, if a e 4, b€ B, then aba~'p~! =
a(ba”™'b™') € A since 4 is normal, and aba~15-! — (aba™')6~' € B since
B is normal. Thus aba % "'e A A B = (¢). This gives us aba™ 15" 1 = e,
andsoab = baforaec 4, be B. This, together with AB = G, 4, B abelian,
allows us to conclude that G is abelian. Hence any group of order 112-132
must be abelian.

We give one other illustration of the use of the various parts of Sylow’s
theorem. Let G be a group of order 72; o(G) = 2°3%. How many 3-Sylow
subgroups can there be in G? If this number is t, then, according to Theorem

3, t =1+ 3k. According to Lemma 2.12.5, ¢| 72, and since ¢ is
Prime to 3, we must have t|8. The only factors of 8 of the form 1 + 3k
are | and 4; hence t = 1 or ¢t = 4 are the only possibilities. In other words
G has cither one 3-Sylow subgroup or 4 such.

If G has ‘Lonly one 3-Sylow subgroup, since all 3-Sylow subgroups are
onjugate, this 3-Sylow subgroup must be normal in G. In this case G
would certainly contain a nontrivial normal subgroup. On the other hand
if the number of 3-Sylow subgroups of G is 4, by Lemma 2.12.5 the index of
Nin Gis 4, where Nis the normalizer of a 3-Sylow subgroup. But72 } 4! =
{(N))!. By Lemma 2.9.1 N must contain a nontrivial normal subgroup of
(of order at least 3). Thus here again we can conclude that G contains a
ontrivial normal subgroup. The upshot of the discussion is that any group

f order 72 must have a nontrivial normal subgroup, hence cannot be
mple.

roblems

1. Adapt the second proof given of Sylow’s theorem to prove directly
that if p is a prime and "1 0(G), then G has a subgroup of order p*

-
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10.

11.

*12.

13.

. If x > 0is a real number, define [x] to be m, where m is that integer

such that m < x < m + 1. If p is a prime, show that the power of
p which exactly divides n! is given by

AR

. Use the method for constructing the p-Sylow subgroup of S to find

generators for
(a) a 2-Sylow subgroup in Sg. (b) a 3-Sylow subgroup in S,.

. Adopt the method used in Problem 3 to find generators for

(a) a 2-Sylow subgroup of Ss. (b) a 3-Sylow subgroup of S¢.

. If p is a prime number, give explicit generators for a p-Sylow sub-

group of §y:.

. Discuss the number and nature of the 3-Sylow subgroups and 5-

Sylow subgroups of a group of order 32.52,

. Let G be a group of order 30.

(a) Show that a 3-Sylow subgroup or a 5-Sylow subgroup of G
must be normal in G.

(b) From part (a) show that every 3-Sylow subgroup and every
5-Sylow subgroup of G must be normal in G.

(c) Show that G has a normal subgroup of order 15.

(d) From part (c) classify all groups of order 30.

(e) How many different nonisomorphic groups of order 30 are there?

. If G is a group of order 231, prove that the 11-Sylow subgroup is in

the center of G.

. If Gis a group of order 385 show that its 11-Sylow subgroup is normal

and its 7-Sylow subgroup is in the center of G.

If G is of order 108 show that G has a normal subgroup of order 3,
where £ > 2.

If o(G) = pg, p and ¢ distinct primes, p < ¢, show
(a) if p ¥ (¢ — 1), then G is cyclic.
*(b) if p| (¢ — 1), then there exists a unique non-abelian group of
order pg. ‘

Let G be a group of order pgr, p < g < r primes. Prove

(a) the r-Sylow subgroup is normal in G.

(b) G has a normal subgroup of order gr.

(c) if ¢ ¥ (r — 1), the g-Sylow subgroup of G is normal in G.

If G is of order p2q, p, ¢ primes, prove that G has a noatrivial nor-
mal subgroup.
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*14.

15.

**16.

*17.

*18.

**19.

#20.
21.
22.
23.

24.
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If G is of order p?q, p, ¢ primes, prove that either a p-Sylow sub-
group or a g-Sylow subgroup of G must be normal in G.

Let G be a finite group in which (ab)? = aPb” for every a, be G,
where p is a prime dividing o(G). Prove
(a) The p-Sylow subgroup of G is normal in G.
*(b) If P is the p-Sylow subgroup of G, then there exists a normal
subgroup N of G with P n N = (¢) and PN = G.
(c) G has a nontrivial center.

If G is a finite group and its p-Sylow subgroup P lies in the center of
G, prove that there exists a normal subgroup N of G with P N =
(¢) and PN = G.

If H is a subgroup of G, recall that N(H) = {xe G|xHx™ ' = H}.
If P is a p-Sylow subgroup of G, prove that N(N(P)) = N(P).

Let P be a p-Sylow subgroup of G and suppose aq, b are in the center

of P. Suppose further that a = xbx~! for some x € G. Prove that
there exists a y € N(P) such that a = pby~ 1.

Let G be a finite group and suppose that ¢ is an automorphism of G
such that ¢> is the identity automorphism. Suppose further that
¢(x) = x implies that x = e. Prove that for every prime p which
divides ¢(G), the p-Sylow subgroup is normal in G.

Let G be the group of » x n matrices over the integers modulo p,
p a prime, which are invertible. Find a p-Sylow subgroup of G.
Find the possible number of 11-Sylow subgroups, 7-Sylow subgroups,
and 5-Sylow subgroups in a group of order 52-7-11.

If Gis §3 and 4 = ((12)) in G, find all the double cosets AxA of
4in G. .

If Gis §, and 4 = ((1234)), B = ((12)), find all the double
cosets AxB of 4, B in G.

If G is the dihedral group of order 18 generated by a? = 6° = ¢,
ab = b~ 'a, find the double cosets for H, K in G, where H = (a)
and K = (b3).

Direct Products

On several occasions in this chapter we have had a need for constructing a
new group from some groups we already had on hand. For instance,
towards the end of Section 2.8, we built up a new group using a given group
and one of its automorphisms. A special case of this type of construction
has been seen earlier in the recurring example of the dihedral group.
However, no attempt had been made for some systematic device for
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constructing new groups from old. We shall do so now. The method re-
presents the most simple-minded, straightforward way of combining groups
to get other groups.

We first do it for two groups—not that two is sacrosanct. However,
with this experience behind us, we shall be able to handle the case of any
finite number easily and with dispatch. Not that any finite number is
sacrosanct either; we could equally well carry out the discussion in the
wider setting of any number of groups. However, we shall have no need for
so general a situation here, so we settle for the case of any finite number of
groups as our ultimate goal.

Let 4 and B be any two groups and consider the Cartesian product
(which we discussed in Chapter 1) G = 4 x B of A and B. G consists
of all ordered pairs (a, b), where a € A and b € B. Can we use the operations
in 4 and B to endow G with a product in such a way that G is a group?
Why not try the obvious? Multiply componentwise. That is, let us define,
for (ay, b,) and (a,, b,) in G, their product via (ay, b;)(a,, b,) = (a;a,, b:b,).
Here, the product 4,4, in the first component is the product of the elements
a, and a, as calculated in the group 4. The product 4,5, in the second
component is that of b, and b, as elements in the group B.

With this definition we at least have a product defined in G. Is G a
group relative to this product? The answer is yes, and is easy to verify.
We do so now.

First we do the associative law. Let (ay, b)), (a5, 6,), and (aj, b;) be
three elements of G. Then ((ay, b,)(a,, b,))(as, b3) = (a,a,, b1b,)(as, b3) =
((¢15)a, (b167)bs), while (ay, by)((as, by) (a3, b3)) = (ay, by) (2203, byb3) =
(a(aya3), by (byb3)). The associativity of the product in 4 and in B then
show us that our product in G is indeed associative.

Now to the unit element. What would be more natural than to try
(e, f), where ¢ is the unit element of 4 and f that of B, as the proposed
unit element for G? We have (aq, b)(e,f) = (ae, bf) = (a, b) and
(e,f)(a, b) = (ea, fb) = (a, b). Thus (¢, f) acts as a unit element in G.

Finally, we need the inverse in G for any element of G. Here, too,
why not try the obvious? Let (a,b) € G; try (a” !, 5™1) as its inverse.
Now (a, b)(a™ 1, 67Y) = (aa™ ', 6b™") = (¢,f) and (a” ', 6" Y(a, b) =
(a™'a, b7 ') = (e, f), so that (a~*, 57 1) does serve as the inverse for (a, b).

With this we have verified that G = 4 x B is a group. We call it the
external direct product of A and B.

Since G = A4 x B has been built up from 4 and B in such a trivial
manner, we would expect that the structure of 4 and B would reflect heavily
in that of G. This is indeed the case. Knowing 4 and B completely gives
us complete information, structurally, about 4 x B.

The construction of G = A x B has been from the outside, external.
Now we want to turn the affair around and try to carry it out internally in G.
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Consider 4 = {(a,f)eGlacd} =G =4 x B, where f is the unit
element of B. What would one expect of A? Answer: 4 is a subgroup of
G and is isomorphic to 4. To effect this isomorphism, define ¢:4 — 4
by ¢(a) = (a,f) for ae A. Tt is trivial that ¢ is an isomorphism of 4
onto A. It is equally trivial that 4 is a subgroup of G. Furthermore, 4 is
normal in G. For if (a,f) € A and (ay, b,) € G, then (a,, bi)(a,f)(a, b)) ' =
(a1, b1)(a, f) (a1, by™1) = (ayaa,71, bifo' ™) = (araa,7 ", f) e 4. Sowe
have an isomorphic copy, 4, of 4 in G which is a normal subgroup of G.

What we did for 4 we can also do for B. If B — {(e;6) e G| be B},
then B is isomorphic to B and is a normal subgroup of G.

We claim a little more, namely G = 4B and every g € G has a unique
decomposition in the form g = @b withae d and § ¢ B. For, g = (a,b) =
(,f)(e; b) and, since (a,f) e A and (e, b) € B, we do have g = ab with
@ = (a,f) and b = (¢,6). Why is this unique? If (a,b) = %j, where
feAdandjeB, then ¥ = (x, f), xedandj = (¢,3), y& B; thus (a, b) =
% = (x,f)(e,y) = (x,). This gives x = ¢ and y=05b, and so ¥=a
and j = 5.

Thus we have realized G as an internal product 4B of two normal sub-
groups, 4 isomorphic to A, B to B in such a way that every element g e G
has a unique representation in the form g = @b, with 2e 4 and b € B,

We leave the discussion of the product of two groups and go to the case
of n groups, n > 1 any integer.

Let G,,G,,...,G, be any n groups. Let G =Gy x G, x "+ x G, =
{(81,82:-- -, 8,) | g€ G} be the set of all ordered n-tuples, that is, the
- Cartesian product of G,,G,,..., G,. We define a product in G via
(gl’ 82,4, gn)(gi’ gé: tet g;l) = (glgin gzgé: ) gng;:): that is’ via com-
ponentwise multiplication. The product in the ith component is carried
in the group G;. Then G is a group in which (e, ¢,, ..., e,) is the unit ele-
ment, where each ¢; is the unit element of Gy, and where (g, g,,...,5,)"! =
(617 g7 " ..., 87 Y). We call this group G the external direct product of
G,,G,,...,G,

InG=G x G, x -+ x G,letG, = {(erseas v sliny, i Cigrs-en, )]
g €G;}. Then G, is a normal subgroup of G and is isomorphic to G;.
Moreover, G = G\G, -+ - G, and every g€ G has a unique decomposition
& =218 8, where g, €G,,..., 5,€G,. We leave the verification of
these facts to the reader.

Here, too, as in the case 4 x B, we have realized the group G internally
as the product of normal subgroups Gy, ..., G, in such a way that every
element is uniquely representable as a product of elements g, - - - g,, where
each g; € G;. With this motivation we make the

DEFINITION Let G be a group and N, N,, ..., N, normal subgroups of
G such that :
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1. G = N,N,--+N,.
2. Given g € G then g = mym, - - -m,, m; € N; in a unique way.

We then say that G is the internal direct product of Ny, Ny, ..., N,.

Before proceeding let’s look at an example of a group G which is the
internal direct product of some of its subgroups. Let G be a finite abelian
group of order p,*p,* - - - p,** where py, p, - .., p, are distinct primes and
each o; > 0. If P,,..., P, are the p;-Sylow subgroup,..., p,-Sylow
subgroup respectively of G, then G is the internal direct product of
P, P,, ..., P, (see Problem 5).

We continue with the general discussion. Suppose that G is the internal
direct product of the normal subgroups Ny,..., N,. The Ny, ..., N,
are groups in their own right—forget that they are normal subgroups of G
for the moment. Thus we can form the group T'= N; x N, X -++ X N,
the external direct product of Ny, ..., N,. One feels that G and T should
be related. Our aim, in fact, is to show that G is isomorphic to 7. If we
could establish this then we could abolish the prefix external and internal
in the phrases external direct product, internal direct product—after all
these would be the same group up to isomorphism—and just talk about the
direct product.

We start with

LEMMA 2.13.1  Suppose that G is the internal direct product of Ny, ..., N,
Then for i # j, N~ N; = (e), and if a € N;, b € N, then ab = ba.

Proof. Suppose that x € N; n N;. Then we can write x as
K=oyt e gKe e e
where ¢, = ¢, viewing x as an element in N;. Similarly, we can write x as
K=l e e yKepy e,

where ¢, = ¢, viewing x as an element of N;. But every element—and so,
in particular x—has a unique representation in the form mym, - - m,,
where m; € Ny, ..., m, € N,. Since the two decompositions in this form for
x must coincide, the entry from N; in each must be equal. In our
first decomposition this entry is x, in the other it is e; hence x = e
Thus N; n N; = (e) for ¢ # j.

Suppose a € N;, be N;, and i # j. Then aba™' € N; since N; is normal;
thus aba™'6~' e N;. Similarly, since a~'€ N, ba”'6~' € N, whence
aba='b"'e N, Butthen aba™'6"'e N, N; = (¢). Thusaba™'b"" =¢;
this gives the desired result ab = ba.

One should point out that if K,,..., K, are normal subgroups of G
such that G = K;K,-+-K, and K; n K; = (¢) for i # j it need not be

o
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true that G is the internal direct product of X, .
condition is needed (see Problems 8 and 9).

We now can prove the desired isomorphism between the external and
internal direct products that was stated earlier.

-+» K,. A more stringent

THEOREM 2131 Let G be a group and suppose that G is the internal direct
product of Ni,...,N,. Le T = Ny x Ny x---x N,. ThenG and T

L are isomorphic.
. Proof. Define the mapping y:T — ¢ by

W((brs bas o5 0,)) = byby---b
- where each b,e N, i = 1,... , 1.
of T onto G.

To begin with, y is certainly onto; for, since G is the internal direct
- product of Ni,..., N, if xe G then x = a4 * - - a, for some a; € Ny, . . .,
'a,€ N,. But then Y((ag, az, ..., a,)) = ajay--- a, = x. The mapping
Y is one-to-one by the unigueness of the representation of every element as
'a product of elements from Ni..., N, For, if y((ay,...,a,)) =
LY ((cgs- .. c,), where ;€N c;e N, fori=1,2,.. ., n, then, by the
| definition of ¥, aa,- - a, = cic, - -¢,. The uniqueness in the definition

of internal direct product forces @4 =€, @y =¢y,...,a, = ¢, Thus y
is one-to-one.

All that remains is to show that Y is a homomorphism of T onto G.

n’

We claim that ¥ is an isomorphism

X = (a;,...,0a,), Y= (b,..., b,) are elements of T then
V(XY) = ¥((ay, ..., a,)(by, ..., b,))
= Y(ab;, azb,, ..., ayb,)

= ajbiasby - -a,b,.

However, by Lemma 2.13.1, aib; = bja; if i # j. This tells us that
101050, -a,b, = aja,- - “@nbiby- - -b,. Thus Y(XY) = aay - cabib,- b,
But we can recognize a,a,- - “apasY((ay, ay, . .., a,)) = Y(X)and bib,-- -5,
as Y(Y). We therefore have Y(XY) = y(X)Y(Y). In short, we have shown
that y is an isomorphism of 7 onto G. This proves the theorem.

Note one particular thing that the theorem proves. If a group G is
Isomorphic to an external direct product of certain groups G,, then G is,
n fact, the internal direct product of groups G, isomorphic to the G;. We
imply say that G is the direct product of the G; (or G,)
In the next section we shall see that every finite abelian group is a direct
Product of cyclic groups. Once we have this, we have the structure of all
finite abelian groups pretty well under our control.
~ One should point out that the analog of the direct product of groups
€xists in the study of almost all algebraic structures. We shall see this later

-
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for vector-spaces, rings, and modules. Theorems that describe such an
algebraic object in terms of direct products of more describable algebraic
objects of the same kind (for example, the case of abelian groups above) are
important theorems in general. Through such theorems we can reduce the
study of a fairly complex algebraic situation to a much simpler one.

Problems

1. If 4 and B are groups, prove that 4 x B is isomorphic to B x 4.

10.

*11.

12.

. If G,, G,, G, are groups, prove that (G; x G;) X G is isomorphic

to G; x G, x G;. Care to generalize?

.If T=G, x Gy x++x G, prove that for each i =1,2,...,n

there is a homomorphism ¢; of T onto G;. Find the kernel of ¢;.

. Let Gbeagroupandlet T = G x G.

(a) Show that D = {(g,8) €G x G|ge G} is a group isomorphic
to G.
(b) Prove that D is normal in 7 if and only if G is abelian.

. Let G be a finite abelian group. Prove that G is isomorphic to the

direct product of its Sylow subgroups.

. Let 4, B be cyclic groups of order m and n, respectively. Prove that

A x B is cyclic if and only if m and # are relatively prime.

. Use the result of Problem 6 to prove the Chinese Remainder Theorem;

namely, if m and n are relatively prime integers and u,v any two
integers, then we can find an integer x such that x = u mod m and
x = v mod n.

. Give an example of a group G and normal subgroups Ni,..., N,

such that G = N;N,--- N, and N; n N; = (¢) for i # j and yet
G is not the internal direct product of Ny, ..., N,.

. Prove that G is the internal direct product of the normal subgroups

N, ..., N, if and only if
1. G= N, N,
2. N, (NN, N;_({Nipy - N,) = (¢e)fori =1,...,n

Let G be a group, K, ..., K, normal subgroups of G. Suppose that
K,nK,n 0K, = (¢). Let V; = G/K;. Prove that there is an
isomorphism of G into V; x V3 x =+ x V.

Let G be a finite abelian group such that it contains a subgroup
H, # (¢) which lies in every subgroup H # (¢). Prove that G must
be cyclic. What can you say about o(G)?

Let G be a finite abelian group. Using Problem 11 show that Gis
isomorphic to a subgroup of a direct product of a finite number of
finite cyclic groups.
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13. Give an example of a finite non-abelian group G which contains a
subgroup Hy # (¢) such that H, < H for all subgroups H # (¢) of G.

14. Show that every group of order £?, p a prime, is either cyclic or is
isomorphic to the direct product of two cyclic groups each of order p.

“(; *15. Let G = 4 x A where 4 is cyclic of order bs p a prime. How many
automorphisms does G have?

16. If G = K; x K, x --- x K, describe the center of G in terms of
those of the K.

17. If G = K; x K, x --- xK, and g € G, describe

N(g) = {xe G|xg = gx}.

18. If G is a finite group and N,,..., N, are normal subgroups of G
such that G = NN, -+ N, and o(G) = o(Ny)o(N,) - -+ o(N,), prove
that G is the direct product-of Ny, N,,..., N..

214 Finite Abelian Groups

We close this chapter with a discussion (and description) of the structure
_of an arbitrary finite abelian group. The result which we shall obtain is a
famous classical theorem, often referred to as the Fundamental Theorem on
-Finite Abelian Groups. It is a highly satisfying result because of its de-
cisiveness. Rarely do we come out with so compact, succinct, and crisp a
result. In it the structure of a finite abelian group is completely revealed,
-and by means of it we have a ready tool for attacking any structural problem
‘about finite abelian groups. It even has some arithmetic consequenees.
,,:For instance, one of its by-products is a precise count of how many non-.
‘isomorphic abelian groups there are of a given order.

In all fairness one should add that this description of finite abelian groups
s not as general as we can go and still get so sharp a theorem. As you shall
see in Section 4.5, we completely describe all abelian groups generated by
2 finite set of elements—a situation which not only covers the finite abelian
group case, but much more.

. We now state this very fundamental result.

iTHEOREM 2141  Every finite abelian group is the direct product of cyclic
ggroups.

Proof. Our first step is to reduce the problem to a slightly easier one.
We have already indicated in the preceding section (see Problem 5 there)
that any finite abelian group G is the direct product of its Sylow subgroups.
If we knew that each such Sylow subgroup was a direct product of cyclic
groups we could put the results together for these Sylow subgroups to
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realize G as a direct product of cyclic groups. Thus it suffices to prove the
theorem for abelian groups of order p" where p is a prime.

So suppose that G is an abelian group of order p". Our objective is to
find elements 4y, . . - , @, in G such that every element x € G can be written
in a unique fashion as ¥ = aMay* - - - ¢, Note that if this were true and
ay, .- -, a were of order p™, ..., p", where ny 2 ny 2 °°° > n, then the
maximal order of any element in G would be p™ (Prove!). This gives us
a cue of how to go about finding the elements a,, ..., & that we seek.

The procedure suggested by this is: let @, be an element of maximal
order in G. How shall we pick a,? Well, if A, = (a;) the subgroup
generated by a;, then a, maps into an element of highest order in G/4,.
If we can successfully exploit this to find an appropriate a,, and if 4, =
(ay), then az would map into an element of maximal order in G/4,4,,
and so on. With this as guide we can now get down to the brass tacks of
the proof.

Let a, be an element in G of highest possible order, g™, and let A, =
(a,). Pick b, in G such that b,, the image of b, in G = G|4;, has maximal
order p". Since the order of b, divides that of b,, and since the order of
a, is maximal, we must have that n, > n,. In order to get a direct product
of 4, with (b,) we would need 4; N (by) = (e); this might not be true
for the initial choice of b,, so we may have to adapt the element b,. Suppose
that 4, N (by) # (¢); then, since b,P"2 € A, and is the first power of b, to
fall in 4, (by our mechanism of choosing b,) we have that b7 = a,.
Therefore (a,/)?" ™ = (b,7™)P" "2 = b,”" = ¢, whence q,"7"'""* = e. Since
a, is of order p" we must have that p™ | ™ ™", and so p" | i. Thus, re-
calling what i is, we have 5,7 = a,} = a7 This tells us that if a, =
a; b, then a,?* = e. The element a, is indeed the element we seek. Let
A, = (ay). We claim that 4, n 4, = (¢). For, suppose that a,f € 4;;
since a, = a; ’b,, we get (a,77b,)" € 4, and so b,' € 4;. By choice of b,,
this last relation forces p™ | f, and since a,”"* = ¢ we must have that a =e
In short 4, N A, = (¢).

We continue one more step in the program we have outlined. Let
b, € G map into an element of maximal order in G[(4,4,). If the order
of the image of b in G/(4;4,) is p™, we claim that n; < ny < ;. Why?
By the choice of ny, b,”" € A, so is certainly in A4,. Thus ny < n;. Since
by € A4y, b7 = a,"a,*. We claim that p™ |1 and p"™|i,. For
" € A, hence (a,'a,)""*™" = (b57"2)P"27"> = by72 € A;. This tells us
that a,2?"2™" € 4, and so p™ | i,p"* "™, which is to say, p" | 1. Also by?" =
e, hence (a,/a,"?)7"1 "™ = b;”" = ¢; this says that a P ed, N4y = (e)s
that is, a,"?" " = e. This yields that p™ | ;. Let i = J1p"s iy = D2 thus
b7 = aJtP"a,P. Let ay = a, 9a, " I2by, Ay = (a;); note that a? =
We claim that 4; A (4;4,) = (¢). Forif a5’ € 4,4, then (2, ~g, " I2b,)" €
A, A,, giving us by* € 4;4,. But then p™ | £, whence, since ;" = ¢, we have
a;' = e. In other words, 43 N (4;4;) = (e).
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Continuing this way we get cyclic subgroups 4, = (ay), A, =
(a2)s -+ A = (q) of order pM, p", ..., p™, respectively, with n, >
ny =+ 2 m such that G = 4,4, -+ 4, and such that, for each i,
A, n (44, -+ 4;_ ) = (¢). This tells us that every x € G has a unique
representation as x = ajay ‘- -a, where ay € 4,,...,a,€ A,. In other
words, G is the direct product of the cyclic subgroups A;, 4,,..., 4,.
The theorem is now proved.

DEFINITION If G is an abelian group of order ", p a prime, and G =
Ay x 4, x -+ x A, where each 4, is cyclic of order p" with ny > n, >

©r+ 2 m >0, then the integers nj, n,, ..., n, are called the invarianis
of G.

Just because we called the integers above the invariants of G does not
mean that they are really the invariants of G. That is, it is possible that we
can assign different sets of invariants to G. We shall soon show that the
invariants of G are indeed unique and completely describe G.

- Note one other thing about the invariants of G. If G = 4, x - x A,
where 4; is cyclic of order p", n; >n, >+ >n, > 0, then o(G) =
0(d,)o(4,) -+ 0(4,), hence p" = pripta. .. phc = pritmtcEme whence p =
#y + ny + -+ + . In other words, nj, n,, ..., n, give us a partition of n.
We have already run into this concept earlier in studying the conjugate
classes in the symmetric group.

Before discussing the uniqueness of the invariants of G, one thing should
be made absolutely clear: the elements ay, ..., @ and the subgroups
4,, ..., 4, which they generate, which arose above to give the decom-
Position of G into a direct product of cyclic groups, are not unique. Let%
see this in a very simple example. Let G = {¢, a, b, ab} be an abelian
Broup of order 4 where a?> = b2 = ¢, ab = ba. Then G = A x B where
= (a), B = (b) are cyclic groups of order 2. But we have another
decomposition of G as a direct product, namely, G = C x B where
C = (ab) and B = (). So, even in this group of very small order, we can
et distinct decompositions of the group as the direct product of cyclic
8roups. Our claim—which we now want to substantiate—is that while
hese cyclic subgroups are not unique, their orders are

&

YEFINITION If G is an abelian group and s is any integer, then G(s) =
xe G l xS = g},

~Because G is abelian it is evident that G(s) is a subgroup of G. We now
ove

EMMA 2141 If G and G’ are isomorphic abelian groups, then for every
eger 5, G (s), and G'(s) are isomorphic.
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Proof. Let ¢ be an isomorphism of G onto G'. We claim that ¢ maps
G (s) isomorphically onto G'(s). First we show that d(G(s)) = G'(s).
For, if x € G(s) then x° = ¢, hence ¢(x°) = Ple) = ¢. But ¢(x°) = d(x)°;
hence ¢(x)* = ¢ and so ¢(x) is in G’(s). Thus ¢(G(s)) = G'(s).

On the other hand, if «' € G'(s) then («)* = ¢. But, since ¢ is onto,
u = ¢(y) for some y € G. Therefore ¢ = W) = ¢(»)° = ¢(°). Be-
cause ¢ is one-to-one, we have y° = ¢ and so y € G(s). Thus ¢ maps G(s)
onto G'(s).

Therefore since ¢ is one-to-one, onto, and a homomorphism from G (s)
to G'(s), we have that G(s) and G'(s) are isomorphic.

We continue with

LEMMA 2.14.2 Let G be an abelian group of order p", p a prime. Suppose
that G = A, x Ay x +++ x Ay, where each 4; = (a;) is cyelic of order p™,
andny > n, >+ =n > 0. Ifmisan integer such that n, > m > n,.y then
G(p™) = By x =+ x By x Ayyy X100 X A, where B; is cyclic of order
p™, generated by aP""", for i < t. The order of G(p™) is p*, where

k
u=mt+ Z n;.

i=t+1

PV

Proof. First of all, we claim that 4,,,..., 4, are all in G(p™). For,
since m > myqy == m >0, if g4+ 1 af" = (af )T =
Hence 4, for j = ¢ + 1 lies in G(p™).

Secondly, if i < ¢ then n; > m and (g™ ™" = aF" = ¢, whence
each such ¢ ™ is in G(p™) and so the subgroup it generates, B,, is also
in G(p™).

Since By, ..., By Aity,- .- 4i are all in G(p™), their product (which
is direct, since the product 4,4, -4y is direct) is in G(p™). Hence
G(p™) o By X+ x B, x Ay X 00 X 4,.

On the other hand, if x = a;*a,*? - - - g,** isin G (p"™), since it then satisfies
X" = e, weset ¢ = &P = a P+ g}". However, the product of the
subgroups 4y, . . ., 4, is direct, so we get

a M =, M = e
Thus the order of a;, that is, p™ must divide 2;p™ for i = 1,2,..., ko If
i >t + 1 this is automatically true whatever be the choice of Aprts oo 7k
since m > my; > =m, hence p%|p", i=t+ 1. However, for
i <t, we get from p" | A;p" that p"7™| A, Therefore A; = p;p"~™ for
some integer v;. Putting all this information into the values of the 4;’s in
the expression for x as x = a* - - gt we see that

vIpTLIT™ L, g VP T 1 ... g AR
a, vt a .

X = ay +1
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This says that x € By x +*+ X B, x A,,, X +*+ x Ay.
Now since each B; is of order ™ and since 0(4;) = p™ and since
G =By x = x B X A4y % x4,

o(G) = o(By)o(By) - - o(B)o(Ay4yq) - o(4,) = PUPT P
———

Thus, if we write o(G) = p", then t-times
K
u=mi+ Z n;
i=T+1

The lemma is proved.

 COROLLARY  If G is as in Lemma 2.14.2, then o(G (p)) = .

- Proof. Apply the lemma to the case m = 1. Then ¢ = k, hence
u = 1k = kand so o(G) = p~

We now have all the pieces required to prove the uniqueness of the
invariants of an abelian group of order p".

THEOREM 2.14.2  Tuwo abelian groups of order p" are isomorphic if and only
if they have the same invariants.

~ Inother words, if G and G are abelian groups of order PlandG = Ay x---x 4,
where each A; is a cyclic group of order Py = o >n >0, and G =
B} x - x B!, where each B} is a cyclic group of order p*, hy > -+ > hy > 0,
then G and G’ are isomorphic if and only if k = s and for each i, n; = h,.

~ Proof. One way is very easy, namely, if G and G’ have the same "in-
variants then they are isomorphic. For then G = 4, x +-- x 4, where
4; = (a;) is cyclic of order p*, and G’ = B{ x -+ x B; where B} = (b})
is cyclic of order p". Map G onto G’ by the map ¢(a* .- q%) =
(8™ - -+ (bi)™. We leave it to the reader to verify that this defines an
isomorphism of G onto G'.
- Now for the other direction. Suppose that G = 4 x --- x 4,
G =B x-x B;, 4, B] as described above, cyclic of orders PP,
respectively, where n; >--+>n, > 0 and hy =2--->h >0, We
~want to show that if G and G’ are isomorphic then ¥ = s and each n; = h;.
If G and G’ are isomorphic then, by Lemma 2.14.1, G(p™) and G’(p™)
must be isomorphic for any integer m > 0, hence must have the same order.
Let’s see what this gives us in the special case m = 1; that is, what in-
formation can we garner from o(G(p)) = o(G’'(p)). According to the
corollary to Lemma 2.14.2, o(G(p)) = p* and o(G'(p)) = 4. Hence
P* = p*and so k = 5. At least we now know that the number of invariants
for G and G’ is the same.
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If n, # h; for some i, let ¢ be the first i such that n, # A ; we may sup-
pose that n, > h. Let m = h. Consider the subgroups, H = {x"|x € G}
and H' = {(x')?" | ¥ € G}, of G and G’, respectively. Since G and G’ are
isomorphic, it follows easily that H and H' are isomorphic. We now ex-
amine the invariants of H and H'.

Because G = A, x *++ x A, where 4; = (a;) is of order p™, we get that

H=C x++xC x-xGC,

where C, = (™) is of order p"~™, and where r is such that n, > m =
h, > n,_;. Thus the invariants of H are ny —m, ny —m,...,n —m
and the number of invariants of His r = .

Because G’ = B} x -+ x Bj, where B; = () is cyclic of order P,
we get that H' = Dy x -+ x D;_;, where D} = ((8})P™) is cyclic of order
pt~™ Thus the invariants of H' are by — m,..., k_, — m and so the
number of invariants of H'is ¢t — 1.

But H and H’ are isomorphic; as we saw above this forces them to have
the same number of invariants. But we saw that assuming that n; # A
for some i led to a discrepancy in the number of their invariants. In con-
sequence each n; = h;, and the theorem is proved.

An immediate consequence of this last theorem is that an abelian group
of order " can be decomposed in only one way—as far as the orders of the
eyclic subgroups is concerned—as a direct product of cyclic subgroups. Hence
the invariants are indeed the invariants of G and completely determine G.

If ny >+ +>m>0, n=n + " +m, is any partition of n, then
we can easily construct an abelian group of order p” whose invariants are
n, >+ +>=m > 0. To do this, let 4; be a cyclic group of order p™ and
let G = A, x -+ x 4, be the external direct product of Ay,..., 4
Then, by the very definition, the invariants of G are ny >+ > n > 0.
Finally, two different partitions of n give rise to nonisomorphic abelian
groups of order p". This, too, comes from Theorem 2.14.2. Hence we have

THEOREM 2.14.3 The number of nonisomorphic abelian groups of order "
p a prime, equals the number of partitions of n.

Note that the answer given in Theorem 2.14.3 does not depend on the
prime p; it only depends on the exponent n. Hence, for instance, the number
of nonisomorphic abelian groups of order 2* equals that of orders 34, or
54 etc. Since there are five partitions of 4, namely: 4 = 4, 3 + 1,2 + 2,
24+ 1+1,1+1+1+1, then there are five nonisomorphic abelian
groups of order p* for any prime p.

Since any finite abelian group is a direct product of its Sylow subgroups,
and two abelian groups are isomorphic if and only if their corresponding
Sylow subgroups are isomorphic, we have the
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COROLLARY  The number of nonisomorphic abelian groups of order p**- - - p,*,

where the p; are distinct primes and where each o; > 0, is p(oy)p(at,) - - - p(at,),
where p(u) denotes the number of partitions of u.

Problems

1. If G is an abelian group of order p", p a prime and n, > 7, > --+ >
m, > 0, are the invariants of G, show that the maximal order of any
element in G is p™'.

2. If G is a group, 4,..., 4; normal subgroups of G such that 4; N
(414, -+ 4;_1) = (e) for all 7, show that G is the direct product of
Ay, ..., 4, G = A,4,---4,.

3. Using Theorem 2.14.1, prove that if a finite abelian group has sub-
groups of orders m and n, then it has a subgroup whose order is the least
common multiple of m and n.

4. Describe all finite abelian groups of order
(a) 28. (b) 118. (c) 7°. (d) 2*-3%

5. Show how to get all abelian groups of order 23 - 34 -5,

6. If G is an abelian group of order p” with invariants n; > -+ >n, > 0
and H # (¢) is a subgroup of G, show that if &, > -+ > Ak, > 0 are
the invariants of H, then ¥ > sand for each i, b, < n;fori = 1,2,..., s.

If G is an abelian group, let G be the set of all homomorphisms of G
into the group of nonzero complex numbers under multiplication.

If ¢;, ¢, € G, define ¢, - ¢, by (1 62)(8) = $1(2)s(g) forallg e G.
7. Show that G is an abelian group under the operation defined.

8. If ¢ € G and G is finite, show that ¢(g) is a root of unity for evety
geG.

9. If G is a finite cyclic group, show that G is cyclic and o(G) = o(G),
hence G and G are isomorphic.

10. If g, # g, are in G, G a finite abelian group, prove that there is a
¢ € G with ¢(g,) # $(g2)-

1. If G is a finite abelian group prove that o(G) = o(G) and G is iso-
morphic to G.

12. If ¢ # 1 € G where G is an abelian group, show that Z o(g) = 0.

geG

Supplementary Problems

There is no relation between the order in which the problems appear and
the order of appearance of the sections, in this chapter, which might be
relevant to their solutions. No hint is given regarding the difficulty of any
problem.
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1. (a) If G is a finite abelian group with elements a,, a,, . - . , @, Prove
that aja, - * * @, is an element whose square is the identity.
(b) If the G in part (a) has no element of order 2 or more than one
element of order 2, prove that aja;***a, = ¢
(c) If G has one element, y, of order 2, prove that a;a, " a, =J.
(d) (Wilson’s theorem) If p is a prime number show that (p — 1)! =

—1(p)-
2. If p is an odd prime and if
1 1 1 a
14—ttt — =1,
2 3 p—1 b
where ¢ and b are integers, prove that p|a. If p > 3, prove that

p*le
3. If p is an odd prime, a # 0 (p) is said to be a quadratic residue of p if
there exists an integer & such that x> = a(p). Prove
(a) The quadratic residues of p form a subgroup @ of the group of
nonzero integers mod p under multiplication.
(b) o(@) = (p — /2.
(c) fge @, n¢Q (nis called a nonresidue), then ng is a nonresidue.
(d) If ny, n, are nonresidues, then n;n, is a residue.
(e) If ais a quadratic residue of p, then aP~ V2 = 4+ 1(p).

4. Prove that in the integers mod p, p a prime, there are at most 7
solutions of #" = 1(p) for every integer n.

5. Prove that the nonzero integers mod p under multiplication form a
cyclic group if p is a prime.

6. Give an example of a non-abelian group in which (x9)3 = x> for
all x and y.

7 If G is a finite abelian group, prove that the number of solutions of
x" = ¢ in G, where n | o(G) is a multiple of z.

8. Same as Problem 7, but do not assume the group to be abelian.

9. Find all automorphisms of S5 and Sy, the symmetric groups of degree
3 and 4.

DEFINITION A group G is said to be solvable if there exist subgroups G =
NyoN oN,>-->N, = (¢) such that each N is normal in N;_; and
N;_,|N; is abelian.

10. Prove that a subgroup of a solvable group and the homomorphic
image of a solvable group must be solvable.

11. If G is a group and N is a normal subgroup of G such that both N
and G/N are solvable, prove that G is solvable.

12. If G is a group, 4 a subgroup of G and N a normal subgroup of G,
prove that if both 4 and N are solvable then so is AN.
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If G is a group, define the sequence of subgroups G? of G by

(1) G'P = commutator subgroup of G = subgroup of G generated
by all aba™ 16! where 4, b € G.

(2) G = commutator subgroup of GG~V if ; > 1.

Prove

(a) Each G is a normal subgroup of G.

(b) G is solvable if and only if G® = (¢) for some £ > 1.

Prove that a solvable group always has an abelian normal subgroup

M # (e).

If G 1s a group, define the sequence of subgroups G;, by

(a) G4y = commutator subgroup of G.

(b) G(;y = subgroup of G generated by all aba™*6~* where a € G,
be Gy

G is said to be nilpotent if Gy = (e) for some & > 1.

15.

16.

17.

18.

19.

20.

21.

22.

(a) Show that each G; is a normal subgroup of G and G; > G,
(b) If G is nilpotent, prove it must be solvable.
(c) Give an example of a group which is solvable but not nilpotent.

Show that any subgroup and homomorphic image of a nilpotent group
must be nilpotent.

Show that every homomorphic image, different from (e), of a nil-
potent group has a nontrivial center.

(a) Show that any group of order ", p a prime, must be nilpotent.
(b) If G is nilpotent, and H # G is a subgroup of G, prove that
N(H) # Hwhere N(H) = {xe G|xHx"! = H}. -

If G is a finite group, prove that G is nilpotent if and only if G is the
direct product of its Sylow subgroups.

Let G be a finite group and H a subgroup of G. For 4, B subgroups

of G, define 4 to be conjugate to B relative to H if B = x~ 14x for

some x € [{. Prove

(a) This defines an equivalence relation on the set of subgroups of G.

(b) The number of subgroups of G conjugate to A4 relative to H
equals the index of N(4) n Hin H.

(a) If G is a finite group and if P is a p-Sylow subgroup of G, prove
that P is the only p-Sylow subgroup in N(P).

(b) If P is a p-Sylow subgroup of G and if a”* = e then, if a € N(P),
a must be in P.

(c) Prove that N(N(P)) = N(P).

(a) If G is a finite group and P is a p-Sylow subgroup of G, prove
that the number of conjugates of P in G is not a multiple of p.

-
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23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

#33.

(b) Breaking up the conjugate class of P further by using conjugacy
relative to P, prove that the conjugate class of P has 1 + kp
distinct subgroups. (Hint: Use part (b) of Problem 20 and
Problem 21. Note that together with Problem 23 this gives an
alternative proof of Theorem 2.12.3, the third part of Sylow’s
theorem.)

(a) If P is a p-Sylow subgroup of G and B is a subgroup of G of order
t*, prove that if B is not contained in some conjugate of P, then
the number of conjugates of P in G is a multiple of p.

(b) Using part (a) and Problem 22, prove that B must be contained
in some conjugate of P.

(c) Prove that any two p-Sylow subgroups of G are conjugate in G.
(This gives another proof of Theorem 2.12.2, the second part of
Sylow’s theorem.)

Combine Problems 22 and 23 to give another proof of all parts of

Sylow’s theorem.

Making a case-by-case discussion using the results developed in this

chapter, prove that any group of order less than 60 either is of prime

order or has a nontrivial normal subgroup.

Using the result of Problem 25, prove that any group of order less

than 60 is solvable.

Show that the equation x¥2ax = a~?! is solvable for » in the group

G if and only if a is the cube of some element in G.

1

Prove that (1 2 3) is not a cube of any element in §,,.

Prove that xax = b is solvable for x in G if and only if ab is the square
of some element in G.

If G is a group and a € G is of finite order and has only a finite number
of conjugates in G, prove that these conjugates of a generate a finite
normal subgroup of G.

Show that a group cannot be written as the set-theoretic union of
two proper subgroups.

Show that a group G is the set-theoretic union of three proper sub-
groups if and only if G has, as a homomorphic image, a noncyclic
group of order 4.

Let p be a prime and let Z, be the integers mod p under addition and
multiplication. Let G be the group (: Z,) where a, b,c,d € Z,

are such that ad — bc = 1. Let

¢={6 1) (o )l

and let LF(2, p) = G/C.
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(a) Find the order of LF(2, p).
(b) Prove that LF (2, p) is simple if p > 5.

#34. Prove that LF(2,5) is isomorphic to 4s, the alternating group of
degree 5.

#35. Let G = LF(2, 7); according to Problem 33, G is a simple group of
order 168. Determine exactly how many 2-Sylow, 3-Sylow, and
7-Sylow subgroups there are in G.

Supplementary Reading

BurnsipE, W., Theory of Groups of Finite Order, 2nd ed. Cambridge, England:
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Ring Theory

3.1 Definition and Examples of Rings

As we indicated in Chapter 2, there are certain algebraic systems
which serve as the building blocks for the structures comprising the
subject which is today called modern algebra. At this stage of the
development we have learned something about one of these, namely
groups. It is our purpose now to introduce and to study a second
such, namely rings. The abstract concept of a group has its origins
in the set of mappings, or permutations, of a set onto itself. In con-
trast, rings stem from another and more familiar source, the set of
integers. We shall see that they are patterned after, and are gen-
eralizations of, the algebraic aspects of the ordinary integers.

In the next paragraph it will become clear that a ring is quite
different from a group in that it is a two-operational system; these
operations are usually called addition and multiplication. Yet,
despite the differences, the analysis of rings will follow the pattern
already laid out for groups. We shall require the appropriate analogs
of homomorphism, normal subgroups, factor groups, etc. With the
experience gained in our study of groups we shall be able to make the
requisite definitions, intertwine them with meaningful theorems, and
end up proving results which are both interesting and important
about mathematical objects with which we have had long acquaintance.
To cite merely one instance, later on in the book, using the tovls
developed here, we shall prove that it is impossible to trisect an angle
of 60° using only a straight-edge and compass.
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DEFINITION A nonempty set R is said to be an associative ring if in R
there are defined two operations, denoted by + and - respectively, such
that for all g, b, ¢ in R:

l.a + bisin R.

2.a+b=5b+ a

3. (@a+b)+c=a+ (b+c).

4. There is an element 0 in R such that 2 + 0 = a (for every a in R).

5. There exists an element —a in R such that a + (—a) = 0.

6. a-bisin R.

7.a-(b-c) = (a-b)-c.

8.a-(b+c)=ab+acand(b+¢)-a=>b-a+ c¢-a (the two distrib-
utive laws).

Axioms | through 5 merely state that R is an abelian group under the
operation +, which we call addition. Axioms 6 and 7 insist that R be closed
under an associative operation -, which we call multiplication. Axiom 8
serves to interrelate the two operations of R.
 Whenever we speak of ring it will be understood we mean associative
- ring. Nonassociative rings, that is, those in which axiom 7 may fail to hold,
'~ do occur in mathematics and are studied, but we shall have no occasion to
. consider them.

It may very well happen, or not happen, that there is an element ! in
. R such that a-1 = 1-a = a for every a in R; if there is such we shall
~ describe R as a ring with unit element.

- If the multiplication of R is such thata+b = b a for every a, b in R, then
we call R a commutative ring.

Before going on to work out some properties of rings, we pause to exarfiine
some examples. Motivated by these examples we shall define various
~ special types of rings which are of importance.

Example 3.1.1 R is the set of integers, positive, negative, and 0; + is
the usual addition and - the usual multiplication of integers. R is a com-
mutative ring with unit element.

Example 3.1.2 R is the set of even integers under the usual operations
- of addition and multiplication. R is a commutative ring but has no unit
~ element.

Example 3.1.3 R is the set of rational numbers under the usual addition
and multiplication of rational numbers. R is a commutative ring with unit
element. But even more than that, note that the elements of R different
from 0 form an abelian group under multiplication. A ring with this latter
property is called a field.
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Example 3.1.4 R is the set of integers mod 7 under the addition and
multiplication mod 7. That is, the elements of R are the seven symbols

1. 7 +J = F where k is the remainder of i + j on division by 7 (thus, for
instance, 4 + 5 = 2 since 4 + 5 = 9, which, when divided by 7,
leaves a remainder of 2).

2. 7-j = m where m is the remainder of 7j on division by 7 (thus, 5 -3 =1
since 5-8 = 15 has | as a remainder on division by 7).

The student should verify that R is a commutative ring with unit element.
However, much more can be shown; namely, since

—i

-1
3=
-5

>

ol Nl —
e |

(SIS ) |
\S.Ol Nl (=21}

the nonzero elements of R form an abelian group under multiplication.
R is thus a field. Since it only has a finite number of elements it is called a

[inite field.

Example 3.1.5 R is the set of integers mod 6 under addition and
multiplication mod 6. If we denote the elements in R by 0,1,2,...,5,
one sees that 2+3 = 0, yet 2 # 0 and 3 % 0. Thus it is possible in a ring R
that a-b = O with neither a = 0 nor b = 0. This cannot happen in a field
(see Problem 10, end of Section 3.2), thus the ring R in this example is

certainly not a field.

Every example given so far has been a commutative ring. We now
present a noncommutative ring.

Example 3.1.6 R will be the set of all symbols

2
Oy  Rigby T Ganlan F %oz = D L
=1
where all the a;; are rational numbers and where we decree
2 2
aueu Bijeu (1)
i,j=1 i,j=1
if and only if for all 4, j = 1, 2, a;; = By;,
2 2 2 :
ajer; + Z Bijei; = Z (5 + Bijle- (2)
i,j=1 i,j=1 =1

2 2 2
(Z “i"e”> ' (Z ﬂ,-,-eij) = 22 view ®)

i,j=1
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where
2

Yy = E UBoj = 1By + 2By
v=1

This multiplication, when first seen, looks rather complicated. However,
it is founded on relatively simple rules, namely, multiply 3a;;¢;; by 38;;¢;;
formally, multiplying out term by term, and collecting terms, and using the
relations ¢;; - ¢,; = O forj # k, ¢;;-¢;; = ¢; in this term-by-term collecting.
(Of course those of the readers who have already encountered some linear
algebra will recognize this example as the ring of all 2 x 2 matrices over
the field of rational numbers.)

To illustrate the multiplication, if a = ¢;; — ¢;; + ¢, and b =
e,, + 3¢5, then

a-b = (e — €31 + €33) " (625 + 3ey3)
= e11°€; + 3eyy€1y —€17€35 — Beyy7ey; + €337625 + 3637013
=0+ 3¢, — 0 — 3¢5, + ¢, + 0
= 3¢5 — 335 + €35 = 3¢y — 2655
Note that ¢;; - ¢;, = ¢;, whereas ¢;, - ¢;; = 0. Thus the multiplication
in R is not commutative. Also it is possible for u-» = 0 with  # 0 and
v # 0.
The student should verify that R is indeed a ring. It is called the ring of
2 x 2 rational matrices. It, and its relative, will occupy a good deal of

our time later on in the book.

o~

Example 3.1.7 Let C be the set of all symbols («, f) where a, § are
real numbers. We define

(o, B) = (y,6) ifand only ifa = yand § = 6. €))
In C we introduce an addition by defining for x = (a, ), y = (7, 9)
x+)’=(°‘sﬁ)+(}’,5)=(Oﬂ+?aﬂ+5)- 2)

Note that x 4 y is again in C. We assert that C is an abelian group under
this operation with (0, 0) serving as the identity element for addition, and
(—a, —B) as the inverse, under addition, of (a, f).

Now that C is endowed with an addition, in order to make of C a ring
we still need a multiplication. We achieve this by defining

for X = (0, B), Y = (30 inC,
XY = (a B) (y,0) = (ay — BS, a6 + By). 3)

123



124

Ring Theory Ch.3

Note that X-¥ = ¥Y-X. Also X-(1,0) = (1,0)-X = X so that (1,0)
is a unit element for C.

Again we notice that X-YeC. Also, if X = («, ) # (0,0) then,
since «, B are real and not both 0, a? + B* # 0; thus

- « -8
- 0(2+ﬂ2’oc2+ﬁ2

is in C. Finally we see that

(a,ﬁ)°< « b )=(1,0).

o? +ﬂ2’a2 +ﬂ2

All in all we have shown that C is a field. If we write (a, f) as « + B,
the reader may verify that C is merely a disguised form of the familiar
complex numbers.

Example 3.1.8 This last example is often called the ring of real quaternions.
This ring was first described by the Irish mathematician Hamilton. Initially
it was extensively used in the study of mechanics; today its primary interest
is that of an important example, although it still plays key roles in geometry
and number theory.

Let Q be the set of all symbols o + i + apj + 3k, where all the
numbers o, o, &,, and &z are real numbers. We declare two such symbols,
% + 0,7 + ) + ozkand B + Byi + Boj + Bk, to be equal if and only
if o, = B, for t = 0,1,2,3. In order to make @ into a ring we must de-
fine a + and a - for its elements. To this end we define

1. For any X = ag + o4 + opj + azk, ¥ = By + i + Poj+ Bsk in
Q X+ Y= (4 + O‘{i + o) + 0‘3{“) + (Bo + Bit + Boj + B3k)=
(% + Bo) + (oy + B1)i + (% + B2)j + (2 + Ba)k

and

2. XY = (0 + oyi + 0y + azk) - (Bo + Pt + Boj + Bsk)
(oo — By — @By — 03f3) + (wfy + oy fo + B3 — a3Ba)i
(apB, + axBo + 3By — B3)j + (%Bs + a3fo + 0By — Bk

Admittedly this formula for the product seems rather formidable; however,
it looks much more complicated than it actually is. It comes from multi-
plying out two such symbols formally and collecting terms using the relations
P ==k =gk=-1,4=—ji=kjk=—k=1i k= —ik = J.
The latter part of these relations, called the multiplication table of the
quaternion units, can be remembered by the little diagram on page 125. As
you go around clockwise you read off the product, e.g., g =k jk=1
ki = j; while going around counterclockwise you read off the negatives.

+
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Notice that the elements +1, +:, + J» & form a non-abelian group of
order 8 under this product. In fact, this is the group we called the group
of quaternion units in Chapter 2.

The reader may prove that @ is a noncommutative ring in which 0 =
0+0{+ 0+ 0k and 1 =1 + 0 4+ O + Ok serve as the zero and
unit elements respectively. Now if X = oy + o;7 4 a,j + a3k is not 0,
then not all of o, a;, a,, a3 are 0; since they are real, f = ay? + a2 +
oy + a3% # 0 follows. Thus

y=2_%;_%; %p.qg

BB B B

A simple computation now shows that X-¥ = 1. Thus the nonzero
clements of @ form a non-abelian group under multiplication. A ring in
which the nonzero elements form a group is called a division ring or skew-
Jield. Of course, a commutative division ring is a field. @ affords us a
division ring which is not a field. Many other examples of noncommutative
division rings exist, but we would be going too far afield to present one here.
The investigation of the nature of division rings and the attempts to classify
them form an important part of algebra.

3.2 Some Special Classes of Rings

The examples just discussed in Section 3.1 point out clearly that although
rings are a direct generalization of the integers, certain arithmetic facts to
which we have become accustomed in the ring of integers need not hold in
general rings. For instance, we have seen the possibility of a-b = 0 with
neither @ nor b being zero. Natural examples exist where a-b # b - a.
All these run counter to our experience heretofore.

For simplicity of notation we shall henceforth drop the dot in a- b and
merely write this product as ab.

DEFINITION If R is a commutative ring, then a # 0 € R is said to be a
Zero-divisor if there exists a b € R, b # 0, such that a6 = 0.

-
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DEFINITION A commutative ring is an infegral domain if it has no zero-
divisors.

The ring of integers, naturally enough, is an example of an integral
domain.

DEFINITION A ring is said to be a division ring if its nonzero elements
form a group under multiplication.

The unit element under multiplication will be written as 1, and the
inverse of an element a under multiplication will be denoted by a™*.

Finally we make the definition of the ultra-important object known as a
field.

DEFINITION A field is a commutative division ring.

In our examples in Section 3.1, we exhibited the noncommutative
division ring of real quaternions and the following fields: the rational
numbers, complex numbers, and the integers mod 7. Chapter 5 will con-
cern itself with fields and their properties.

We wish to be able to compute in rings in much the same manner in
which we compute with real numbers, keeping in mind always that there
are differences—it may happen that ab # ba, or that one cannot divide.
To this end we prove the next lemma, which asserts that certain things we
should like to be true in rings are indeed true.

LEMMA 3.2.1 IfRis aring, then for all a, b e R

l. a0 = 0z = 0.
2. a(—b) = (—a)b = —(ab).
3. (—a)(—b) = ab.
If, in addition, R has a unit element 1, then
4. (= 1a = —a.
5 (=D(-1) =1
Proof.

1. If ae R, then a0 = a(0 + 0) = a0 + a0 (using the right distributive
law), and since R is a group under addition, this equation implies that
a0 = 0.

Similarly, 0z = (0 4+ 0)a = Oa + Oa, using the left distributive law,
and so here too, Oz = 0 follows.

2. In order to show that a(—b) = —(ab) we must demonstrate that
ab + a(—b) = 0. But ab + a(—b) = a(b + (—b)) = a0 = 0 by use of
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the distributive law and the result of part 1 of this lemma. Similarly
(—a)b = —(ab).

3. That (—a)(—b) = ab is really a special case of part 2; we single it
out since its analog in the case of real numbers has been so stressed in our
early education. So on with it:

(—=a)(-8)

~(a(=8)) (by part 2)
= — (=) (bypare2)

since —(—x) = x is a consequence of the fact that in any group
@ H™ ! =a

4. Suppose that R has a unit element 1; then ¢ + (—1)a = la + (=Da =
(I + (=1))a = 0a = 0, whence (—1)a = —a. In particular, if ¢ =
=1, (=1)(=1) = —(—1) = 1, which establishes part 5.

With this lemma out of the way we shall, from now on, feel free to compute
with negatives and 0 as we always have in the past. The result of Lemma
3.2.1 is our permit to do so. For convenience, a + (—5) will be written
a— b V

The lemma just proved, while it is very useful and important, is not very
exciting. So let us proceed to results of greater interest. Before we do 50,
~ we enunciate a principle which, though completely trivial, provides a
mighty weapon when wielded properly. This principle says no more or less
than the following: if a postman distributes 101 letters to 100 mailboxes
then some mailbox must receive at least two letters. It does not sound very
promising as a tool, does it? Yet it will surprise us! Mathematical ideas
can often be very difficult and obscure, but no such argument can be made
against this very simple-minded principle given above. We formalize it and
even give it a name.

THE PIGEONHOLE PRINCIPLE If n objects are distributed over m places,
and if n > m, then some place receives at least two objects.

An equivalent formulation, and one which we shall often use is: If n
objects are distributed over z places in such a way that no place receives
more than one object, then each place receives exactly one object.

We immediately make use of this idea in proving

LEMMA 3.2.2 A4 finite integral domain is a Jield.

Proof. As we may recall, an integral domain is a commutative ring such
that ab = 0 if and only if at least one of a or b is itself 0. A field, on the
other hand, is a commutative ring with unit element in which every non-
zero element has a multiplicative inverse in the ring.
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Let D be a finite integral domain. In order to prove that D is a field we
must

1. Produce an element 1 € D such that al = a for every a € D.
2. For every element a # 0 € D produce an element b € D such that
ab = 1.

Let x;, %5, ..., %, be all the elements of D, and suppose that a # 0€ D.
Consider the elements %4, x,4, . . ., x,a; they are all in D. We claim that
they are all distinct! For suppose that x,a = x;a for i# j; then (x; — x;)a = 0.
Since D is an integral domain and a # 0, this forces x; — x; = 0, and
so x; = x;, contradicting 7 # j. Thus x4, x,a,..., x,a are n distinct
elements lying in D, which has exactly n elements. By the pigeonhole
principle these must account for all the elements of D; stated otherwise,
every element y € D can be written as x;a for some x;. In particular, since
ae D, a = x;a for some x;; € D. Since D is commutative, a = x;a =
ax;,. We propose to show that x; acts as a unit element for every element
of D. For, if y € D, as we have seen, y = x;a for some x; € D, and so
D% = (x@)x;,, = x;(ax;)) = x;,a = ». Thus x; is a unit element for D and
we write it as 1. Now 1 € D, so by our previous argument, it too is realizable
as a multiple of a; that is, there exists a b € D such that 1 = ba. The
lemma is now completely proved.

COROLLARY  If p is a prime number then [,, the ring of integers mod p, is a
Sreld.

Proof. By the lemma it is enough to prove that J, is an integral domain,
since it only has a finite number of elements. If a, b€ J, and ab = 0,
then p must divide the ordinary integer ab, and so p, being a prime, must
divide a or 5. But then either ¢ = O mod p or 4 = 0 mod p, hence in
J, one of these is 0. '

The corollary above assures us that we can find an infinity of fields
having a finite number of elements. Such fields are called finite fields. The
fields /, do not give all the examples of finite fields; there are others. In
fact, in Section 7.1 we give a complete description of all finite fields.

We point out a striking difference between finite fields and fields such as
the rational numbers, real numbers, or complex numbers, with which we
are more familiar.

Let F be a finite field having ¢ elements (if you wish, think of J, with its
p elements). Viewing F merely as a group under addition, stace F has ¢
elements, by Corollary 2 to Theorem 2.4.1,

a+a+:-+a=gqga=0
N, st

g-times
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for any a € F. Thus, in F, we have ga = 0 for some positive integer ¢, even
if a # 0. This certainly cannot happen in the field of rational numbers,
for instance. We formalize this distinction in the definitions we give below.
In these definitions, instead of talking just about fields, we choose to widen
the scope a little and talk about integral domains.

DEFINITION  An integral domain D is said to be of characteristic 0 if the
relation ma = 0, where @ # 0 is in D, and where m is an integer, can hold
only if m = 0.

The ring of integers is thus of characteristic 0, as are other familiar rings
such as the even integers or the rationals.

DEFINITION  An integral domain D is said to be of finite characteristic if
there exists a positive integer m such that ma = 0 for all a € D.

If D is of finite characteristic, then we define the characteristic of D to be
the smallest positive integer p such that pa = O for all a € D. It is not too
hard to prove that if D is of finite characteristic, then its characteristic is a prime
number (see Problem 6 below).

As we pointed out, any finite field is of finite characteristic. However, an
integral domain may very well be infinite yet be of finite characteristic (see
Problem 7).

One final remark on this question of characteristic: Why define it for
integral domains, why not for arbitrary rings? The question is perfectly
reasonable. Perhaps the example we give now points out what can happen
if we drop the assumption “integral domain.” -

Let R be the set of all triples (a, b, ¢), where a € J,, the integers mod 2,
b € J;, the integers mod 3, and ¢ is any integer. We introduce a + and a -
to make of R a ring. We do so by defining (ay, b;,¢,) + (ay, b, ¢;) =
(ay +ay, by + by,¢, +¢;) and (@15 by, ¢1) * (az, by, ¢3) = (a1az, b1y, ¢4¢5).
It is easy to verify that R is a commutative ring. It is not an integral domain
since (1, 2,0) (0,0, 7) = (0, 0, 0), the zero-element of R. Note that in R,
2(1,0,0) = (1,0,0) + (1,0,0) = (2,0,0) = (0,0, 0) since addition in
the first component is in J,. Similarly 3(0,1,0) = (0,0, 0). Finally, for
no positive integer m is m(0, 0, 1) = (0, 0, 0).

Thus, from the point of view of the definition we gave above for charac-
teristic, the ring R, which we just looked at, is neither fish nor fowl. The
definition just doesn’t have any meaning for R. We could generalize the
notion of characteristic to arbitrary rings by doing it locally, defining it
relative to given elements, rather than globally for the ring itself. We say
that R has n-torsion, n > 0, if there is an element a % 0 in R such that
7a = 0, and ma # 0 for 0 < m < n. For an integral domain D, it turns
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out that if D has n-torsion, even for one n > 0, then it must be of finite
characteristic (see Problem 8).

Problems

R is a ring in all the problems.

I.
2.

10.

11.

12.
13.

14.

If a, b, ¢, d € R, evaluate (a + b)(c + d).

Prove that if a, b€ R, then (a + 6)% = a® + ab + ba + b%, where
by x#? we mean xx.

Find the form of the binomial theorem in a general ring; in other words,
find an expression for (@ + 6)", where n is a positive integer.

. If every x € R satisfies x> = x, prove that R must be commutative.

(A ring in which #? = x for all elements is called a Boolean ring.)

. If R is a ring, merely considering it as an abelian group under its

addition, we have defined, in Chapter 2, what is meant by na, where
a € R and 7 is an integer. Prove that if ¢, 6 € R and n, m are integers,
then (na)(mb) = (nm)(ab).

If D is an integeral domain and D is of finite characteristic, prove that
the characteristic of D is a prime number.

Give an example of an integral domain which has an infinite number
of elements, yet is of finite characteristic.

If D is an integral domain and if na = 0 for some a # 0 in D and
some integer n # 0, prove that D is of finite characteristic.

. If R is a system satisfying all the conditions for a ring with unit ele-

ment with the possible exception of 2 + b = b + a, prove that the axiom
a+ b =154+ a must hold in R and that R is thus a ring. (Hint:
Expand (a + 6)(1 + 1) in two ways.)

Show that the commutative ring D is an integral domain if and only

if for a, b, c € D with a # 0 the relation ab = ac implies that 4 = c.

Prove that Lemma 3.2.2 is false if we drop the assumption that the
integral domain is finite.

Prove that any field is an integral domain.

Useing the pigeonhole principle, prove that if m and n are relatively
prime integers and @ and & are any integers, there exists an integer x
such that x = amodm and x = b modn. (Hint: Consider the re-
mainders of a,a + m,a + 2m,...,a + (n — 1)m on division by n.)

Using the pigeonhole principle, prove that the decimal expansion of
a rational number must, after some point, become repeating.
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3.3 Homomorphisms

In studying groups we have seen that the concept of a homomorphism
turned out to be a fruitful one. This suggests that the appropriate analog
for rings could also lead to important ideas. To recall, for groups a homo-
morphism was defined as a mapping such that ¢(ab) = ¢(a)p(b). Since
a ring has two operations, what could be a more natural extension of this
type of formula than the

DEFINITION A mapping ¢ from the ring R into the ring R’ is said to be a
homomorphism if

1. ¢(a +b) = ¢(a) + ¢(b),
2. ¢(ab) = d(a)9(b),

for all a, b € R.

As in the case of groups, let us again stress here that the + and - occurring
on the left-hand sides of the relations in 1 and 2 are those of R, whereas the
+ and - occurring on the right-hand sides are those of R'.

A useful observation to make is that a homomorphism of one ring, R,
into another, R’, is, if we totally ignore the multiplications in both these
rings, at least a homomorphism of R into R’ when we consider them as
abelian groups under their respective additions. Therefore, as far as
addition is concerned, all the properties about homomorphisms of groups
proved in Chapter 2 carry over. In particular, merely restating Lemma
2.7.2 for the case of the additive group of a ring yields for us

LEMMA 3.3.1 If ¢ is a homomorphism of R into R’', then

1. $(0) = 0. :
2. ¢(—a) = —¢(a) for every a € R.

A word of caution: if both R and R’ have the respective unit elements
1 and 1’ for their multiplications it need not follow that ¢(1) = 1'.
~ However, if R’ is an integral domain, or if R’ is arbitrary but ¢ is onto, then
. @(1) = I’ is indeed true.

In the case of groups, given a homomorphism we associated with this

- homomorphism a certain subset of the group which we called the kernel of

the homomorphism. What should the appropriate definition of the kernel
of a2 homomorphism be for rings? After all, the ring has two operations,
addition and multiplication, and it might be natural to ask which of these
should be singled out as the basis for the definition. However, the choice
is clear. Built into the definition of an arbitrary ring is the condition that
the ring forms an abelian group under addition. The ring multiplication

-
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was left much more unrestricted, and so, in a sense, much less under our
control than is the addition. For this reason the emphasis is given to the
operation of addition in the ring, and we make the

DEFINITION If ¢ is a homomorphism of R into R’ then the kernel of ¢,
I(¢), is the set of all elements a € R such that ¢(a) = 0, the zero-element
of R'.

LEMMA 3.3.2 If ¢ is a homomorphism of R into R’ with kernel 1(¢), then

1. I(¢) is a subgroup of R under addition.
2. If ae I(¢) and r € R then both ar and ra are in I{).

Proof. Since ¢ is, in particular, a homomorphism of R, as an additive
group, into R’, as an additive group, (1) follows directly from our results in
group theory.

To see (2), suppose that a € I{¢), r€ R. Then ¢(a) = 0 so that ¢(ar) =
¢(a)p(r) = 0¢(r) =0 by Lemma 3.2.1. Similarly ¢(ra) = 0. Thus
by defining property of I(¢) both ar and ra are in I{¢).

Before proceeding we examine these concepts for certain examples.

Example 3.3.1 Let R and R’ be two arbitrary rings and define ¢(a) = 0
for all a € R. Trivially ¢ is a homomorphism and I(¢) = R. ¢ is called
the zero-homomorphism.

Example 3.3.2 Let R be a ring, R' = R and define ¢(x) = x for every
x € R. Clearly ¢ is a homomorphism and I(¢) consists only of 0.

Example 3.3.3 Let j(\/é)_bc all real numbers of the form m + n\/_2-
where m, n are integers; J (\/ 2) forms a ring under the usual addition and
multiplication of real numbers. (Verify!) Define ¢:J (\/ 2) > J (\/ 2) by

¢(m + n\/E) =m — /2. ¢ is a homomorphism of J(+/2) onto j(\/§)
and its kernel I(¢), consists only of 0. (Verify!)

Example 3.3.4 Let J be the ring of integers, J,, the ring of integers
modulo n. Define ¢:J - J, by ¢(a) = remainder of a on division by =
The student should verify that ¢ is a homomorphism of J onto J, and that
the kernel, I(¢), of ¢ consists of all multiples of n.

Example 3.3.6 Let R be the set of all continuous, real-valued functions
on the closed unit interval. R is made into a ring by the usual addition and
multiplication of functions; that it is a ring is a consequence of the fact

that the sum and product of two continuous functions are continuous’
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~ functions. Let F be the ring of real numbers and define ¢:R — F by
¢(f(x)) =f(3). ¢ is then a homomorphism of R onto F and its kernel

consists of all functions in R vanishing at x = 1.

All the examples given here have used commutative rings. Many
- beautiful examples exist where the rings are noncommutative but it would
~ be premature to discuss such an example now.

DEFINITION = A homomorphism of R into R’ is said to be an isomorphism
if it is a one-to-one mapping.

- DEFINITION Two rings are said to be isomorphic if there is an isomorphism
- of one onto the other.

The remarks made in Chapter 2 about the meaning of an isomorphism
- and of the statement that two groups are isomorphic carry over verbatim
 torings. Likewise, the criterion given in Lemma 2.7.4 that a homomorphism
_be an isomorphism translates directly from groups to rings in the form

LEMMA 3.3.3 The homomorphism ¢ of R into R’ is an isomorphism if and
ony if 1(8) = (0).

3.4 Ideals and Quotient Rings

- Once the idea of a homomorphism and its kernel have been set up for rings,
based on our experience with groups, it should be fruitful to carry over
_some analog to rings of the concept of normal subgroup. Once thi¥ is
- achieved, one would hope that this analog would lead to a construction in
rings like that of the quotient group of a group by a normal subgroup.
 Finally, if one were an optimist, one would hope that the homomorphism
 theorems for groups would come over in their entirety to rings.
Fortunately all this can be done, thereby providing us with an incisive
technique for analyzing rings.

The first business at hand, then, seems to be to define a suitable “normal
subgroup” concept for rings. With a little hindsight this is not difficult.
If you recall, normal subgroups eventually turned out to be nothing else
than kernels of homomorphisms, even though their primary defining
conditions did not involve homomorphisms. Why not use this observation
as the keystone to our definition for rings? Lemma 3.3.2 has already
provided us with some conditions that a subset of a ring be the kernel of a
‘homomorphism. We now take the point of view that, since no other in-
formation is at present available to us, we shall make the conclusions of
Lemma 3.3.2 as the starting point of our endeavor, and so we define

-
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DEFINITION A nonempty subset U of R is said to be a (two-sided) ideal
of R if

1. U is a subgroup of R under addition.
2. For every u € U and r € R, both ur and ru are in U.

Condition 2 asserts that U “swallows up” multiplication from the right
and left by arbitrary ring elements. For this reason U is usually called a
two-sided ideal. Since we shall have no occasion, other than in some of the
problems, to use any other derivative concept of ideal, we shall merely use
the word ideal, rather than two-sided ideal, in all that follows.

Given an ideal U of a ring R, let R/U be the set of all the distinct cosets
of U in R which we obtain by considering U as a subgroup of R under
addition. We note that we merely say coset, rather than right coset or left
coset; this is justified since R is an abelian group under addition. To restate
what we have just said, R/U consists of all the cosets, a + U, where a e R.
By the results of Chapter 2, R/U is automatically a group under addition;
this is achieved by the composition law (a+ U) + (b + U) = (a + b) + U.
In order to impose a ring structure on R/U we must define, in it, a multi-
plication. What is more natural than to define (a + U)(b + U) =
ab + U? However, we must make sure that this is meaningful. Otherwise
put, we are obliged to show thatifa + U =4 + Uand b + U = ¥ + U,
then under our definition of the multiplication, (a + U){(b + U) =
(@ + U)(b' + U). Equivalently, it must be established that ab + U =
ab + U. To this end we first note that since a + U =4 + U,
a = a + u;, where u; € U; similarly b = & + u, where u, € U. Thus
ab=(a' + u)(b + uy) = a'b + u b’ + a'uy + wuy; since U is an ideal of
R, b’ e U, a'u,e U, and uyu, € U. Consequently b’ + a'u, + uju, =
u3 € U. But then ab = a’b’ + u;, from which we deduce that ab + U =
a't’ + u; + U, and since u3e U, uy + U = U. The net consequence
of all this is that ab + U = a’b’ + U. We at least have achieved the
principal step on the road to our goal, namely of introducing a well-defined
multiplication. The rest now becomes routine. To establish that R/U is a
ring we merely have to go through the various axioms which define a ring
and check whether they hold in R/U. All these verifications have a certain
sameness to them, so we pick one axiom, the right distributive law, and
prove it holds in R/U. The rest we leave to the student as informal exercises.
If X=a+4+ U, Y=0b4+ U, Z=c¢+ U are three elements of R/U,
where a,b,ceR, then (X + Y)Z = ((a+ U) + (b + U))(c + U) =
((a+8) +U)c+U)=(a+0bc+U=ua+ b + U= (ac + U) +
(be + U)y=(a+U)c+U) + b+ U)c+ U) =XZ+ YZ

R/U has now been made into a ring. Clearly, if R is commutative then
sois RIU, for a+ U)b+U) =ab+ U="ba+ U= (b+ U)la+ U).

(The converse to this is false.) If R has a unit element 1, then R/U hasa-
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~ unit element 1 + U. We might ask: In what relation is R/U to R? With

the experience we now have in hand this is easy to answer. There is a

- homomorphism ¢ of R onto R|U given by ¢(a) = a + U for every ae R,
~ whose kernel is exactly U. (The reader should verify that ¢ so defined is a
. homomorphism of R onto R/U with kernel U.)

We summarize these remarks in

LEMMA 3.41 If U is an ideal of the ring R, then R|/U is a ring and is a
~ homomorphic image of R.

With this construction of the quotient ring of a ring by an ideal satisfactorily

- accomplished, we are ready to bring over to rings the homomorphism
- theorems of groups. Since the proof is an exact verbatim translation of that
. for groups into the language of rings we merely state the theorem without
~ proof, referring the reader to Chapter 2 for the proof.

- THEOREM 3.41  Let R, R’ be rings and ¢ a homomorphism of R onto R’ with
kernel U. Then R’ is isomorphic to R|U. Moreover there is a one-to-one correspondence
- between the set of ideals of R' and the set of ideals of R which contain U. This
correspondence can be achieved by associating with an ideal W' in R’ the ideal W in
R defined by W = {xe R | ¢(x) € W'}. With W so defined, R|W is isomorphic
“to R'[W'.

Problems

1. If Uis an ideal of R and | € U, prove that U = R.
2. If F is a field, prove its only ideals are (0) and F itself.

3. Prove that any homomorphism of a field is either an isomorphism or
takes each element into 0.

4. If R is a commutative ring and a € R,
(a) Show that aR = {ar | r € R} is a two-sided ideal of R.
(b) Show by an example that this may be false if R is not commutative.

5. If U, V are ideals of R, let U+ V={u+v|ue U, veV}. Prove
that U + Vis also an ideal.

6. If U, V are ideals of R let UV be the set of all elements that can be
written as finite sums of elements of the form uv where u e U and
v e V. Prove that UV is an ideal of R.

7. In Problem 6 prove that UV < U n V.

8. If R is the ring of integers, let U be the ideal consisting of all multiples
of 17. Prove that if V is an ideal of R and R o V o U then either
V = Ror V = U. Generalize!

135



136 Ring Theory Ch. 3

10.

1.

*12.

*13.

If U is an ideal of R, let r(U) = {xe R|xu = Ofor all u e U}.
Prove that r(U) is an ideal of R.

If U is an ideal of R let [R:U] = {xe R|rx e U for every r € R}.
Prove that [R:U] is an ideal of R and that it contains U.

Let R be a ring with unit element. Using its elements we define a
ring R by defining a® b =a+ b+ 1, and a-b = ab + a + b,
where a,b € R and where the addition and multiplication on the
right-hand side of these relations are those of R.

(a) Prove that R is a ring under the operations @ and -.

(b) What acts as the zero-element of R?

(c) What acts as the unit-element of R?

(d) Prove that R is isomorphic to R.

In Example 3.1.6 we discussed the ring of rational 2 x 2 matrices.
Prove that this ring has no ideals other than (0) and the ring itself.

In Example 3.1.8 we discussed the real quaternions. Using this as a

model we define the quaternions over the integers mod p, p an odd

prime number, in exactly the same way; however, now considering

all symbols of the form ay + a7 + oy + a3k, where ag, oy, oy, 05

are integers mod p.

(a) Prove that this is a ring with p* elements whose only ideals are
(0) and the ring itself.

**(b) Prove that this ring is no¢ a division ring.

If R is any ring a subset L of R is called a lefi-ideal of R if

I. L is a subgroup of R under addition.
2 reR, ae Limplies ra € L.

(One can similarly define a right-ideal.) An ideal is thus simultaneously a
left- and right-ideal of R.

14.
15.
16.

17.

18.

*19.

20.

For ae R let Ra = {xa|x € R}. Prove that Ra is a left-ideal of R.
Prove that the intersection of two left-ideals of R is a left-ideal of R.

What can you say about the intersection of a left-ideal and right-ideal
of R?

If Ris a ring and ae R let r(a) = {x€ R|ax = 0}. Prove that
r(a) is a right-ideal of R.

If Ris a ring and L is a left-ideal of R let A(L) = {xe R|xa = O for
all a € L}. Prove that A(L) is a two-sided ideal of R.

Let R be a ring in which x* = x for every x € R. Prove that R is a
commutative ring.

If R is a ring with unit element 1 and ¢ is 2 homomorphism of R onto
R’ prove that ¢(1) is the unit element of R’.
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21. If R is a ring with unit element 1 and ¢ is a homomorphism of R into
an integral domain R’ such that I(¢) # R, prove that ¢(1) is the unit
element of R'.

3.5 More Ideals and Quotient Rings

We continue the discussion of ideals and quotient rings.

Let us take the point of view, for the moment at least, that a field is the
most desirable kind of ring. Why? If for no other reason, we can divide in
a field, so operations and results in a field more closely approximate our
experience with real and complex numbers. In addition, as was illustrated
by Problem 2 in the preceding problem set, a field has no homomorphic
images other than itself or the trivial ring consisting of 0. Thus we cannot
simplify a field by applying a homomorphism to it. Taking these remarks
into consideration it is natural that we try to link a general ring, in some
fashion, with fields. What should this linkage involve? We have a machinery
whose component parts are homomorphisms, ideals, and quotient rings.
With these we will forge the link.

But first we must make precise the rather vague remarks of the preceding
paragraph. We now ask the explicit question: Under what conditions is the
homomorphic image of a ring a field? For commutative rings we give a
complete answer in this section.

Essential to treating this question is the converse to the result of Problem
2 of the problem list at the end of Section 3.4.

LEMMA 351 Let R be a commutative ring with unit element whose only ideals
are (0) and R itself. Then R is a field.

Proof. In order to effect a proof of this lemma for any a # 0 € R we
must produce an element b # 0 € R such that ab = 1.

So, suppose that @ # 0 is in R. Consider the set Ra = {xa|x e R}.
We claim that Ra is an ideal of R. In order to establish this as fact we must
show that it is a subgroup of R under addition and that if u € Ra and
7 € R then ru is also in Ra. (We only need to check that ru is in Ra for
then ur also is since ru = ur.)

Now, if u,v€ Ra, then u = r,a, v = r,a for some 71, 7, € R. Thus
U+v=ra+na=(r + r)aeRa;similarly —u = —rja = (—r,)a € Ra.
Hence Ra is an additive subgroup of R. Moreover, if r € R, ru = r(rja) =
(r1,)a € Ra. Ra therefore satisfies all the defining conditions for an ideal
of R, hence is an ideal of R. (Notice that both the distributive law and
associative law of multiplication were used in the proof of this fact.)
~ By our assumptions on R, Ra = (0) or Ra = R. Since 0 # a = la e Ra,
Ra # (0); thus we are left with the only other possibility, namely that
Ra = R. This last equation states that every element in R is a multiple of

-
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a by some element of R. In particular, 1 € R and so it can be realized as a
multiple of a; that is, there exists an element 4 € R such that ba = 1.
This completes the proof of the lemma.

DEFINITION An ideal M # R in a ring R is said to be a maximal ideal of
R if whenever U is an ideal of R such that M < U < R, then either R = U
or M = U.

In other words, an ideal of R is a maximal ideal if it is impossible to
squeeze an ideal between it and the full ring. Given a ring R there is no
guarantee that it has any maximal ideals! If the ring has a unit element
this can be proved, assuming a basic axiom of mathematics, the so-called
axiom of choice. Also there may be many distinct maximal ideals in a
ring R; this will be illustrated for us below in the ring of integers.

As yet we have made acquaintance with very few rings. Only by con-
sidering a given concept in many particular cases can one fully appreciate
the concept and its motivation. Before proceeding we therefore examine
some maximal ideals in two specific rings. When we come to the discussion
of polynomial rings we shall exhibit there all the maximal ideals.

Example 3.6.1 Let R be the ring of integers, and let U be an ideal of R.
Since U is a subgroup of R under addition, from our results in group theory,
we know that U consists of all the multiples of a fixed integer ny; we write
this as U = (np). What values of 7, lead to maximal ideals?

We first assert that if p is a prime number then P = (p) is a maximal
ideal of R. For if U is an ideal of R and U > P, then U = (n,) for some
integer ny. Since pe P < U, p = mn, for some integer m; because p is a
prime this implies that ny =1 or ny =p. If ny = p, then P =« U =
(ng) < P, so that U = P follows; if n, = 1, then 1 € U, hence r = lre U
for all r € R whence U = R follows. Thus no ideal, other than R or P
itself, can be put between P and R, from which we deduce that P is maximal.

Suppose, on the other hand, that M = (n,) is a maximal ideal of R.
We claim that n, must be a prime number, for if n, = ab, where a, b are
positive integers, then U = (a¢) > M, hence U = Ror U = M. If U = R,
then ¢ = 1 is an easy consequence; if U = M, then ae M and so a = 1,
for some integer 7, since every element of M is a multiple of ny,. But then
ny = ab = rnyh, from which we get that 76 = 1, so that b = 1, ny = a.
Thus n, is a prime number.

In this particular example the notion of maximal ideal comes alive—it
corresponds exactly to the notion of prime number. One should not,
however, jump to any hasty generalizations; this kind of correspondence
does not usually hold for more general rings.
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Example 3.6.2 Let R be the ring of all the real-valued, continuous
functions on the closed unit interval. (See Example 3.3.5.) Let

M= {f(x)eR|f(3) = 0}

M is certainly an ideal of R. Moreover, it is a maximal ideal of R, for if the
ideal U contains M and U # M, then there is a function g(x) € U,
g(x) ¢ M. Since g(x) ¢ M, g(3) = a # 0. Now h(x) = g(x) — « is such
that h(3) = g(3) — « = 0, so that A(x) e M = U. But g(x) is also in U,
therefore o = g(x) — h(x) e U and so 1 = aa"' € U. Thus for any
function ¢(x) e R, t(x) = li{(x) € U, in consequence of which U = R.
M is therefore a maximal ideal of R. Similarly if y is a real number 0 <
y <1, then M, = {f(x)eR|f(y) =0} is a maximal ideal of R. It
can be shown (see Problem 4 at the end of this section) that every maximal
ideal is of this form. Thus here the maximal ideals correspond to the points
on the unit interval. :

Having seen some maximal ideals in some concrete rings we are ready
to continue the general development with

THEOREM 3.5.1 If R is a commutative ring with unit element and M is an
 ideal of R, then M is a maximal ideal of R if and only if R|M is a field.

Proof. Suppose, first, that M is an ideal of R such that R/M is a field.
% Since R/M is a field its only ideals are (0) and R/M itself. But by Theorem
| 3 4.1 there is a one-to-one correspondence between the set of ideals of
R/M and the set of ideals of R which contain M. The ideal M of R corre-
~sponds to the ideal (0) of R/M whereas the ideal R of R corresponds to
' the ideal R/M of R/M in this one-to-one mapping. Thus there is no ideal
. between M and R other than these two, whence M is a maximal ideal.
. On the other hand, if M is a maximal ideal of R, by the correspondence
- mentioned above R/M has only (0) and itself as ideals. Furthermore RIM
_ is commutative and has a unit element since R enjoys both these properties.
- All the conditions of Lemma 3.5.1 are fulfilled for R/M so we can conclude,
. by the result of that lemma, that R/M is a field.

We shall have many occasions to refer back to this result in our study of
_ polynomial rings and in the theory of field extensions.

- Problems

1. Let R be a ring with unit element, R not necessarily commutative, such

that the only right-ideals of R are (0) and R. Prove that R is a division
ring.
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*2. Let R be a ring such that the only right ideals of R are (0) and R.
Prove that either R is a division ring or that R is a ring with a prime
number of elements in which ab = 0 for every a, b € R.

3. Let J be the ring of integers, p a prime number, and (p) the ideal of
J consisting of all multiples of p. Prove
(a) J/(p) is isomorphic to J,, the ring of integers mod p.
(b) Using Theorem 3.5.1 and part (a) of this problem, that J, is a
field.

**4, Let R be the ring of all real-valued continuous functions on the closed
unit interval. If M is a maximal ideal of R, prove that there exists a
real number y, 0 <y <1, such that M =M, ={f(x)eR|f(y) =0}

3.6 The Field of Quotients of an Integral Domain

Let us recall that an integral domain is a commutative ring D with the
additional property that it has no zero-divisors, that is, if a6 = 0 for some
a, b € D then at least one of a or & must be 0. The ring of integers is, of
course, a standard example of an integral domain.

The ring of integers has the attractive feature that we can enlarge it to
the set of rational numbers, which is a field. Can we perform a similar
construction for any integral domain? We will now proceed to show that
indeed we can!

DEFINITION = A ring R can be imbedded in a ring R’ if there is an isomorphism
of Rinto R’. (If R and R’ have unit elements 1 and 1’ we insist, in addition,
that this isomorphism takes 1 onto 1".)
R’ will be called an over-ring or extension of R if R can be imbedded in R'.
With this understanding of imbedding we prove

THEOREM 3.6.1  Every integral domain can be imbedded in a field.

Proof.  Before becoming explicit in the details of the proof let us take an
informal approach to the problem. Let D be our integral domain ; roughly
speaking the field we seek should be all quotients a/b, where a, b € D and
b # 0. Of course in D, a/b may very well be meaningless. What should
we require of these symbols a/b? Clearly we must have an answer to the
following three questions:

1. When is a/b = ¢[d?
2. What is (a/b) + (¢/d)?
3. What is (a/b)(c/d)?

In answer to 1, what could be more natural than to insist that a/b = ¢/d




Sec. 3.6 Field of Quotients of Integral Domain

- if and only if ad = bc? As for 2 and 3, why not try the obvious, that is,
deﬁne

In fact in what is to follow we make these considerations our guide. So
let us leave the heuristics and enter the domain of mathematics, with
precise definitions and rigorous deductions.

. Let .# be the set of all ordered pairs (a, b) where @, be D and b # 0.
(Think of (4, b) as a/b.) In .4 we now define a relation as follows:

(@, b) ~ (¢, d) if and only if ad = be.

~ We claim that this defines an equivalence relation on .#. To establish this
we check the three defining conditions for an equivalence relation for this
» particular relation.

1. If (a, b) e M, then (a, b) ~ (a, b) since ab = ba.

2. If (a,0),(¢c,d)eM and (a,b) ~ (c,d), then ad = bc, hence cb = da,

. and so (¢, d) ~ (a, b).

3. If (q,b), (c;d), (¢, f) are all in A and (a,b) ~ (¢, d) and (¢c,d) ~
(e,f), then aa’ = bc and ¢f = de. Thus b¢f = bde, and since bc = ad,
it follows that adf = bde. Since D is commutative, this relation becomes
afd = bed; since, moreover, D is an integral domain and d $# 0, this
relation further implies that ¢f = be. But then (a, ) ~ (¢, f) and our
relation is transitive.

Let [a, b] be the equivalence class in  of (a, b), and let F be the set of
~all such equivalence classes [a, b] where a,beD and b # 0. F is the
- candidate for the field we are seeking. In order to create out of F a field
- we must introduce an addition and a multiplication for its elements and then
- show that under these operations F forms a field.

- We first dispose of the addition. Motivated by our heuristic discussion at
- the beginning of the proof we define

[a, 6] + [¢, d] = [ad + be, bd].

Since D is an integral domain and both b # 0 and d # 0 we have that
d # 0; this, at least, tells us that [ad + bc, bd] € F. We now assert that
his addition is well defined, that is, if [a, 6] = [d', b'] and [¢,d] = [¢', d'],
then [a, 6] + [¢,d] = [, 8] + [¢’,d']. To see that this is so, from
[a, 8] = [a, 4'] we have that ab’ = ba’; from [e,d] = [¢’,d"] we have
“that ¢d’ = d¢’. What we need is that these relations force the equality of
la, 8] + [¢,d] and [a, ¥"] + [¢’,d']. From the definition of addition this
“boils down to showing that [ad + b, bd] = [d'd’ + b'¢’, b'd'], or, in equiva-
lent terms, that (ad + be)b'd’ = bd(a'd’ + b'c’). Using ab’ = ba’, cd’ = de’

-
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this becomes: (ad + be)b'd’ = adb'd’ + beb'd’ = ab'dd’ + bb'cd’ = ba'dd’ +
bb'de’ = bd(a'd’ + b'c'), which is the desired equality.

Clearly [0, b] acts as a zero-element for this addition and [ —a, b] as the
negative of [a, b]. It is a simple matter to verify that F is an abelian group
under this addition.

We now turn to the multiplication in F. Again motivated by our pre-
liminary heuristic discussion we define [a, b][¢, d] = [ac, bd]. As in the
case of addition, since b # 0, d # 0, bd # 0 and so [ac, bd] € F. A com-
putation, very much in the spirit of the one just carried out, proves that if
[a,b] = [d, 6] and [¢,d] = [¢, d] then [a, b][c, d] = [, b'][¢, d']. One
can now show that the nonzero elements of F (that is, all the elements
[a, b] where a # 0) form an abelian group under multiplication in which
[d, d] acts as the unit element and where

[¢c, d]”! = [d, ¢] (since ¢ # O, [d,c] isin F).

It is a routine computation to see that the distributive law holds in F.
F is thus a field.

All that remains is to show that D can be imbedded in F. We shall
exhibit an explicit isomorphism of D into F. Before doing so we first notice
that for x # 0, y # 0 in D, [ax, x] = [ay, ] because (ax) y = x(ay); let us
denote [ax, x] by [a,1]. Define ¢:D - F by ¢{a) = [a, 1] for every
aeD. We leave it to the reader to verify that ¢ is an isomorphism of D
into F, and that if D has a unit element 1, then $(1) is the unit element of F.
The theorem is now proved in its entirety.

F is usually called the field of quotients of D. In the special case in which
D is the ring of integers, the F so constructed is, of course, the field of
rational numbers.

Problems

1. Prove that if [a, b] = [, 4] and [¢, d] = [¢, d'] then [a, b][¢, d] =
[, &'1l¢, d'1.

9. Prove the distributive law in F.

3. Prove that the mapping ¢:D — F defined by ¢(a) = [a, 1] is an
isomorphism of D into F.

4. Prove that if K is any field which contains D then K contains a subfield
isomorphic to F. (In this sense F is the smallest field containing D.)

*5. Let R be a commutative ring with unit element. A nonempty subset
S of R is called a multiplicative system if
1. 0¢S.
2. 54, 55 € S implies that s;5, € S.
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Let 4 be the set of all ordered pairs (r,s) where re R, se S. In
M define (r,5) ~ (r',s') if there exists an element s” € § such that

s"(rs" — sr') = 0.

(a) Prove that this defines an equivalence relation on /.

Let the equivalence class of (r, 5) be denoted by [r, 5], and let Rg be
the set of all the equivalence classes. In Ry define [r; 8] + [r2s 5] =
(1152 + 7250, 515,] and [ry, 5,1[r2, 5,] = [1y1,, 5152]-

(b) Prove that the addition and multiplication described above are
well defined and that Rg forms a ring under these operations.

(c) Gan R be imbedded in Rg?

(d) Prove that the mapping ¢:R — R, defined by ¢(a) = [as, s] is
a homomorphism of R into Ry and find the kernel of ¢.

(e) Prove that this kernel has no element of S in it.

(f) Prove that every element of the form [51, s,](where 5, 5, € S) in
Rg has an inverse in Ry.

6. Let D be an integral domain, a, b € D. Suppose that a" = " and
a™ = b™ for two relatively prime positive integers m and #. Prove that
a = b.

7. Let R be a ring, possibly noncommutative, in which xp = 0 implies
x=0o0ry =0. Ifa, b e Rand a" = b" and a™ = b™ for two relatively
prime positive integers m and #, prove that a = b.

3.7 Euclidean Rings

The class of rings we propose to study now is motivated by several existing
examples—the ring of integers, the Gaussian integers (Section 3.8), and
polynomial rings (Section 3.9). The definition of this class is designed to
Incorporate in it certain outstanding characteristics of the three concrete
- examples listed above.

- DEFINITION An integral domain R is said to be a Euclidean ring if for
every a # 0 in R there is defined a nonnegative integer d(a) such that

L. Forall g, b € R, both nonzero, d(a) < d(ab).
- For any a4, b € R, both nonzero, there exist t,re Rsuch thata = tb + r
where either 7 = 0 or d(r) < d(b).

- We do not assign a value to d(0). The integers serve as an example of a
- Euclidean ring, where d (a) = absolute value of a acts as the required
tunction. In the next section we shall see that the Gaussian integers also
form a Euclidean ring. Out of that observation, and the results developed
in this part, we shall prove a classic theorem in number theory due to
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Fermat, namely, that every prime number of the form 4z 4+ 1 can be
written as the sum of two squares.

We begin with

THEOREM 3.7.1 Let R be a Euclidean ring and let A be an ideal of R. Then
there exists an element ay € A such that A consists exactly of all ayx as x ranges over R.

Proof. If A just consists of the element 0, put ¢, = 0 and the conclusion
of the theorem holds.

Thus we may assume that 4 # (0); hence there is an @ # 0 in 4. Pick
an ay € A such that d(a,) is minimal. (Since d takes on nonnegative integer
values this is always possible.)

Suppose that a € 4. By the properties of Euclidean rings there exist
t,re R such that a = tay + r where r = 0 or d(r) < d(ay). Since
ay € A and 4 is an ideal of R, ta, is in 4. Combined with a € 4 this results
ina — tay € A;butr = a — lay, whencere A. Ifr % O thend(r) < d(ay),
giving us an element r in 4 whose d-value is smaller than that of g, in
contradiction to our choice of a; as the element in 4 of minimal d-value.
Consequently r = 0 and a = ta,, which proves the theorem.

We introduce the notation (a) = {xa|x € R} to represent the ideal of
all multiples of a.

DEFINITION An integral domain R with unit element is a principal ideal
ring if every ideal 4 in R is of the form 4 = (a) for some a € R.

Once we establish that a Euclidean ring has a unit element, in virtue of
Theorem 3.7.1, we shall know that a Euclidean ring is a principal ideal ring.
The converse, however, is false; there are principal ideal rings which are
not Euclidean rings. [See the paper by T. Motzkin, Bulletin of the American
Mathematical Society, Vol. 55 (1949), pages 1142-1146, entitled “The
Euclidean algorithm.”]

COROLLARY TO THEOREM 3.7.1 A Euclidean ring possesses a unit
element.

Proof. Let R be a Euclidean ring; then R is certainly an ideal of R, so
that by Theorem 3.7.1 we may conclude that R = (u,) for some u, € R.
Thus every element in R is a multiple of uy. Therefore, in particular,
uy = upc for some ce R. If ae R then a = xu, for some x € R, hence
ac = (xug)c = x(ugc) = xuy = a. Thus ¢ is seen to be the required unit
element.

DEFINITION Ifa # 0 and & are in a commutative ring R then a is said
to divide b if there exists a ¢ € R such that b = ac. We shall use the symbol
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a| b to represent the fact that ¢ divides b and a } b to mean that a does
pot divide b.

The proof of the next remark is so simple and straightforward that we
omit it.

"REMARK 1. Ifa|bandb|cthenalc.
2. Ifalbandalcthenal (b % ¢).
3. If a| b then a| bx for all x € R.

' D‘EFINITION If a, b € R then d € R is said to be a greatest common divisor
of a and b if

1. d|aand d | b.
2. Whenever ¢ |a and ¢ | b then ¢ | d.

We shall use the notation d = (a,b) to denote that d is a greatest common
divisor of @ and .

LEMMA 3.71 Let R be a Euclidean ring. Then any two elements a and b in
R have a greatest common divisor d. Moreover d = ja + ub for some A, u e R.

Proof. Let A be the set of all elements ra + sb where 7, s range over R.
We claim that 4 is an ideal of R. For suppose that x, y € 4; therefore
¥=ra+ b,y =ra+ s5h and so x +y = (r; £ r)a + (5, + 5,)b e A.
Similarly, for any ue R, ux = u(r,a + s;b) = (ur))a + (us,)b € A.

Since 4 is an ideal of R, by Theorem 3.7.1 there exists an element d € 4
such that every element in 4 is a mutiple of d. By dint of the fact that
de A4 and that every clement of 4 is of the form ra + sb, d = Ja + b
for some A, p € R. Now by the corollary to Theorem 3.7.1, R has a unit
element 1; thus a = la + Obed, b = Oa + lbe A. Being in 4, they
are both multiples of d, whence d | a and 4 | b.

Suppose, finally, that ¢|a and ¢|b; then ¢| Aa and ¢| ub so that ¢
certainly divides ¢ + ub = d. Therefore d has all the requisite conditions
for a greatest common divisor and the lemma is proved.

DEFINITION Let R be a commutative ring with unit element. An
element a € R is a unit in R if there exists an element b € Rsuch that ab = 1.

Do not confuse a unit with a unit element! A unit in a ring is an element
Whose inverse is also in the ring.

LEMMA 3.7.2 Let R be an integral domain with unit element and suppose that
for a, b e R both a| b and b | @ are true. Then a = ub, where u is a unit in R.

-
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Proof. Since a|b, b = xa for some x € R; since b |a, a = yb for some
yeR. Thus b = x(yb) = (x)b; but these are elements of an integral
domain, so that we can cancel the b and obtain xy = 1; y is thus a unit in
R and a = yb, proving the lemma.

DEFINITION Let R be a commutative ring with unit element. Two
elements a and b in R are said to be associates if b = ua for some unit zin R,

The relation of being associates is an equivalence relation. (Problem 1
at the end of this section.) Note that in a Euclidean ring any two greatest
common divisors of two given elements are associates (Problem 2).

Up to this point we have, as yet, not made use of condition 1 in the
definition of a Euclidean ring, namely that d(a) < d(ab) for b # 0. We
now make use of it in the proof of

LEMMA 3.7.3 Let R be a Euclidean ring and a, b € R. If b # 0 is not a unit
in R, then d(a) < d(ab).

Proof. Consider the ideal 4 = (a) = {va|x € R} of R. By condition
1 for a Euclidean ring, d(a) < d(xa) for x # 0 in R. Thus the d-value of
a is the minimum for the d-value of any element in 4. Now ab € 4; if
d(ab) = d(a), by the proof used in establishing Theorem 3.7.1, since the
d-value of ab is minimal in regard to 4, every element in 4 is a multiple of
ab. In particular, since a € 4, a must be a multiple of ab; whence a = abx
for some x € R. Since all this is taking place in an integral domain we
obtain bx = 1. In this way & is a unit in R, in contradiction to the fact that
it was not a unit. The net result of this is that d(a) < d(ab).

DEFINITION In the Euclidean ring R a nonunit # is said to be a prime
element of R if whenever 1 = ab, where a, b are in R, then one ofaor bisa
unit in R.

A prime element is thus an element in R which cannot be factored in R
in a nontrivial way.

LEMMA 3.7.4 Let R be a Euclidean ring. Then every element in R is either a
unit in R or can be written as the product of a finite number of prime elements of R.

Proof. The proof is by induction on d(a).

If d(a) = d(1) then a is a unit in R (Problem 3), and so in this case, the
assertion of the lemma is correct.

We assume that the lemma is true for all elements x in R such that
d(x) < d(a). On the basis of this assumption we aim to prove it for a.
This would complete the induction and prove the lemma. :
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If a is a prime element of R there is nothing to prove. So suppose that
‘a = bc where neither b nor ¢is a unitin R. By Lemma 3.7.3, d(b) < d(bc) =
d(a) and d(c) < d(bc) = d(a). Thus by our induction hypothesis b and ¢
can be written as a product of a finite number of prime elements of R;
b = MyMp* "' My € = Wy, * * * 7, where the 7’s and n"’s are prime elements
of R. Consequently a = be = m,;my -~ m,m My @, and in this way a
as been factored as a product of a finite number of prime elements. This
‘completes the proof.

’DEF|N|T|ON In the Euclidean ring R, ¢ and b in R are said to be relatively
prime if their greatest common divisor is a unit of R.

Since any associate of a greatest common divisor is a greatest common
divisor, and since 1 is an associate of any unit, if a and b are relatively
prime we may assume that (g, b) = 1.

LEMMA 3.7.5 Let R be a Euclidean ring. Suppose that for a, b, c € R, a | be
but (a, b) = 1. Thena]ec.

Proof. As we have seen in Lemma 3.7.1, the greatest common divisor
of a and b can be realized in the form la + pb. Thus by our assumptions,
Aa + pb = 1. Multiplying this relation by ¢ we obtain Aac + pbc = c.
Now a| Aac, always, and a| pbc since a|bc by assumption; therefore
a| (Zac + pbc) = ¢. This is, of course, the assertion of the lemma.

We wish to show that prime elements in a Euclidean ring play the same
role that prime numbers play in the integers. If 7 in R is a prime element
of R and a € R, then either 7 |a or (m,a) = 1, for, in particular, (7, ;z)
is a divisor of 7 so it must be 7 or 1 (or any unit). If (n, @) = 1, one-half
our assertion is true; if (7, @) = x, since (n, a) |a we get 7 |a, and the
other half of our assertion is true.

LEMMA 3.7.6 If & is a prime element in the Euclidean ring R and m | ab
where a, b € R then n divides at least one of a or b.

Proof. Suppose that n does not divide a; then (n, a) = 1. Applying
Lemma 3.7.5 we are led to 7 | b.

COROLLARY  If 7 is a prime element in the Euclidean ring R and n|aja, -+ - a

n
then 11 divides at least one ag, azy .. .,a,

We carry the analogy between prime elements and prime numbers
further and prove

147



148

Ring Theory Ch.3

THEOREM 3.7.2 (Unique FactorizaTiox THEOREM) Let R be a Eu-
clidean ring and a # 0 a nonunit in R. Suppose that a = mmy - W, =
T my + - - T, where the m; and T; are prime elements of R. Then n = m and each
n, | < i < nis an associate of some 7y, 1 < j < m and conversely each ),
is an associate of some T,

Proof. Lookattherelationa= n,7,"* %, =7 75" * Wy Butm (w7, - 71,
hence r, | 7}7, - - * m,,. By Lemma 3.7.6, n; mustdivide some 7;; since 7; and
7, are both prime elements of R and 7, | 7; they must be associates and
n} = uw,m,, where u; is a unit in R. Thus 77, --- 7, = YTy Ty =
Uy Ty * * T _ My -~ " M cancel off m; and we are left with 7, 7, =
UMy * Wi W4y " T Repeat the argument on this relation with 7,.
After n steps, the left side becomes 1, the right side a product of a certain
number of 7’ (the excess of m over n). This would force n < m since the
7' are not units. Similarly, m < n, so that n = m. In the process we have
also showed that every 7; has some 7} as an associate and conversely.

Combining Lemma 3.7.4 and Theorem 3.7.2 we have that every nonzero
element in a Euclidean ring R can be uniquely written (up to associates) as a product
of prime elements or is a unit in R.

We finish the section by determining all the maximal ideals in a Euclidean
ring.

In Theorem 3.7.1 we proved that any ideal 4 in the Euclidean ring R is of
the form A = (a,) where (ay) = {xay | x € R}. We now ask: What con-
ditions imposed on 4, insure that 4 is a maximal ideal of R? For this
question we have a simple, precise answer, namely

LEMMA 3.7.7 The ideal A = (a,) is a maximal ideal of the Euclidean ring
R if and only if a, is a prime element of R.

Proof. We first prove that if a4 is not a prime element, then 4 = (a)
is not a maximal ideal. For, suppose that g, = bc where b,ceR and
neither b nor ¢ is a unit. Let B = (b); then certainly a, € B so that 4 = B.
We claim that 4 # B and that B # R.

If B = R then 1 € B so that 1 = xb for some x € R, forcing b to be 2
unit in R, which it is not. On the other hand, if A = B then be B = A
whence b = xa, for some x € R. Combined with a, = bc this results in
ay = x¢dy, in consequence of which x¢c = 1. But this forces ¢ to be a unit
in R, again contradicting our assumption. Therefore B is neither 4 nor R
and since 4 = B, A cannot be a maximal ideal of R.

Conversely, suppose that a, is a prime element of R and that U is an
ideal of R such that 4 = (gy) = U = R. By Theorem 3.7.1, U.= ()
Since aye d = U = (), ao = xtiy for some xeR. But g, is a prime
element of R, from which it follows that either x or %, is a unit in R. If u
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is a unit in R then U = R (see Problem 5). If, on the other hand, x is a

unit in R, then x~! € R and the relation a, = xu, becomes u, = x™1a; € 4
- since 4 is an ideal of R. This implies that U < 4; together with 4 <« U

we conclude that U = A. Therefore there is no ideal of R which fits
- strictly between 4 and R. This means that 4 is a maximal ideal of R.

\" Problems

- 1. In a commutative ring with unit element prove that the relation a is
an associate of b is an equivalence relation.

2. In a Euclidean ring prove that any two greatest common divisors of
a and b are associates.
3. Prove that a necessary and sufficient condition that the element a in
the Euclidean ring be a unit is that d(a) = d(1).
4. Prove that in a Euclidean ring (a, b) can be found as follows:
b = goa + r;, where d(r;) < d(a)
a = qr; +r,, where d(r,) < d(ry)
1, = ¢,r; + 13, where d(r;) < d(r,)
Ta-1 = qn"n

and r, = (a, b).

n
5. Prove that if an ideal U of a ring R contains a unit of R, then U = R.

6. Prove that the units in a commutative ring with a unit element form
an abelian group. -

7. Given two elements a, b in the Euclidean ring R their least common
multiple ¢ € R is an element in R such that a | ¢ and & | ¢ and such that
whenever a | x and b | x for x € R then ¢ | x. Prove that any two elements
in the Euclidean ring R have a least common multiple in R.

8. In Problem 7, if the least common multiple of a and 4 is denoted by
[a, b], prove that [a, b] = ab/(a, b).

3.8 A Particular Euclidean Ring

An abstraction in mathematics gains in substance and importance when,
Particularized to a specific example, it sheds new light on this example.
We are about to particularize the notion of a Euclidean ring to a concrete
- ring, the ring of Gaussian integers. Applying the general results obtained
about Euclidean rings to the Gaussian integers we shall obtain a highly
nontrivial theorem about prime numbers due to Fermat.

-

149



150

Ring Theory Ch.3

Let J[7] denote the set of all complex numbers of the form a + i where
a and b are integers. Under the usual addition and multiplication of com-
plex numbers J[:] forms an integral domain called the domain of Gaussian
integers.

Our first objective is to exhibit J[:] as a Euclidean ring. In order to do
this we must first introduce a function d(x) defined for every nonzero
element in J[7] which satisfies

1. d(x) is a nonnegative integer for every x # 0 ¢ J[i].

2. d(x) < d(xp) for every y # 0in J[i].

3. Given u, v e J[i] there exist ¢, r € J[:] such that v = tu + r where
r = 0ord(r) < d(u).

Our candidate for this function d is the following: if x=a+ bi € J[i],
then d(x) = a® + b2 The d(x) so defined certainly satisfies property 1;
in fact, if x # 0€ J[] then d(x) > 1. As is well known, for any two com-
plex numbers (not necessarily in J[i]) x, 9, d(xy) = d(x)d(p); thus if x
and y are in addition in J[z] and y # O, then since d(y) > 1, d(x) =
d(x)] < d(x)d(y) = d(xp), showing that condition 2 is satisfied. All our
effort now will be to show that condition 3 also holds for this function d in
JL]. This is done in the proof of

THEOREM 3.8.1 J[{] is a Euclidean ring.

Proof.  As was remarked in the discussion above, to prove Theorem 3.8.1
we merely must show that, given x,ye J[i] there exists ¢, re J[i] such
that y = tx + r wherer = O or d(r) < d(x).

We first establish this for a very special case, namely, where y is arbitrary
in J[{] but where x is an (ordinary) positive integer n. Suppose that
¥ = a + bi; by the division algorithm for the ring of integers we can find
integers u, v such that ¢ = un + u; and b = vn + v, where u, and v, are
integers satisfying |u,| < 4nand |o;| < 3n. Let ¢t = u + viand 7 = u; + v,1;
theny = a4+ bi = un + uy + (on + 0,)i = (u + vi)n + u, + vyi =
tn + r. Sinced(r) = d(u, + v;3) = u;> + 0,2 < n?l4 + n%j4 < n?® = d(n),
we see that in this special case we have shown that y = tn + r with r = 0
ord(r) < d(n).

We now go to the general case; let x # 0 and y be arbitrary elements
in J[7]. Thus x# is a positive integer n where # is the complex conjugate of
x. Applying the result of the paragraph above to the elements y% and n we
see that there are elements ¢, 7€ J[i] such that y% = tn + r with r =0
or d(r) < d(n). Putting into this relation n = x% we obtain d( y% — tx%) <
d(n) = d(xx); applying to this the fact that d(y% — tx%) = d(y — tx)d(%)
and d(x%) = d(x)d(%) we obtain that d(y — t)d(%) < d(x)d(%). Since
x # 0, d(%) is a positive integer, so this inequality simplifies to d(y — ix) <.
d(x). We represent y = tx + r,, where 7, = y — ix; thus ¢ and r, are in
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JIi] and as we saw above, 7, = 0 or d(r)) = d(y — tx) < d(x). This
proves the theorem.

Since J[7] has been proved to be a Euclidean ring, we are free to use the
results established about this class of rings in the previous section to the
FEuclidean ring we have at hand, J[¢].

LEMMA 3.81 Let p be a prime integer and suppose that for some integer ¢
relatively prime to p we can find integers x and y such that x* + y* = cp. Then
y can be written as the sum of squares of two integers, that is, there exist integers
a and b such that p = a? + b2

Proof. The ring of integers is a subring of J[i]. Suppose that the integer
2 is also a prime element of J[i]. Since ¢p = x* + »2 = (x 4 yi)(x — ),
by Lemma 3.7.6, p | (x 4+ yi) or p| (¥ — i) in J[i]. Butifp| (x 4+ yi) then
% + yi = p(u + vi) which would say that x = pu and » = pv so that p
also would divide x — yi. But then p? | (x + yi)(x — i) = c¢p from which we
would conclude that p | ¢ contrary to assumption. Similarly if p | (x — yi).
Thus p is not a prime element in J[¢]! In consequence of this,

b= (a+ bi)g + di)

where a + b and g + di are in J[i] and where neither a + b nor g + di
isa unit in J[¢]. But this means that neither a® 4 62 = 1 norg? + 4% = 1.
 (See Problem 2.) From p = (a + bi)(g + di) it follows easily that p =
. (a — bi)(g — di). Thus

p* = (a + bi)(g + di)(a — bi) (g — di) = (a® + b2)(g® + d?).

" Therefore (a® + %) |p? so a®? + b2 =1, p or p?; a® + b% # 1 since
~a + bi is not a unit, in J[i]; a 4 6% # p2, otherwise g + 42 = 1, con-
 trary to the fact that g + diis not a unit in J[¢]. Thus the only feasibility
« left is that a® + b2 = p and the lemma is thereby established.

The odd prime numbers divide into two classes, those which have a
- remainder of 1 on division by 4 and those which have a remainder of 3 on
division by 4. We aim to show that every prime number of the first kind
can be written as the sum of two squares, whereas no prime in the second
class can be so represented.

- LEMMA 3.82 If p is a prime number of the form 4n + 1, then we can solve

 the congruence x> = —1 mod .

~ Proof. Letx =1:2-3---(p—1)2. Since p — 1 = 4n, in this prod-
- uct for x there are an even number of terms, in consequence of which

s = 029 (+(£51)
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Butp — k£ = —k mod p, so that

5 = (1 ‘2"";;—1)(—15(-2) (_(p_;__l))

p—1p+1
= 1 2 PR M S l
5 5 -1
=({—-1)!= —1modp.
We are using here Wilson’s theorem, proved earlier, namely that if p is
a prime number (p — 1)! = —1(p).
To illustrate this result, if p = 13,
x=12-3-4-5-6 = 720 = 5 mod 13 and 52 = —1 mod 13.

THEOREM 3.8.2 (FermaT) If p is a prime number of the form 4n + 1,
then p = a® + b2 for some integers a, b.

Proof. By Lemma 3.8.2 there exists an x such that x> = —1 mod .
The x can be chosen so that 0 < x < p — 1 since we only need to use the
remainder of ¥ on division by p. We can restrict the size of x even further,
namely to satisfy |x| < p/2. For if x > p/2, then y = p — x satisfies
»2= —lmodp but |y <p/2. Thus we may assume that we have an
integer x such that [x| < /2 and x% + 1 is a multiple of p, say ¢p. Now
¢ =x*>+1<p*4+1<p? hence ¢ <p and so ptec Invoking
Lemma 3.8.1 we obtain that p = a® + b2 for some integers @ and b,
proving the theorem.

Problems
1. Find all the units in J[7].
2. If a + biis not a unit of J[i] prove that a® + b2 > 1.

3. Find the greatest common divisor in J[¢] of

(a) 3 + 4¢and 4 — 3. (b) 11 + 7iand 18 — 4.
4. Prove that if p is a prime number of the form 4n + 3, then there is
no x such that x> = —1 mod p.

5. Prove that no prime of the form 4n + 3 can be written as a® + b%
where a and b are integers.

6. Prove that there is an infinite number of primes of the form 4n + 3.
*7. Prove there exists an infinite number of primes of the form 4n + 1.
*8. Determine all the prime elements in J[z].

*9. Determine all positive integers which can be written as a sum of two
squares (of integers).
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3.9 Polynomial Rings

Very early in our mathematical education—in fact in junior high school or
early in high school itself—we are introduced to polynomials. For a seemingly
endless amount of time we are drilled, to the point of utter boredom, in
factoring them, multiplying them, dividing them, simplifying them. Facility
in factoring a quadratic becomes confused with genuine mathematical
talent.

Later, at the beginning college level, polynomials make their appearance
in a somewhat different setting. Now they are functions, taking on values,
and we become concerned with their continuity, their derivatives, their
integrals, their maxima and minima.

We too shall be interested in polynomials but from neither of the above
viewpoints. To us polynomials will simply be elements of a certain ring
and we shall be concerned with algebraic properties of this ring. Our
primary interest in them will be that they give us a Euclidean ring whose
properties will be decisive in discussing fields and extensions of fields.

Let F be a field. By the ring of polynomials in the indeterminate, x, written
as F[x], we mean the set of all symbols gy + a;x + *+* + a,", where n
can be any nonnegative integer and where the coefficients ay, a,, ..., a,
are all in F. In order to make a ring out of F[x] we must be able to recognize
when two elements in it are equal, we must be able to add and multiply
elements of F[x] so that the axioms defining a ring hold true for F[x].
This will be our initial goal.

We could avoid the phrase ‘“the set of all symbols” used above by intro-
ducing an appropriate apparatus of sequences but it seems more desirable
to follow a path which is somewhat familiar to most readers.

DEFINITION If p(x) = ay + a;x + *** + a,2™ and ¢(x) = by + byx +
-+ b,x" are in F[x], then p(x) = g(x) if and only if for every integer
t>0, q = b;.

Thus two polynomials are declared to be equal if and only if their corre-
sponding coefficients are equal.

DEFINITION If p(x) = ay + ajx + -+ + a,a™ and ¢(x) = b, + byx +
*** + b,x" are both in F[x], then p(x) + q(x) = ¢y + ¢ix + - + ¢
where for each i, ¢; = a; + b,

In other words, add two polynomials by adding their coefficients and
- collecting terms. To add 1 + x and 3 — 2x + x% we consider 1 + x as
1 + x + 0x? and add, according to the recipe given in the definition, to
obtain as their sum 4 — x + x2.

-
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The most complicated item, and the only one left for us to define for
F[x], is the multiplication.

DEFINITION If p(x) = ay + ayx + -+ + a,z™ and g(x) = by + byx +
oo+ ba", then p(x)g(x) = co + ¢3x + - + g where ¢ = aby +
Gyyby + Ggby + -+ Goby

This definition says nothing more than: multiply the two polynomials

by multiplying out the symbols formally, use the relation #*’ = x**7,

and collect terms. Let us illustrate the definition with an example:
px) =1 + x — x?%, g(x) = 2 + x* + 2>
Here gy =1, a4, =1, a,=—1,a3=4a,=-"-=0, and 4, =2, b, =0,
by =1,b;=1,b, =bs=---=0. Thus
¢ = doby = 1.2 = 2,
¢, = ajby + agh; = 1.2 + 1.0 = 2,
€y = ayby + ayb; + agby = (—1)(2) + 1.0 + L.1 = —1,
63 =azby + azb, + ayby + aghy = (0)(2) + (=1)(0) + L1 + 1.1 =2,
€4 = agby + azb, + ayb, + a;by + agh,
©0)(2) + (0)(0) + (=H(1) + () + 1(0) =0,
cs = ashy + azb; + azb, + aybs + a;b, + agbs
0)(2) + (0)(0) + (O)(1) + (=1)(1) + (1)) + (0)(0) = ~1,
¢s = aghy + asby + azb, + asbs + axby + a;bs + agbe
(0)(2) + (0)(0) + (0)(1) + (0)(1) + (=1)(0) + (1)(0) + (1)(0) =0,

Cq = (g == 0.

Therefore according to our definition,
(1 4+ % —22)(2 + 2 + 27) =c0+clx+-~-=2+2x—x2+2x3—x5.

If you multiply these together high-school style you will see that you get
the same answer. Our definition of product is the one the reader has always
known.

Without further ado we assert that F[x] is a ring with these operations,
its multiplication is commutative, and it has a unit element. We leave the
verification of the ring axioms to the reader.

DEFINITION If f(x) = a4y 4+ a;x + -+ + a,x" # 0 and a, # 0 then
the degree of f (x), written as deg f (), is n.

That is, the degree of f (x) is the largest integer ¢ for which the ith co-
efficient of f (x) is not 0. We do not define the degree of the zero poly-
nomial. We say a polynomial is a constant if its degree is O. The degree .
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function defined on the nonzero elements of F[x] will provide us with the
function d(x) needed in order that F[x] be a Euclidean ring.

LEMMA 3.9.1 Iff (x), g(x) are two nonzero elements of F[x], then

deg (f (x)g(x)) = deg f(x) + degg(x).

~ Proof. Suppose that f(x) = ay + ajx + -+ + a,x™ and g(x) = by +
byx + -+ + bx" and that a, # 0 and b, # 0. Therefore deg f(x) = m
~and deg g(x) = n. By definition, f(x)g(x) = ¢o + ¢;x + -+ + cx* where
¢ =aby + a_1by + -+ ab,_| + agb,. We claim that ¢,,,
a,b, # 0 and ¢; = 0 for ¢ > m + n. That ¢,,,, = a,b, can be seen at a
glance by its definition. What about ¢; for ¢ > m + n? ¢; is the sum of
terms of the form a;b,_;; since i =7 + (i —j) > m + n then either j > m
or (i —j) > n. But then one of g; or b;_; is 0, so that a;b;_; = 0; since ¢;
is the sum of a bunch of zeros it itself is 0, and our claim has been
established. Thus the highest nonzero coefficient of f (x) g(x) is ¢, ,, whence

deg f(x)g(x) = m + n = deg f(x) + deg g(x).

COROLLARY If f(x), g(x) are nonzero elements in F[x] then deg f(x) <
deg f (x)g(x).

~ Proof. Sincedeg f(x)g(x) = deg f(x) + deg g(x), and since deg g(x) >
- 0, this result is immediate from the lemma.

 COROLLARY F [x] is an integral domain.

We leave the proof of this corollary to the reader.
Since F[x] is an integral domain, in light of Theorem 3.6.1 we can
- construct for it its field of quotients. This field merely consists of all quotients
of polynomials and is called the field of rational functions in x over F.

The function deg f (x) defined for all f(x) # 0 in F[x] satisfies

1. deg f(x) is a nonnegative integer.
2. deg f(x) < deg f (x)g(x) for all g(x) # 0in F[x].

In order for F[x] to be a Euclidean ring with the degree function acting as

the d-function of a Euclidean ring we still need that given f (x), g(x) € F[«],

there exist ¢(x), 7(x) in F[x] such that f (x) = t(x) g(x) + r(x) where either
7(x) = 0 or deg r(x) < deg g(x). This is provided us by

LEMMA 3.9.2 (THt DrvisioNn ALGoriTHM) Given two polynomials f ()
and g(x) # O in F[x)], then there exist two polynomials t(x) and r(x) in F[x] such
that f (x) = t(x)g(x) + r(x) where r(x) = 0 or deg r(x) < deg g(x).

Proof. The proof is actually nothing more than the “long-division”
Process we all used in school to divide one polynomial by another.

-
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If the degree of f () is smaller than that of g(x) there is nothing to prove,
for merely put ¢t(x) = 0, r(x) = f(x), and we certainly have that f(x) =
0g(x) + f (x) where deg f (x) < deg g(x) or f(x) = 0.

So we may assume that f (x) = a5 + ax + - + a,%™ and g(x) = by +
bix + -+ bx" wherea, # 0, b, # Oand m > n.

Let f,() = /(x) — (an/b)#™ "g(x); thus degfi() < m — 1, so by
induction on the degree of f (x) we may assume that f;(x) = t,(x)g(x) +
r(x) where r(x) = 0 ordeg r(x) < deg g(x). Butthen f (x) — (a,,/b,)x™ "g(x) =
ti(x)g(x) + r(x), from which, by transposing, we arrive at f(x)=
((anfb,)x™ ™" + t;(x))g(x) + 7(x). If we put £(x) = (2,/b,)x""" + 4(x)
we do indeed have that f(x) = t(x)g(x) + r(x) where t(x), r(x) € F[x]
and where 7(x) = 0 or deg 7(x) < deg g(x). This proves the lemma.

This last lemma fills the gap needed to exhibit F[x] as a Euclidean ring
and we now have the right to say

THEOREM 3.8.1 F[x] is a Euclidean ring.

All the results of Section 3.7 now carry over and we list these, for our
particular case, as the following lemmas. It could be very instructive for
the reader to try to prove these directly, adapting the arguments used in
Section 3.7 for our particular ring F[x] and its Euclidean function, the
degree.

LEMMA 3.9.3 F[+] is a principal ideal ring.

LEMMA 3.9.4 Given two polynomials f (x), g(x) in F[x] they have a greatest
common divisor d(x) whick can be realized as d{(x) = A(x) f(x) + u(x)g(x).

What corresponds to a prime element?

DEFINITION A polynomial p(x) in F[x] is said to be irreducible over F if
whenever p(x) = a(x)b(x) with a(x), b(x) € F[x], then one of a(x) or b(x)
has degree O (i.e., is a constant).

Irreducibility depends on the field; for instance the polynomial x? + 1
is irreducible over the real field but not over the complex field, for there
x2 + 1 = (x + i)(x — i) where i = —1.

LEMMA 3.9.5 Any polynomial in F[x] can be written in a unique manner as a
product of irreducible polynomials in F[x].

LEMMA 3.9.6 The ideal 4 = (p(x)) in F[x] is a maximal ideal if and only
if p(x) is irreducible over F. :
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In Chapter 5 we shall return to take a much closer look at this field
F[x]/(p(x)), but for now we should like to compute an example.

Let F be the field of rational numbers and consider the polynomial
plx) = x* — 2in Fx]. Asis easily verified, it is irreducible over F, whence
F[x]/(x* — 2) is a field. What do its elements look like? Let 4 = (x* = 2),
the ideal in F[x] generated by x3 — 2. :

Any element in F[x]/(x®> — 2) is a coset of the form f(x) + 4 of the
ideal 4 with f(x) in F[x]. Now, given any polynomial f (x) € F [x], by
the division algorithm, f(x) = ¢(x)(x® — 2) + r(x), where r(x) = 0 or
deg 7(x) < deg (x* — 2) = 3. Thus r(x) = @ + a;x + a,x* where ay, a,,
a, are in F; consequently f(x) + 4 = a5 + a;x + a,x? + tx)(x® = 2) +
A = ay + a;x + ax® + A since t(x)(x> — 2) is in 4, hence by the addi-
tion and multiplication in F[x]/(x® — 2), f(x) + 4 = (ag + 4) +
ay(x + A) + a(x + A)% If we put ¢t = x + A, then every element in
F[x]/(x* — 2) is of the form @ + a; + a,t* with g, @1, 45 in F. What about
t? Since 1* —2=(x+A)>-2=43—-24+A4=4=0 (since A is
the zero element of F[x]/(x® — 2)) we see that :* = 2.

Also, if ay + a;t + ayt? = by + byt + b,yt?, then (a;, — by) + (a, — b))t +
(a2 — by)1* = 0, whence (a9 ~ bo) + (a; — by)x + (ay — by)x? is in
A = (x* — 2). How can this be, since every element in 4 has degree at
least 37 Only if a; — by + (a; — by)x + (a, — by)x? = 0, that is, only
if ay = by, @, = by, a, = b,. Thus every eclement in F[x]/(x* — 2) has
a unique representation as a4y + a;¢ + a,t* where 4, a,, a, € F. By Lemma
3.9.6, F[x]/(x* — 2) is a field. It would be instructive to see this directly;
all that it entails is proving that if a5 + a;¢ + 5% % 0 then it has an
inverse of the form « + B¢ + yt2. Hence we must solve for «, B, y in the
relation (a, + a5t + a5t?)(x + Bt + y1%) = 1, where not all of 4, 4, a,
are 0. Multiplying the relation out and using 3> = 2 we obtain
(%0t + 22,8 + 2a;y) + (q,0 + aof + 2a,)t + (a0 + af + agy)t? = 1;
thus

aox + 20,8 + 24,y = 1,
a0 + af + 245y = 0,
a0t + aff + gy = 0.

We can try to solve these three equations in the three unknowns a, B, y.
When we do so we find that a solution exists if and only if

ap® + 2a,® 4 4a,® — 6aya,a, # 0.

Therefore the problem of proving directly that F[x]/(x® — 2) is a field
~ boils down to proving that the only solution in rational numbers of

ap® + 2a;3 + 4a,® = 6aya,a, (1
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is the solution gy, = a; = a, = 0. We now proceed to show this. If 4
solution exists in rationals, by clearing of denominators we can show that
a solution exists where g, a,, a, are integers. Thus we may assume that
ay, a1, a, are integers satisfying (1). We now assert that we may assume
that ay, a;, a, have no common divisor other than I, for if g, = b4,
a, = byd, and a, = b,d, where d is their greatest common divisor, then
substituting in (1) we obtain d3(by® + 26, + 4b6,%) = d3(6b,b,b,), and so
bo® + 26,3 + 4b,® = 6byb,b,. The problem has thus been reduced to
proving that (1) has no solutions in integers which are relatively prime.
But then (1) implies that a,> is even, so that a, is even; substituting ¢, = 201,
in (1) gives us 400> + a,> + 2a,> = 6aya;a,. Thus a3, and so, a, is even;
a; = 2q;. Substituting in (1) we obtain 20* + 4a,* + a,® = 6004,
Thus a,*, and so a,, is even! But then 4, a,,a, have 2 as a common
factor! This contradicts that they are relatively prime, and we have proved
that the equation ay® + 24, + 4a,> = 6aya,a, has no rational solution
other than @, = a; = a, = 0. Therefore we can solve for a, B, y and
F[x]/(x* — 2) is seen, directly, to be a field.

Problems

1. Find the greatest common divisor of the following polynomials over
F, the field of rational numbers:
(@) x> — 6x2 + x + 4and x°> — 6x + 1.
(b) x> + 1 and x® + x* + x + 1.
2. Prove that
(a) #* + x + 1is irreducible over F, the field of integers mod 2.
(b) x* + 1 is irreducible over the integers mod 7.
(¢) x* — 9is irreducible over the integers mod 31.
(d) x* — 9 is reducible over the integers mod 11.
3. Let F, K be two fields F < K and suppose f (x), g(x) € F[x] are re-
latively prime in F[x]. Prove that they are relatively prime in K[x].
4. (a) Prove that x*> + 1 is irreducible over the field F of integers mod 11
and prove directly that F[x]/(x* + 1) is a field having 121 elements.
(b) Prove that x* + x + 4 is irreducible over F, the field of integers

mod 11 and prove directly that F[x]/(x* + x + 4) is a field
having 121 elements.

*(c) Prove that the fields of part (a) and part (b) are isomorphic.

5. Let F be the field of real numbers. Prove that F[x]/(x? + 1) is a field
isomorphic to the field of complex numbers.

*6. Define the derivative f'(x) of the polynomial
J&) =a + ax + -+ ax”
as SI(x) = a; + 2a,x + 3a3x2 + o+ nax L
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Prove that if f (x) € F[x], where F is the field of rational numbers, then
S (x) is divisible by the square of a polynomial if and only if f (x) and
J'(x) have a greatest common divisor d(x) of positive degree.

7. If f (x) is in F[x], where F is the field of integers mod p, p a prime,

and f (x) is irreducible over F of degree n prove that F[x]/(f(x)) is a
field with p" elements.

3.10 Polynomials over the Rational Field

We specialize the general discussion to that of polynomials whose co-
efficients are rational numbers. Most of the time the coefficients will
actually be integers. For such polynomials we shall be concerned with their
. _irreducibility.

DEFINITION The polynomial f(x) = ay + a;x + -+ + a,x", where the
. @y, a4,0,,...,a, are integers is said to be primitive if the greatest common
. divisor of ay, @y, ..., 4a,is 1.

LEMMA 3.10.1 If f(x) and g(x) are primitive polynomials, then f (x)g(x)

- is a primitive polynomial.

. Proof. Let f(x) =ay+ ayx+ -+ a,x" and g(x) = by + byx + ++ +

. b,x™ Suppose that the lemma was false ; then all the coefficients of
- f(x)g(x) would be divisible by some integer larger than 1, hence by some
- prime number p. Since f (x) is primitive, p does not divide some coefficient
;. Let a; be the first coefficient of f (x) which p does not divide. Similarly
- let b, be the first coefficient of g(x) which p does not divide. In f(x)g(x)
~ the coefficient of x/ ¥, Cjapo IS

ok = @by + (@j41b—y + @500 5 + 000+ a54,b)
+ (@j-1byss + a5 gbiyy + 000+ aghyy,). (1

Now by our choice of by, p|b,_, by_5, . . . s0 that p|(a;410x—1 + @420, +
“*t -+ aj,4bo). Similarly, by our choice of aj, p|a;_y, a;_,,... so that
Pl _ybyyy + aj_3biy + ++ + agbyy;). By assumption, p | ¢j4y- Thus
by (1), p| a;b,, which is nonsense since p X e; and p ¥ b,. This proves
the lemma.

DEFINITION The content of the polynomial f(x) = ay + ax + -+« +
a,x", where the a’s are integers, is the greatest common divisor of the
integers ag, a;, ..., a,.

Clearly, given any polynomial p(x) with integer coefficients it can be
written as p(x) = dg(x) where d is the content of p(x) and where ¢(x) is a
primitive polynomial.
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THEOREM 3.10.1 (Gauss’ Lemma) If the primitive polynomial f(x) can
be factored as the product of two polynomials having rational coefficients, it can be
Sactored as the product of two polynomials having integer coefficients.

Proof. Suppose that f (x) = u(x)v(x) where u(x) and »(x) have rational
coefficients. By clearing of denominators and taking out common factors
we can then write f (¥) = (a/b)A(x)u(x) where a and b are integers and
where both A(x) and p(x) have integer coefficients and are primitive.
Thus b&f (x) = aA(x)u(x). The content of the left-hand side is &, since
f () is primitive; since both A(x) and u(x) are primitive, by Lemma 3.10.1
A(x)p(x) is primitive, so that the content of the right-hand side is a. There-
fore a = b, (a/b) =1, and f(x) = A(x)u(x) where A(x) and u(x) have
integer coeflicients. This is the assertion of the theorem.

DEFINITION A polynomial is said to be integer monic if all its coeflicients
are integers and its highest coefficient is 1.

Thus an integer monic polynomial is merely one of the form »* +
a;x"~ ' 4+ -+ + a, where the a’s are integers. Clearly an integer monic
polynomial is primitive.

COROLLARY If an integer monic polynomial factors as the product of two non-
constant polynomials having rational coefficients then it factors as the product of two
integer monic polynomials.

We leave the proof of the corollary as an exercise for the reader.

The question of deciding whether a given polynomial is irreducible or not
can be a difficult and laborious one. Few criteria exist which declare that a
given polynomial is or is not irreducible. One of these few is the following
result:

THEOREM 3.10.2 (THe Eisenstein CRITERION) Let f (x) = ay + ax +
ayx% + -+ 4+ ax" be a polynomial with integer coefficients. Suppose that for
some prime number p, p X ap p | as, p |z ... p | Gy p* ¥ ag. Then f(x) is

irreducible over the rationals. ’

Proof. Without loss of generality we may assume that f (x) is primitive,
for taking out the greatest common factor of its coefficients does not disturb
the hypotheses, since p f a,. If f(x) factors as a product of two rational
polynomials, by Gauss’ lemma it factors as the product of two polynomials
having integer coefficients. Thus if we assume that f (x) is reducible, then

S = (B + byx + o+ bx) (6o + ey + - + ),

where the 4’s and ¢’s are integers and where 7 > 0 and s > 0. Reading off
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the coeflicients we first get ay = byco. Since p | a5, p must divide one of
bo or ¢o. Since p* ¥ ay, p cannot divide both b, and ¢o- Suppose that p | b,
p X ¢ Not all the coefficients b, ..., b, can be divisible by p; otherwise
all the coefficients of f (x) would be divisible by p, which is manifestly false
since p ¥ a,. Let b, be the first b not divisible by p, ¥ <r < n. Thus
£ | bi—y and the earlier b’s. But @, = by + by_yc; + by_pc, + - + bocys
and p|a,p by by 3, ..., by, so that p| b, However, p ¥ s b A by
which conflicts with p | b,c,. This contradiction proves that we could not
have factored f (x) and so f (x) is indeed irreducible.

Problems

1. Let D be a Euclidean ring, F its field of quotients. Prove the Gauss
Lemma for polynomials with coefficients in D factored as products of
polynomials with coefficients in 7.

2. If p is a prime number, prove that the polynomial x* — p is irreducible
over the rationals.

3. Prove that the polynomial 1 + x + --- + 27!, where p is a prime
number, is irreducible over the field of rational numbers. (Hint: Con-
sider the polynomial 1 + (x + 1) + (x + 1) + -+ 4 (x + 1)»~ !, and
use the Eisenstein criterion.)

S
4. If m and n are relatively prime integers and if
m
(‘x - —)l(ao + X ++ arx’),
n
where the d’s are integers, prove that m | a, and 7 | q,. -

5. If a is rational and x — a divides an integer monic polynomial, prove
that ¢ must be an integer.

3.11 Polynomial Rings over Commutative Rings

In defining the polynomial ring in one variable over a field F, no essential
use was made of the fact that F was a field; all that was used was that F was
a commutative ring. The field nature of F only made itself felt in proving
that F[x] was a Euclidean ring.

Thus we can imitate what we did with fields for more general rings.
While some properties may be lost, such as “Euclideanism,” we shall see
that enough remain to lead us to interesting results. The subject could have
been developed in this generality from the outset, and we could have
~obtained the particular results about F [x] by specializing the ring to be a
field. However, we felt that it would be healthier to go from the concrete
to the abstract rather than from the abstract to the concrete. The price we

-
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pay for this is repetition, but even that serves a purpose, namely, that of
consolidating the ideas. Because of the experience gained in treating
polynomials over fields, we can afford to be a little sketchier in the proofs here.

Let R be a commutative ring with unit element. By the polynomial ring
in x over R, R[x], we shall mean the set of formal symbols a, + a;x+ -+ +
a,x", where ay, ay,...,a, are in R, and where equality, addition, and
multiplication are defined exactly as they were in Section 3.9. As in that
section, R[x] is a commutative ring with unit element.

We now define the ring of polynomials in the n-variables x,, . . ., x, over R,
Rlx,...,x,], as follows: Let R, = R[x,], R, = R,[x,], the polynomial
ring in x, over Ry, ..., R, = R,_,[x,]. R, is called the ring of polynomials
in x,...,x, over R. Its elements are of the form Ya; ;, ; x /x> x,™,
where equality and addition are defined coeflicientwise and where multipli-
cation is defined by use of the distributive law and the rule of exponents
(x1i1x2iz . xni") (xlhxziz e xnfn) = xli1+j1x2iz+j2 ce x,,i"+j". Of particular
importance is the case in which R = F' is a field; here we obtain the ring
of polynomials in n-variables over a field.

Of interest to us will be the influence of the structure of R on that of
Rfx,,...,x,]. The first result in this direction is

LEMMA 3.11.1 If R is an integral domain, then so is R[x].

Proof. Tor 0 # f(x) = a5 + ax + -+ + a,x™, where a, # 0, in R[x],
we define the degree of f (x) to be m; thus deg f (x) is the index of the highest
nonzero coefficient of f(x). If R is an integral domain we leave it as an
exercise to prove that deg (f (x)g(x)) = degf (x) + deg g(x). But then,
for f(x) # 0, g(x) # 0, it is impossible to have f(x)g(x) = 0. That is,
Rfx] is an integral domain.

Making successive use of the lemma immediately yields the
COROLLARY If R is an integral domain, then so is R[x,, ..., x,}.

In particular, when F'is a field, F[x,, . . ., x,] must be an integral domain.
As such, we can construct its field of quotients; we call this the field of rational
Junctions in x,,...,x, over F and denote it by F(x,,...,,). This field
plays a vital role in algebraic geometry. For us it shall be of utmost im-
portance in our discussion, in Chapter 5, of Galois theory.

However, we want deeper interrelations between the structures of R and
of R[xy, ..., x,] than that expressed in Lemma 3.11.1. Our development
now turns in that direction.

Exactly in the same way as we did for Euclidean rings, we can speak
about divisibility, units, etc., in arbitrary integral domains, R, with unit
element. Two elements a, & in R are said to be associates if a = ub where u
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is 2 unit in R. An element a which is not a unit in R will be called irreducible
(or a prime element) if, whenever a = bc with b, ¢ both in R, then one of b or
¢ must be a unit in R. An irreducible element is thus an element which
cannot be factored in a “‘nontrivial” way.

DEFINITION An integral domain, R, with unit element is a unique
. factorization domain if

‘a. Any nonzero element in R is either a unit or can be written as the product

~ of a finite number of irreducible elements of R.

b. The decomposition in part (a) is unique up to the order and associates
of the irreducible elements.

Theorem 3.7.2 asserts that a Euclidean ring is a unique factorization
- domain. The converse, however, is false; for example, the ring F [%1, %51,
where F is a field, is not even a principal ideal ring (hence is certainly not
- Euclidean), but as we shall soon see it is a unique factorization domain.
: In general commutative rings we may speak about the greatest common
~ divisors of elements; the main difficulty is that these, in general, might not
exist. However, in unique factorization domains their existence is assured.
© This fact is not difficult to prove and we leave it as an exercise; equally easy
_ are the other parts of

LEMMA 3.11.2 If R is a unique factorization domain and if a, b are in R, then
a and b have a greatest common divisor (a, b) in R. Moreover, if a and b are
relatively prime (i.e., (a, b) = 1), whenever a | be then a | c.

COROLLARY  Ifa € R is an irreducible element and a | be, then a | b or a |1.c

We now wish to transfer the appropriate version of the Gauss lemma
(Theorem 3.10.1), which we proved for polynomials with integer co-
efficients, to the ring R[], where R is a unique factorization domain.

Given the polynomial f(x) = ¢y + ax + **- + a,x™ in R[x], then the
content of f (x) is defined to be the greatest common divisor of ay, ay, . . ., a,,
It is whique within units of R. We shall denote the content of f (x) by ¢(f).
A polynomial in R[x] is said to be primitive if its content is 1 (that is, is a
unit in R). Given any polynomial f (x) € R[x], we can write f (x) = af| (x)
where a = ¢(f) and where f|(x) € R[] is primitive. (Prove!) Except for
multiplication by units of R this decomposition of f (x), as an element of
R by a primitive polynomial in R[], is unique. (Prove!)

. The proof of Lemma 3.10.1 goes over completely to our present situation;
~ the only change that must be made in the proof is to replace the prime
number p by an irreducible element of R. Thus we have
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LEMMA 3.11.3 If R is a unique factorization domain, then the product of two
primitive polynomials in R[x] is again a primitive polynomial in R[x].

Given f(x), g(x) in R[x] we can write f(x) = af;(x), g(x) = bgy(x),
where a = ¢(f), b = ¢(g) and where f;(x) and g (x) are primitive. Thus
f(®) g(x) = abfi(x)g,(x). By Lemma 3.11.3, f;(x) g,(x) is primitive. Hence
the content of f (x) g(x) is ab, that is, it is ¢(f)c(g). We have proved the

COROLLARY If R is a unique factorization domain and if f (x), g(x) are in
R[x], then c(fg) = c(f)c(g) (up to units).

By a simple induction, the corollary extends to the product of a finite
number of polynomials to read ¢(f; /5 fi) = ¢(Sf1)e(f2) - c(fo)-

Let R be a unique factorization domain. Being an integral domain, by
Theorem 3.6.1, it has a field of quotients F. We can consider R[x] to be a
subring of F[x]. Given any polynomial f (x) € F[x], then f (x) = (fo(x)/a),
where f,(x) € R[x] and where a € R. (Prove!) It is natural to ask for the
relation, in terms of reducibility and irreducibility, of a polynomial in R[x]
considered as a polynomial in the larger ring F[x]

LEMMA 3.11.4 If f(x) in R[x] is both primitive and irreducible as an element
of R[x], then it is irreducible as an element of F[x]. Conversely, if the primitive
element f (x) in R[x] is irreducible as an element of F[x], it is also irreducible as an
element of R[x].

Proof. Suppose that the primitive element f (x) in R[x] is irreducible in
R[x] but is reducible in F[x]. Thus f (x) = g(x)h(x), where g(x), i(x) are in
F[x] and are of positive degree. Now g(x) = (go(x)/a), h(x) = (ho(x)/b),
where a, b e R and where go(x), hiy(x) € R[x]. Also go(x) = ag(x),
ho(x) = Bhy(x), where o = ¢(go), B = ¢(hy), and g,(x), k,(x) are primitive
in R[x]. Thus f(x) = (apf/ab)g,(x)k,(x), whence abf (x) = afg,(x)h,(*)
By Lemma 3.11.3, g, (x)k,(x) is primitive, whence the content of the right-
hand side is af. Since f (x) is primitive, the content of the left-hand side is
ab; but then ab = af; the implication of this is that f (x) = g, (x)k,(x), and
we have obtained a nontrivial factorization of f (x) in R[x], contrary to
hypothesis. (Note: this factorization is nontrivial since each of g (x), k(%)
are of the same degree as g(x), k(x), so cannot be units in R[x] (see Problem
4).) We leave the converse half of the lemma as an exercise.

LEMMA 3.11.5 If R is a unique factorization domain and if p(x) is a primitive
polynomial in R[x], then it can be factored in a unique way as the product of irreducible
elements in R[x].

Proof. When we consider p(x) as an element in F[x], by Lemma 3.9.5,.
we can factor it as p(x) = p,(x) - - - p (%), where p; (%), p2(x), . .., py(x) are
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irreducible polynomials in F[x]. Each p,(x) = (fi(x)/a;), where f;(x) e
R[x] and g; € R; moreover, f;(x) = ¢;q;(x), where ¢; = ¢(f;) and where
~g;(x) is primitive in R[x]. Thus each p,(x) = (c;4;(x)/a;), where a;, c,e R
. and where ¢;(x) € R[x] is primitive. Since p;(x) is irreducible in F [x],
¢;(x) must also be irreducible in F[x], hence by Lemma 3.11.4 it is irreducible
in R[x].

Now
PE) = i) o puln) = B g () gy (),
1“2 k

- whence a,a; - g p(x) = ¢6; g, (%) - - - 4 (x). Using the primitivity of
p(x) and of ¢,(x) - --g.(x), we can read off the content of the left-hand
side as a4, -4 and that of the right-hand side as ¢;¢, - -¢. Thus
a4yt a =656, hence p(x) = ¢,(x)---q,(x). We have factored
. p(x), in R[x], as a product of irreducible elements.
- Can we factor it in another way? If p(x) = r,(x) - - - r,(x), where the
- 1,(x) are irreducible in R[x], by the primitivity of p(x), each r;(x) must be
primitive, hence irreducible in F[x] by Lemma 3.11.4. But by Lemma 3.9.5
- we know unique factorization in F[x]; the net result of this is that the
- 1i(x) and the ¢;(x) are equal (up to associates) in some order, hence p(x)
~ has a unique factorization as a product of irreducibles in R[x].
- We now have all the necessary information to prove the principal theorem
-~ of this section.

TH EOREM 3.11.1 IfRisaunique factorization domain, then so is R[x].

Proof. Let f (x) be an arbitrary element in R[x]. We can write f (x]'in
a unique way as f (x) = ¢f;(x) where ¢ = ¢(f) is in R and where f;(x),
in R[x], is primitive. By Lemma 3.11.5 we can decompose f;(x) in a unique
way as the product of irreducible elements of R[x]. What about ¢?
Suppose that ¢ = q;(x)a,(x) - a,(¥) in R[x]; then 0 =degc =
deg (2,(x)) + deg (a,(x)) + -+ + deg (a,(x)). Therefore, each a,(x) must
be of degree 0, that is, it must be an element of R. In other words, the
only f‘ctorizations of ¢ as an element of R[x] are those it had as an element
of R. In particular, an irreducible element in R is still irreducible in R[x].
Since R is a unique factorization domain, ¢ has a unique factorization as a
product of irreducible elements of R, hence of R[x].
Putting together the unique factorization of f (x) in the form ¢f; (x) where
Ji1(x) is primitive and where ¢ € R with the unique factorizability of ¢ and
of £, (x) we have proved the theorem.

Given R as a unique factorization domain, then R, = R[x,] is also a
unique factorization domain. Thus R, = R,[x,] = R[x,, x,] is also a
unique factorization domain. Continuing in this pattern we obtain

-
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COROLLARY 1 If R is a unique factorization domain then so is R[xy, . . . , x,].
A special case of Corollary 1 but of independent interest and importance is

COROLLARY 2 If F is a field then Flx,,...,x,] is a unique factorization
domain.

Problems

1. Prove that R[x] is a commutative ring with unit element whenever R is.

2. Prove that R[xy,...,x,] = R[x;,...,x;], where (i},...,4,) is a
permutation of (1, 2,..., n).

3. If R is an integral domain, prove that for f(x), g(x) in R[x],
deg (f (x)g(x)) = deg (f(x)) + deg (g(x)).

4. If R is an integral domain with unit element, prove that any unit in
R[x] must already be a unit in R.

5. Let R be a commutative ring with no nonzero nilpotent elements (that
is, @" = 0 implies @ = 0). If f(x) = 2y + ayx + -+ + @,#™ in R[x]
is a zero-divisor, prove that there is an element b # 0 in R such that |

bay = ba; = -+« = ba, = 0.
*6. Do Problem 5 dropping the assumption that R has no nonzero nilpotent
elements.

*7. If R is a commutative ring with unit element, prove that a, + a;x +
*** + a,x" in R[x] has an inverse in R[x] (i.e., is a unit in R[x]) if and
only if a4 is 2 unit in R and a, . . ., a, are nilpotent elements in R.

8. Prove that when F'is a field, F[xy, x,] is not a principal ideal ring.

9. Prove, completely, Lemma 3.11.2 and its corollary.

10. (a) If R is a unique factorization domain, prove that every f (x) € R[]
can be written as f(x) = af;(x), where a € R and where f,(x) is
primitive.

(b) Prove that the decomposition in part (a) is unique (up to associates).

11. If R is an integral domain, and if F is its field of quotients, prove that
any element f(x) in F[x] can be written as f(x) = (f,(x)/a), where ;

Jo(x) € R[x] and where a € R. §

12. Prove the converse part of Lemma 3.11.4. |

13. Prove Corollary 2 to Theorem 3.11.1.

14. Prove that a principal ideal ring is a unique factorization domain.

15. If J is the ring of integers, prove that J[x,,...,x,] is a unique fac-
torization domain.
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upplementary Problems

1.

Let R be a commutative ring; an ideal P of R is said to be a prime ideal
of Rif abe P, a, b € R implies that ae P or b € P. Prove that P is a
prime ideal of R if and only if R/P is an integral domain.

. Let R be a commutative ring with unit element; prove that every

maximal ideal of R is a prime ideal.

. Give an example of a ring in which some prime ideal is not a maximal

ideal.

. If R is a finite commutative ring (i.e., has only a finite number of

elements) with unit element, prove that every prime ideal of R is a
maximal ideal of R.

. If F is a field, prove that F[x] is isomorphic to F[¢].
. Find all the automorphisms ¢ of F[x] with the property that o( f) = S

for every fe F.

. If Ris a commutative ring, let N = {x € R | x* = 0 for some integer n}.

Prove
(a) Nisan ideal of R.
(b) In R = R/Nif #™ = 0 for some m then ¥ = 0.

. Let R be a commutative ring and suppose that 4 is an ideal of R.

Let N(4) = {x € R| x" € A for some n}. Prove
(a) N(4) is an ideal of R which contains A.

(b) N(N(4)) = N(4).

N (A) is often called the radical of A.

. If n is an integer, let J, be the ring of integers mod n. Describe N

(see Problem 7) for J, in terms of n.

If 4 and B are ideals in a ring R such that 4 n B = (0), prove that
for everyae 4, be B, ab = 0.

If R is a ring, let Z(R) = {xe R|xy = yxally e R}. Prove that
Z(R) is a subring of R.
If R is a division ring, prove that Z (R) is a field.

Hnd a polynomial of degree 3 irreducible over the ring of integers,
>, mod 3. Use it to construct a field having 27 elements.
Js g

Construct a field having 625 elements.
If F is a field and p(x) € F[x], prove that in the ring

o FI
(p(x))

N (see Problem 7) is (0) if an only if p(x) is not divisible by the square of
any polynomial.
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16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Prove that the polynomial f(x) = 1 + x + x* + x* is not irreducible
over any field F.

Prove that the polynomial f(x) = x* + 2x + 2 is irreducible over
the field of rational numbers.

Prove that if F'is a finite field, its characteristic must be a prime number
p and F contains p" elements for some integer. Prove further that if
a € F then @ = a.

Prove that any nonzero ideal in the Gaussian integers J[{] must contain
some positive integer.

Prove that if R is a ring in which a* = a for every a € R then R must
be commutative.

Let R and R’ be rings and ¢ a mapping from R into R’ satisfying
(a) ¢(x +3) = ¢(x) + ¢(y) for every x,y € R.

(b) ¢(») = d(x)p(») or ¢(3)P(x).
Prove that for all ¢, b € R, ¢(ab) = ¢p(a)¢p(b) or that, for all a, b € R,

b(a) = p(b)p(a). (Hint: Ifae R, let
W, = {xeR|d(ax) = ¢(a)¢(x)}

and
Uo = {xeR| ¢(ax) = ¢(x)¢(a)}.)

Let R be a ring with a unit element, 1, in which (ab)? = a2b? for

all a, b € R. Prove that R must be commutative.

Give an example of a noncommutative ring (of course, without 1) in

which (ab)? = a?b? for all elements a and b.

(a) Let R be a ring with unit element 1 such that (ab)2 = (ba)? for
all a,b e R. Ifin R, 2x = 0 implies x = 0, prove that R must be
commutative.

(b) Show that the result of (a) may be false if 2x = 0 for some x # 0
in R.

(c) Even if 2x = 0 implies x = 0 in R, show that the result of (a)
may be false if R does not have a unit element.

Let R be a ring in which »" = 0 implies x = 0. If (ab)? = a2b*

for all a, b € R, prove that R is commutative.

Let R be a ring in which " = 0 implies x = 0. If (ab)? = (ba)®

for all @, b € R, prove that R must be commutative.

Let py, p2, - - -, by be distinct primes, and let n = pyp, -+ p,. If R is

the ring of integers modulo 7, show that there are exactly 2% elements

a in R such that a? = a.

Construct a polynomial ¢(x) # O with integer coefficients which has

no rational roots but is such that for any prime p we can solve the

congruence g(x) = 0 mod p in the integers.
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Vector Spaces and Modules

Up to this point we have been introduced to groups and to rings; the
former has its motivation in the set of one-to-one mappings of a set
onto itself, the latter, in the set of integers. The third algebraic model
which we are about to consider—vector space—can, in large part,
trace its origins to topics in geometry and physics.

Its description will be reminiscent of those of groups and rings—in
fact, part of its structure is that of an abelian group—but a vector
space differs from these previous two structures in that one of the
products defined on it uses elements outside of the set itself. These
remarks will become clear when we make the definition of a vector
space.

Vector spaces owe their importance to the fact that so many models
arising in the solutions of specific problems turn out to be vector
spaces. For this reason the basic concepts introduced in them have a
certain universality and are ones we encounter, and keep encountering;,
in so many diverse contexts. Among these fundamental notions are
those of linear dependence, basis, and dimension which will be de-
veloped in this chapter. These are potent and effective tools in all
branches of mathematics; we shall make immediate and free use of
these in many key places in Chapter 5 which treats the theory of fields.

Intimately intertwined with vector spaces are the homomorphisms
of one vector space into another (or into itself). These will make up
the bulk of the subject matter to be considered in Chapter 6.

In the last part of the present chapter we generalize from vector spaces
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to modules; roughly speaking, a module is a vector space over a ring instead
f over a field. For finitely generated modules over Euclidean rings we
all prove the fundamental basis theorem. This result allows us to give a
omplete description and construction of all abelian groups which are
enerated by a finite number of elements.

1 Elementary Basic Concepts

EFINITION A nonempty set V is said to be a vector space over a field F
if V is an abelian group under an operation which we denote by +, and
if for every « € F, v € V there is defined an element, written av, in ¥ subject

doa(v + w) = aw + ow;
2. (¢ + B)o = av + Po;
8. a(Bs) = («B)o;

4, lv = v;

for all a, fe F, v, we V (where the | represents the unit element of F
‘under multiplication).

Note that in Axiom 1 above the + is that of V, whereas on the left-hand
side of Axiom 2 it is that of F and on the right-hand side, that of V.
We shall consistently use the following notations:

a. F will be a field.

b. Lowercase Greek letters will be elements of F; we shall often refer to
elements of F as scalars. ™

- c. Capital Latin letters will denote vector spaces over F.

- d. Lowercase Latin letters will denote elements of vector spaces. We shall
often call elements of a vector space vectors.

If we ignore the fact that ¥ has two operations defined on it and view it
- for a moment merely as an abelian group under +, Axiom 1 states nothing
- more than the fact that multiplication of the elements of V by a fixed scalar
- a defines a homomorphism of the abelian group ¥ into itself. From Lemma
- 4.1.1 which is to follow, if o % 0 this homomorphism can be shown to be
' -an isomorphism of V onto V.

- This suggests that many aspects of the theory of vector spaces (and of
-~ rings, too) could have been developed as a part of the theory of groups,
- had we generalized the notion of a group to that of a group with operators.
. For students already familiar with a little abstract algebra, this is the pre-
~ ferred point of view; since we assumed no familiarity on the reader’s part
- with any abstract algebra, we felt that such an approach might lead to a
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too sudden introduction to the ideas of the subject with no experience to
act as a guide.

Example 4.1.1 Let F be a field and let K be a field which contains F as
a subfield. We consider K as a vector space over F, using as the + of the
vector space the addition of elements of K, and by defining, for a € F,
v € K, aw to be the products of o and v as elements in the field K. Axioms
1, 2, 3 for a vector space are then consequences of the right-distributive
law, left-distributive law, and associative law, respectively, which hold for
K as a ring.

Example 4.1.2 Let F be a field and let V be the totality of all ordered
n-tuples, (ay,...,®,) where the a; € F. Two elements (a;, ..., ,) and
(Bys - - -5 Bs) of V are declared to be equal if and only if a; = B; for each
i=1,2,...,n. We now introduce the requisite operations in V' to make
of it a vector space by defining:

Lo (ogs e 0) + (Bos-oos Ba) = (a1 + Bz + Base sy + Bu)-
2. plotgy - vy o) = (Poty, ..., ) for y € F.

It is easy to verify that with these operations, V' is a vector space over F.
Since it will keep reappearing, we assign a symbol to it, namely F™.

Example 4.1.3 Let F be any field and let V = F[x], the set of poly-
nomials in x over F. We choose to ignore, at present, the fact that in F[x]
we can multiply any two elements, and merely concentrate on the fact that
two polynomials can be added and that a polynomial can always be multi-
plied by an element of F. With these natural operations F[x] is a vector
space over F.

Example 4.1.4 1In F[x] let V, be the set of all polynomials of degree less
than n. Using the natural operations for polynomials of addition and
multiplication, V, is a vector space over F.

What is the relation of Example 4.1.4 to Example 4.1.2? Any element of
V, is of the form a + oayx + *+* + &, x"" !, where a; € F; if we map
this element onto the element (atg, &, - - - , %,_;) in F™ we could reasonably
expect, once homomorphism and isomorphism have been defined, to find
that ¥, and F™ are isomorphic as vector spaces.

DEFINITION If V is a vector space over F and if W < V, then W is 2
subspace of V if under the operations of V, W, itself, forms a vector space
over F. Equivalently, W is a subspace of V whenever w;,w,€ W,
o, B € F implies that aw, + Pw, € W.
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Note that the vector space defined in Example 4.1.4 is a subspace of that
‘defined in Example 4.1.3. Additional examples of vector spaces and
_subspaces can be found in the problems at the end of this section.

EFINITION If U and V are vector spaces over F then the mapping T
f U into V is said to be a homomorphism if

(g + u))T =u T + u,T;
2. (au)T = a(u, T);

for all u;, u, € U, and all o € F.

As in our previous models, a homomorphism is a mapping preserving
all the algebraic structure of our system.

If T, in addition, is one-to-one, we call it an isomorphism. The kernel of
T is defined as {ue U|uT = 0} where 0 is the identity element of the
addition in V. It is an exercise that the kernel of 7'is a subspace of U and
that T is an isomorphism if and only if its kernel is (0). Two vector spaces
are said to be wsomorphic if there is an isomorphism of one onfo the other.

- The set of all homomorphisms of U into ¥ will be written as Hom (U, v).
Of particular interest to us will be two special cases, Hom (U, F) and
‘Hom (U, U). We shall study the first of these soon; the second, which can be
shown to be a ring, is called the ring of linear transformations on U. A great
eal of our time, later in this book, will be occupied with a detailed study
f Hom (U, U).

~ We begin the material proper with an operational lemma which, as in
the case of rings, will allow us to carry out certain natural and simple
£omputations in vector spaces. In the statement of the lemma, O represents
the zero of the addition in V, o that of the addition in F, and —u the
dditive inverse of the element v of V.

EMMA 411 If Vis a vector space over F then

a0 = 0 fora € F.

- 00 =0 forveV.

« (=a)o = —(w) foraeF, ve V.

v # 0, then av = 0 implies that a = o.

Proof. The proof is very easy and follows the lines of the analogous

Bsults proved for rings; for this reason we give it briefly and with few
planations.

Since 20 = a(0 + 0) = a0 + a0, we get a0 = 0.
Since ov = (0 + 0)o = ov + ov we get oy = 0.

-
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3. Since 0 = (a + (—a))p = w + (—a)p, (—W)p = —(av).
4, Ifgv = 0 and a # o then
0=0"10=0a Yw) = (@ ‘e = lv =2

The lemma just proved shows that multiplication by the zero of V or of
F always leads us to the zero of V. Thus there will be no danger of confusion
in using the same symbol for both of these, and we henceforth will merely

use the symbol O to represent both of them.

Let V be a vector space over F and let W be a subspace of V. Considering
these merely as abelian groups construct the quotient group V/Wj its
elements are the cosets » + W where v € V. The commutativity of the
addition, from what we have developed in Chapter 2 on group theory,
assures us that V/W is an abelian group. We intend to make of it a vector
space. Ifa e F, v + We VW, define a(v + W) = av + W. Asis usual,
we must first show that this product is well defined; that is, if v + W =
v + Wthen a(v + W) = a(v’ + W). Now, because v + W =o' + W,
v — o' is in W; since W is a subspace, a(v — ¢') must also be in W. Using
part 3 of Lemma 4.1.1 (see Problem 1) this says that av — av’ € W and so
w+W=a' +W. Thus alv + W)= + W=a' + W=a(' + W);
the product has been shown to be well defined. The verification of the
vector-space axioms for V/W is routine and we leave it as an exercise.
We have shown

LEMMA 4.1.2 If V is a vector space over F and if W is a subspace of V, then
VIW is a vector space over F, where, for vy + W, v, + We VIW and a € F,

L (o + W)+ (0 + W) = (v, +0,) + W.
2. a(v, + W) =av; + W.

VIW is called the guotient space of V by W.
Without further ado we now state the first homomorphism theorem for

vector spaces; we give no proofs but refer the reader back to the proof of
Theorem 2.7.1.

THEOREM 4.1.1 If T is a homomorphism of U onto V with kernel W, then V
is isomorphic to U|/W. Comversely, if U is a vector space and W a subspace of U,
then there is a homomorphism of U onto U|W.

The other homomorphism theorems will be found as exercises at the end
of this section.

DEFINITION Let V be a vector space over F and let U, ..., U, be
subspaces of V. V is said to be the internal direct sum of Uy, ..., U, if‘every
element v € V can be written in one and only one way as v = u; + u, +
-++ + u, where u; € U,.
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~ Given any finite number of vector spaces over F, V,,..., V, consider
the set ¥ of all ordered n-tuples (y, ..., v,) where v; € V,. We declare two
lements (v1,...,0,) and (9},...,2.) of V to be equal if and only if for
each ¢, »; = »/. We add two such elements by defining (v,,...,0,) +
(w1, w,) to be (o, + wy, v, + w,, ..., vy + w,). Finally, if a e F
and (vy,...,9,) € V we define a(o,, ..., vn) to be (awy,av,, ..., a,).
"To check that the axioms for a vector space hold for ¥ with its operations
as defined above is straightforward. Thus V itself is a vector space over F.
‘We call V the external direct sum of V,,. .., V, and denote it by writing
V=V,® @V,

THEOREM 4.1.2 If V is the internal direct sum of U,,..., U,
isomorphic to the external direct sum of U,...,U

ne

, then V is

Proof. Given v e V, v can be written, by assumption, in one and only
one way as v = 4y + Uy + -+ u, where u; € Uy; define the mapping
T of Vinto Uy @ -+-® U, by oT = (u, ..., u,). Since » has a unique
‘representation of this form, 7 is well defined. It clearly is onto, for the
arbitrary element (w,...,w,) e U, @ - ® U, is wT where w = w, +
-+ w, e V. We leave the proof of the fact that 7 is one-to-one and a
‘homomorphism to the reader.

Because of the isomorphism proved in Theorem 4.1.2 we shall henceforth
merely refer to a direct sum, not qualifying that it be internal or external.

Problems
1. In a vector space show that a(v — w) = av — aw. ’
2. Prove that the vector spaces in Example 4.1.4 and Example 4.1.2 are
isomorphic.

3. Prove that the kernel of a homomorphism is a subspace.

4. (a) If F is a field of real numbers show that the set of real-valued,
continuous functions on the closed interval [0, 1] forms a vector
space over F.
(B) Show that those functions in part (a) for which all nth derivatives
existforn = 1,2,... form a subspace.

5. (a) Let F be the field of all real numbers and let ¥ be the set of all
sequences (a;, ay,...,4a,,...), a; € F, where equality, addition
and scalar multiplication are defined componentwise. Prove that
V is a vector space over F.

(b) Let W = {(ay,...,a,...)e V|lim a, = 0}. Prove that W

n—oo

is a subspace of V,

-
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*7.

10.

11

12.
13.

14.

15.

16.

17.

18.

*(c) Let U = {(a, .-, ay,...) € V] Z a;? is finite}. Prove that U is
i=1
a subspace of ¥ and is contained in .

If U and V are vector spaces over F, define an addition and a multipli-
cation by scalars in Hom (U, V) so as to make Hom (U, V) into a
vector space over F.

Using the result of Problem 6 prove that Hom (F®™, F™) is isomorphic
to F"™™ as a vector space.

. If n > m prove that there is a homomorphism of F™ onto F™ with

a kernel W which is isomorphic to F®~™,

. If v £ 0 F™ prove that there is an element 7 € Hom (F®, F)

such that 7 # 0.

Prove that there exists an isomorphism of F™ into
Hom (Hom (F™, F), F).

If U and W are subspaces of V, prove that U + W = {pe V|v =
u + w, ue U, we W}is a subspace of V.

Prove that the intersection of two subspaces of V is a subspace of V.

If 4 and B are subspaces of ¥ prove that (4 + B)/B is isomorphic to
A/(4 n B).

If T is a homomorphism of U onto V with kernel W prove that there
is a one-to-one correspondence between the subspaces of 7 and the
subspaces of U which contain W.

Let V be a vector space over F and let V,..., V, be subspaces of
V. Suppose that V=V, + V, +--- + V, (see Problem 11), and
that V;n (V; +- 4+ Vioy + Vigy +---+ V,) = (0) for every

1 =1,2,...,n Prove that Vis the internal direct sum of V;,..., V.

Let V=V, @ -@® V,; prove that in V there are subspaces V;

1
isomorphic to V; such that V is the internal direct sum of the V;.

Let T be defined on F® by (x, %) T = (ax; + Pxy, y%, + 0%3)

where a, f, 7, 6 are some fixed elements in F.

(a) Prove that T is a homomorphism of F(?) into itself.

(b) Find necessary and sufficient conditions on «, f8, y, & so that T is
an isomorphism.

Let 7 be defined on F3 by (x, %5, x3) T = (03,% + y2%, +
Oy3Xy, Op1X; + OapXy + Op3X3, U3g¥; + O3p%, + 033%3). Show that T’
is a homomorphism of F(¥ into itself and determine necessary and
sufficient conditions on the a;; so that 7" is an isomorphism.
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19. Let T be a homomorphism of Vinto W. Using T, define a homomor-
phism 7* of Hom (W, F) into Hom (V, F).
20. (a) Prove that F! is not isomorphic to F® for n > 1.
(b) Prove that F® is not isomorphic to F(3,
. If V is a vector space over an infinite field F, prove that V cannot be
written as the set-theoretic union of a finite number of proper subspaces.

4.2 Linear Independence and Bases

. If we look somewhat more closely at two of the examples described in the
- previous section, namely Example 4.1.4 and Example 4.1.3, we notice that
- although they do have many properties in common there is one striking
- difference between them. This difference lies in the fact that in the former
- we can find a finite number of elements, 1, x, x2, ..., "~ ! such that every
~ element can be written as a combination of these with coefficients from F,
- whereas in the latter no such finite set of elements exists.
We now intend to examine, in some detail, vector spaces which can be
- generated, as was the space in Example 4.1.4, by a finite set of elements.

- DEFINITION If V is a vector space over F and if v;,...,v, € V then
- any element of the form @y + 00, + - + a,v,, where the a;€F, is a
- linear combination over F of Ugyvvns Upe

~ Since we usually are working with some fixed field 7 we shall often say
_linear combination rather than linear combination over F. Similarly it will
- be understood that when we say vector space we mean vector space over F.

DEFINITION IfSis a nonempty subset of the vector space V, then L(S),
-~ the linear span of S, is the set of all linear combinations of finite sets of
~ elements of .

We put, after all, into L(S) the elements required by the axioms of a
- Vector space, so it is not surprising to find

LEMMA 421 L(S) is o subspace of V.

Proof. If v and w are in L(S), then v = 2,5y + - + A5, and w =
Mgty + cc o pot where the A’s and ws are in F and the s; and ¢, are all
in §. Thus, for «, BeF, av + Pw = a(lys; + -+ + Ausa) + Blugty +

It Hontm) = (@Ay)sy + -+ + (@dn)sy + (Bug)ty + -+ + (Bim)tm and so
Is again in L(S). L(S) has been shown to be a subspace of V.

The proof of each part of the next lemma is straightforward and easy
and we leave the proofs as exercises to the reader.

-
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LEMMA 4.2.2 If S, T are subsets of V, then

1. § < T implies L(S) < L(T).
2. L(Su T)=L(S) + L(T).
3. L(L(S)) = L(S).

DEFINITION The vector space V is said to be finite-dimensional (over F)
if there is a finite subset S in V such that V = L(S).

Note that F® is finite-dimensional over F, for if § consists of the rn vectors
(1,0,...,0),(0,1,0,...,0),...,(0,0,...,0, 1), then V = L(S).

Although we have defined what is meant by a finite-dimensional space
we have not, as yet, defined what is meant by the dimension of a space.
This will come shortly.

DEFINITION If Vis a vector space and if vy, ..., v, are in V, we say that
they are linearly dependent over F if there exist elements A,,..., A, in F,
not all of them 0, such that 4,0, + A0, + -+ 4,0, = 0.

If the vectors v, . . ., v, are not linearly dependent over F, they are said
to be linearly independent over F. Here too we shall often contract the phrase
“linearly dependent over F*’ to “linearly dependent.” Note that if »,, ...,
v, are linearly independent then none of them can be 0, for if »; = 0,
say, then oo, + Ov, + -+ + Ov, = Ofor any o # O in F.

In F® it is easy to verify that (1, 0, 0), (0, 1, 0), and (0, 0, 1) are linearly
independent while (1, 1, 0), (3, 1, 3), and (5, 3, 3) are linearly dependent.

We point out that linear dependence is a function not only of the vectors
but also of the field. For instance, the field of complex numbers is a vector
space over the field of real numbers and it is also a vector space over the
field of complex numbers. The elements v; = 1, v, = ¢ in it are linearly
independent over the reals but are linearly dependent over the complexes,
since iv; + (—1)v, = 0.

The concept of linear dependence is an absolutely basic and ultra-
important one. We now look at some of its properties.

LEMMA 423 Ifo,...,v, € V are linearly independent, then every element in
their linear span has a unique representation in the form Ajv, + -+ + A, with
the A’i € F.

Proof. By definition, every element in the linear span is of the form
Aoy + +++ 4+ A0, To show uniqueness we must demonstrate that if
Aop + o+ Ay =0+ pw, then Ay =g Ay = pp, o Ay = e
But if Aoy + -+ A, = g0, + - + uuv, then we certainly have
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(A — wdoy + (A — pp)o, + -+ + (Aw — w4)v, = 0, which by the linear
independence of o,,..., s, forces A —p =0, 3 —p, =0,...,
n = Mo =0.

The next theorem, although very easy and at first glance of a somewhat
‘technical nature, has as consequences results which form the very foundations
of the subject. We shall list some of these as corollaries ; the others will
appear in the succession of lemmas and theorems that are to follow.

THEOREM 4.21 If o, ..., 0, are in V then either they are linearly independ-

ent or some vy is a linear combination of the preceding ones, vy, ..., v,_,.

Proof. 1Ifuv, ..., v, are linearly independent there is, of course, nothing
to prove. Suppose then that oo, + --- + a0, = 0 where not all the
o’s are 0. Let £ be the largest integer for which «, # 0. Since o; =0
for i >k o, + -4 aw =0 which, since o # 0, implies that
% = o N~ — ap, — - — G-1¥-1) = (=" la)o, + -+
(=% 'o_y)v,_y. Thus o, is a linear combination of its predecessors.

COROLLARY 1 Ifv,,...,v, in V have W as linear span and if vy, ..., v,
are linearly independent, then we can find a subset of v, -+, 0, of the form v,
Us v o5 Vs Uyys oo Uy comsisting of linearly independent elements whose linear

Proof. Ifuv,,..., v, are linearly independent we are done. If not, weed
out from this set the first v ;» which is a linear combination of its predecessors.
Since v, . . ., 9, are linearly independent, j > k. The subset so constructed,
Ve v s Ups oo Ujyqy Djyqsev.,0, has n — | elements. Clearly its linear
pan is contained in W. However, we claim that it is actually equal to W;
for, given w e W, w can be written as a linear combination of vy,..., 0,
But in this linear combination we can replace v; by a linear combination of
Y5 ..., 9;_;. Thatis, wis a linear combination ofovy,...,0;_4, Vigts e v sl
Continuing this weeding out process, we reach a subset Vyy ooy Oy
i - - > ;, whose linear span is still W but in which no element is a linear
~Combination of the preceding ones. By Theorem 4.2.1 the elements
u,.. 70, i5+ - -, U3, must be linearly independent.

X/

k'COROLLARY 2 If V is a finite-dimensional vector space, then it contains a
Jinite set vy, . . . v, of linearly independent elements whose linear span is V.

Proof. Since V is finite-dimensional, it is the linear span of a finite
‘humber of elements Uy -+, Uy, By Corollary 1 we can find a subset of

these, denoted by vy,...,2,, consisting of linearly independent elements
whose linear span must also be V.

-
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DEFINITION A subset S of a vector space V is called a basis of V if §
consists of linearly independent elements (that is, any finite number of
elements in § is linearly independent) and V' = L(S).

In this terminology we can rephrase Corollary 2 as

COROLLARY 3 If V is a finite-dimensional vector space and if uy, ..., u,
span V then some subset of uy,. .., u, forms a basis of V.

Corollary 3 asserts that a finite-dimensional vector space has a basis
containing a finite number of elements 2y, ..., v, Together with Lemma
4.2.3 this tells us that every element in V has a unique representation in the
form oo, + - + aw, with oy, ..., a,in F.

Let us see some of the heuristic implications of these remarks. Suppose
that V is a finite-dimensional vector space over F; as we have seen above,
V has a basis v;,...,0,. Thus every element v € V has a unique repre-
sentation in the form » = a0, + +*+ + a,2,. Let us map V into F® by
defining the image of &yo; + *** + 2, to be (ay,...,®,). By the unique-
ness of representation in this form, the mapping is well defined, one-to-one,
and onto; it can be shown to have all the requisite properties of an iso-
morphism. Thus V is isomorphic to F® for some 7, where in fact n is
the number of elements in some basis of V over F. If some other basis of
V should have m elements, by the same token ¥ would be isomorphic to
F™_ Since both F™ and F™ would now be isomorphic to V, they would
be isomorphic to each other.

A natural question then arises! Under what conditions on n and m are
F™ and F™ isomorphic? Our intuition suggests that this can only happen
when #n = m. Why? For one thing, if F should be a field with a finite
number of elements—for instance, if F = ], the integers modulo the prime
number p—then F® has p" elements whereas F™ has p™ elements. Iso-
morphism would imply that they have the same number of elements, and
so we would have n = m. From another point of view, if F were the field
of real numbers, then F™ (in what may be a rather vague geometric way
to the reader) represents real n-space, and our geometric feeling tells us
that n-space is different from m-space for n # m. Thus we might expect
that if F is any field then F™ is isomorphic to F™ only if n = m. Equiv-
alently, from our earlier discussion, we should expect that any two bases of
¥ have the same number of elements. It is towards this goal that we prove
the next lemma.

LEMMA 424 Ifo,,...,0, is a basis of V over F and if wy,...,w, in V
are linearly independent over F, then m < n.

Proof. Every vector in V, so in particular w,, is a linear combination
of v,,...,v, Therefore the vectors w,, vy, ..., ¥, are linearly dependent.

ne
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Moreover, they span V since vy,..., s, already do so. Thus some proper
subset of these w,, v;,...,v; with £ < n — 1 forms a basis of V. We
have “traded off” one w, in forming this new basis, for at least one o;.
Repeat this procedure with the set w,_;, w,, Ui -« 0. From this
linearly dependent set, by Corollary 1 to Theorem 4.2.1, we can extract a
basis of the form w,_,, w,, v;,...,2;, s <n — 2. Keeping up this
procedure we eventually get down to a basis of V of the form w,, ...,
W1, Wy Ugy Vg - - - 5 SINCE )y is not a linear combination of w,, . . ., w,, _,, the
above basis must actually include some 2. To get to this basis we have
introduced m — 1 w’s, each such introduction having cost us at least one o,
and yet there is a v left. Thus m — 1 <n — 1 and so m < n.

This lemma has as consequences (which we list as corollaries) the basic
results spelling out the nature of the dimension of a vector space. These
corollaries are of the utmost importance in all that follows, not only in this
chapter but in the rest of the book, in fact in all of mathematics. The
corollaries are all theorems in their own rights.

COROLLARY 1 If V is finite-dimensional over F then any two bases of V
have the same number of elements.

Proof. Let v,,...,0, be one basis of V over F and let wy, ..., w, be
another. In particular, wy, ..., w, are linearly independent over F whence,
by Lemma 4.2.4, m < n. Now interchange the roles of the v’s and ®’s and
we obtain that n < m. Together these say that n = m.

COROLLARY 2 F® s isomorphic F“™ if and only if n = m.

Proof. F®™ has, as one basis, the set of n vectors, (1,0,...,0), (0,1,
0,...,0),...,(0,0,...,0,1). Likewise F™ has a basis containing m
vectors. An isomorphism maps a basis onto a basis (Problem 4, end of this
section), hence, by Corollary 1, m = n.

Corollary 2 puts on a firm footing the heuristic remarks made earlier
about the possible isomorphism of F™ and F™. As we saw in those re-
marks, Vis isomorphic to F™ for some n. By Corollary 2, this n is unique, thus

-

COROLLARY 3 If V is finite-dimensional over F then V is isomorphic to F™
Jor a unique integer n; in fact, n is the number of elements in any basis of V over F.

DEFINITION The integer n in Corollary 3 is called the dimension of V

over F.

The dimension of V over F is thus the number of elements in any basis
of V over F.
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We shall write the dimension of ¥V over F as dim V, or, the occasional
time in which we shall want to stress the role of the field F, as dimg V.

COROLLARY 4 Any two finite-dimensional vector spaces over F of the same
dimension are isomorphic.

Proof. If this dimension is n, then each is isomorphic to F®™, hence
they are isomorphic to each other.

How much freedom do we have in constructing bases of ¥? The next
lemma asserts that starting with any linearly independent set of vectors
we can “blow it up” to a basis of V.

LEMMA 4.25 If V is finite-dimensional over F and if uy,...,u, €V are
linearly independent, then we can find vectors Upyyis .. - Ums, tn V such that
Uy o ooy Ups Uyt - - - 5 Upyp 15 @ basis of V.

Proof. Since V is finite-dimensional it has a basis; let v;,..., v, be a
basis of V. Since these span V, the vectors uy, ..., %, 0y, ..., v, also span
V. By Corollary 1 to Theorem 4.2.1 there is a subset of these of the form
Uiy .o Uy Uy ---> 0, which consists of linearly independent elements
which span V. To prove the lemma merely put #,4q = 0y -5 Ups, =
v

What is the relation of the dimension of a homomorphic image of V to
that of V? The answer is provided us by

LEMMA 4.2.6 If V is finite-dimensional and if W is a subspace of V, then W
is finite-dimensional, dim W < dim V and dim V/W = dim V — dim W.

Proof. By Lemma 4.2.4, if n = dim V then any n + 1 elements in V
are linearly dependent; in particular, any #» + 1 elements in W are linearly
dependent. Thus we can find a largest set of linearly independent elements
in W, wy,...,w, and m < n If we W then w,...,w,, w is a linearly
dependent set, whence aw + aw; + - + a,w, = 0, and not all of the
a;’s are 0. If ¢ = 0, by the linear independence of the w; we would get that
each a; = 0, a contradiction. Thus a # 0, and so w = —a” Yow, +
-+ 4+ a,w,). Consequently, w,,...,w, span W; by this, W is finite-
dimensional over F, and furthermore, it has a basis of m elements, where
m < n. From the definition of dimension it then follows that dim W <
dim V.

Now, let w,, ..., w, be a basis of W. By Lemma 4.2.5, we can fill this
out to a basis, w,,..., Wy, 0y,...,0, of V, where m + r = dim V and
m = dim W. .

Let 7,,...,7, be the images, in V = V[W, of v,,...,v,. Since any
vector v € V is of the form v = oyw; + - + O, + Bvg + -+ + B,
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then 7, the image of o, is of the form 7 = By + -+ B3, (since b, =
Wy =+ =1, =0). Thus7,...,7, span V/W. We claim that they are
linearly independent, for if y,0, + --- + 70 =0 then yo, +--- +
Y0, € W, and so yo; + - + y0, = Awy + -+ + Aw,, which, by the
linear independence of the set wy,...,w,, U15-..,0, forces y; = +-- =
Y»=4A4 == 4, =0. We have shown that VIW has a basis of r
elements, and so, dim V/W =r = dim V — m = dim V — dim W,

COROLLARY  If 4 and B are finite-dimensional subspaces of a vector space V,
then A + B is finite-dimensional and dim (A + B) = dim (4) + dim (B) —
dim (4 n B).

Proof. By the result of Problem 13 at the end of Section 4.1,

A+B _ 4
B " AnB

and since 4 and B are finite-dimensional, we get that
%MA+&—dm3=dm(A;§=dm(‘4)

= dim 4 — dim (4 n B).

Transposing yields the result stated in the lemma.

Problems

1. Prove Lemma 4.2.2.

2. (a) If Fis the field of real numbers, prove that the vectors (1, 1, 0, 0),
(0,1, =1,0), and (0,0, 0, 3) in F® are linearly independent
over F.
(b) What conditions on the characteristic of F would make the three
vectors in (a) linearly dependent?

3. If V has a basis of n elements, give a detailed proof that ¥V is isomorphic
to F®,

4”If T is an isomorphism of ¥ onto W, prove that 7' maps a basis of V
onto a basis of W.

5. If V is finite-dimensional and 7 is an isomorphism of V into V, prove
that 7" must map V onto V.

6. If V is finite-dimensional and T is a homomorphism of V onto V,
prove that T must be one-to-one, and so an isomorphism.

7. If V is of dimension n, show that any set of n linearly independent
vectors in V forms a basis of V.

-
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8. If Vis finite-dimensional and W is a subspace of ¥ such that dim V' =
dim W, prove that V = W.

9. If V is finite-dimensional and T is a homomorphism of V into itself
which is not onto, prove that there is some » # 0 in V such that
vT = 0.

10. Let F be a field and let F[x] be the polynomials in x over F. Prove
that F[x] is not finite-dimensional over F.

11. Let V, = {p(x) € F[x] | deg p(x) < n}. Define T by
(dg + ayx + o+ o, 2 HT
=0y 4+ a(x + 1) + apx + D2+ 0+ oy y(x + 1)
Prove that T is an isomorphism of V, onto itself.
12. Let W = {ag + ayx + -+ a,_ " P e F[x] | g + o, + - +

®,-; = 0}. Show that W is a subspace of V, and find a basis of W
over F.

13. Let v;,...,2, be a basis of V and let w,,...,w, be any n elements
in V. Define Ton Vby (A2, + -+ + Av)T = Auw, + -+ + Lw,.
(a) Show that R is a homomorphism of V into itself.
(b) When is T an isomorphism?

14. Show that any homomorphism of V into itself, when V is finite-
dimensional, can be realized as in Problem 13 by choosing appropriate
elements wy, ..., w,.

15. Returning to Problem 13, since v,,...,v, is a basis of V, each

w; = o0 + 0+ oY, o € F. Show that the n? elements a;; of
F determine the homomorphism 7.

*16. If dimy V = n prove that dimy (Hom (V,V)) = n?

17. If V is finite-dimensional and W is a subspace of V prove that there
is a subspace W, of Vsuchthat V = W @ W,.

4.3 Dual Spaces

Given any two vector spaces, ¥ and W, over a field F, we have defined
Hom (V, W) to be the set of all vector space homomorphisms of ¥ into W.
As yet Hom (V, W) is merely a set with no structure imposed on it. We
shall now proceed to introduce operations in it which will turn it into a
vector space over F. Actually we have already indicated how to do so in
the descriptions of some of the problems in the earlier sections. However
we propose to treat the matter more formally here.

Let S and T be any two elements of Hom (V, W); this means that these
are both vector space homomorphisms of ¥ into W. Recalling the definition
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of such a homomorphism, we must have (o1 + 03)8 = 9,8 + 0,8 and
(av,)8 = a(v;S) for all 2,0, € V and all x € F. The same conditions also
hold for T.

We first want to introduce an addition for these elements § and T in
Hom (V, W). What is more natural than to define S + T by declaring
o(S + T) = vS + oT for all ve V? We must, of course, verify that $ + 7
is in Hom (¥, W). By the very definition of S + T, if v, v, € V, then
- (@00 + ) (S+ T) = (v +9)S+ (v, +9,)T;  since (01 +2,)S = 0,8 + 0,8
L and (o, + 0,)T = 9T + 2, T and since addition in W is commutative, we
L get (0 + )+ T) = 0,8 + 0,T + 2,8 + 0, . Once again invoking
the definition of § + T, the right-hand side of this relation becomes
0(S+ T) +0,(S + T); we have shown that (0 +0)(S+ T) =
9§ + T) 4+ 2,(S + T). A similar computation shows that ()(S+ T) =
a(@(S + T)). Consequently S + T is in Hom (V,W). Let 0 be that
~ homomorphism of ¥ into W which sends every element of ¥ onto the zero-

element of W; for § € Hom (V, W) let —S be defined by o(—=S8) = —(v5).
- It is immediate that Hom (¥, W) is an abelian group under the addition
defined above.

Having succeeded in introducing the structure of an abelian group on
Hom (V, W), we now turn our attention to defining AS for 1 e F and
§ e Hom (V, W), our ultimate goal being that of making Hom (V, W)
into a vector space over F. For A € F and § € Hom (V, W) we define
AS by 9(AS) = A(vS) for all v € V. We leave it to the reader to show that
AS is in Hom (V, W) and that under the operations we have defined,
Hom (V, W) is a vector space over F. But we have no assurance that
Hom (V, W) has any elements other than the zero-homomorphism. Be
that as it may, we have proved -

LEMMA 431 Hom (V, W) is a vector space over F under the operations
described above.

A result such as that of Lemma 4.3.1 really gives us very little information ;
rather it confirms for us that the definitions we have made are reasonable.
We would prefer some results about Hom (V, W) that have more of a
bife to them. Such a result is provided us in

THEOREM 4.3.1 If V and W are of dimensions m and n, respectively, over F,
then Hom (V, W) is of dimension mn over F.

Proof. 'We shall prove the theorem by explicitly exhibiting a basis of
Hom (V, W) over F consisting of mn elements.

Let vy,. .., v, be a basis of V over F and w, ..., w, one for W over F.
If veV then v = 40 + -+ 4 A, where Ats+ 5 Ay are uniquely de-
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fined elements of F; define T;:V — W by v7T,; = Aw;. From the point
of view of the bases involved we are simply letting v, T;; = O for k # ¢
and v;T;; = w;. It is an easy exercise to see that T; is in Hom (V, W).
Since ¢ can be any of 1,2,...,m and j any of 1,2,...,n there are mn
such T7;’s.

Our claim is that these mn elements constitute a basis of Hom (V, W)
over F. For, let §e€ Hom (V, W); since v,S € W, and since any element
in W is a linear combination over F of wy, ..., w,, v, = oy w; + o, +
sov o+ oy, for some oyq, dyp, ..., 04, in F. In fact, ;S = oy + 0 +
o;w, for ¢ =1,2,...,m Consider § = oy, Ty; + oj,T3, + -+ +
WnTin + 03 Tpg +0r Ty + oo Ty + o+ 0y Ty + -0 +
Ot Top1 + *** + OppTn Let us compute 7,5, for the basis vector . Now
S = Ulay T+t Ty + 0+ UppToy) = a3 (07T1) +
a2 T12) + o0+ Uy (0 Ts) + ° + Uy(%Tomn). Since 3, Ty; = 0 for
i # k and 9, T;; = w;, this sum reduces to yS; = oWy + *** + W,W,,
which, we see, is nothing but ,S. Thus the homomorphisms §, and § agree
on a basis of V. We claim this forces §; = § (see Problem 3, end of this
section). However S is a linear combination of the 7;’s, whence § must
be the same linear combination. In short, we have shown that the mn
elements Ty1, Tigsee-s Tamsevvs Topts++» Ty span Hom (¥, W) over F.

In order to prove that they form a basis of Hom (V, W) over F there
remains but to show their linear independence over F. Suppose that
BuuTi + BiaTip + oo+ BraTiw + -+ BuTig + -+ BiTin + - +
Bui Ty + -+ BunTmn = 0 with B;; all in F. Applying this to 7, we get
0 =0,(B11Tyy + -+ BijTi; + *+* + BunToun) = By + Browwy + -+ +
B, since 9, T;; =0 for ¢ # k and yT,; = w;. However, wy,...,w,
are linearly independent over F, forcing f;; = O for all £ and j. Thus the
T;; are linearly independent over F, whence they indeed do form a basis
of Hom (V, W) over F.

An immediate consequence of Theorem 4.3.1 is that whenever V # (0)
and W # (0) are finite-dimensional vector spaces, then Hom (V, W) does
not just consist of the element 0, for its dimension over F'is nm > 1.

Some special cases of Theorem 4.3.1 are themselves of great interest and
we list these as corollaries.

COROLLARY 1 Ifdimp V = m then dimp Hom (V, V) = m?.

Proof. In the theorem put ¥V = W, and so m = n, whence mn = m?>.

COROLLARY 2 [fdimg V = m then dimp Hom (V, F) = m.

Proof. As a vector space F is of dimension 1| over F. Applying the
theorem yields dimy Hom (V, F) = m. .
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Corollary 2 has the interesting consequence that if ¥ is finite-dimensional
over F it is isomorphic to Hom (V, F), for, by the corollary, they are of
the same dimension over F, whence by Corollary 4 to Lemma 4.2.4 they
must be isomorphic. This isomorphism has many shortcomings! Let us
~explain. It depends heavily on the finite-dimensionality of ¥V, for if V is
- not finite-dimensional no such isomorphism exists. There is no nice, formal
construction of this isomorphism which holds universally for all vector
spaces. It depends strongly on the specialities of the finite-dimensional
situation. In a few pages we shall, however, show that a “nice”’ isomorphism
does exist for any vector space ¥ into Hom (Hom (V, F), F).

DEFINITION  If Vis a vector space then its dual space is Hom (V, F).

We shall use the notation ¥ for the dual space of V. An element of ¥
will be called a linear functional on V into F.

If V is not finite-dimensional the ¥ is usually too large and wild to be
of interest. For such vector spaces we often have other additional structures,
such asa topology, imposed and then, as the dual space, one does not generally
takeall of our ¥ but rather a properly restricted subspace. If Visfinite-dimen-
- sional its dual space ¥ is always defined, as we did it, as all of Hom (V, F).
 In the proof of Theorem 4.3.1 we constructed a basis of Hom (v, W)
using a particular basis of ¥ and one of W. The construction depended
 crucially on the particular bases we had chosen for ¥ and W, respectively.
- Had we chosen other bases we would have ended up with a different basis
. of Hom (V, W). As a general principle, it is preferable to give proofs,
. whenever possible, which are basis-free. Such proofs are usually referred to
~ as invariant ones. An invariant proof or construction has the advantage,
" other than the mere aesthetic one, over a proof or construction using a
basis, in that one does not have to worry how finely everything depends
on a particular choice of bases.

! The elements of ¥ are functions defined on ¥ and having their values
~in F. In keeping with the functional notation, we shall usually write
- elements of ¥ as f, g, etc. and denote the value on v e V as S (v) (rather
~ than as gf).
~ Let V be a finite-dimensional vector space over F and let Ugs..., 0, be
t, a basis of V; let #; be the element of ¥ defined by 3;(v;) = 0 for i # j,
9i(v;) = 1, and F(o0y + o+ + @ + 00 + ap,) =, In fact the 3;
- are nothing but the 77; introduced in the proof of Theorem 4.3.1, for here
W = F is one-dimensional over F. Thus we know that 4,,. .., 3, form a
basis of V. We call this basis the dual basis of V..o 0, I #0€V, by
. Lemma 4.2.5 we can find a basis of the form vy =10, v5,...,0, and so
there is an element in ¥, namely 4, such that (v) =3,(0) =1 #£0.
We have proved

-
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LEMMA 432 If V is finite-dimensional and v # O € V, then there is an
element f € V such that f (v) # 0.

In fact, Lemma 4.3.2 is true if Vis infinite-dimensional, but as we have
1o need for the result, and since its proof would involve logical questions
that are not relevant at this time, we omit the proof.

Let 5, € V, where V is any vector space over F. As f varies over V, and
v, is kept fixed, f (z,) defines a functional on V into F; note that we are merely
interchanging the role of function and variable. Letus denote this function by 7, ;

vo >
in other words T, (f) =f(v) for any fe 7. What can we say about
T,? To begin with, T,(f + g = (f + &) =/ (@) + &) =
T, (f) + T,(g); furthermore, 7:,,0(lf) = (M )(w) = & (vol = AT, (f)
Thus T, is in the dual space of V! We write this space as V and refer to
it as the second dual of V.

Given any element » € V we can associate with it an element T, in 7.
Define the mapping y:V — 1% by oy = T, for every ve V. Is § a homo-
morphism of ¥ into P? Indeed it is! For, T,y (f) =/ (0 + w) =/ () +
f(w) = Tv(f) + Tw(f) = (Tv + Tw)(f)’ and so Tv+w = Tv + Tw}
that is, (v + w)Y = v + wy. Similarly for AeF, (A)y = A(ny). Thus
Y defines a homomorphism of V into V. The construction of ¥ used no
basis or special properties of V; it is an example of an invariant construction.

When is ¥ an isomorphism? To answer this we must know when 0 =0,
or equivalently, when T, =0. But if T, = 0, then 0 = T,(f) =f (@)
for all fe V. However as we pointed out, without proof, for a general
vector space, given v # O there is an fe€ V with f(v) # 0. We actually
proved this when V is finite-dimensional. Thus for V finite-dimensional
(and, in fact, for arbitrary V) y is an isomorphism. However, when V is
finite-dimensional  is an isomorphism onto f}; when V is infinite-dimen-
sional { is not onto.

If V is finite-dimensional, by the second corollary to Theorem 4.3.1, V
and ¥ are of the same dimension; similarly, ¥ and 7 are of the same dimen-
sion ; since ¥ is an isomorphism of V into 7, the equality of the dimensions
forces | to be onto. We have proved

LEMMA 4.3.3 If V is finite-dimensional, then \j is an isomorphism of V onlo 7.

We henceforth identify ¥ and 7, keeping in mind that this identification
is being carried out by the isomorphism .

DEFII\iITION If W is a subspace of V then the annihilator of W, A(W) =
{feV]|f(w) =0allwe W} .

We leave as an exercise to the reader the verification of the fact that
A(W) is a subspace of V. Clearly if U = W, then AU) o A(W).




Sec. 4.3 Dual Spaces

Let W be a subspace of V, where V is finite-dimensional. If fe ¥ let

f be the restriction of f to W; thus f is defined on W by f (w) = f (w) for

every we W. Since fe 7, clearly f e W. Consider the mapping T:V — W
defined by fT = f for fe V. It is immediate that (f + g)T = - fT + gT
and that (Af)T = A(fT). Thus T is a homomorphism of ¥ into W.
What is the kernel of T? If fis in the kernel of T then the restriction of f
to W must be 0; that is, f(w) = 0 for all we W. Also, conversely, if
f (@) = 0 for all we W then fis in the kernel of 7. Therefore the kernel
of T is exactly A(W).

We now claim that the mapping T is onto W. What we must show is
that given any element 4 € W, then 4 is the restriction of some fe V, that
is h =f By Lemma 4.2.5, if w,,...,w, is a basis of W then it can be
expanded to a basis of V of the form w,, ..., w,, v;,..., v, where r + m =
dim V. Let W, be the subspace of ¥ spanned by v;,...,7,. Thus V =
W@ W,. If he W define fe V by: let ve V be written as v = w + wy,
we W, w, € Wy; then f (v) = h(w). Itis easy to see that fis in ¥ and that
Jf=h Thus b = fT and so T maps ¥ onto W. Since the kernel of T is
A(W) by Theorem 4.1.1, W is isomorphic to VJA(W). In particular they
have the same dimension. Let m = dim W, n = dim V, and r = dim
A(W). By Corollary 2 to Theorem 4.3.1, m = dim W and n = dim V.
However, by Lemma 4.2.6 dim V/A(W) = dim V — dim A(W) = n — 1,
and so m = n — r. Transposing, r = n — m. We have proved

THEOREM 4.3.2 If V is finite-dimensional and W is a subspace of V, then
W is isomorphic to V|A(W) and dim A(W) = dim V — dim W.

COROLLARY A(A(W)) = W. -

Proof. Remember that in order for the corollary even to make sense,
since W < Vand A(A(W)) < 7, we have identified ¥ with 7. Now W <
A(A(W)), for if we W then wy = T, acts on V by T, Ww(f) =f(w) and
so is O for all fe A(W). However, dim A(A(W)) = dim V — dim A(W)
(applying the theorem to the vector space I and its subspace 4(W)) so
that dim 4(4(W)) = dim ¥V — dim A(W) = dim V — (dim V — dim W) =
dimW. Since W < A(A(W)) and they are of the same dimension, it
follows that W = A(4(W)).

Theorem 4.3.2 has application to the study of systems of linear homogeneous
equations. Consider the system of m equations in n unknowns

ay1%; + x5 + 0+ agx, =0,

Ay1%; + Gyp%, + v+ ayx, = 0,

Il
L

Am1X1 + QaX; + 0+ @,,%,
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where the g;; are in F. We ask for the number of linearly independent
solutions (x;, ..., x,) there are in F™ to this system.

In F™ let U be the subspace generated by the m vectors (a,;,a5, - - - ,41,),
(15 225 -+ > 82p)s -+ > (Bmi> Bmas - - - 5 Gpy) and suppose that U is of
dimension 7. In that case we say the system of equations is of rank r.

Lety; = (1,0, ...,0),5, = (0,1,0,...,0), ...,0,= (0,0, ..., 0, 1)
be used as a basis of F™ and let 4,, d,, ..., 3, be its dual basis in F®™.
Any feF®™ is of the form f= x,3, + x,0, + -+ + x,0,, where the
x;€ F. When is fe A(U)? In that case, since (a,4,...,4a,,) € U,

0 =f<a11’ Qyps« - aln)

= f(ay00 + 0 + ay0,)

= (%01 + %205 + - + x,0,)(a101 + -+ + ay,0,)

= X181y + X8y, + 0t Xl
since 3;(v;) = Ofor: # jand §;(v;) = 1. Similarly the other equations of the
system are satisfied. Conversely, every solution (x,..., x,) of the system
of homogeneous equations yields an element, x,3;, + - -+ + x,0,, in A(U).
Thereby we see that the number of linearly independent solutions of the

system of equations is the dimension of A(U), which, by Theorem 4.3.2 is
n — 7. We have proved the following:

THEOREM 4.3.3 If the system of homogeneous linear equations :
ap ¥ + 0+ agx, =0,

ay1% + 0+ ayx, = 0,

Am1¥1 + o+ Apn¥n = 0’

where a;; € F is of rank 1, then there are n — r lingarly independent solutions in
F®,

COROLLARY If n > m, that is, if the number of unknowns exceeds the number
of equations, then there is a solution (x,, . .., x,) where not all of x,, . .., x, are 0.

Proof. Since U is generated by m vectors, and m < n, r = dim U <
m < n; applying Theorem 4.3.3 yields the corollary.

Problems

1. Prove that A(W) is a subspace of V.

2. If S is a subset of V let A(S) = {fe V|f(s) = OallseS}. Prove
that A(S) = A(L(S)), where L(S) is the linear span of S. :
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3. If §, Te Hom (V, W) and ;S = »;T for all elements v; of a basis
of V, prove that § = 7.

4. Complete the proof, with all details, that Hom (V, W) is a vector
space over F.

5. If Y denotes the mapping used in the text of V into 17, give a complete
proof that i is a vector space homomorphism of ¥ into 7.

6. If V is finite-dimensional and o, # v, are in V, prove that there is an
JS€ Vsuch that f (s;) # f(v,).
7. If W, and W, are subspaces of V, which is finite-dimensional, describe
AW, + W,) in terms of A(W,) and A(W,).
8. If Vis a finite-dimensional and W, and W, are subspaces of V, describe
AW, n W,) in terms of A(W,) and A(W)).
9. If Fis the field of real numbers, find 4(W) where
(a) W is spanned by (1, 2, 3) and (0, 4, —1).
(b) W is spanned by (0, 0, 1, —1), (2, 1, 1, 0),and (2, 1,1, —1).
10. Find the ranks of the following systems of homogeneous linear equations
over F, the field of real numbers, and find all the solutions.
(@) #, + 2%, — 3x5 + 4x, = 0,
X+ 3xy — x5 =0,
6x; + x; + 2x, = 0.
(b) %y + 3%, + x5 = 0,
% + 4x, + x5 = 0.
(€) %, + %3 + x5 + x4 + x5 = 0,
* + 2x, =0,
dx; + Txy + x5 + x4 + x5 = 0, -
Xy — X3 — x4 — x5 = 0.
11. If f and g are in ¥ such that () = 0 implies g(») = 0, prove that
g = Affor some 1€ F.

4.4 Innelj Product Spaces

In our discussion of vector spaces the specific nature of F as a field, other
thagrthe fact that it is a field, has played virtually no role. In this section
we no longer consider vector spaces V over arbitrary fields F; rather, we
restrict F to be the field of real or complex numbers. In the first case ¥
is called a real vector space, in the second, a complex vector space.

We all have had some experience with real vector spaces—in fact both
analytic geometry and the subject matter of vector analysis deal with these.
What concepts used there can we carry over to a more abstract setting?
To begin with, we had in these concrete examples the idea of length;
secondly we had the idea of perpendicularity, or, more generally, that of

-
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angle. These became special cases of the notion of a dot product (often
called a scalar or inner product.)

Let us recall some properties of dot product as it pertained to the special
case of the three-dimensional real vectors. Given the vectors v = (xy,%,,%;)
and w = (9,,,,03), where the #’s and »’s are real numbers, the dot prod-
uct of v and w, denoted by v-w, was defined as v-w = %9, + 2,9, +
%395. Note that the length of v is given by Vo2 and the angle 6 between
v and w is determined by

0 v w
COSs == T —_—

Voo Vw-w
What formal properties does this dot product enjoy? We list a few:

l.v:v 20andv-v = 0ifand only if v = 0;
2.0 w = w-v;

3. ur(aw + fw) = a(u-v) + PBlu-w);

for any vectors u, v, w and real numbers «, .

Everything that has been said can be carried over to complex vector
spaces. However, to get geometrically reasonable definitions we must make
some modifications. If we simply define v w = x;9; + x,9, + x5, for
v = (%1, %5, %3) and w = (9y,9,,73), where the #’s and »’s are complex
numbers, then it is quite possible that v-2 = 0 with v # 0; this is illus-
trated by the vector v = (1,¢,0). In fact, 2-» need not even be real. If,
as in the real case, we should want »: » to represent somehow the length of
v, we should like that this length be real and that a nonzero vector should
not have zero length.

We can achieve this much by altering the definition of dot product
slightly. If & denotes the complex conjugate of the complex number o,
returning to the v and w of the paragraph above let us define v-w =
%19 + %39, + x39;. For real vectors this new definition coincides with
the old one; on the other hand, for arbitrary complex vectors » # 0, not
only is » * » real, it is in fact positive. Thus we have the possibility of intro-
ducing, in a natural way, a nonnegative length. However, we do lose
something; for instance it is no longer true that v-w = w-». In fact the
exact relationship between these is v- w = w-v. Let us list a few properties
of this dot product:

l.v-w = w-o;

2. 09 >0,andv-» = Oifand only if v = 0;
3. (ou + Po)-w = a(u-w) + Pv-w);

4 u-(ow + Pw) = Gu-v)+ Plu-w);

for all complex numbers o, § and all complex vectors u, v, w.
We reiterate that in what follows F is either the field of real or complex -
numbers.
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DEFINITION The vector space V over F is said to be an inner product
space if there is defined for any two vectors u, v € V an element (u, v) in
F such that

1. (u, v) = (v, u);
2. (u,u) > 0and (4, u) = 0ifand only ifu = 0;
3. (qu + Po, w) = alu, w) + B(v, w);

for any u, v, we Vand a, B e F.

A few observations about properties 1, 2, and 3 are in order. A function
satisfying them is called an inner product. If F is the field of complex numbers,
property 1 implies that (u, «) is real, and so property 2 makes sense. Using
1 and 3, we see that (u, w + Pw) = (w + Pw, u) = a(v, u) + P(w, u) =
a(v, u) + B(W) = a(u, v) + B(ua w).

We pause to look at some examples of inner product spaces.

Example 44.1 In F® define, for u = (a,...,a,) and o = (B, ...,
B.), (u,0) = o,B; + 0B, + -+ + «,B,. This defines an inner product
on F®.

Example 4.4.2 In F® define foru = (a;, a,) and v = (B, B,), (4, v) =
20,8, + aBy + ayB; + a,B,. It is easy to verify that this defines an
inner product on F(?,

Example 44.3 Let V be the set of all continuous complex-valued
functions on the closed unit interval [0, 1]. If £ (¢), g(t) € V, define

1
s = [ o z@a
0
We leave it to the reader to verify that this defines an inner product on V.

For the remainder of this section ¥ will denote an inner product space.

DEFINITION If ve V then the length of v (or norm of v), written ||o||, is
defined by ||2]] = +/(z, ).

LEMMA 441 If uw,oeV and o, feF then (au + Pv, au + Po) =
oox(u, u) + af(u, v) + %B(v, v) + BB(v, v).

Proof. By property 3 defining an inner product space, (ou + fo, au +
Bv) = a(u,au + Bv) + P(v, au + Pv); but (u, ou + Pv) = x(u, u) + B(u, v)
and (v, au + Pv) = ®(v, u) + PB(v,v). Substituting these in the expression
for (au + Puv, au + Pv) we get the desired result.
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COROLLARY  Jloaz| = |o] Jlu].

Proof. |lou|® = (om, au) = o&(u,u) by Lemma 4.4.1 (witho =0).
Since o@ = |a|? and (u,u) = |u]|?, taking square roots yields [au| =

loc] fle]l-

We digress for a moment, and prove a very elementary and familiar
result about real quadratic equations.

LEMMA 4.4.2 If a, b, c are real numbers such that a > O and ad? + 2b4 +
¢ > 0 for all real numbers A, then b% < ac.

Proof. Completing the squares,

2
a/'l.z+2b/1+€=l(a/'|.+b)2+<6———b—).
a a

Since it is greater than or equal to O for all 4, in particular this must be
true for A = —bja. Thus ¢ — (b%/a) > 0, and since a > 0 we get b% < ac.

We now proceed to an extremely important inequality, usually known
as the Schwarz inequality :

THEOREM 4.4.1 Ifu, ve V then |(u, v)| < |l |l2.

Proof. If u =0 then both (z,2) = 0 and ||| |¢]| = 0, so that the
result is true there.

Suppose, for the moment, that (u,2) is real and z # 0. By Lemma
4.4.1, for any real number A, 0 < (Au + v, du + v) = A% (u, u) +
2(u, v)A + (v,v) Let a = (y,u), b = (2,0), and ¢ = (v, v); for these the
hypothesis of Lemma 4.4.2 is satisfied, so that > < ac. That is, (u, 0?2 <
(u, u) (v, v); from this it is immediate that |(z,0)| < [lu] ||2]-

If « = (u,0) is not real, then it certainly is not 0, so that ufa is mean-
ingful. Now,

and so it is certainly real. By the case of the Schwarz inequality discussed
in the paragraph above,

u

-

u

1 = <

ol

u
o
since

1

= — |ul,
o]
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we get

N

el

whence |a| < |lu| |lo|. Putting in that a = (z,2) we obtain |(, v)] <
[lzll llo|l, the desired result.

Specific cases of the Schwarz inequality are themselves of great interest.
We point out two of them.

1. If V=F® with (4,v) = 0,8, + - + «,B,, where u = (ay,...,,)
and v = (f;,..., B,), then Theorem 4.4.1 implies that

By + oo+ B l? < (logl® + -+ o) (B> + -+ + [Ba).

2. If V is the set of all continuous, complex-valued functions on [0,1] with
inner product defined by

(f@¢m>=f.ﬂoﬂﬂ@
0
then Theorem 4.4.1 implies that

zsjﬂfmﬁwjlwmva
0 0

jiﬂwaﬂﬂ
0

The concept of perpendicularity is an extremely useful and important
one in geometry. We introduce its analog in general inner product spaces.

DEFINITION If u,v € V then u is said to be orthogonal to v if (u,v) = O.

Note that if u is orthogonal to » then v is orthogonal to u, for (v, u) =
(w,9) =0 = 0.

DEFINITION If W is a subspace of V, the orthogonal complement of W,
W+, is defined by W = {x e V|(x, w) = O for all w e W}.

LEMMA 443 W* is a subspace of V.

“Proof. 1If a,be W* then for all o, fe F and all we W, (aa + pb, w) =
o(a, w) + B(b, w) = O since a, b e W*.

Note that W n W+t = (0), for if w e W n W* it must be self-orthogonal,
that is (w,w) = 0. The defining properties of an inner product space
rule out this possibility unless w = 0.

One of our goals is to show that ¥ = W + W<*. Once this is done,
the remark made above will become of some interest, for it will imply that
V is the direct sum of W and W™

-
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DEFINITION The set of vectors {v;} in V is an orthonormal set if

. Each v, is of length 1 (i.e., (v;, v;) = 1).
2 For i # j, (v, v5) = 0.
LEMMA 4.4.4 If {v;} is an orthonormal set, then the vectors in {v;} are linearly
independent. If w = ooy + <<+ + v, then o; = (w,v;) for i =1,2,...,n

Proof. Suppose that ap; + av, + -+ + o, = 0. Therefore 0 =
(@2 + -0+ o0, vy) = oy(vg, v;) + -0+ a,(0, ;). Since (v, 9;) =0
for j # ¢ while (v;v;) = 1, this equation reduces to o; = 0. Thus the
v;’s are linearly independent.

If w= o9, + " + a,0, then computing as above yields (w, v;) = a;.

Similar in spirit and in proof to Lemma 4.4.4 is

LEMMA 445 If {v,, ..., 0v,} is an orthonormal set in V and if we V, then
u=w — (w, o)y — (W )v, == (W, V)7 — = (w, v,)v, i
orthogonal to each of vy, v,y .. ., U,

Proof. Computing (u,v;) for any ¢ <

< n, using the orthonormality of
Ugs - - - 5 U, yields the result.

The construction carried out in the proof of the next theorem is one which
appears and reappears in many parts of mathematics. It is a basic pro-
cedure and is known as the Gram-Schmidt orthogonalization process. Although
we shall be working in a finite-dimensional inner product space, the
Gram-Schmidt process works equally well in infinite-dimensional situations.

THEOREM 4.4.2 Let V be a finite-dimensional inner product space; then V has
an orthonormal set as a basis.

Proof. Let V be of dimension n over F and let v, . . ., v, be a basis of V.
From this basis we shall construct an orthonormal set of n vectors; by
Lemma 4.4.4 this set is linearly independent so must form a basis of V.

We proceed with the construction. We seek n vectors w,, ..., w, each
of length 1 such that for i # j, (w;, w;) =0. In fact we shall finally
produce them in the following form: w, will be a multiple of v,, w, will be
in the linear span of w, and v,, w4 in the linear span of w,, w,, and 5, and
more generally, w; in the linear span of w,, w,, ..., w;_;, v;.

Let

U

3
[o4 ]

Uy 41 -
(1, 1) = (uvlu nvln) uvlnz(" ") =

then
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hence ||w,| = 1. We now ask: for what value of « is aw; + v, orthogonal
w,;? All we need is that (ow; + v, w;) = 0, that is a(w;, w;) +
2, wy) = 0. Since (w;,w() =1, « = — (v, w;) will do the trick. Let
, = — (03, wy)wy + v;; u, is orthogonal to w, ; since vy and v, are linearly
ndependent, w; and v, must be linearly independent, and so u, # 0.
t wy, = (4,/||u,]); then {w, w,} is an orthonormal set. We continue.
et uy = —(v3, w)w, — (v3, w,)w, + v3; a simple check verifies that
us, w;) = (43, w,) = 0. Since w,, w,, and v; are linearly independent
({for w;, w, are in the linear span of v; and v,), u3 # 0. Let w;y = (u;/[|us]);
en {w,, w,, w3} is an orthonormal set. The road ahead is now clear.
Suppose that we have constructed wy, w,,...,w;, in the linear span of
45+ - - » Ui Which form an orthonormal set. How do we construct the next
ne, w;+,? Merely put u;,q = — (0,40, w)wy — (Virr, W)W, — - —
i+ W)w; + v;4q. That u; # 0 and that it is orthogonal to each of
15« -+ » W; we leave to the reader. Put w;,; = (u;41/]#;4 1)}

In this way, given r linearly independent elements in ¥, we e€an construct
n orthonormal set having r elements. If particular, when dim V = #,
om any basis of ¥V we can construct an orthonormal set having n elements.
his provides us with the required basis for V.

&

@

 We illustrate the construction used in the last proof in a concrete case.
'i'vLet F be the real field and let V be the set of polynomials, in a variable x,
‘over F of degree 2 or less. In V we define an inner product by: if p(x),
‘q(x) € V, then

(p(x), ¢(x)) = Jl b(x)q(x) dx.

Let us start with the basis »; = 1, v, = x, v; = x* of V. Following the
construction used,

1

1_———-_.—___

ol \/J‘ 1 de V2

U, = —(vb wl)wl + 75,

3

whicK after the computations reduces to u, = ¥, and so

= \/J .

—1
uy = — (v3, wy) wy —-(v,,wz)w2+v3=-?+x2,

finally,
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and so

-1
—-+x

V10

w-—— = —1 + 3x3).
: = ( )

ENEET

We mentioned the next theorem earlier as one of our goals. We are now
able to prove it.

THEOREM 4.4.3 If V is a finite-dimensional inner product space and if W is
a subspace of V, then V.= W + W*. More particularly, V is the direct sum of
W and W*.

Proof. Because of the highly geometric nature of the result, and because
it is so basic, we give several proofs. The first will make use of Theorem
4.4.2 and some of the earlier lemmas. The second will be motivated geo-
metrically.

First Proof. As a subspace of the inner product space ¥, W is itself an
inner product space (its inner product being that of ¥ restricted to W).
Thus we can find an orthonormal set wy, . . ., w, in W which is a basis of .
If veV, by Lemma 4.45, v, =v — (v, w)w; — (v, wy)w, — -+ —
(v, w,)w, is orthogonal to each of wy,...,w, and so is orthogonal to W.
Thus voe W*, and since v =9, + ((v, w)w;, + -+ + (v, w)w,), ve
W + Wt Therefore V.= W + W', Since W n W' = (0), this sum is
direct.

Second Proof. 1In this proof we shall assume that F is the field of real
numbers. The proof works, in almost the same way, for the complex
numbers; however, it entails a few extra details which might tend to obscure
the essential ideas used.

Let » € V; suppose that we could find a vector w, € W such that
lo — wel < o — w]| for all we W. We claim that then (v — wy, w) = 0
for all w e W, that is, v — w, € W*.

If we W, then wy + w € W, in consequence of which

(@ —wo, v — wp) < (v — (wy + w), v — (wy + w)).

However, the right-hand side is (w, w) + (v — wg, v — wgy) — 2(1;’— Wos W)s
leading to 2(v — wp, w) < (w, w) for all we W. If m is any positive
integer, since w/m € W we have that

g(z)—w(,,w) =2<v—wo,9>s<f,l£>=—l—2(w,w),(
m m m m m

and so 2(v — wy, w) < (1/m)(w, w) for any positive integer m. However,
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;

(1/m)(w, w) > 0 as m — oo, whence 2(v — wy, w) < 0. Similarly, —we W,
and 50 0 < —2(v — wp, w) = 2(v — wy, —w) < 0, yielding (v — w,, w)
= 0forallweW. Thus v — wye W'; hence vew, + Wt <« W + W-.
To finish the second proof we must prove the existence of a w,e W
ch that ||o — wy|| < o — w| for all we W. We indicate sketchily two
ays of proving the existence of such a w,,.

Let uy,..., u, be a basis of W; thus any w e W is of the form w =
% + 0+ Ay Let B;; = (u;,u;) and let y; = (v,u;) for e V. Thus
w—wo—w =@ diu — = Ly, v — haw, — - — haw,) =
(9,0) — ZA44;B:; — 2 A;p;. This quadratic function in the 1’s is nonnegative
and so, by results from the calculus, has a minimum. The A’s for this
minimum, 4,9, 2, . 1 give us the desired vector wy =
LOu + -+ 4Oy in W.

A second way of exhibiting such a minimizing w is as follows. In V define
a metric { by {(x,») = |x — »|; one shows that { is a proper metric on V,
and V is now a metric space. Let S = {weW| |l — w| < [ol|}; in
this metric § is a compact set (prove!) and so the continuous function
f(w) = v — w|| defined for we S takes on a minimum at some point
wo € S. We leave it to the reader to verify that w, is the desired vector
satisfying |lo — wy| < |[v — w| for all we W.

COROLLARY  If Vis a finite-dimensional inner product space and W is a subspace
of Vthen (WHL = W.

Proof. If we W then for any ue W', (w,u) =0, whence W c
(WHt. Now V=W + W' and V = W' + (WH)L; from these we get,
since the sums are direct, dim (W) = dim (W%)'). Since W < (W)t
and is of the same dimension as (W*)*, it follows that W = (W1)L,

Problems
In all the problems V is an inner product space over F.

L. If F is the real field and ¥ is F®, show that the Schwarz inequality
in}plies that the cosine of an angle is of absolute value at most 1.

2. If F is the real field, find all 4-tuples of real numbers (a, b, ¢, d) such
that for u = (ay, ), v = (By, B2) € FP, (u,0) = aa,B; + oy, +
coy B, + doyfy defines an inner product on F(?),

3. In V define the distance {(u, v) from u to v by {(4, v) = ||lu — v|]. Prove
that
(a) {(4,v) = 0and {(u,v) = Oifand only ifu = 0.

(b) L(u, v) = L(v, u).
(c) {(u,v) < {(u, w) + {(w,v) (triangle inequality).

s
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4.

If {wy, ..., w,} is an orthonormal set in V, prove that

|(w;, v)]? < ||v)|? for any v € V.

o

..
I
-

(Bessel inequality)

. If V is finite-dimensional and if {w,, ..., w,} is an orthonormal set in

V such that
Nl
i=1

for every v € V, prove that {wy, ..., w,} must be a basis of V.

. Ifdim V =n and if {w,,...,w,} is an orthonormal set in ¥V, prove

that there exist vectors w,,y,...,w, such that {wg, ..., w,, W, (,
.., w,} is an orthonormal set (and basis of V).

. Use the result of Problem 6 to give another proof of Theorem 4.4.3.

8. In ¥V prove the parallelogram law:

10.

11.

12.

le + o2 + u — ol = 2(Jul® + |o]l?).

Explain what this means geometrically in the special case V = F(®,
where F is the real field, and where the inner product is the usual dot
product.

. Let V be the real functions y = f (x) satisfying d?y/dx®> + 9y = 0.

(a) Prove that ¥V is a two-dimensional real vector space.
ys

(b) In V define (1, z) = J yz dx. Find an orthonormal basis in V.
0

Let V be the set of real functions y = f (x) satisfying

ﬁ_sdy

d
=3 d2+11dy 6y = 0.

(a) Prove that Vis a three-dimensional real vector space.

(b) In V define
0
(u, 0) = f uv dx.

Show that this defines an inner product on ¥ and find an ortho-
normal basis for V.

If W is a subspace of V and if v € V satisfies (v, w) + (w, ) < (w, w
for every w e W, prove that (v, w) = 0 for every we W. .
If V is a finite-dimensional inner product space and if £ is a linear

functional on V (i.e., fe V), prove that there is a #, € ¥ such that
(@) = (v,u) forallve V.
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;' 4.5 Modules

* The notion of a module will be a generalization of that of a vector space;
- instead of restricting the scalars to lie in a field we shall allow them to be
elements of an arbitrary ring.

This section has many definitions but only one main theorem. However
the definitions are so close in spirit to ones already made for vector spaces
that the main ideas to be developed here should not be buried in a sea of
definitions.

- DEFINITION Let R be any ring; a nonempty set M is said to be an
- R-module (or, a module over R) if M is an abelian group under an operation
4+ such that for every r € R and m € M there exists an element rm in M
~ subject to

1. r{a + b) = ra + rb;
2. 7(sa) = (rs)a;
8. (rts)a=ra+ s

; foralla,be Mandr, seR.

. If Rhas a unit element, 1, and if Im = m for every element m in M, then
M is called a unital R-module. Note that if R is a field, a unital R-module
is nothing more than a vector space over R. All our modules shall be unital ones.
Properly speaking, we should call the object we have defined a lgft R-
- module for we allow multiplication by the élements of R from the left.
- Similarly we could define a right R-module. We shall make no such left-right
 distinction, it being understood that by the term R-module we mean a left
R-module.

Example 4.5.1 Every abelian group G is a module over the ring of
integers!

For, write the operation of G as + and let na, for a € G and 7 an integer,
have the meaning it had in Chapter 2. The usual rules of exponents in
abelian groups translate into the requisite properties needed to make of G
a module over the integers. Note that it is a unital module.

Example 45.2 Let R be any ring and let M be a left-ideal of R. For
T€R, me M, let rm be the product of these elements as elements in R.
The definition of left-ideal implies that rm € M, while the axioms defining a
ring insure us that A is an R-module. (In this example, by a ring we mean
-an associative ring, in order to make sure that r(sm) = (rs)m.)

Example 4.5.3 The special case in which M = R; any ring R is an
R-module over itself. )

-
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Example 454 Let R be any ring and let A be a left-ideal of R. Let
M consist of all the cosets, a + A, where a € R, of 1in R.

In Mdefine (a+ 1) + (b + 1) =(a+b) + Aandr(a + A) =ra + A
M can be shown to be an R-module. (See Problem 2, end of this section.)
M is usually written as R — A (or, sometimes, as R/A) and is called the
difference (or quotient) module of R by A.

An additive subgroup 4 of the R-module M is called a submodule of M
if whenever 7 € R and a € 4, then ra € A.

Given an R-module M and a submodule 4 we could construct the quotient
module M/A in a manner similar to the way we constructed quotient
groups, quotient rings, and quotient spaces. One could also talk about
homomorphisms of one R-module into another one, and prove the appro-
priate homomorphism theorems. These occur in the problems at the end
of this section. :

Our interest in modules is in a somewhat different direction; we shall
attempt to find a nice decomposition for modules over certain rings.

DEFINITION If M is an R-module and if My,..., M, are submodules
of M, then M is said to be the direct sum of My, ..., M, if every element
me M can be written in a unique manner as m = my + my + "+ M

where m; e My, mye M,,..., me M,.

As in the case of vector spaces, if M is the direct sum of M, ..., M, then
M will be isomorphic, as a module, to the set of all s-tuples, (my, .. ., mg)
where the ith component m; is any element of M, where addition is com-
ponentwise, and where r(my,...,m) = (rmy, rm,, ..., rm) for reR.
Thus, knowing the structure of each M; would enable us to know the
structure of M.

Of particular interest and simplicity are modules generated by one
element; such modules are called ¢pelic. To be precise:

DEFINITION An R-module M is said to be ¢yclic if there is an element
mg € M such that every m € M is of the form m = rmy where r € R.

For R, the ring of integers, a cyclic R-module is nothing more than a
cyclic group.
We still need one more definition, namely,

DEFINITION An R-module M is said to be finitely generated if there exist
elements a,, - - -, a, € M such that every m in M is of the form m = ria; +
18, + -+ 1,4, :
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With all the needed definitions finally made, we now come to the theorem
~ which is the primary reason for which this section exists. It is often called
“the fundamental theorem on finitely generated modules over Euclidean rings.
In it we shall restrict R to be a Euclidean ring (see Chapter 3, Section 3.7);
- however the theorem holds in the more general context in which R is any
. principal ideal domain.

- THEOREM 4.51 Lot R be a Euclidean ring; then any finitely generated R-
module, M, is the direct sum of a finite number of cyclic submodules.

Proof.  Before becoming involved with the machinery of the proof, let us
sec what the theorem states. The assumption that M is finitely generated
tells us that there is a set of elements ay, - -+, a,€ M such that every ele-
ment in M can be expressed in the form r,a, + 728, + - + r,a,, where
‘the 7;€ R. The conclusion of the theorem states that when R is properly
conditioned we can, in fact, find some other set of elements &,, ..., b, in
M such that every element m e M can be expressed in a unique fashion
asm = s;b; + -+ + 5.b, with 5;e R. A remark about this uniqueness; it
does not mean that the s; are unique, in fact this may be false; it merely

b

states that the elements s;b; are. That is, if m = siby + -+ + 5,6, and

m = s1by + -+ + s;b, we cannot draw the conclusion that 5 = s},

$2 = $3,...,5, = 5, but rather, we can infer from this that 510, =
’

$1by, .oy 5h, = Saba

Another remark before we start with the technical argument. Although
the theorem is stated for a general Euclidean ring, we shall give the proof in
all its detail only for the special case of the ring of integers. At the end we
shall indicate the slight modifications needed to make the proof go through
for the more general setting. We have chosen this path to avoid cluttering
up the essential ideas, which are the same in the general case, with some
technical niceties which are of no importance.

Thus we are simply assuming that M is an abelian group which has a
finite-generating set. Let us call those generating sets having as few elements
as possible minimal generating sets and the number of elements in such a
minimal generating set the rank of M.

# Our proof now proceeds by induction on the rank of M.

If the rank of M is 1 then M is generated by a single element, hence it is
cyclic; in this case the theorem is true. Suppose that the result is true for all
abelian groups of rank ¢ — 1, and that M is of rank q.

Given any minimal generating set ay, ..., a, of M, if any relation of the
form nja, + nya, + -+ + nga, = 0 (ny,...,n, integers) implies that
My, = nyay =+ = nua, = 0, then M is the direct sum of My, M, ..., M,
where each M; is the cyclic module (ie., subgroup) generated by 4;, and
- 50 we would be done. Consequently, given any minimal generating set

s
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by,..., b, of M, there must be integers ry,. .., r, such that rby + o+
b, = 0 and in which not all of b, r2b2,... r,b, are 0. Among all
p0351ble such relations for all minimal generating sets there is a smallest
possible positive integer occurring as a coefficient. Let this integer be s,

and let the generating set for which it occurs be ay, ..., a;. Thus

518y + spap + 0+ 5,4, = 0. (1)

We claim that if r,a;, + -+ + r,a, = 0, then s, | ry; for r, = ms; + ¢,

0<i< sl, and so multiplying Equation (1) by m and subtracting from
rna; + -+ ra, = 0 leads to ta, + (r, — msy)a, + -+ + (1, — msy)a,

0; since £ < 5, and s, is the minimal possible positive integer in such a
relation, we must have that ¢ = 0.

We now further claim that s, |s; for i = 2,..., ¢. Suppose not; then
S5y X 5y, 52y, 50 5, = mysy + 1,0 <t <s5,. Now ay = a; + myay, a5,...,4,
also generate M, yet s;a; + ta, + 535 + - + 5,4, = 0; thus ¢ occurs
as a coefficient in some relation among elements of a minimal generating
set. But this forces, by the very choice of s, that either { = O or ¢ > ;.
We are left with £ = 0 and so s, | s,. Similarly for the other 5;. Let us
write s; = m;s,.

Consider the elements af = a; + mya, + maas + -+ + mq P G2+ -+ Oge
They generate M; moreover, s,a; = 518; + Mysia; + - + ms,a, =
516y + S8, + 0+ 58, = 0. If nal + ray + -0 + 1, = 0, substitut-
ing for a*, we get a relation between a,, ..., a, in which the coefficient of
a, is r;; thus 5, |, and so r,a} = 0. If M, is the cyclic module generated
by a¥ and if M, is the submodule of M generated by a,, ..., a, we have
just shown that M, n M, = (0). But M, + M, = M since af, a3, ..., 4,
generate M. Thus M is the direct sum of M, and M,. Since M, is generated
by a,,... 2 its rank is at most ¢ — 1 (in fact, it is ¢ — 1), so by the
induction M , is the direct sum of cyclic modules. Putting the pieces together
we have decomposed M into a direct sum of cyclic modules.

COROLLARY Any finite abelian group is the direct product (sum) of cyclic
groups.

Proof. The finite abelian group G is certainly finitely generated; in
fact it is generated by the finite set consisting of all its elements. Therefore
applying Theorem 4.5.1 yields the corollary. This is, of course, the result
proved in Theorem 2.14.1.

Suppose that R is a Euclidean ring with Euclidean function d. We
modify the proof given for the integers to one for R as follows:

1. Instead of choosing s, as the smallest possible positive integer occurring
in any relation among elements of a generating set, pick it as that element
of R occurring in any relation whose d-value is minimal.
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2. In the proof that s, |, for any relation rja; + -+ + r2, = 0, the
- only change needed is that ry = ms; + ¢ where either

1 =0 or d(t) < d(s));

the rest goes through. Similarly for the proof that 51 s

Thus with these minor changes the proof holds for general Euclidean
rings, whereby Theorem 4.5.1 is completely proved.

}? Problems

1.

2.
3.

Verify that the statement made in Example 4.5.1 that every abelian
group is a module over the ring of integers is true.

Verify that the set in Example 4.5.4 is an R-module.

Suppose that R is a ring with a unit element and that M is a module
over R but is not unital. Prove that there exists an m # 0 in M such
that rm = O for all r € R.

Given two R-modules M and N then the mapping 7 from M into N is
called a homomorphism (or R-homomorphism or module homomorphism) if
1. (my + my))T = mT + m,T;
2. (rm )T = r(m;T);
for all my, m, e M and all 7 € R.

4.

If T is a homomorphism of M into Nlet K(T) = {xe M| xT = 0}.
Prove that K(7') is a submodule of M and that I(T) = {(xT | xe M}
is a submodule of N.

The homomorphism T is said to be an isomorphism if it is one-to-ome.
Prove that T is an isomorphism if and only if K(T) = (0).

. Let M, N, Q be three R-modules, and let 7 be a homomorphism of

M into N and § a homomorphism of N into . Define T:S:M —» Q
by m(TS) = (mT)S for any me M. Prove that TS is an R-homo-
morphism of M into @ and determine its kernel, K(TS).

If M is an R-module and 4 is a submodule of M, define the quotient
module M/A (use the analogs in group, rings, and vector spaces as a
“guide) so that it is an R-module and prove that there is an R-homo-
morphism of M onto M/A.

If T'is a homomorphism of M onto N with K(T) = 4, prove that N
is isomorphic (as a module) to M/A.

- If 4 and B are submodules of M prove

(a) 4 n B is a submodule of M.
(b) A+ B = {a+ b|ae 4, be B}isasubmodule of 1.
(c) (4 + B)/B is isomorphic to 4/(4 n B).

-
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10.

11.

*12.

13.

*14.

15.

16.

17.

*18.

An R-module M is said to be érreductble if its only submodules are (0)
and M. Prove that any unital, irreducible R-module is cyclic.

If M is an irreducible R-module, prove that either M is cyclic or that
for everyme M andre R, rm = 0.

If M is an irreducible R-module such that rm # 0 for some re R
and m € M, prove that any R-homomorphism T of M into M is either
an isomorphism of M onto M or that mT = 0 for every m € M.

Let M be an R-module and let E(M) be the set of all R-homomorphisms
of M into M. Make appropriate definitions of addition and multi-
plication of elements of E(M) so that E(M) becomes a ring. (Hint:
imitate what has been done for Hom (¥, V), V a vector space.)

If M is an irreducible R-module such that rm # 0 for some re R
and m € M, prove that E(M) is a division ring. (This result is known
as Schur’s lemma.)

Give a complete proof of Theorem 4.5.1 for finitely generated modules
over Euclidean rings.

Let M be an R-module; if me M let A(m) = {xe R|xm = 0}.
Show that A(m) is a left-ideal of R. It is called the order of m.

If 1 is a left-ideal of R and if M is an R-module, show that for m € M,
Am = {xm | x € A} is a submodule of M.

Let M be an irreducible R-module in which rm # 0 for some re R

and me M. Let my # 0e M and let A(my) = {x € R | xmy = 0}.

(a) Prove that A(m,) is a maximal left-ideal of R (that is, if A is a
left-ideal of R such that R o A o A(mg), then A =R or A =
A(mg)).

(b) As R-modules, prove that M is isomorphic to R — A(mg) (see
Example 4.5.4).

Supplementary Reading

Havmos, PauL R., Finite-Dimensional Vector Spaces, 2nd ed. Princeton, N.J.: D. Van
Nostrand Company, Inc., 1958.
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Fields

In our discussion of rings we have already singled out a special class
which we called fields. A field, let us recall, is a commutative ring
with unit element in which every nonzero element has a multiplicative
inverse. Put another way, a field is a commutative ring in which we
can divide by any nonzero element.

Fields play a central role in algebra. For one thing, results about
them find important applications in the theory of numbers. For
another, their theory encompasses the subject matter of the theory.of
equations which treats questions about the roots of polynomials.

In our development we shall touch only lightly on the field of
algebraic numbers. Instead, our greatest emphasis will be on aspects
of field theory which impinge on the theory of equations. ~Although
we shall not treat the material in its fullest or most general form, we
shall go-far enough to introduce some of the beautiful ideas, due to
the brilliant French mathematician Evariste Galois, which have

Aerved as a guiding inspiration for algebra as it is today.

5.1 Extension Fields

In this section we shall be concerned with the relation of one field to
another. Let F be a field; a field K is said to be an extension of F if K
contains F. Equivalently, K is an extension of F if F is a subfield of K.
Throughout this chapter F will denote a given Jield and K an extension of F.
As was pointed out earlier, in the chapter on vector spaces, if K is

s
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an extension of F, then, under the ordinary field operations in K, K is a vector
space over F. As a vector space we may talk about linear dependence,
dimension, bases, etc., in K relative to F.

DEFINITION The degree of K over F is the dimension of K as a vector
space over F.

We shall always denote the degree of K over F by [K:F]. Of particular
interest to us is the case in which [K:F] is finite, that is, when K is finite-
dimensional as a vector space over F. This situation is described by saying
that K is a finite extension of F.

We start off with a relatively simple but, at the same time, highly effective
result about finite extensions, namely,

THEOREM 5.1.1 If L is a finite extension of K and if K is a finite extension of
F, then L is a finite extension of F. Moreover, [L:F] = [L:K][K:F].

Proof. The strategy we employ in the proof is to write down explicitly
a basis of L over F. In this way not only do we show that L is a finite
extension of F, but we actually prove the sharper result and the one which
is really the heart of the theorem, namely that [L:F] = [L:K][K:F].

Suppose, then, that [L:K] = m and that [K:F] = n. Let vy,...,0,
be a basis of L over K and let w,, ..., w, be a basis of K over F. What
could possibly be nicer or more natural than to have the elements v,
where i =1,2,...,m, j=1,2,...,n, serve as a basis of L over F?
Whatever else, they do at least provide us with the right number of elements.
We now proceed to show that they do in fact form a basis of L over F.
What do we need to establish this? First we must show that every element
in L is a linear combination of them with coefficients in F, and then we
must demonstrate that these mn elements are linearly independent over F.

Let ¢ be any element in L. Since every element in L is a linear combination
of vy,...,0, with coefficients in K, in particular, ¢ must be of this form.
Thus ¢ = k,o; + - + ku0, where the elements £, ..., k, are all in K.
However, every element in K is a linear combination of wy, ..., w, with
coefficients in F. Thus k; = fi,w, + = + fi -+ ki = fuw, + -+ +

s - - > km = fou0y + *°* + frunttn, Where every f;; is in F.

Substituting these expressions for &y, ..., k,, into t = ko, + *+* + Kyl
we obtain t= (fwy + ** + i @01 + 0 A (fm®r + 000 Sna0)Vn
Multiplying this out, using the distributive and associative laws, we finally
arrive at ¢ = fi00; + -+ fi0 w0, + 0+ fipaw; + 0t Sualmln
Since the f;; are in F, we have realized ¢ as a linear combination over F of
the elements v,w;. Therefore, the elements v,w; do indeed span all of L over
F, and so they fulfill the first requisite property of a basis.
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We still must show that the elements v;w; are linearly independent over F.
uppose that fyowy + - + f 0w, + - TS0+ S, =0,
here the f;; are in F. Our objective is to prove that each fij = 0. Re-
ouping the above expression yields (f;,w, + *- - + fin0,)o; + -0+
.filwl + e +.finwn)vi + - + (fmlwl + R fmnwn)vm = 0

Since the w; are in K, and since K > F, all the elements ki =fuw, + -
Jinw, are in K. Now kyv; + *-+ + k,v,, = 0 with &,,. .., k,e K. But,
y assumption, vy, ..., v, form a basis of L over K, so, in particular they
ust be linearly independent over K. The net result of this is that k=
=+ =k, = 0. Using the explicit values of the k;, we get

Jawy + o+ frw, =0 for i=1,2,... m

ut now we invoke the fact that the w; are linearly independent over F ;
his yields that each f;; = 0. In other words, we have proved that the
w; are linearly independent over F. In this way they satisfy the other
quisite property for a basis.

We have now succeeded in proving that the mn elements vw; form a
asis of L over F. Thus [L:F] = mn; since m = [L:K] and n = [K:F]
e have obtained the desired result [L:F] = [L:K][K:F].

Suppose that L, K, F are three fields in the relation I > K o F and,
ppose further that [L:F] is finite. Clearly, any elements in L linearly
“independent over K are, all the more so, linearly independent over F.
Thus the assumption that [L:F] is finite forces the conclusion that [L:K]
is finite. Also, since K is a subspace of L, [K:F] is finite. By the theorem,
‘F] = [L:K][K:F], whence [K:F] | [L:F]. We have proved the

COROLLARY  If L is a finite extension of F and K is a subfield of L whith
tains F, then [K:F] | [L:F].

Thus, for instance, if [L:F] is a prime number, then there can be no
elds properly between F and L. A little later, in Section 5.4, when we
discuss the construction of certain geometric figures by straightedge and
€ompass, this corollary will be of great significance.

! EFINITION An element a € K is said to be algebraic over F if there exist

elements Go, G5 -+ -, 0, In F, not all 0, such that aga" + oya" ™! 4 -+
= 0.

If the polynomial ¢(x) € F[x], the ring of polynomials in x over F, and
L g(x) = Box™ + Bx™ 1 + -+ 4+ B, then for any element b € K, by ¢(b)
We shall mean the element Bob™ + B,b™ =1 4 -+ 4 fnin K. In the ex-
Pression commonly used, ¢(b) is the value of the polynomial ¢(x) obtained
Dy substituting & for x. The element b is said to satisfy q(x) if q(b) = 0.
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In these terms, a € K is algebraic over F if there is a nonzero polynomial
p(x) € F[x] which a satisfies, that is, for which p(a) = 0.

Let K be an extension of F and let a be in K. Let .4 be the collection of
all subfields of K which contain both F and a. . is not empty, for K itself
is an element of #. Now, as is easily proved, the intersection of any number
of subfields of K is again a subfield of K. Thus the intersection of all those
subfields of K which are members of .# is a subfield of K. We denote this
subfield by F{a). What are its properties? Certainly it contains both F
and a, since this is true for every subfield of K which is a member of .#.
Moreover, by the very definition of intersection, every subfield of K in .#
contains F(a), yet F(a) itself is in . Thus F(a) is the smallest subfield of K
containing both F and a. We call F(a) the subfield obtained by adjoining a to F.

Our description of F(a), so far, has been purely an external one. We now
give an alternative and more constructive description of F(a). Consider all
these elements in K which can be expressed in the form f, + fia + + * + f,a°;
here the B’s can range freely over F and s can be any nonnegative integer.
As elements in K, one such element can be divided by another, provided
the latter is not 0. Let U be the set of all such quotients. We leave it as
an exercise to prove that U is a subfield of K.

On one hand, U certainly contains F and @, whence U > F(a). On
the other hand, any subfield of K which contains both F and a, by virtue
of closure under addition and multiplication, must contain all the elements
Bo + Bia + -+ + Ba® where each B,e F. Thus F(a) must contain all
these elements; being a subfield of K, F(a) must also contain all quotients
of such elements. Therefore, F(a) > U. The two relations U < F(a),
U > F(a) of course imply that U = F(a). In this way we have obtained
an internal construction of F(a), namely as U.

We now intertwine the property that a € K is algebraic over F with
macroscopic properties of the field F(a) itself. This is

THEOREM 5.1.2  The element a € K is algebraic over F if and only if F(a)
is a finite extension of F.

Proof. As is so very common with so many such “if and only if” pro-
positions, one-half of the proof will be quite straightforward and easy,
whereas the other half will be deeper and more complicated.

Suppose that F(a) is a finite extension of F and that [F(a):F] = m
Consider the elements 1, a, a2, ..., a™; they are all in F(a) and are m+ 1
in number. By Lemma 4.2.4, these elements are linearly dependent over
F. Therefore, there are elements ay, a4, . .., a, in F, not all 0, such that
ol + aya + aza® + -+ + a,a" = 0. Hence a is algebraic over F and
satisfies the nonzero polynomial p(x) = oy + ayx + * *+ + ox™ in F[x]
of degree at most m = [F(a):F]. This proves the “if”’ part of the theorem.

Now to the “only if”” part. Suppose that a in K is algebraic over F. By
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sumption, a satisfies some nonzero polynomial in F [x]; let p(x) be a
olynomial in F[x] of smallest positive degree such that pla) = 0. We
aim that p(x) is irreducible over F. For, suppose that p(x) = f(x)g(x),
here f(x), g(x) € F[x]; then 0 = p(a) = f (a)g(a) (see Problem 1) and,
nce f (a) and g(a) are elements of the field K, the fact that their product
0 forces f{a) = 0 or g(a) = 0. Since p(x) is of lowest positive degree
ith p(a) = 0, we must conclude that one of deg f () = degp(x) or
g g(x) > deg p(x) must hold. But this proves the irreducibility of p(x).
‘We define the mapping ¢ from F[x] into F (a) as follows. For any
f(x) € F[x], h(x)y = h(a). We leave it to the reader to verify that  is a
g homomorphism of the ring F[x] into the field F (@) (see Problem 1).
hat is V, the kernel of y? By the very definition of v, V=
{h(x) € F[x] | h(a) = 0}. Also, p(x) is an element of lowest degree in the
ideal Vof F[x]. By the results of Section 3.9, every element in Vis a multiple
£(x), and since p(x) is irreducible, by Lemma 3.9.6, V is a maximal ideal
F[x]. By Theorem 3.5.1, F[x]/V is a field. Now by the general homo-
morphism theorem for rings (Theorem 3.4.1), F[x]/V is isomorphic to the
age of F[x] under . Summarizing, we have shown that the image of
[x] under ¥ is a subfield of F(a). This image contains Xy = a and, for
every o € F, aif = o. Thus the image of F[x] under ¥ is a subfield of
#[a] which contains both F and ; by the very definition of F(a) we are
forced to conclude that the image of F[x] under y is all of F(a). Put more
“succinctly, F[x]/V is isomorphic to F(a).
Now, V' = (p(x)), the ideal generated by p(x); from this we claim that
e dimension of F[x]/V, as a vector space over F, is precisely equal to

b

deg p(x) (see Problem 2). In view of the isomorphism between F[x]/V and
F(a) we obtain the fact that [£(a):F] = deg p(x). Therefore, [F(a):F] i
ertainly finite; this is the contention of the “only if”” part of the theorem.
Note that we have actually proved more, namely that [F(a):F] is equal to
the degree of the polynomial of least degree satisfied by a over F.

. The proof we have just given has been somewhat long-winded, but
eliberately so.- The route followed contains important ideas and ties in
Yesults and concepts developed earlier with the current exposition. No part
oI mathematics is an island unto itself.

~ We now redo the “only if” part, working more on the inside of F(a).
This reworking is, in fact, really identical with the proof already given; the
onstituent pieces are merely somewhat differently garbed.

- Again let p(x) be a polynomial over F of lowest positive degree satisfied
Y a. Such a polynomial is called a minimal polynomial for a over F. We
fay assume that its coefficient of the highest power of x is 1, that is, it is
Bonic; in that case we can speak of the minimal polynomial for a over F
OT any two minimal, monic polynomials for a over F are equal. (Prove!)

s
-
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Suppose that p(x) is of degree n; thus p(x) = " + LA SRR

where the «; are in F. By assumption, a" + aa" ' + -+ + a, = 0,
whence @ = —aa" ! — apa"" 2 — -+ — a,. What about &"*'? From
the above, a"*! = —aa" — 0ya"" ! — -+ — a,a; if we substitute the

expression for ¢" into the right-hand side of this relation, we realize ¢"*!
p g

as a linear combination of the elements 1, a,...,a" ! over F. Con-
tinuing this way, we get that a"**, for £ > 0, is a linear combination over
Fofl,a a?...,a" L

Now consider T = {Bo + B1a + *** + Buc1@"" ' | Bos B1>- - > Buo1 € F}.
Clearly, T is closed under addition; in view of the remarks made in the
paragraph above, it is also closed under multiplication. Whatever further
it may be, T has at least been shown to be a ring. Moreover, T' contains
both F and a. We now wish to show that 7 is more than just a ring, that
it is, in fact, a field.

Let 0 # u=f, + pia + -+ + Bo—ya" ' be in T and let A(x) = B +
Byx 4+ 4 B,_1x" ' eF[x]. Since u # 0, and u = k(a), we have that
h(a) # 0, whence p(x)  h(x). By the irreducibility of p(x), p(x) and A(x)
must therefore be relatively prime. Hence we can find polynomials s(x)
and t(x) in F[x] such that p(x)s(x) + A(x)t(x) = 1. But then 1 =
p(a)s(a) + h(a)t(a) = h(a)t(a), since p(a) = 0; putting into this that
u = h(a), we obtain ut(a) = 1. The inverse of u is thus i(a); in t(a) all
powers of a higher than n — 1 can be replaced by linear combinations of 1,
a,...,a" ' over F, whence ¢(a) € 7. We have shown that every nonzero
element of 7 has its inverse in T; consequently, 7T is a field. However,
T < F(a), yet F and a are both contained in T, which results in 7' = F(a).
We have identified F(a) as the set of all expressions B, + fa + -+
ﬁn— la"_ 1'

Now T is spanned over F by the elements 1, a,...,a ! in consequence
of which [T:F] < n. However, the elements 1, g, a?,...,a"" ! are
linearly independent over F, for any relation of the form y, + y,a + ***
+ p,-;a"" 1, with the elements y; € F, leads to the conclusion that a
satisfies the polynomial 7py + yyx + - + Yn-1X"~ ' over F of degree
less than n. This contradiction proves the linear independence of 1, 4, .. -,
@~ 1, and so these elements actually form a basis of T over F, whence, in
fact, we now know that [7:F] = n. Since T = F(a), the result
[F(a):F] = n follows.

n-—

DEFINITION The element a € K is said to be algebraic of degree n over
F if it satisfies a nonzero polynomial over F of degree n but no nonzero
polynomial of lower degree.

In the course of proving Theorem 5.1.2 (in each proof we gave), we proved
a somewhat sharper result than that stated in that theorem, namely,
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THEOREM 5.1.3 Ifa e K is algebraic of degree n over F, then [F(a):F] = n.

This result adapts itself to many uses. We give now, as an immediate
consequence thereof, the very interesting

"THEOREM 5.1.4 Ifa, b in K are algebraic over F then a + b, ab, and alb
(if b # 0) are all algebraic over F. In other words, the elements in K which are
algebraic over F form a subfield of K.

Proof.  Suppose that a is algebraic of degree m over F while b is algebraic
of degree n over F. By Theorem 5.1.3 the subfield 7" — F(a) of K is of
degree mover F. Now b is algebraic of degree n over F, a fortiori it is algebraic
of degree at most # over T which contains F. Thus the subfield W — T(b)
of K, again by Theorem 5.1.3, is of degree at most n over 7. But [W:F] =
[W:T][T:F] by Theorem 5.1.1; therefore, [W:F] < mn and so W is a
finite extension of F. However, a and b are both in W, whence all of
a t+ b, ab, and a/b are in W. By Theorem 5.1.2, since [W:F] is finite,
these elements must be algebraic over F, thereby proving the theorem.

Here, too, we have proved somewhat more. Since [W:F] < mn, every

element in W satisfies a polynomial of degree at most mn over F, whence the

COROLLARY  Ifaand b in K are algebraic over F of degrees m and n, respectively,
then a + b, ab, and afb (if b # 0) are algebraic over F of degree at most mn.

In the proof of the last theorem we made two extensions of the field F.
The first we called T’ it was merely the field F'(a). The second we called W
and it was 7'(b). Thus W = (F(a))(b); it is customary to write it"as
- F(a, b). Similarly, we could speak about F(b, a); it is not too difficult to
_ prove that F (a,b) = F(b, a). Continuing this pattern, we can define
F(ay, a,,...,a,) for elements ay,...,a,in K.

DEFINITION The extension K of F is called an algebraic extension of F
if every element in K is algebraic over F.

WE prove one more result along the lines of the theorems we have proved
o far.

THEOREM 5.1.5 If L is an algebraic extension of K and if K is an algebraic
 extension of F, then L is an algebraic extension of F.

Proof. Let u be any arbitrary element of L; our objective is to show that
¥ satisfies some nontrivial polynomial with coefficients in F. What infor-
 Mation do we have at present? We certainly do know that u satisfies some
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polynomial x" + ¢44"~ ' 4 - - + 0, where oy, .., 0, are in K. But K
is algebraic over F; therefore, by several uses of Theorem 51.3, M =
F(oy,...,0,) is a finite extension of F. Since u satisfies the polynomial
&+ 6,2" 1 + -+ + o, whose coefficients are in M, u is algebraic over
M. Invoking Theorem 5.1.2 yields that M (x) is a finite extension of M.
However, by Theorem 5.1.1, [M(u):F] = [M(u) :M}[M:F], whence
M (u) is a finite extension of F. But this implies that u is algebraic over F,
completing proof of the theorem.

A quick description of Theorem 5.1.5: algebraic over algebraic is algebraic.

The preceding results are of special interest in the particular case in
which Fis the field of rational numbers and K the field of complex numbers.

DEFINITION A complex number is said to be an algebraic number if it is
algebraic over the field of rational numbers.

A complex number which is not algebraic is called transcendental. At the
present stage we have no reason to suppose that there are any transcendental
numbers. In the next section we shall prove that the familiar real number
¢ is transcendental. This will, of course, establish the existence of trans-
cendental numbers. In actual fact, they exist in great abundance; in a
very well-defined way there are more of them than there are algebraic
numbers.

Theorem 5.1.4 applied to algebraic numbers proves the interesting fact
that the algebraic numbers form a field; that is, the sum, products, and quotients
of algebraic numbers are again algebraic numbers.

Theorem 5.1.5 when used in conjunction with the so-called “fundamental
theorem of algebra,” has the implication that the roots of a polynomial
whose coefficients are algebraic numbers are themselves algebraic numbers.

Problems

1. Prove that the mapping Y:F[x] > F(a) defined by h(x)y = h(a)
is 2 homomorphism.

2. Let F be a field and let F[x] be the ring of polynomials in x over F.
Let g(x), of degree n, be in F[x] and let V' = (g(x)) be the ideal
generated by g(x) in F[x]. Prove that F[x]/V is an n-dimensional
vector space over F.

3. (a) If Vis a finite-dimensional vector space over the field K, and if
F is a subfield of K such that [K:F] is finite, show that V’ is a
finite-dimensional vector space over F and that moreover
dimy (V) = (dimg (V) (IK:F]).

(b) Show that Theorem 5.1.1 is a special case of the result of part (a)-
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4. (a) Let R be the field of real numbers and Q the field of rational
numbers. In R, N 2 and \/ 3 are both algebraic over Q. Exhibit
a polynomial of degree 4 over Q satisfied by J 2 + \/ 3.
(b) What is the degree of \/ 2+ N 3 over Q? Prove your answer.
(c) What is the degree of \/5 \/g over Q?
5. With the same notation as in Problem 4, show that \/ 2 + i/ 5 is
algebraic over Q of degree 6.
*6. (a) Find an element u € R such that Q(\/E, 3/5) = Q(u).
' (b) In Q(\/ 5, J 5_)) characterize all the elements w such that Q(w) #

Q2, ¥5).
7. (a) Prove that F(a, b) = F(b, a).
(b) If (it iy, . . ., i,) is any permutation of (1,2, ... , 1), prove that

Flay,...,a,) = F(a,.‘, Qigs o v 5 B;).

8. If a, b € K are algebraic over F of degrees m and n, respectively,
and if m and 7 are relatively prime, prove that F (a, b) is of degree mn
over F.

9. Suppose that F is a field having a finite number of elements, ¢.
(a) Prove that there is a prime number p such that a +-a 4+ - + a =0
for all a e F. R—
(b) Prove that ¢ = p" for some integer n.
(c) Ifa e F, prove that ¢ = q.
(d) If b € K is algebraic over F, prove 44" = b for some m > 0.

p-times

An algebraic number « is said to be an algebraic integer if it satisfies an
equation of the form a™ + ;e "' 4 --- + @, = 0, where ay, ..., a, are
- integers.

10. If a is any algebraic number, prove that there is a positive integer n
such that na is an algebraic integer.

1. If the rational number r is also an algebraic integer, prove that r
must be an ordinary integer.

12 If a is an algebraic integer and m is an ordinary integer, prove
(a) a + mis an algebraic integer.
(b) ma is an algebraic integer.

13. If « is an algebraic integer satisfying @®> + a + 1 = 0 and B is an
algebraic integer satisfying B2 + f — 3 = 0, prove that both
@ + B and af are algebraic integers.

**14. (a) Prove that the sum of two algebraic integers is an algebraic
integer.

-
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(b) Prove that the product of two algebraic integers is an algebraic
integer.
15. (a) Prove that sin 1° is an algebraic number.
(b) From part (a) prove that sin m® is an algebraic number for any
integer m.

5.2 The Transcendence of e

In defining algebraic and transcendental numbers we pointed out that it
could be shown that transcendental numbers exist. One way of achieving
this would be the demonstration that some specific number is transcendental.

In 1851 Liouville gave a criterion that a complex number be algebraic;
using this, he was able to write down a large collection of transcendental
numbers. For instance, it follows from his work that the number
.101001000000100 ... 10 ... is transcendental; here the number of zeros
between successive ones goes as 11, 2!,... ..., »nl....

This certainly settled the question of existence. However, the question
whether some given, familiar numbers were transcendental still persisted.
The first success in this direction was by Hermite, who in 1873 gave a proof
that ¢ is transcendental. His proof was greatly simplified by Hilbert. The
proof that we shall give here is a variation, due to Hurwitz, of Hilbert’s
proof.

The number 7 offered greater difficulties. These were finally overcome
by Lindemann, who in 1882 produced a proof that = is transcendental.
One immediate consequence of this is the fact that it is impossible, by
straightedge and compass, to square the circle, for such a construction
would lead to an algebraic number 6 such that % = 7. But if 0 is algebraic
then so is 82, in virtue of which © would be algebraic, in contradiction to
Lindemann’s result.

In 1934, working independently, Gelfond and Schneider proved that if
a and b are algebraic numbers and if 4 is irrational, then a® is transcendental.
This answered in the affirmative the question raised by Hilbert whether
2¥2 was transcendental.

For those interested in pursuing the subject of transcendental numbers
further, we would strongly recommend the charming books by C. L. Siegel,
entitled Transcendental Numbers, and by I. Niven, Irrational Numbers.

To prove that ¢ is irrational is easy; to prove that 7 is irrational is much
more difficult. For a very clever and neat proof of the latter, see the paper
by Niven entitled “A simple proof that z is irrational,” Bulletin of the American
Mathematical Society, Vol. 53 (1947), page 509.

Now to the transcendence of ¢. Aside from its intrinsic interest,-its proof
offers us a change of pace. Up to this point all our arguments have been of
an algebraic nature; now, for a short while, we return to the more familiar
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grounds of the calculus. The proof itself will use only elementary calculus;
the deepest result needed, therefrom, will be the mean value theorem.

THEOREM 5.2.1  The number ¢ is transcendental.

Proof. In the proof we shall use the standard notation F9(x) to denote
~ the ith derivative of f (x) with respect to x.

Suppose that f(x) is a polynomial of degree r with real coefficients.
Let F(x) = S + fFD%) + SO +---+ FO%). We compute
(d[dx)(e”*F (x)); using the fact that fC* V(%) = 0 (since f () is of degree 7)
and the basic property of ¢, namely that (dldx)e* = ¢*, we obtain
(d[dx)(e™"F (x)) = —e™f ().

The mean value theorem asserts that if g(x) is a continuously differentiable,
single-valued function on the closed interval [x,, ¥,] then

g(x1) — g(x,)

= g% + 0(x, — x,)), where 0 < 0 < 1.
X1 %

We apply this to our function ¢~ *F (x), which certainly satisfies all the
required conditions for the mean value theorem on the closed interval
[x1, x;] where x; = 0 and x, = k, where £ is any positive integer. We then
obtain that ¢ *F(k) — F(0) = — e~ %f (0,k)k, where 0, depends on k and
is some real number between 0 and 1. Multiplying this relation through by
¢ yields F(k) — F(0)¢* = —¢(1=0ks (0k)k. We write this out explicitly:
F(1) = eF(0) = =701 (0;) = ¢,

F(2) — e?F(0) = —2e217027(99,) = €5, (1)

-~

}r(n) — €'F(0) = —nd "0 (n0 ) = ¢ .

Suppose now that ¢ is an algebraic number; then it satisfies some relation
of the form

Cu" + Cuge” N+ ce ¢y = 0, (2)

’ Whe}e s €15 - - -, €, are integers and where ¢, > 0.

In the relations (1) let us multiply the first equation by ¢,, the second by
¢2, and so on; adding these up we get ¢, F(1) + ¢F(2) + -+ ¢, F(n) —
- F(0)(cye + Ce* + ko0l = €181 + 68y + -0 + ¢,

In view of relation (2), cie + cz6® + -+ + " = —¢o, whence the
_ above equation simplifies to

F(0) + ¢;F(1) + -+ + ¢,F(n) = ciey +--- + Cnpe (3)
All this discussion has held for the F (%) constructed from an arbitrary

s
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polynomial f (x). We now see what all this implies for a very specific
polynomial, one first used by Hermite, namely,

1
x) = ——— xP" Y1 — x)P(2 — x)P - (n — x)P.
) = oy = e )
Here p can be any prime number chosen so that p > n and p > ¢;. For
this polynomial we shall take a very close look at F(0), F(1),...,F(n)
and we shall carry out an estimate on the size of &y, &, . .., &

When expanded, f () is a polynomial of the form

1
(n!)? 1 agx? agxPt

-1 G- o

where ag, a4, . . ., are integers.

When i > p we claim that fP(x) is a polynomial, with coeflicients
which are integers all of which are multiples of p. (Prove! See Problem 2.)
Thus for any integer j, f (), for i > p, is an integer and is a multiple of p.

Now, from its very definition, f (x) has a root of multiplicity p at x = 1, 2,
...,n. Thusforj=1,2,...,n,f (J) =0,fM()=0,..., " I(j) =0
However, F(j) = f(j) + fO0) + -+ fC700) + fP0) +-+
£®(j); by the discussion above, for j = 1,2,...,n, F(j) is an integer and
is a multiple of p.

What about F(0)? Since f (x) has a root of multiplicity p — 1 at x = 0,
FO) =fD0O) =--+=f®"P0) = 0. For i >p, f®(0) is an integer
which is a multiple of p. But f®~1(0) = (n!)? and since p > n and is a
prime number, p ¥ (n!)? so that f®~1(0) is an integer not divisible by p.
Since F(0) = f(0) + f(0) + -+ + f®72(0) + f*~(0) + fP(0) +
«++ + £©(0), we conclude that F(0) is an integer not divisible by p. Because
¢ >0 and p > ¢, and because p } F(0) whereas p | F(1),p | F(2),..-,
p | F(n), we can assert that ¢/ (0) + ¢,F(1) +--- + ¢, F(n) is an infeger
and is not divisible by p.

However, by (3), ¢F(0) + ¢;F(1) 4 -+ ¢,F(n) = ¢,8 + =~ + Cubn
What can we say about ¢;? Let us recall that

— i 1=0(] _ 0P (n — i0,)P(i0,)?~ i

i ]

(- D!
where 0 < #; < 1. Thus
o] < o n?(n!)P
(¢ - !
Asp —» oo,
e"nP(n!)?
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(Prove!) whence we can find a prime number larger than both ¢, and » and

large enough to force [cie; + -+ ¢8| < 1. But ¢g, + - + ¢, =

¢oF(0) + -+ + ¢,F(n), so must be an integer; since it is smaller than 1 in

size our only possible conclusion is that ¢;¢, + -+ + ¢,g, = 0. Conse-

quently, ¢F(0) + --- + ¢,F(n) = 0; this however is sheer nonsense, since

we know that p ) (¢F(0) + - -+ + ¢,F(n)), whereas p| 0. This contradic-
~ tion, stemming from the assumption that ¢ is algebraic, proves that ¢ must
* be transcendental.

Problems

1. Using the infinite series for e,

prove that ¢ is irrational.

2. If g(x) is a polynomial with integer coefficients, prove that if p is a prime
number then for i > p,
4 sx
i\ (p — D!

is a polynomial with integer coefficients each of which is divisible by .
3. If a is any real number, prove that (a"/m!) — 0 as m — 0.

4. If m > 0 and n are integers, prove that ¢™" is transcendental.

6.3 Roots of Polynomials

-

In Section 5.1 we discussed elements in a given extension K of F which were
algebraic over F, that is, elements which satisfied polynomials in F[x].
We now turn the problem around; given a polynomial p(x) in F[x] we
wish to find a field K which is an extension of F in which p(x) has a root.
No longer is the field K available to us; in fact it is our prime objective to
construct it. Once it is constructed, we shall examine it more closely and
see what consequences we can derive.
Ve

DEFINITION If p(x) € F[x], then an element a lying in some extension
field of F is called a ro0t of p(x) if p(a) = O.

We begin with the familiar result known as the Remainder Theorem.
LEMMA 5.3.1 If p(x) € F[x] and if K is an extension of F, then for any ele-

ment b e K, p(x) = (x — b)q(x) + p(b) where g(x) € K[x] and where deg ¢(x) =
deg p(x) — 1.

-
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Proof. Since F < K, F[x] is contained in K[x], whence we can con-
sider p(x) to be lying in K[x]. By the division algorithm for polynomials
in K[x], p(x) = (x — b)g(x) + r, where ¢(x) € K[x] and where r =0
or degr < deg (x — b) = 1. Thus either r = 0 or degr = 0; in either
case 7 must be an element of K. But exactly what element of K is it?
Since p(x) = (x — b)g(x) + r, p(b) = (b — b)g(b) + r = r. Therefore,
p(x) = (x — b)q(x) + p(b). That the degree of ¢(x) is one less than that of
p(x) is easy to verify and is left to the reader.

COROLLARY Ifae K is a root of p(x) € F[x], where F < K, then in K[x],
(x — a) | p(x).

Proof. From Lemma 5.3.1, in K[x], p(x) = (x — a)g(x) + p(a) =
(x — a)q(x) since p(a) = 0. Thus (x — a) | p(x) in K[x].

DEFINITION The element ae K is a root of p(x) € F[x] of multiplicity
m if (x — a)™| p(x), whereas (x — a)™* 1 } p(x).

A reasonable question to ask is, How many roots can a polynomial have
in a given field? Before answering we must decide how to count a root of
multiplicity m. We shall always count it as m roots. Even with this convention
we can prove

LEMMA 5.3.2 A polynomial of degree n over a field can have at most n roots in
any extension field.

Proof. 'We proceed by induction on n, the degree of the polynomial p(x).
If p(x) is of degree 1, then it must be of the form ax + B where «, § are
in a field F and where a # 0. Any a such that p(a) = 0 must then imply
that wa + B = 0, from which we conclude that @ = (—f/a). That is,
p(x) has the unique root — fjo, whence the conclusion of the lemma
certainly holds in this case.

Assuming the result to be true in any field for all polynomials of degree
less than n, let us suppose that p(x) is of degree n over F. Let K be any
extension of F. If p(x) has no roots in K, then we are certainly done, for the
number of roots in K, namely zero, is definitely at most n. So, suppose that
p(x) has at least one root a € K and that a is a root of multiplicity m. Since
(x — a)™| p(x), m < n follows. Now p(x) = (x — a)™g(x), where g(x) € K[x]
is of degree n — m. From the fact that (x — a)™*! y p(x), we get that
(x — a) ¥ q(x), whence, by the corollary to Lemma 5.3.1, a is not a root
of ¢(x). If b # a is a root, in K, of p(x), then 0 = p(b) = (b — a)™q(b);
however, since & — a # 0 and since we are in a field, we conclude that
g(b) = 0. That is, any root of p(x), in K, other than a, must be a root of
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g(x). Since ¢(x) is of degree n — m < n, by our induction hypothesis, q(x)
-~ has at most n — m roots in K, which, together with the other root a,
counted m times, tells us that p(x) has at most m + (n — m) = n roots in
K. This completes the induction and proves the lemma.

One should point out that commutativity is essential in Lemma 5.3.92.
- If we consider the ring of real quaternions, which falls short of being a field
only in that it fails to be commutative, then the polynomial 2 + 1 has at
 least 3 roots, 4, 7, k (in fact, it has an infinite number of roots). In a some-
~ what different direction we need, even when the ring is commutative, that
it be an integral domain, for if ab = 0 with 4 # 0 and b # 0 in the com-
- mutative ring R, then the polynomial ax of degree 1 over R has at least
- two distinct roots x = 0 and x = b in R.
The previous two lemmas, while interesting, are of subsidiary interest.
~ We now set ourselves to our prime task, that of providing ourselves with
suitable extensions of F in which a given polynomial has roots. Once this is
~ done, we shall be able to analyze such extensions to a reasonable enough
' degree of accuracy to get results. The most Important step in the construction
is accomplished for us in the next theorem. The argument used will be very
reminiscent of some used in Section 5.1.

- THEOREM 53.1 If p(x) is a ponomial in F[x] of degree n > 1 and is

irreducible over F, then there is an extension E of F, such that [E:F] = n, in whick
H(x) has a root.

Proof. Let F[x] be the ring of polynomials in x over F and let V =
(6(x)) be the ideal of F[] generated by p(x). By Lemma 3.9.6, V is a
maximal ideal of F[x], whence by Theorem 3.5.1, E = F[x]/V is a field.
This E will be shown to satisfy the conclusions of the theorem.

First we want to show that E is an extension of F ; however, in fact, it is
not! But let F be the image of F in E; that is, F = {x + VlaeF}. We
assert that F is a field isomorphic to F ; in fact, if ¢ is the mapping from
F[x] into F[x]/V = E defined by £ (*)¥ = f(x) + V, then the restriction
of ¥ to F induces an isomorphism of F onto F. (Prove!) Using this iso-
morphism, we identify F and F; in this way we can consider E to be an extension
of B

We claim that E is a finite extension of F of degree n = deg p(x), for the
elements 1 + V, x + V, F+ V) =x24+V,... ,(x+ MNi=x+7,...,
(x + V)" 1=u"141V form a basis of E over F. (Prove!) For con-
venience of notation let us denote the element xy = x + V in the field
E as a. Given f(x) e F[x], what is S *)y? We claim that it is merely
S (a), for, since  is a homomorphism, if £ (x) = B, + fyx + - + Bix*,
then f(¥ = By + (BW)(xp) + -+ + (BW) (#)*, and using the

identification indicated above of By with B, we see that f(x)y = f(a).

221
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In particular, since p(x) € V, p(x)¥ = 0; however, p(x)y = p(a). Thus
the element a = xir in E is a root of p(x). The field E has been shown to satisfy
all the properties required in the conclusion of Theorem 5.3.1, and so this
theorem is now proved.

An immediate consequence of this theorem is the

COROLLARY If f(x) € F[x], then there is a finite extension E of F in which
S (x) has a root. Moreover, [E:F] < deg f (x).

Proof. Let p(x) be an irreducible factor of f(x); any root of p(x) is a
root of f(x). By the theorem there is an extension E of F with [E:F] =
deg p(x) < deg f(x) in which p(x), and so, f (x) has a root.

Although it is, in actuality, a corollary to the above corollary, the next
theorem is of such great importance that we single it out as a theorem.

THEOREM 5.3.2 Let f(x) € F[x] be of degree n > 1. Then there is an ex-
tension E of F of degree at most n! in which f(x) has n roots (and so, a full com-
plement of roots).

Proof. 1In the statement of the theorem, a root of multiplicity m is, of
course, counted as m roots.

By the above corollary there is an extension E, of F with [Ey:F] < nin
which f (x) has a root a. Thus in Ey[x], f(x) factors as f (x) = (x — a)q(x),
where ¢(x) is of degree » — 1. Using induction (or continuing the above
process), there is an extension E of E, of degree at most (n — 1)! in which
¢(x) has n — 1 roots. Since any root of f (x) is either « or a root of ¢(x), we
obtain in E all n roots of f (x). Now, [E:F] = [E:E)[Ey:F] < (n—1)n=n!
All the pieces of the theorem are now established.

Theorem 5.3.2 asserts the existence of a finite extension E in which the
given polynomial f(x), of degree n, over F has n roots. If f(x) = apx" +
ax" "' 4+ - + a, ay # 0 and if the n roots in E are a, ..., «,, making
use of the corollary to Lemma 5.3.1, f (x) can be factored over E as f (x) =
ag(x — og)(x — ap) - (¢ — a,). Thus f(x) splits up completely over E
as a product of linear (first degree) factors. Since a finite extension of F
exists with this property, a finite extension of F of minimal degree exists which
also enjoys this property of decomposing f (x) as a product of linear factors.
For such a minimal extension, no proper subfield has the property that
f (x) factors over it into the product of linear factors. This prompts the

DEFINITION If f(x) € F[x], a finite extension E of F is said to be a
splitting field over F for f(x) if over E (that is, in E[x]), but not over any
proper subfield of E, f(x) can be factored as a product of linear factors.
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We reiterate: Theorem 5.3.2 guarantees for us the existence of splitting fields.
In fact, it says even more, for it assures that given a polynomial of degree
n over F there is a splitting field of this polynomial which is an extension of
- F of degree at most n! over F. We shall see later that this upper bound of
n! is actually taken on; that is, given n, we can find a field F and a poly-
nomial of degree n in F[x] such that the splitting field of f (x) over F has
degree n!.

Equivalent to the definition we gave of a splitting field for f (x) over F is
~the statement: E is a splitting field of f(x) over F if E is a minimal extension
of Fin which f (x) has n roots, where n = deg f (x).

An immediate question arises: given two splitting fields E; and E, of the
same polynomial f(x) in F[x], what is their relation to each other? At
_first glance, we have no right to assume that they are at all related. Our
next objective is to show that they are indeed intimately related; in fact,
that they are isomorphic by an isomorphism leaving every element of F
fixed. It is in this direction that we now turn.

Let F and F’ be two fields and let 7 be an isomorphism of F onto F’.
For convenience let us denote the image of any « € F under 7 by «'; that
is, at = o’. We shall maintain this notation for the next few pages.

Can we make use of 7 to set up an isomorphism between F[x] and F'[t],
the respective polynomial rings over F and F’? Why not try the obvious?
For an arbitrary polynomial f(x) = agx" + a#"~ 1 + -+ + a, € F[x] we
define ™ by f(x)t* = (apx” + a@" 1 + -+ + a,)T* = apt" + ajt"" ! +
PRT + o(:r

It is an easy and straightforward matter, which we leave to the reader,
to verify.

LEMMA 5.3.3 t* defines an isomorphism of F[x] onto F'[t] with the pmferty
that at* = o for every a € F.

If f (x) is in F[x] we shall write f (x)t* as f’(¢). Lemma 5.3.3 immediately
implies that factorizations of f(x) in F[x] result in like factorizations of
S'(t) in F'[t], and vice versa. In particular, f (x) is irreducible in F[x]
if and only if £7(¢) is irreducible in F[¢].

However, at the moment, we are not particularly interested in polynomial
rings, but rather, in extensions of F. Let us recall that in the proof of
~ Theorem 5.1.2 we employed quotient rings of polynomial rings to obtain
suitable extensions of F. In consequence it should be natural for us to study
the relationship between F[x]/(f(x)) and F'[t]/(f'(t)), where (f(x))
denotes the ideal generated by f (x) in F[x] and (f’(t)) that generated by
J'(t) in F'[t]. The next lemma, which is relevant to this question, is actually
part of a more general, purely ring-theoretic result, but we shall content
ourselves with it as applied in our very special setting.

s

-
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LEMMA 5.3.4 There is an isomorphism t** of F[x]/( f (x)) onto F'[t]/( f'(t))
with the property that for every a € F, at** = o', (x + (f(x)))t** =t + (f'(2)).

Proof. Before starting with the proof proper, we should make clear what
is meant by the last part of the statement of the lemma. As we have already
done several times, we can consider F as imbedded in F[x]/( f(x)) by
identifying the element a € F with the coset o + (f(x)) in F[x]/(f (x)).
Similarly, we can consider F’' to be contained in F'[t]{(f'(t)). The
isomorphism 7** is then supposed to satisfy [a+ (f (x))]t** =o' + (f'(2)).

We seek an isomorphism t** of F[x]/(f(x)) onto F'[t]/(f'(?)).
What could be simpler or more natural than to try the t** defined by
[g(x) + (f(x)]t** = g'(¢t) + (f'(¢)) for every g(x) € F[x]? We leave
it as an exercise to fill in the necessary details that the 7** so defined is well
defined and is an isomorphism of F[x]/(f (x)) onto F'[t]/(f’(¢)) with the
properties needed to fulfill the statement of Lemma 5.3.4.

For our purpose—that of proving the uniqueness of splitting fields—
Lemma 5.3.4 provides us with the entering wedge, for we can now prove

THEOREM 5.3.3 If p(x) is irreducible in F[x] and if v is a root of p(x), then
F(v) is isomorphic to F'(w) where w is a root of p'(¢); moreover, this isomorphism
a can so be chosen that

1. vo = w.
2. ao = o for every a € F.

Proof. Let v be a root of the irreducible polynomial p(x) lying in some
extension K of F. Let M = {f (x) e F[x]| f (v) = 0}. Trivially M is an
ideal of F[x], and M # F[x]. Since p(x) € M and is an irreducible poly-
nomial, we have that M = (p(x)). As in the proof of Theorem 5.1.2, map
F[x] into F(v) = K by the mapping ¥ defined by g(x){y = g(v) for every
q(x) € F[x]. We saw earlier (in the proof of Theorem 5.1.2) that yy maps
F[x] onto F(v). The kernel of  is precisely M, so must be (p(x)). By the
fundamental homomorphism theorem for rings there is an isomorphism *
of F[x]/(p(x)) onto F(v). Note further that ay* = o for every a€F.
Summing up: §* is an isomorphism of F[x]/(p(x)) onto F(v) leaving
every element of F fixed and with the property that v = [x + (p(x))]¢¥*.

Since p(x) is irreducible in F[x], p'(t) is irreducible in F'[¢] (by Lemma
5.3.3), and so there is an isomorphism 8* of F'[t]/(4'(¢)) onto F'(w) where
w is a root of p'(¢) such that 0% leaves every element of F’ fixed and such
that [t + (p'(2)]0* = w.

We now stitch the pieces together to prove Theorem 5.3.3. By Lemma
5.3.4 there is an isomorphism t** of F[x]/(p(x)) onto F'[¢]/(#'(t)) which
coincides with 7 on F and which takes » + (p(x)) onto t + (p'(t)). Con-
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sider the mapping ¢ = (Y*) ™ '¢**@* (motivated by
R )
(6(x)  (#®)
~of F(v) onto F'(w). It is an isomorphism of F (1) onto F’(w) since all the
mapping ¥*, t** and 0* are isomorphisms and onto. Moreover, since
o =[x + (PENWY, vo = (W*)~)1**0* = ([x + (p(x)]r**)0* =
[t + (#'(£))]0* = w. Also, for aeF, ac = (a(y*)~ 1)r**g* = (ar**)0* =
@'0* = a’. We have shown that ¢ is an isomorphism satisfying all the
requirements of the isomorphism in the statement of the theorem. Thus
Theorem 5.3.3 has been proved.

A special case, but itself of interest, is the

COROLLARY  If p(x) € F[x] is irreducible and if a, b are two roots of p(x),
then F (a) is isomorphic to F(b) by an isomorphism which takes a onto b and which
leaves every element of F fixed.

We now come to the theorem which is, as we indicated earlier, the
foundation stone on which the whole Galois theory rests. For us it is the
focal point of this whole section.

THEOREM 5.3.4  Any splitting fields E and E' of the polynomials Sf(x) e F[x]
and f'(t) € F'[t], respectively, are isomorphic by an isomorphism ¢ with the prop-
erly that ap = o' for every o€ F. (In particular, any two splitting fields of the
same polynomial over a given field F are isomorphic by an isomorphism leaving every
element of F fixed.)

-

Proof. We should like to use an argument by induction; in order to do
s0, we need an integer-valued indicator of size which we can decrease by
some technique or other. We shall use as our indicator the degree of some
splitting field over the initial field. It may seem artificial (in fact, it may
even be artificial), but we use it because, as we shall soon see, Theorem 5.3.3
provides us with the mechanism for decreasing it.

If [E:F] = 1, then E = F, whence f (%) splits into a product of linear
factors over F itself. By Lemma 5.3.3 JS'(t) splits over F' into a product of
linear factors, hence E' = F’. But then ¢ = 7 provides us with an iso-
morphism of E onto E’ coinciding with 7 on F.

Assume the result to be true for any field F, and any polynomial f (%) e
Fy[x] provided the degree of some splitting field E, of £ (x) has degree less
than n over F,, that is, [Ey:Fy] < n.

Suppose that [E:F] = n > 1, where E is a splitting field of f( x) over F.
Since n > 1, f(x) has an irreducible factor p(x) of degree r > 1. Let
#'(t) be the corresponding irreducible factor of Sf'(t). Since E splits f (x), a

s
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full complement of roots of f (), and so, a priori, of roots of p(x), are in E.
Thus there is a v € E such that p(v) = 0; by Theorem 5.1.3, [F(v):F] = r.
Similarly, there is a w € E’ such that p’(w) = 0. By Theorem 5.3.4 there
is an isomorphism ¢ of F(v) onto F'(w) with the property that ao = o
for every o € F.

Since [F(v):F] =r > 1,

[E:F(v)] = ——[E:F] =

TF@E "

We claim that E is a splitting field for f (x) considered as a polynomial over
F, = F(v), for no subfield of E, containing F, and hence F, can split f (x),
since E is assumed to be a splitting field of f (x) over F. Similarly E’ is a
splitting field for /' (¢) over Fj = F'(w). By our induction hypothesis there
is an isomorphism ¢ of E onto E’ such that a¢ = ac for all ae F,,. But
for every a€F, aoc = o' hence for every aeF c F,, ap = ac = o'.
This completes the induction and proves the theorem.

To see the truth of the “(in particular...)” part, let F = F’ and let 7
be the identity map at = « for every a € F. Suppose that E, and E, are
two splitting fields of f(x) € F[x]. Considering E;, = E > F and E, =
E’ o F' = F, and applying the theorem just proved, yields that E; and
E, are isomorphic by an isomorphism leaving every element of F fixed.

In view of the fact that any two splitting fields of the same polynomial
over I’ are isomorphic and by an isomorphism leaving every element of F
fixed, we are justified in speaking about the splitting field, rather than a
splitting field, for it is essentially unique.

Examples

1. Let F be any field and let p(x) = 2 + ax + B, a, B € F, be in F[x].
If K is any extension of F in which p{(x) has a root, g, then the element
b= —o — aalso in K is also a root of p(x). If b = a it is easy to check
that p(x) must then be p(x) = (x — @)%, and so both roots of p(x) are in
K. If b # a then again both roots of p(x) are in K. Consequently, p(x)
can be split by an extension of degree 2 of . We could also get this result
directly by invoking Theorem 5.3.2.

2. Let F be the field of rational numbers and let f (x) = x> — 2. In the
field of complex numbers the three roots of f(x) are 3/:‘2, coi/é, ? 3/ 2,
where w = (-1 + \/?’) 7)/2 and where 3/5 is a real cube root of 2. Now
F (i/ §) cannot split x> — 2, for, as a subfield of the real field, it cannot

contain the complex, but not real, number coi/ 5 Without explicitly
determining it, what can we say about E, the splitting field of x> — 2 over
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F? By Theorem 5.3.2, [E:F] < 3! = 6; by the above remark, since
23 — 2 is irreducible over F and since [F (i/ 5) :F] = 3, by the corollary to
Theorem 5.1.1, 3 = [F(Y2):F] | [E:F]. Finally, [E:F] > [F(Y2):F] = 3.
The only way out is [E:F] = 6. We could, of course, get this result by

‘making two extensions F; = F (i/ 5) and E = F,(w) and showing that o
satisfies an irreducible quadratic equation over F,.

3. Let F be the field of rational numbers and let
S =x* + x* + 1 eF[a].

We claim that E = F(w), where o = (=1 + NE 1)/2, is a splitting field
of f(x). Thus [E:F] = 2, far short of the maximum possible 4! = 24,

Problems

1. In the proof of Lemma 5.3.1, prove that the degree of q(x) is one less
than that of p(x).

2. In the proof of Theorem 5.3.1, prove in all detail that the elements
L+ 7V, 2+ V,...,#" ! + Vform a basis of E over F.

3. Prove Lemma 5.3.3 in all detail.

4. Show that 7** in Lemma 5.3.4 is well defined and is an isomorphism

of F[x]/(f (x)) onto F[¢]/(f'(1)).

5. In Example 3 at the end of this section prove that F () is the splitting
field of x* + x* 4+ 1.
6. Let F be the field of rational numbers. Determine the degrees of the

splitting fields of the following polynomials over F. -
(@) #* + 1. (b) x°% + 1.
(c) x* — 2. (d) x> — 1.

(e) #® + #% + 1.
7. If p is a prime number, prove that the splitting field over F, the field
of rational numbers, of the polynomial x? — 1 is of degree p — 1.

**8. If n > 1, prove that the splitting field of " — 1 over the field of
rational numbers is of degree ®(n) where ® is the Euler ®-function.

74 (This is a well-known theorem. I know of no easy solution, so don’t
be disappointed if you fail to get it. If you get an easy proof, I would
like to see it. This problem occurs in an equivalent form as Problem 15,
Section 5.6.)

*9. If F is the field of rational numbers, find necessary and sufficient
conditions on @ and & so that the splitting field of x3 + ax + & has
degree exactly 3 over F.

10. Let p be a prime number and let F = Jp the field of integers mod p.
(a) Prove that there is an irreducible polynomial of degree 2 over F.

-
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(b) Use this polynomial to construct a field with p? elements.
*(c) Prove that any two irreducible polynomials of degree 2 over F
lead to isomorphic fields with p? elements.

11. If E is an extension of F and if f (x) € F[x] and if ¢ is an automor-
phism of E leaving every element of F fixed, prove that ¢ must take a
root of f (x) lying in E into a root of f(x) in E.

12. Prove that F (3/ 5), where F is the field of rational numbers, has no
automorphisms other than the identity automorphism.

13. Using the result of Problem 11, prove that if the complex number
o is a root of the polynomial p(x) having real coefficients then o, the
complex conjugate of a, is also a root of p(x).

14. Using the result of Problem 11, prove that if m is an integer which is
not a perfect square and if a + ﬁ\/ m (o, B rational) is the root of a

polynomial p(x) having rational coefficients, then o — ﬁ\/ m is also a
root of p(x).

*15. If F is the field of real numbers, prove that if ¢ is an automorphism
of F, then ¢ leaves every element of F fixed.

16 (a) Find all real quaternions t = gy + ay + a,j + a3k satisfying
2= -1

*(b) For a ¢ as in part (a) prove we can find a real quaternion s such

that sts™! = 4.

5.4 Construction with Straightedge and Compass

We pause in our general development to examine some implications of the
results obtained so far in some familiar, geometric situations.

A real number o is said to be a constructible number if by the use of straight-
edge and compass alone we can construct a line segment of length ¢. We
assume that we are given some fundamental unit length. Recall that from
high-school geometry we can construct with a straightedge and compass a
line perpendicular to and a line parallel to a given line through a given
point. From this it is an easy exercise (see Problem 1) to prove that if
« and f are constructible numbers then so are @ + 8, «f, and when § # 0,
a/B. Therefore, the set of constructible numbers form a subfield, W, of the
field of real numbers.

In particular, since 1 € W, W must contain F,, the field of rational
numbers. We wish to study the relation of W to the rational field.

Since we shall have many occasions to use the phrase ‘“construct by
straightedge and compass” (and variants thereof) the words construct, con-
structible, construction, will always mean by straightedge and compass.

If w e W, we can reach w from the rational field by a finite number of
constructions.
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- Let F be any subfield of the field of real numbers. Consider all the points
(x,7) in the real Euclidean plane both of whose coordinates x and Y are in
F; we call the set of these points the plane of F. Any straight line joining two
points in the plane of F has an equation of the form ax + by +¢=0
where a, b, ¢ are all in F (see Problem 2). Moreover, any circle having as
center a point in the plane of F and having as radius an element of F has
an equation of the form x* + y* + ax + by + ¢ = 0, where all of 4, b, ¢
are in F (see Problem 3). We call such lines and circles lines and circles
in F.
Given two lines in F which intersect in the real plane, then their inter-
~ section point is a point in the plane of F (see Problem 4). On the other hand,
. the intersection of a line in F and a circle in F need not yield a point in the
8 plane of F. But, using the fact that the equation of a line in F is of the form
. ax + by + ¢ = 0 and that of a circle in F is of the form x2 + 92 + dx +
& + f =0, where q, b, ¢, d, ¢, f are all in F, we can show that when a line
- and circle of F intersect in the real plane, they intersect either in a point in
.. the plane of F or in the plane of F (\/ y) for some positive y in F (see Problem
~+ 5). Finally, the intersection of two circles in F can be realized as that of
 alinein F and a circle in F, for if these two circles are x? + »2 4 a,x +
by +c¢, =0 and x* + 3% + apx + byy + ¢, = 0, then their intersection
- _is the intersection of either of these with the line (ay — ax)x + (by — by) y +
ey — ¢;) = 0, so also yields a point either in the plane of F or of F(\/y)
- for some positive y in F.
Thus lines and circles of F lead us to points either in F or in quadratic

.~ extensions of F. If we now are in F (\/;1) for some quadratic extension of
- F, then lines and circles in F (\/;1) intersect in points in the plang of
. F(\/yl, \/yz) where p, is a positive number in F(\/yl). A point is con-
. structible from F if we can find real numbers Ats+++5 Ay such that 1, % € F,
- N e F(Ay), 32 e F(Ay, )y vy A2 € F(Ay, ..., Ay_y), such that the
. Ppoint is in the plane of F(1,..., 4,). Conversely, if y € F is such that
'fi \/ 7 is real then we can realize y as an intersection of lines and circles in F
. (see Problem 6). Thus a point is constructible from F if and only if we
can find a finite number of real numbers 1,, .. ., A such that

L [(F(4,):F] = 1or2;
2 [F(Ayo s A F(Agyeeey dimy)] = lor2fori = 1,2,..., n;

and such that our point lies in the plane of F Ay oo vs Ay)-

We have defined a real number « to be constructible if by use of straight-
edge and compass we can construct a line segment of length «. But this
translates, in terms of the discussion above, into: « is constructible if starting
from the plane of the rational numbers, F,, we can imbed « in a field
obtained from F, by a finite number of quadratic extensions. This is

e
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THEOREM 5.4.1 The real number o is constructible if and only if we can fing
a finite number of real numbers Ay, . .., A, such that

1. 1,2 eF,,
9. A2 € Fy(Aysenrs o) fori = 1,2, n,

such that o € Fo(dyy ..., A,). 3

However, we can compute the degree of Fy(4,, ..., 4,) over F,, for by
Theorem 5.1.1

[Fo(Ass---s An)iFo)l = [Fo(Agy e s Ag)iFo(Agseeey Apey)] o0t
X [Fo(Agsvvs A)tFo(Ags oy Aymq)] o0
X [Fo(4y):Fo).
Since each term in the product is either 1 or 2, we get that

[Fo(Ais - o5 An)iFo] = 27,
and thus the

COROLLARY 1 If a is constructible then o lies in some extension of the rationals ;
of degree a power of 2. !

If a is constructible, by Corollary 1 above, there is a subfield K of the real
field such that o € K and such that [K:F;] = 2". However, Fy(«) < K,
whence by the corollary to Theorem 5.1.1 [Fy(«) :Fy] | [K:F,] = 2; thereby
[Fo(e) :F,] is also a power of 2. However, if o satisfies an irreducible
polynomial of degree k over F,, we have proved in Theorem 5.1.3 that
[Fo(«):Fy] = k. Thus we get the important criterion for nonconstructibility

COROLLARY 2 If the real number o satisfies an irreducible polynomial over
the field of rational numbers of degree k, and if k is not a power of 2, then o is not
constructible.

This last corollary enables us to settle the ancient problem of trisecting
an angle by straightedge and compass, for we prove

THEOREM 5.4.2 It is impossible, by straightedge and compass alone, to trisect
60°.

Proof. If we could trisect 60° by straightedge and compass, then the
length & = cos 20° would be constructible. At this point, let us recall the
identity cos 30 = 4 cos® @ — 3 cos . Putting § = 20° and remembering
that cos 60° = 1, we obtain 4a® — 3a = 1, whence 8a® — 60 — 1 = 0.
Thus a is a root of the polynomial 8x® — 6x — 1 over the rational field.
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owever, this polynomial is irreducible over the rational field (Problem
a)), and since its degree is 3, which certainly is not a power of 2, by
orollary 2 to Theorem 5.4.1, a is not constructible. Thus 60° cannot be
ected by straightedge and compass.

Another ancient problem is that of duplicating the cube, that is, of
nstructing a cube whose volume is twice that of a given cube. If the
iginal cube is the unit cube, this entails constructing a length « such that
= 2. Since the polynomial x* — 2 is irreducible over the rationals
roblem 7(b)), by Corollary 2 to Theorem 5.4.1, « is not constructible.
us

'HEOREM 5.4.3 By straightedge and compass it is impossible to duplicate the

- We wish to exhibit yet another geometric figure which cannot be con-
tructed by straightedge and compass, namely, the regular septagon. To
carry out such a construction would require the constructibility of o =
cos (2n/7). However, we claim that « satisfies x> + #2 — 2% — |
Problem 8) and that this polynomial is irreducible over the field of rational
umbers (Problem 7(c)). Thus again using Corollary 2 to Theorem 5.4.1
obtain

[HEOREM 5.4.4 It is impossible to construct a regular septagon by straightedge
‘and compass.

roblems

. Prove that if o, B are constructible, then so are o + B, af, and afp
(when B # 0).

- Prove that a line in F has an equation of the form ax + by + ¢ = 0
with a, b, cin F.

- Prove that a circle in F has an equation of the form
2+ +ax + by +¢c=0,
#with a, b, ¢ in F.
- Prove that two lines in F, which intersect in the real plane, intersect
at a point in the plane of F.

- Prove that a line in F and a circle in F which intersect in the real
plane do so at a point either in the plane of F or in the plane of F (\/ )
where y is a positive number in F.,

. If y e F is positive, prove that +/ y is realizable as an intersection of
lines and circles in F.
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7. Prove that the following polynomials are irreducible over the field of
rational numbers.
(a) 8x% — 6x — 1.
(b) x* — 2.
(c) #* + x%2 —2x — 1.

8. Prove that 2 cos (2n7) satisfies x> + x2 — 2x — 1. (Hint: Use
2 cos (2n[7) = 27 4 ¢ 2ni))

9. Prove that the regular pentagon is constructible.

10. Prove that the regular hexagon is constructible.

11. Prove that the regular 15-gon is constructible.

12. Prove that it is possible to trisect 72°.

13. Prove that a regular 9-gon is not constructible.

*14. Prove a regular 17-gon is constructible.

5.5 More about Roots

We return to the general exposition. Let F be any field and, as usual, let
F[x] be the ring of polynomials in x over F.

DEFINITION If f(x) = oo™ + oy#" ' + oo +apx" P 4o 4 o, yx +
a, in F[x], then the derivative of f(x), written as f'(x), is the polynomial
flx) =nupx" P+ (n =Doyga ™2 + -+ (n — D" T 4o,
in F[x].

To make this definition or to prove the basic formal properties of the
derivatives, as applied to polynomials, does not require the concept of a
limit. However, since the field F is arbitrary, we might expect some strange
things to happen.

At the end of Section 5.2, we defined what is meant by the characteristic
of a field. Let us recall it now. A field F is said to be of characteristic 0 if
ma # Ofora # 0in Fand m > 0, an integer. If ma = O for some m > 0
and some a # 0 € F, then F is said to be of finite characteristic. In this
second case, the characteristic of F is defined to be the smallest positive
integer p such that pa = O for all a € F. It turned out that if F is of finite
characteristic then its characteristic p is a prime number.

We return to the question of the derivative. Let F be a field of character-
istic p # 0. In this case, the derivative of the polynomial x? is px?~! = 0.
Thus the usual result from the calculus that a polynomial whose derivative
is 0 must be a constant no longer need hold true. However, if the charac-
teristic of F is 0 and if f'(x) = O for f (x) € F[x], it is indéed true that
f(x) = aeF (see Problem 1). Even when the characteristic of F is
p # 0, we can still describe the polynomials with zero derivative; if
S'(x) = 0, then f (x) is a polynomial in x? (see Problem 2).
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We now prove the analogs of the formal rules of differentiation that we
now so well.

EMMA 5.5.1  For any f (x), g(x) € F[x] and any « € F,

L (f@®) +g() =f'(x) + g'(#).
(af (%)) = of"(x).
(f(x)g(x)" =f"(*)gx) + f(x)g (x).

Proof. The proofs of parts 1 and 2 are extremely easy and are left as
ercises. To prove part 3, note that from parts 1 and 2 it is enough to
_prove it in the highly special case f(x) = x* and g(x) = » where both
4 and j are positive. But then f(x)g(x) = x'*/, whence (f(x)g(x)) =
)T however, f(¥)g(®) = in' 14 = i1 and f(x)g/(x) =
Tl = T consequently, £ (x)g(x) + f (x) g/ (%) = (i + a1 =
@)

~ Recall that in elementary calculus the equivalence is shown between the
existence of a multiple root of a function and the simultaneous vanishing of
the function and its derivative at a given point. Even in our setting, where
F is an arbitrary field, such an interrelation exists.

LEMMA 552 The polynomial f (x) € F[x] has a multiple root if and only if
S (x) and f'(x) have a nontrivial (that is, of positive degree) common factor,

~ Proof. Before proving the lemma proper, a related remark is in order,
~ namely, if f (¥) and g(x) in F[x] have a nontrivial common factor in K [#],
~ for K an extension of F, then they have a nontrivial common factor in F [x].
:‘;:,"For, were they relatively prime as elements in F[x], then we would be
~able to find two polynomials a(x) and b(x) in F[x] such that a(x) f (x) +
 b(x)g(x) = 1. Since this relation also holds for those elements viewed
- as elements of K[x], in K[x] they would have to be relatively prime.

- Now to the lemma itself. From the remark just made, we may assume,
~ without loss of generality, that the roots of f (x) all lie in F (otherwise ex-
- tend F to K, the splitting field of S (x)). If f(x) has a multiple root a, then
@) =(x - ®)"q(x), where m > 1. However, as is easily computed,
((x £ a)my = m(x — a)"~! whence, by Lemma 5.5.1, Sf(x) =
(x — o)’ (x) + m(x — )™ 'g(x) = (x — a)r(x), since m > 1. But this
says that f(x) and f’(x) have the common factor x — o, thereby proving
the lemma in one direction.

On the other hand, if f(x) has no multiple root then f(x) =
(- a)(x — )+ (% — a,) where the «’s are all distinct (we are
Supposing f (x) to be monic). But then

n

S1@ =3 — ) (Foa) e (x — ay)

i=1
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where the A denotes the term is omitted. We claim no root of f (x) is a
root of f'(x), for
fr) =11 (@i —ap) #0,
i#i

since the roots are all distinct. However, if f (x) and f’(x) have a nontrivial
common factor, they have a common root, namely, any root of this common
factor. The net result is that f (x) and f’(x) have no nontrivial common
factor, and so the lemma has been proved in the other direction.

COROLLARY 1 Iff (x) € F[x] is irreducible, then

1. If the characteristic of F is 0, f (x) has no multiple roots.
2. If the characteristic of F is p # 0, f (x) has a multiple root only if it is of the

Jorm f (x) = ().

Proof. Since f () is irreducible, its only factors in F[x] are 1 and f (x).
If f (x) has a multiple root, then f (x) and f’(x) have a nontrivial common
factor by the lemma, hence f (x) | f'(x). However, since the degree of f'(x)
is less than that of f (x), the only possible way that this can happen is for
/() to be 0. In characteristic O this implies that f (x) is a constant, which
has no roots; in characteristic p # 0, this forces f (x) = g(x7).

We shall return in a moment to discuss the implications of Corollary 1
more fully. But first, for later use in Chapter 7 in our treatment of finite
fields, we prove the rather special

COROLLARY 2 If F is a field of characteristic p # O, then the polynomial
" — x € F[x], for n > 1, has distinct roots.

Proof. The derivative of x”" — x is p"xP"~! — 1 = —1, since F is of
characteristic p. Therefore, x”" — x and its derivative are certainly rela-
tively prime, which, by the lemma, implies that " — x has no multiple
roots.

Corollary 1 does not rule out the possibility that in characteristic p # 0
an irreducible polynomial might have multiple roots. To clinch matters,
we exhibit an example where this actually happens. Let F, be a field of
characteristic 2 and let F = Fy(x) be the field of rational functions in #
over F,. We claim that the polynomial t> — x in F[¢] is irreducible over F
and that its roots are equal. To prove irreducibility we must show that
there is no rational function in Fy(x) whose square is x; this is the content
of Problem 4. To see that £ — x has a multiple root, notice that its deriv-
ative (the derivative is with respect to ¢; for x, being in F, is considered as 2
constant) is 2t = 0. Of course, the analogous example works for any prime
characteristic.
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Now that the possibility has been seen to be an actuality, it points out
g sharp difference between the case of characteristic 0 and that of charac-
ristic p. The presence of irreducible polynomials with multiple roots in
e latter case leads to many interesting, but at the same time complicating,
btleties. These require a more elaborate and sophisticated treatment
hich we prefer to avoid at this stage of the game. Therefore, we make the
t assumption for the rest of this chapter that all fields occurring in the text material
oper are fields of characteristic 0.

DEFINITION  The extension K of F is a simple extension of F if K = F(x)
for some o in K.

In characteristic 0 (or in properly conditioned extensions in characteristic
. p # 0; see Problem 14) all finite extensions are realizable as simple ex-
tensions. This result is

THEOREM 5.5.1 If F is of characteristic O and if a, b, are algebraic over F,
then there exists an element ¢ € F (a, b) such that F(a, b) = F(c).

Proof. Let f (x) and g(x), of degrees m and n, be the irreducible poly-
nomials over F satisfied by a and b, respectively. Let K be an extension
. of Fin which both f (x) and g(x) split completely. Since the characteristic
of F is 0, all the roots of f (x) are distinct, as are all those of g(x). Let the
roots of f(x) be a = a;,4,,...,4, and those of g(x), b = b, b,,..., b,
- Ifj # 1, then b; # b, = b, hence the equation a; + Ab; = a, + Aby =
a + b has only one solution 4 in K, namely,

Since F is of characteristic 0 it has an infinite number of elements, so we
. can find an element y € F such that a; + yb; # a + yb for all i and for
all j % 1. Let ¢ = a + yb; our contention is that F(c) = F(a, b). Since
€€ F(a, b), we certainly do have that F(¢) = F(a, b). We will now show
that both 4 and b are in F (c) from which it will follow that F(a, b) < F(c).
Ngw b satisfies the polynomial g(x) over F, hence satisfies g(x) considered
a polynomial over K = F(c). Moreover, if h(x) = f(c — px) then
h(x) € K[x] and h(b) = f(c — yb) = f(a) = 0, since a = ¢ — pb. Thus in
8ome extension of K, h(x) and g(x) have x — b as a common factor. We
?Ssert that x — b is in fact their greatest common divisor. For, if b; # b
Is another root of g(x), then k(b)) = f(c — yb;) # 0, since by our choice
ofy, ¢ — ybjforj # 1 avoids all roots ; of f (x). Also, since (x — b)2 X g(x),
(= — b)? cannot divide the greatest common divisor of h(x) and g(x). Thus
= b is the greatest common divisor of A(x) and g(x) over some extension
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of K. But then they have a nontrivial greatest common divisor over K,
which must be a divisor of x — b. Since the degree of x — b is 1, we see
that the greatest common divisor of g(x) and A(x) in K[x] is exactly x — b,
Thus x — b € K[x], whence b € K; remembering that K = F(c), we obtain
that b e F(c). Since a = ¢ — yb, and since b,ceF(c), yeF < F(c), we
get that a e F(c), whence F(a,b) = F(c). The two opposite containing
relations combine to yield F(a, b) = F(c).

A simple induction argument extends the result from 2 elements to any
finite number, that is, if «;, ..., a, are algebraic over F, then there is an
clement ¢e F(ay,...,q,) such that F(c) = F(ay,...,a,). Thus the

COROLLARY  Any finite extension of a field of characteristic O is a simple extension.

Problems

1. If F is of characteristic 0 and f (x) € F[x] is such that f'(x) = 0,
prove that f (x) = a € F.

9. If F is of characteristic p # 0 and if f(x) € F[x] is such that
f'(x) = 0, prove that f (x) = g(x?) for some polynomial g(x) € F[x].

3. Prove that (f(x) + g(x))' =f'(x) + g'(x) and that (af(x))" =
af ' (x) for f (x), g(x) € F[x] and a € F.

4. Prove that there is no rational function in F (x) such that its square is .

5. Complete the induction needed to establish the corollary to Theorem
5.5.1.

An element a in an extension K of F is called separable over F if it satisfies
a polynomial over F having no multiple roots. An extension K of Fis
called separable over F if all its elements are separable over F. A field F
is called perfect if all finite extensions of F are separable.

6. Show that any field of characteristic 0 is perfect.
7. (a) If Fis of characteristic p # 0 show that for ¢, b€ F, (a + by =
af" + b7,
(b) If F is of characteristic p # 0 and if K is an extension of F let
T = {ae K| a" € F for some n}. Prove that T is a subfield of
K.
8. If K, T, F are as in Problem 7(b) show that any automorphism of K
leaving every element of F fixed also leaves every element of T fixed.
*9. Show that a field F of characteristic p # 0 is perfect if and only if
for every a € F we can find a b € F such that b* = a.

10. Using the result of Problem 9, prove that any finite field is perfect
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. If K is an extension of F prove that the set of elements in K which
are separable over F forms a subfield of K.

. If F is of characteristic p # 0 and if K is a finite extension of F,
prove that given a € K either a”" € F for some n or we can find an
integer m such that a?” ¢ F and is separable over F.

. If K and F are as in Problem 12, and if no element which is in K
but not in F is separable over F, prove that given a € K we can find
an integer n, depending on a, such that ¢?" € F.

. If K is a finite, separable extension of F prove that K is a simple
extension of F.

15. If one of a or b is separable over F, prove that F(a, b) is a simple
extension of F.

‘,{‘,5,6 The Elements of Galois Theory

Given a polynomial p(x) in F[x], the polynomial ring in x over F, we shall
associate with p(x) a group, called the Galois group of p(x). There is a very
close relationship between the roots of a polynomial and its Galois group;
in fact, the Galois group will turn out to be a certain permutation group
of the roots of the polynomial. We shall make a study of these ideas in this,
and in the next, section.
- The means of introducing this group will be through the splitting field
of p(x) over F, the Galois group of p(x) being defined as a certain group of
automorphisms of this splitting field. This accounts for our concern, in so
many of the theorems to come, with the automorphisms of a field. A
beautiful duality, expressed in the fundamental theorem of the Galois theery
(Theorem 5.6.6), exists between the subgroups of the Galois group and the
subfields of the splitting field. From this we shall eventually derive a
condition for the solvability by means of radicals of the roots of a polynomial
. In terms of the algebraic structure of its Galois group. From this will follow
- the classical result of Abel that the general polynomial of degree 5 is not
solvable by radicals. Along the way we shall also derive, as side results,
theorems of great interest in their own right. One such will be the funda-
mental theorem on symmetric functions. Our approach to the subject is
ounded on the treatment given it by Artin.
~ Recall that we are assuming that all our fields are of characteristic 0,
1ence we can (and shall) make free use of Theorem 5.5.1 and its corollary.
By an automorphism of the field K we shall mean, as usual, a mapping o
of K onto itself such that g(a + b) = o(a) + o(b) and o(ab) = o(a)a(b)
Or all ¢, b€ K. Two automorphisms ¢ and 7 of K are said to be distinct
6(a) # t(a) for some element a in K.
We begin the material with

-
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THEOREM 5.6.1 If K is a field and if 64, . .., 0, are distinct automorphisms
of K, then it is impossible to find elements a,, . .., a,, not all 0, in K such tha

2 n:

a0, () + ayo,(u) + - + a,0,(u) = 0 forallueK.

Proof. Suppose we could find a set of elements a,, . .., a, in K, not al|
0, such that a;0,(x) + -** + a,6,(u) = 0 for all ue K. Then we could
find such a relation having as few nonzero terms as possible; on renumbering
we can assume that this minimal relation is

ao,(8) + -+ a,0,(u) =0 (1

where a,, . . ., a,, are all different from 0.

If m were equal to 1 then a,0,(x) = 0 for all u € K, leading to a; = 0,
contrary to assumption. Thus we may assume that m > 1. Since the auto-
morphisms are distinct there is an element ¢ € K such that o,(c) # 0,(c).
Since cu € K for all u € K, relation (1) must also hold for cu, that is,
a,0,(cu) + ayo,(cu) + *++ + a,0,(cu) = 0 for all e K. Using the hypo-
thesis that the ¢’s are automorphisms of K, this relation becomes

a,61(c)01(u) + a;05()0,(8) + *** + @0, (0)0n(w) = 0. (2)

Multiplying relation (1) by ¢;(¢c) and subtracting the result from (2)
yields

a,(05(¢) = 61(0))o2(8) + * - + a,(0,() — 01(c))on(w) = 0. (3)

If we put b; = a;(0;(c) — 6,(c)) for i = 2,...,m, then the b; are in K,
b, = a,(6,(c) — 6,(c)) # 0, since a, # 0, and o6,(c) — 0y(c) # 0 yet
byo,(w) + -+ + b,0,(u) = 0 for all ue K. This produces a shorter rela-
tion, contrary to the choice made; thus the theorem is proved.

DEFINITION If G is a group of automorphisms of K, then the fixed field
of G is the set of all elements a € K such that 6(a) = aforall 6 € G.

Note that this definition makes perfectly good sense even if G is not 2
group but is merely a set of automorphisms of K. However, the fixed field
of a set of automorphisms and that of the group of automorphisms generated
by this set (in the group of all automorphisms of K) are equal (Problem 1),
hence we lose nothing by defining the concept just for groups of auto-
morphisms. Besides, we shall only be interested in the fixed fields of groups
of automorphisms.

Having called the set, in the definition above, the fixed field of G, it
would be nice if this terminology were accurate. That it is we.see in

LEMMA 5.6.1 The fixed field of G is a subfield of K.
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Proof. Let a, b be in the fixed field of G. Thus for all 6 € G, o(a) = a
d o(b) = b. But then o(a + b) = 0(a) + 0(b) =a + b and o(ab) =
a)o(b) = ab; hence a + b and ab are again in the fixed field of G. If
#0, then (™) =g(b)"! =571, hence b~ ! also falls in the fixed
Id of G. Thus we have verified that the fixed field of G is indeed a sub-
1d of K.

We shall be concerned with the automorphisms of a field which behave
a prescribed manner on a given subfield.

EFINITION Let K be a field and let F be a subfield of K. Then the
group of automorphisms of K relative to F, written G (K, F), is the set of all
tomorphisms of K leaving every element of F fixed; that is, the auto-
morphism ¢ of K is in G(K, F) if and only if o(a) = « for every a € F.

It is not surprising, and is quite easy to prove
EMMA 5.6.2 G(K, F) is a subgroup of the group of all automorphisms of K.

We leave the proof of this lemma to the reader. One remark: K contains
e field of rational numbers Fy, since K is of characteristic 0, and it is easy
to see that the fixed field of any group of automorphisms of K, being a field,
ust contain F,. Hence, every rational number is left fixed by every
automorphism of K.

We pause to examine a few examples of the concepts just introduced.

Example 5.6.1 Let K be the field of complex numbers and let F be the
field of real numbers. We compute G (K, F). If ¢ is any automorphism of
, since 2 = —1, 0(i)? = 0(i?) = a(—1) = —1, hence o(}) = +i. If,
addition, ¢ leaves every real number fixed, then for any a + b where
8, b are real, o(a + bi) = g(a) + o(b)o(i) = a + bi. Each of these possi-
bilities, namely the mapping o,(a + bi) = a + bi and o,(a + bi) = a — b;
efines an automorphism of K, ¢, being the identity automorphism and
6, complex-conjugation. Thus G (K, F) is a group of order 2.

- What is the fixed field of G(K, F)? It certainly must contain F, but does
contain more? If a + b7 is in the fixed field of G (K, F) then a + bi =
03(a + bi) = a — bi, whence b =0 and a=a + bieF. In this case
We see that the fixed field of G (K, F) is precisely F itself.

Example 5.6.2 Let F, be the field of rational numbers and let K =
Fo(i/i) where 3{ 2 is the real cube root of 2. Every element in K is of the
form o + a13/2 + a2(3/2)2, where &, a;, a, are rational numbers. If
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o is an automorphism of K, then a(i/§)3 = a((i/g) 3 = ¢(2) = 2, hence

a(i/ 2) must also be a cube root of 2 lying in K. However, there is only

one real cube root of 2, and since K is a subfield of the real field, we must
3/5 35 35 3/5\2

have that o(¥/2) = 35, But then o(ay + V2 + 6,(V2)?) = a +

oclz/ 2 + az(z/ 2)2, that is, ¢ is the identity automorphism of K. We thus

see that G(K, F,) consists only of the identity map, and in this case the
Sfixed field of G (K, Fy) is not Fo but is, in fact, larger, being all of K.

Example 5.6.3 Let F, be the field of rational numbers and let @ =
¢2mi/5; thus @° = | and o satisfies the polynomial PAAE N SR N NP
over F,. By the Eiscnstein criterion one can show that x* + x* + x? +
x + 1 is irreducible over F, (see Problem 3). Thus K = Fy(w) is of degree
4 over F, and every element in K is of the form ap + 0y + a,0* + oyw*
where all of oy, a;, oy, and s are in Fo. Now, for any automorphism
¢ of K, o(w) # 1, since o(l) =1, and (@)’ = o(0®) =0o(l) =1,
whence o(®) is also a 5th root of unity. In consequence, 6(w) can only
be one of o, ®? w3, or o*. We claim that each of these possibilities
actually occurs, for let us define the four mappings 6y, 6,, 03, and o, by
o0 + 1o + 0o? + 00°) = a + (@) + ay(0)? + ay(@)?, for
i =1,2,3 and 4. Each of these defines an automorphism of K (Problem
4). Therefore, since o€ G(K, Fo) is completely determined by o(w),
G(K, F,) is a group of order 4, with ¢, as its unit element. In light of
6,2 = 64, 0% =03, 6,* =0y, GK Fy) s a cyclic group of order 4.
One can easily prove that the fixed field of G(K, Fy) is F, itself (Problem 5).
The subgroup 4 = {0y, 0,4} of G(K, F;) has as its fixed field the set of all
elements oy + ay(®? + @*), which is an extension of F, of degree 2.

The examples, although illustrative, are still too special, for note that in
cach of them G(K, F) turned out to be a cyclic group. This is highly
atypical for, in general, G(K, F ) need not even be abelian (see Theorem
5.6.3). However, despite their speciality, they do bring certain important
things to light. For one thing they show that we must study the effect of
the automorphisms on the roots of polynomials and, for another, they point
out that F need not be equal to all of the fixed field of G (K, F). The casesin
which this does happen are highly desirable ones and are situations with
which we shall soon spend much time and effort.

We now compute an important bound on the size of G(K, F).

THEOREM 5.6.2 If K is a finite extension of F, then G(K, F) s a finite group
and its order, o(G (K, F)) satisfies o(G (K, F)) < [K:F]. )

Proof. Let [K:F] = n and suppose that u,, ..., %, is a basis of K over
F. Suppose we can find n + 1 distinct automorphisms 64, G5, ..., O+
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p in G (K, F). By the corollary to Theorem 4.3.3 the system of » homogeneous
" linear equations in the # 4+ 1 unknowns x;,...,x,,:

‘.71(“1)’61 + oy (u)x, + 0+ 0,y (u)%00y =0

?'1(“;')"1 + 0,(u)xy + 0 0,y (U)X =0

0y (un)%y + 05(u)%; +  + 0pyy(Up)hgsy = O
" has a nontrivial solution (not all 0) ¥, = a,...,%,,; = a,,; in K. Thus
0,0, (4;) + @305(1;) + -+ @p410,44(4;) =0 (1)

Cfori=1,2,...,n

~ Since every element in F is left fixed by each ¢; and since an arbitrary
element ¢ in K is of the form ¢ = oyu; + -+ + o,u, with «,..., a,

“in F, then from the system of equations (I) we get a;o,(¢) + -+ +
8,410,+1(t) = 0 for all t € K. But this contradicts the result of Theorem

©'5.6.1. Thus Theorem 5.6.2 has been proved.

Theorem 5.6.2 is of central importance in the Galois theory. However,
aside from its key role there, it serves us well in proving a classic result
_concerned with symmetric rational functions. This result on symmetric
functions in its turn will play an important part in the Galois theory.
 First a few remarks on the field of rational functions in n-variables over a
field F. Let us recall that in Section 3.11 we defined the ring of polynomials
in the n-variables x;,...,x, over F and from this defined the field of
rational functions in Xyyeoos Xy Fx,...,%,), over F as the ring of all
uotients of such polynomials.

Let S, be the symmetric group of degree n considered to be acting on the
et [1,2,...,n]; for €S, and ¢ an integer with 1 <7 < n, let ¢(i) be
he image of i under 6. We can make S, act on F(x;, ...,x,) in the
ollowing natural way: for ¢ €S, and r(x;,..., x,) € F(x, ..., x,), define
the mapping which takes r(x, ..., x;) onto 7(X,, - - -5 %y(n). We shall
rite this mapping of F(x,,...,x,) onto itself also as ¢. It is obvious
that these mappings define automorphisms of F(x;,...,x,). What is
the fixed field of F(x,,...,#,) with respect to §,? It consists of all
atiorfal functions r(xy, . .., x,) such that r(x;, ..., x,) = 7(%,1y - -+ 5 Xo(m)
or all geS, But these are precisely those elements in F(x,...,x,)
hich are known as the symmetric rational functions. Being the fixed field
f §, they form a subfield of F(x,,...,x,), called the field of symmetric
ational functions which we shall denote by S. We shall be concerned
ith three questions:

- What is [F(xy, . .., x,):8]?
. What is G(F(xy, ..., %,),5)?
- Can we describe S in terms of some particularly easy extension of F?

-
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We shall answer these three questions simultaneously.

We can explicitly produce in § some particularly simple functions con-
structed from xy,...,%, known as the elementary symmetric functions in
Xj, .-+ %, These are defined as follows:

n
a1=x1+x2+"'+x,.=zxi

i=1
a, = z XX

i<y

a; = Z X% X
i<j<k

a, = X %3" "Xy

That these are symmetric functions is left as an exercise. Forn = 2, 3 and
4 we write them out explicitly below.

n =2
a; = % + %
a, = X1X;.
n=23
a;, = % + % + %3
a, = X%y + X1X3 + %p%3.
ay = X1%X3%3-
n=4%

a; =% + % + X3 + X4
a, = %1%, + %1% + %1% 4 x,%5 + Xp%g + X3%4-
Ay = X Xy%3 + X XpXa + X1 ¥3%a + Xy%3%4-
a, = X1Xy%3%X4-
Note that when n = 2, x, and x, are the roots of the polynomial t* -

a,t + ay, that when n = 3, %y, %3, and x, are roots of 3 —aqt? +at— 0
and that when n = 4, %, %,, %3, and x4 are all roots of t* — a,t® + at* —

ast + au.
Since ay, .. ., 4a, are all in S, the field F(ay,. .-, an) obtained by ad-
joining @, ...,a, to F must lie in S. Our objective is now twofold,

namely, to prove

1. [F(xg,...,%,):8] = nl.
2. 8§ =F(ay,...,a,:-

Since the group S, is a group of automorphisms of F(xg,---» %)
leaving S fixed, S, < G(F (x> %n)sS) Thus, by Theorem 5.6.2,

|
i
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[Flr, .05 2,):8] 2 o(G(F (%, ..., %,),8)) > 0(S,) =n!. If we could
_show that [F(x,,...,x,):F(ay,...,a,)] <n!, well then, since F(ay,...,a,)
s a subfield of S, we would have n! > [F(xy,...,x,):F(ay,...,a,)] =
F(xg,...,%,):8][S:F(ay,...,a,)] >n!. But then we would get that
F(xy,...,%,):8]=nl [S:F(ay,...,a,)]=1 and so S=F(a,,...,a,),
nd, finally, §, = G(F(x,...,*,),S) (this latter from the second sen-
ence of this paragraph). These are precisely the conclusions we seek.

~ Thus we merely must prove that [F(x,...,x,):F(ay,...,a,)] < nl.
To see how this settles the whole affair, note that the polynomial p(t) =
"—ayt" ' 4 ay" 2 - + (—1)"a,, which has coefficients in F(a,,...,a,),
factors over F(xy,...,x,) as p(t) = (t — x,)(t — x,) * -+ (¢t — x,). (This
“is in fact the origin of the elementary symmetric functions.) Thus p(t),
f degree n over F(ay,...,a,), splits as a product of linear factors over
F(xy,...,x,). It cannot split over a proper subfield of F(xgy.oooyx,)
~which contains F(a,, ..., a,) for this subfield would then have to contain
both F and each of the roots of (), namely, %, x,, ..., x,; but then this
_subfield would be all of F(x,,...,x,). Thus we see that F(x,,..., x,) is
he splitting fild of the polymomial p(t) = t" — ayt"" ' 4 -+ 4 (=1)"a,
ver F(ay,...,a,). Since p(t) is of degree n, by Theorem 5.3.2 we get
F(x,...,%,):F(ay,...,a,)] <n'. Thus all our claims are established.
We summarize the whole discussion in the basic and important result

HEOREM 5.6.3 Let F be a field and lot F (x,, . . ., x,) be the field of rational
Junctions in x,,...,x, over F. Suppose that S is the field of symmetric rational
nctions ; then

c[F(xyy ..., x,):8] = nl.

« G(F(xy,...,x,),8) = 8,, the symmetric group of degree n.
- If ay,...,a, are the elementary symmetric Sunctions in x;,...,x,, then
S = F(ay,a,,...,a,).

- Fxy, ..., x,) is the splitting field over F(ay,...,a,) = S of the polynomial
" — at" " a4 (=1,

-

We mentioned earlier that given any integer = it is possible to construct
field and a polynomial of degree n over this field whose splitting field is of
aXi?al possible degree, n!, over this field. Theorem 5.6.3 explicitly
ovides us with such an example for if we put § = F(ay,...,a,), the
tional function field in n variables ag,...,a, and consider the splitting
eld of the polynomial " — g;t"~ 1 + a,t""2--- 4 (—=1)"a, over § then
is of degree n! over S.

Part 3 of Theorem 5.6.3 is a very classical theorem. It asserts that a sym-
etric rational function in n variables is a rational JSunction in the elementary symmetric
tions of these variables. This result can even be sharpened to: A symmetric
Olynomial in n variables is a polynomial in their elementary symmetric

-
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functions (see Problem 7). This result is known as the theorem on symmetric
polynomials.

In the examples we discussed of groups of automorphisms of fields and of
fixed fields under such groups, we saw that it might very well happen that F
is actually smaller than the whole fixed field of G (K, F). Certainly F is
always contained in this field but need not fill it out. Thus to impose the
condition on an extension K of F that F be precisely the fixed field of
G(K, F) is a genuine limitation on the type of extension of F that we are
considering. It is in this kind of extension that we shall be most interested.

DEFINITION K is a normal extension of F if K is a finite extension of F
such that F is the fixed field of G(K, F).

Another way of saying the same thing: If K is a normal extension of F,
then every element in K which is outside F is moved by some element in
G (K, F). In the examples discussed, Examples 5.6.1 and 5.6.3 were
normal extensions whereas Example 5.6.2 was not.

An immediate consequence of the assumption of normality is that it
allows us to calculate with great accuracy the size of the fixed field of any
subgroup of G (K, F) and, in particular, to sharpen Theorem 5.6.2 from an
inequality to an equality.

THEOREM 5.6.4 Let K be a normal extension of F and let H be a subgroup
of GK,F); let Ky = {xe K| a(x) = xjorall ¢ € H} be the fixed field of H.
Then

1. [K:Kg] = o(H).
2. H = G(K, Ky).

(In particular, when H = G(K, F), [K:F] = o(G(K, F)).)

Proof. Since very element in H leaves Ky elementwise fixed, certainly
H < G(K, Ky). By Theorem 5.6.2 we know that [K:Ky) > o(G(K, Ky));
and since o(G(K, Kg)) > o(H) we have the inequalities [K:Kg] =
o(G(K, K)) > o(H). If we could show that [K:Ky] = o(H), it would
immediately follow that o(H) = o(G(K, K;)) and as a subgroup of
G (K, K) having order that of G(K, Ky), we would obtain that H =
G(K, Ky). So we must merely show that [K:Ky] = o(H) to prove every-
thing.

By Theorem 5.5.1 there exists an a € K such that K = Ky(a); this 4
must therefore satisfy an irreducible polynomial over Ky of degree m =
[K:K,] and no nontrivial polynomial of lower degree (Theorem 5.1.3).
Let the elements of H be a3, 65, . . . , 63, where o is the identity of G (K, F)
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and where 4 = o(H). Consider the elementary symmetric functions of
a = 0y (a)> 0'2(“): e ah(“); namely:

h
% = 04(a) + oy(a) + -+ + oy(a) = Z 6i(a)

% = Z ;(a)o;(a)

i<j

% = 0,(2)03(a) - - - 6y(a).

Each «; is invariant under every g € H. (Prove!) Thus, by the definition

of Ky, oy, ay,...,a, are all elements of Ky. However, a (as well as
62(a),...,6,(a)) is a root of the polynomial p(x) = (x — g, (@))(x — 6,(a)) - - -
(x—o0y(a) =& — " pog a2 4y (=1)*x, having coefficients

in Ky. By the nature of 4, this forces = m = [K:Ky], whence o(H) >
[K:Kg]. Since we already know that o(H) < [K:Ky] we obtain o(H) =
[K:Ky], the desired conclusion.

When H = G(K, F), by the normality of K over F, Ky = F; consequently
for this particular case we read off the result [K:F] = o(G(K, F)).

We are rapidly nearing the central theorem of the Galois theory. What
we still lack is the relationship between splitting fields and normal extensions.
This gap is filled by

THEOREM 5.6.5 KX is a normal extension of F if and only if K is the splitting
Jield of some polynomial over F.

Proof. In one direction the proof will be highly reminiscent of that_of
Theorem 5.6.4. ‘
Suppose that K is a normal extension of F ; by Theorem 5.5.1, K = F (a).
Consider the polynomial p(x) = (x — 0,(a)) (x — 0,(a)) -~ (x — 6,(a))
over K, where ¢y, 0,,..., 0, are all the elements of G (K, F). Expanding
bp(x) we see that px) = 2" — " o ey (=1)"x, where
%15 - .., &, are the elementary symmetric functions in g — 6,(a), 65(a), ...,
0n(a). But then q..., %, are each invariant with respect to every
6 € G(K, F), whence by the normality of K over F, must all be in F.
Therefore, K splits the polynomial £(x) € F[x] into a product of linear
- factors. Since 4 is a root of p(x) and since a generates K over F, a can be in
10 proper subfield of K which contains F. Thus K is the splitting field of
b(x) over F.

Now for the other direction; it is a little more complicated. We separate
off one piece of its proof in

LEMMA 56.3 Lt K be the splitting field of f (%) in F[x] and let P(x) be an

-
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irreducible factor of f (x) in Flx]. If the roots of p(x) are oy, ..., d, then for
cach i there exists an automorphism &; in G(K, F) such that o,(ay) = a;.

Proof. Since every root of p(x) is a root of f (x), it must lie in K. Let
&, o; be any two roots of p(x). By Theorem 5.3.3, there is an isomorphism
t of F, = F(a;) onto F| = F(a;) taking a; onto «; and leaving every
element of F fixed. Now K is the splitting field of f (x) considered as a
polynomial over Fy; likewise, K is the splitting field of f (x) considered as a
polynomial over Fj. By Theorem 5.3.4 there is an isomorphism ¢; of K
onto K (thus an automorphism of K) coinciding with 7 on F;. But then
o,(0;) = t(a;) = &; and o; leaves every element of F fixed. This is, of
course, exactly what Lemma 5.6.3 claims.

We return to the completion of the proof of Theorem 5.6.5. Assume that
K is the splitting field of the polynomial f (x) in F[x]. We want to show
that K is normal over F. We proceed by induction on [K:F], assuming
that for any pair of fields K,, Fy of degree less than [K:F] that whenever
K, is the splitting field over F; of a polynomial in F[], then K, is normal
over Fj.

If f(x) € F[x] splits into linear factors over F, then K = F, which is
certainly a normal extension of F. So, assume that f (x) has an irreducible
factor p(x) € F[x] of degree r > 1. The r distingt TOOts Oy, Oy, ..., O, Of
p(x) all lie in K and K is the splitting field of f(x) considered as a poly-
nomial over F(a,;). Since

[K:F] n

[K:F ()] = = =

FayFl 7

by our induction hypothesis K is a normal extension of F(ay).

Let 0 € K be left fixed by every automorphism ¢ € G (K, F); we would
like to show that 0 is in F. Now, any automorphism in G (K, F(a,)) certainly
leaves F fixed, hence leaves 6 fixed; by the normality of K over F(ay),
this implies that 6 is in F(a;). Thus
0 =g+ Aty + Aoty + + A_qu" "' where Ao,..., 4, €F. (1)

By Lemma 5.6.3 there is an automorphism o; of K, ¢; € G (K, F), such
that o;(0t;) = o;; since this o; leaves 6 and each 4; fixed, applying it to
(1) we obtain

0= Ao+ Aoy + A0,2 o AT for i=1,2,..,7 (2)
Thus the polynomial
gx) = Aot U+ Qo2+ Ax + (Mo — 0)

in K[x], of degree at most r — 1, has the r distinct roots ay, &, ..., %-
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This can only happen if all its coefficients are 0; in particular, 1 — 0 = 0
whence 6 = J; so is in F. This completes the induction and proves that K
is a normal extension of F. Theorem 5.6.5 is now completely proved.

DEFINITION ' Let 1 (x) be a polynomial in F[x] and let K be its splitting
field over F. The Galois group of f (x) is the group G (K, F) of all the auto-
morphisms of K, leaving every element of F fixed.

Note that the Galois group of f (x) can be considered as a group of
permutations of its roots, for if o is a root of f(x) and if ge G (K, F),
then g(a) is also a root of f (x).

We now come to the result known as the fundamental theorem of Galois
theory. It sets up a one-to-one correspondence between the subfields of the
splitting field of f (x) and the subgroups of its Galois group. Moreover, it
gives a criterion that a subfield .of a normal extension itself be a normal
extension of F. This fundamental theorem will be used in the next section
to derive conditions for the solvability by radicals of the roots of a poly-
nomial.

THEOREM 5.6.6 Let f (x) be a polynomial in F [x], K its splitting field over
F, and G(K, F) its Galois group. For any subfield T of K which contains F let
- GK, T)={0eG(K, F)|o(t) =t foreveryte T} and for any subgroup
- H of GIK, F) let K, = {xe K| a(x) = x for every s € H}. Then the asso-
cuation of T with G(K, T) sets up a one-to-one correspondence of the set of subfields
of K which contain F onto the set of subgroups of G (K, F) such that

L T = Kk py
2. H=G(K,Ky,).
3. [K:T] = o(G(K, T)), [T:F] = index of G(K, T)in G(K, F).
4. T is a normal extension of F if and only of G(K, T) is a normal subgroup of
G(K, F).
5. When T is a normal extension of F, then G(T, F) is isomorphic to
G(K, F)|G(K, T).

Prpof.  Since K is the splitting field of J (x) over F it is also the splitting
field of f(x) over any subfield 7" which contains F, therefore, by Theorem
5.6.5, K is a normal extension of 7. Thus, by the definition of normality,
T is the fixed field of G (K, T), that is, T = K¢ 1), proving part 1.

Since K is a normal extension of F, by Theorem 5.6.4, given a subgroup H
of G(K, F), then H = G(K, Kpy), which is the assertion of part 2. More-

- over, this shows that any subgroup of G (K, F) arises in the form G (K, T),
whence the association of 7" with G (K, T) maps the set of all subfields of X
containing F onto the set of all subgroups of G (K, F). That it is one-to-one

-
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is clear, for, if G(K, T;) = G(K, T,) then, by part I, T, = Ko,ry) =
Ko, 12 = 1.

Since K is normal over 7, again using Theorem 5.6.4, [K:T] =
o(G(K, T)); but then we have o(G(K, F)) = [K:F] = [K:T)[T-F] =
o(G(K, T))[T:F], whence

RIS )

= index of G(K, T)
o(G(K, T))

in G(K, F). This is part 3.

The only parts which remain to be proved are those which pertain to
normality. We first make the following observation. T'is a normal extension
of F if and only if for every 6 e G(K, F), o(T) < T. Why? We know
by Theorem 5.5.1 that T = F(a); thus if ¢(T) c T, then o(a) e T for
all ¢ € G(K, F). But, as we saw in the proof of Theorem 5.6.5, this implies
that 7 is the splitting field of

px) = I (-0

o€ G(K,F)

which has coefficients in F. As a splitting field, 7, by Theorem 5.6.5, is
a normal extension of F. Conversely, if 7T is a normal extension of F, then
T = F(a), where the minimal polynomial of ¢, p(x), over F has all its roots
in T (Theorem 5.6.5). However, for any ¢ € G(K, F), o(a) is also a root
of p(x), whence ¢(a) must be in T. Since T is generated by a over F, we
get that (T) < T for every ¢ € G(K, F).

Thus T is a normal extension of F if and only if for any o € G(K, F),
1eG(K, T) and te T, o(t)e T and so 1(6(t)) = o(t); that is, if and
only if ¢~ 't6(t) = t. But this says that T is normal over F if and only
if 67'G(K, T)o < G(K, T) for every ¢eG(K,F). This last condition
being precisely that which defines G(K, T) as a normal subgroup of
G (K, F), we see that part 4 is proved.

Finally, if 7" is normal over F, given ceG(K, F), since o(T) < T,
¢ induces an automorphism g, of 7 defined by 0,(¢) = () for every
te T. Because gy leaves every element of F fixed, o, must be in G(T, F).
Also, as is evident, for any o,y € G(K, F), (0Y)x = o4y whence the
mapping of G (K, F) into G (T, F) defined by 6 — 04 is a homomorphism
of G(K, F) into G(T, F). What is the kernel of this homomorphism?
It consists of all elements ¢ in G (K, F) such that ¢, is the identity map on
T. That is, the kernel is the set of all 6 € G(K, F) such that ¢ = o.(t) =
a(t); by the very definition, we get that the kernel is exactly G(K, T)-
The image of G(K, F) in G(T, F), by Theorem 2.7.1 is isomorphic to
G(K, F)|G(K, T), whose order is o(G(K, F))Jo(G(K, T)) = [T:F] (by
part 3) = o(G(7, F)) (by Theorem 5.6.4). Thus the image of G(K, F)
in G(T, F) is all of G(T, F) and so we have G(T, F) isomorphic t0
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G (K, F)|G(K, T). This finishes the proof of part 5 and thereby completes
the proof of Theorem 5.6.6.

Problems

L. If K is a field and § a set of automorphisms of K, prove that the fixed
field of S'and that of § (the subgroup of the group of all automorphisms
of K generated by ) are identical.

2. Prove Lemma 5.6.2.

3. Using the Eisenstein criterion, prove that x* + x3 + a2+ x4 1
is irreducible over the field of rational numbers.
4. In Example 5.6.3, prove that each mapping o, defined is an auto-
morphism of Fy(w).
5. In Example 5.6.3, prove that the fixed field of Fy(w) under o,
02, 03, G4 Is precisely F.
6. Prove directly that any automorphism of K must leave every rational
number fixed.
5 *7. Prove that a symmetric polynomial in x,, ..., x, is a polynomial in
the elementary symmetric functions in Kiyonns Xpe
8. Express the following as polynomials in the elementary symmetric
functions in x;, x,, x5:
(@) %2 + %2 + 232
(b) 2% + 2,3 + 2,3
(© (7 — 2)%(x; — x3)%(x, — x3) 2.
9. If oy, 0y, a3 are the roots of the cubic polynomial x3 4 7x2
8x + 3, find the cubic polynomial whose roots are -
(a) a12’ “22’ asz' (b) i: i: i (C) alss Ot23, 0‘33'
oy Ay oy

*10. Prove Newton’s identities, namely, if a,, oy, ..., «, are the roots of
J@E) =2+ ax" ™ foa? 4y a, and if 5 = 4
af e+ o,k then
(@) Su+ a5y + agsy_y + o0 + G 15, + ko, =0ifk =1,2,...,n

/ (b)) e+ as_y + -+ ays,_, =0fork > n.
(c) For n = 5, apply part (a) to determine s,, s5, s,, and ss.

11. Prove that the elementary symmetric functions in «x,, ..., ¥, are
indeed symmetric functions in x,, . . ., Xy

12. If p(x) = #" — 1 prove that the Galois group of p(x) over the field

of rational numbers is abelian.

The complex number o is a primitive nth root of unity if " = 1 but @™ # 1
for0 < m < n Fy will denote the field of rational numbers.

-
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13. (a) Prove that there are ¢(n) primitive nth roots of unity where
¢(n) is the Euler ¢-function.

(b) If @ is a primitive nth root of unity prove that Fy(w) is the
splitting field of x" — 1 over F, (and so is a normal extension
of Fy).

(c) If @y, ..., Wgeny ATE the ¢(n) primitive nth roots of unity, prove
that any automorphism of Fy(w,) takes @, into some ;.

(d) Prove that [Folw,) :Fo] < ¢(n).

14. The notation is as in Problem 13.
*(a) Prove that there is an automorphism a; of Fo(®,) which takes @,
into ;.

(b) Prove the polynomial p,(x) = (¥ — ) (x — @) (¥ — Opmy)
has rational coefficients. (The polynomial p(x) is called the
nth cyclotomic polynomial.)

*(c) Prove that, in fact, the coefficients of p,(x) are integers.

#%]5. Use the results of Problems 13 and 14 to prove that p,(x) is irreducible
over F, for all n > 1. (See Problem 8, Section 3.)

16. For n = 3,4, 6, and 8, calculate p,(x) explicitly, show that it has
integer coefficients and prove directly that it is irreducible over Fj,.

17. (a) Prove that the Galois group of x3 — 2 over F, is isomorphic to
S5, the symmetric group of degree 3.
(b) Find the splitting field, K, of x® — 2 over Fj.
(c) For every subgroup H of 8, find Ky and check the correspondence
given in Theorem 5.6.6. ’
(d) Find a normal extension in K of degree 2 over Fj,.

18. If the field F contains a primitive nth root of unity, prove that the
Galois group of " — a, for a€ F, is abelian.

5.7 Solvability by Radicals

Given the specific polynomial x2 + 3x + 4 over the field of rational
numbers F,, from the quadratic formula for its roots we know that its
roots are (—3 + ~/—7)/2; thus the field Fy(v/7 1) is the splitting field of
x2 + 3x + 4 over F,. Consequently there is an element y = —7 in Fo
such that the extension field Fy(w) where w? = 7y is such that it contains
all the roots of x* + 3x + 4.

From a slightly different point of view, given the general quadratic poly-
nomial p(x) = x* + a;x + ap over F, we can consider it as a particular
polynomial over the field F (ay, ay) of rational functions in the two variables
a, and a, over F; in the extension obtained by adjoining @ to F(ay, a3)
where w? = a,2 — 4a, € F(ay, a;), we find all the roots of p(x). There is
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a formula which expresses the roots of p(x) in terms of a,, a, and square
roots of rational functions of these.

For a cubic equation the situation is very similar; given the general cubic
equation p(x) = x> + a;x? + ax + a, an explicit formula can be given,
involving combinations of square roots and cube roots of rational functions
in a4, a5, a3. While somewhat messy, they are explicitly given by Cardan’s
Jormulas: Let p = a, — (a,?/3) and

3
_ 24,  aa,

27 3

and

. (with cube roots chosen properly); then the roots are P + Q — (a,/3),
- oP + 0?0 — (4,/3), and w2P + ®Q — (a,/3), where w # 1 is a cube
- root of 1. The above formulas only serve to illustrate for us that by
adjoining a certain square root and then a cube root to F (ay, ay, a;) we
reach a field in which p(x) has its roots.

For fourth-degree polynomials, which we shall not give explicitly, by
using rational operations and square roots, we can reduce the problem to
that of solving a certain cubic, so here too a formula can be given expressing
the roots in terms of combinations of radicals (surds) of rational functions
of the coefficients.

For polynomials of degree five and higher, no such universal radical
formula can be given, for we shall prove that it is impossible to express
their roots, in general, in this way.

Given a field F and a polynomial p(x) € F[x], we say that p(x) is solvable
b radicals over F if we can find a finite sentence of fields F|, = F(w,),
F;, = Fi(@,),..., F, = F,_,(w,) such that 0" €F, w,*cF,,.
. ¢ F,_, such that the roots of p(x) all lie in F,.

IfK is.the splitting field of p(x) over F, then p(x) is solvable by radicals

“ey

By the general polynomial of degree n over F, p(x) ="+ a; 2" 1 4 -+ + Ay
We mean the following: Let F(ay, ..., a,) be the field of rational functions,
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in the n variables a,,...,a, over F, and consider the particular
polynomial p(x) = " + a;#"~ ' + -+ + a, over the field F(ay,. .., a,).
We say that it is solvable by radicals if it is solvable by radicals over
F(ay,...,a,). This really expresses the intuitive idea of “finding a for-
mula” for the roots of p(x) involving combinations of mth roots, for various
m’s, of rational functions in ay, as, ..., a, Forn = 2,3, and 4, we pointed
out that this can always be done. For n > 5, Abel proved that this cannot
be done. However, this does not exclude the possibility that a given poly-
nomial over F may be solvable by radicals. In fact, we shall give a criterion
for this in terms of the Galois group of the polynomial. But first we must
develop a few purely group-theoretical results. Some of these occurred as
problems at the end of Chapter 2, but we nevertheless do them now officially.

DEFINITION A group G is said to be solvable if we can find a finite chain
of subgroups G = Ny > N; o N, o --- > N, = (¢), where each N; is a

normal subgroup of N;_, and such that every factor group N;_,/N; is
abelian.

Every abelian group is solvable, for merely take Ny = G and N, = ()
to satisfy the above definition. The symmetric group of degree 3, Sj, is
solvable for take N, = {e, (1,2, 3), (1, 3,2)}; N, is a normal subgroup of
S, and S;/N; and N,/(e) are both abelian being of orders 2 and 3, respec-
tively. It can be shown that S, is solvable (Problem 3). For n > 5 we
show in Theorem 5.7.1 below that §, is not solvable.

We seek an alternative description for solvability. Given the group G and
elements 4, b in G, then the commutator of a and b is the element a™ 57 ab.
The commutator subgroup, G', of G is the subgroup of G generated by all the
commutators in G. (It is nof necessarily true that the set of commutators
itself forms a subgroup of G.) It was an exercise before that G’ is a normal
subgroup of G. Moreover, the group G/G’ is abelian, for, given any two
elements in it, aG’, bG', with a, b € G, then

(aG")(bG") = abG' = ba(a™ b ab)G"
= (since a” 6" 'ab € G') baG’' = (bG')(aG’).

On the other hand, if M is a normal subgroup of G such that G/M is abelian,
then M > G’, for, given a,be G, then (aM)(bM) = (bM)(aM), from
which we deduce abM = baM whence a~'6"'abM = M and so
a” b7 'ab e M. Since M contains all commutators, it contains the group
these generate, namely G'.

G’ is a group in its own right, so we can speak of its commutator subgroup
G = (G'). This is the subgroup of G generated by all elements
(@)~ 1(8") " 'a’'b’ where a’, b’ € G'. It is easy to prove that not only is G?
a normal subgroup of G’ but it is also a normal subgroup of G (Problem 4).
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We continue this way and define the higher commutator subgroups G™ by
G™ = (G™ VY Each G™ is a normal subgroup of G (Problem 4) and
G™ D|G™ is an abelian group.

In terms of these higher commutator subgroups of G, we have a very
succinct criterion for solvability, namely,

LEMMA 5.7.1 G is solvable if and only if G® = (e) for some integer k.

Proof. If G® = (e) let Ny =G, N, =G, N,=G? N =
G® = (¢). We have

G=Ny>N, oN,>--> N, = (e);

each N; being normal in G is certainly normal in N;_,. Finally,

Ni_1 GG-1) GG-1)

N, . GH» (GG-Dy

hence is abelian. Thus by the definition of solvability G is a solvable group.

Conversely, if G is a solvable group, there is a chain G = N, > N, o
N, > -+ 5 N, = (¢) where each N, is normal in N;_; and where N;_,/N,
is abelian. But then the commutator subgroup N/ _, of N;_, must be
contained in N. Thus N, o No =G, N,> N| > (G =GP,
N3 N; o (GP) =GP, N, GD, (¢) = N, > G®. We therefore
obtain that G® = (¢).

COROLLARY  If G is a solvable group and if G is a homomorphic image of G,
then G is solvable.

Proof.  Since G is a homomorphic image of G it is immediate that (G)®
is the image of G®. Since G® = () for some £, (G)® = (e) for the same
k, whence by the lemma G is solvable.

The next lemma is the key step in proving that the infinite family of
groups S,, with n > 5, is not solvable; here §, is the symmetric group of
degree n.

LEMMA 572 Let G=3S, where n>5; thm G® Jor k=1,2,...,
contains évery 3-cycle of S,.

Proof. We first remark that for an arbitrary group G, if N is a normal
subgroup of G, then N’ must also be a normal subgroup of G (Problem 5).

We claim that if N is a normal subgroup of G = §,, where n > 5, which
contains every 3-cycle in S, then N’ must also contain every 3-cycle. For
Suppose @ = (1,2,3), 6 = (1,4,5) are in N (we are using here that
n 2 5); then e~ '™ 'ab = (3,2, 1)(5, 4, 1)(1,2,3)(1,4,5) = (1,4,2), as
a commutator of elements of N must be in N’. Since N’ is a normal

-
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subgroup of G, for any € S,, n~ (1,4, 2)n must also be in N’. Choose a
7 in S, such that n(l) =4, n(4) = iy, and n(2) = iy, where i, ¢, i3 are
any three distinct integers in the range from 1 to 7; then 7~ 1(1, 4, 2)n =
(iy, i3, i3) is in N’. Thus N’ contains all 3-cycles.

Letting N = G, which is certainly normal in G and contains all 3-cycles,
we get that G’ contains all 3-cycles; since G’ is normal in G, G? contains
all 3-cycles; since G® is normal in G, G*® contains all 3-cycles. Con-
tinuing this way we obtain that G® contains all 3-cycles for arbitrary £.

A direct consequence of this lemma is the interesting group-theoretic
result.

THEOREM 5.7.1 S, is not solvable for n > 5.

Proof If G = S,, by Lemma 5.7.2, G® contains all 3-cycles in §, for
every k. Therefore, G® # (e) for any k, whence by Lemma 5.7.1, G cannot
be solvable.

We now interrelate the solvability by radicals of p(x) with the solvability,
as a group, of the Galois group of p(x). The very terminology is highly
suggestive that such a relation exists. But first we need a result about the
Galois group of a certain type of polynomial.

LEMMA 5.7.3 Suppose that the field F has all nth roots of unity ( for some
particular n) and suppose that a # 0 is in F. Let x* — ac€ F[x] and let K be
its splitting field over F. Then

1. K = F(u) where u is any root of x" — a.
2. The Galois group of x* — a over F is abelian.

Proof. Since F contains all nth roots of unity, it contains { = e2miim;
note that &* = 1l but {" £ lfor0 < m < n.

If ue K is any root of & — a, then u, lu, E%u, ..., " 1y are all the
roots of " — a. That they are roots is clear; that they are distinct follows
from: & = &y with 0 < i < j < n, thensince u # 0, and (&' — Eu =0,
we must have ¢ = &, which is impossible since gt =1, with 0 < j — i
< n Since ¢eF, all of u, &u,...,¢"  'u are in F(u), thus F(u) splits
x" — a; since no proper subfield of F(x) which contains F also contains %
no proper subfield of F(x) can split ¥ — a. Thus F(u) is the splitting
field of x* — a, and we have proved that K = F(u).

If o, © are any two clements in the Galois group of #* — a, that is, if
@, T are automorphisms of K = F(u) leaving every element of F fixed, then
since both o(x) and t(x) are roots of x" — a, o(u) = &'u and t(u) = Elu
for some i and j. Thus ot(x) = 6(&u) = Eo(u) (since & e F) = Eithu =
Eitiy; similarly, ta(u) = &*Ju. Therefore, gt and 1o agree on u and on
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F hence on all of K = F(u). But then g7 = 70, whence the Galois group
is abelian.

Note that the lemma says that when F has all nth roots of unity, then
adjoining one root of " — a4 to F, where a e F, gives us the whole splitting
_ field of " — a; thus this must be a normal extension of F.

We assume for the rest of the section that F is a Sield which contains all nth roots
 of unily for every integer n. We have

.THEOREM 5.7.2 If p(x) € F[x] is solvable by radicals over F, then the Galois
_ group over F of p(x) is a solvable group.

Proof. Let K be the splitting field of £(x) over F; the Galois group of

p(x) over Fis G(K, F). Since p(x) is solvable by radicals, there exists a
sequence of fields

FcF = Flw,) € F, = Fi(wy) -+ < Fy, = Fy_ (o),

where @™ eF, w,*e F,,..., 0> €F,_; and where K c F,. As we
pointed out, without loss of generality we may assume that F, is a normal
extension of F. As a normal extension of F, F, is also a normal extension
of any intermediate field, hence F, is a normal extension of each F,

By Lemma 5.7.3 each F; is a normal extension of F;_, and since F, is
normal over F;_,, by Theorem 5.6.6, G(F,, F,) is a normal subgroup in
G(F,, F;_,). Consider the chain

G(F, F) o G(F,, F,) o GF,F,) >+ > G(Fy Fy_y) o (e). )]

As we just remarked, each subgroup in this chain is a normal subgroup
in the one preceding it. Since F; is a normal extension of F;_,, by the
fundamental theorem of Galois theory (Theorem 5.6.6) the group of F;
over Fy_y, G(F, F;_,) is isomorphic to G(F,, F;_,)|G(F,, F;). However,
by Lemma 5.7.3, G(F, F;_,) is an abelian group. Thus each quotient
group G (F,, F;_,)/G (F,, F;) of the chain (1) is abelian.

Thus the group G(F,, F) is solvable! Since K < F, and is a normal
extension of F (being a splitting field), by Theorem 5.6.6, G(F,, K)
is normal subgroup of G(F, F) and G(K,F) is isomorphic to
G(I?k, F)|G(F, K). Thus G(K, F) is a homomorphic image of G(F,, F), a
solvable group; by the corollary to Lemma 5.7.1, G(K, F) itself must then

be a solvable group. Since G (K, F) is the Galois group of p(x) over F the
theorem has been proved.

We make two remarks without proof.

1. The converse of Theorem 5.7.2 is also true; that is, if the Galois group
of p(x) over F is solvable then p(x) is solvable by radicals over F.

-
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9. Theorem 5.7.2 and its converse are true even if F does not contain
roots of unity.

Recalling what is meant by the general polynomial of degree n over F,
p(x) = 2" + a;2"" ' + -+ + a,, and what is meant by solvable by radicals,
we close with the great, classic theorem of Abel:

THEOREM 5.7.3 The general polynomial of degree n > 5 is not solvable by
radicals.

Proof. In Theorem 5.6.3 we saw that if F(ay,...,a,) is the field of
rational functions in the z variables ay, ..., a,, then the Galois group of
the polynomial p(t) = t" + ayt""* + -+ + a, over F(ay,...,a,) was §,
the symmetric group of degree n. By Theorem 5.7.1, S, is not a solvable
group when n > 5, thus by Theorem 5.7.2, p(t) is not solvable by radicals
over F(ay,...,a,) when n > 5.

Problems

*]. If p(x) is solvable by radicals over F, prove that we can find a sequence
of fields

FcF =Flw) cF,=F (W)= F = Fy_1(a),

where ,""€F, w,?eF,,...,o*€F_,, F, containing all the
roots of p(x), such that F; is normal over F.
Prove that a subgroup of a solvable group is solvable.

Prove that S, is a solvable group.

If G is a group, prove that all G® are normal subgroups of G.

TP SRS

. If N is a normal subgroup of G prove that N’ must also be a normal
subgroup of G.

6. Prove that the alternating group (the group of even permutations in
S.) 4, has no nontrivial normal subgroups for n > 5.

5.8 Galois Groups over the Rationals

In Theorem 5.3.2 we saw that, given a field F and a polynomial p(x), of
degree n, in F[«], then the splitting field of p(x) over F has degree at most
n! over F. In the preceding section we saw that this upper limit of n! is,
indeed, taken on for some choice of F and some polynomial p(x) of degree
n over F. In fact, if Fy is any field and if F is the field of rational functions
in the variables aj, . .., a, over Fy, it was shown that the splitting field, K,
of the polynomial p(x) = x* + ax"~ ' + -+ + a, over F has degree
exactly n! over F. Moreover, it was shown that the Galois group of K over
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F is $,, the symmetric group of degree n. This turned out to be the basis
~ for the fact that the general polynomial of degree n, with n > 5, is not
solvable by radicals.

However, it would be nice to know that the phenomenon described
above can take place with fields which are more familiar to us than the
field of rational functions in # variables. What we shall do will show that
. for any prime number p, at least, we can find polynomials of degree p over
- the field of rational numbers whose splitting fields have degree p! over the
- rationals. This way we will have polynomials with rational coeflicients
whose Galois group over the rationals is Sp. In light of Theorem 5.7.2, we
will conclude from this that the roots of these polynomials cannot be ex-
~ pressed in combinations of radicals involving rational numbers. Although
in proving Theorem 5.7.2 we used that roots of unity were in the field, and
roots of unity do not lie in the rationals, we make use of remark 2 following
the proof of Theorem 5.7.2 here, namely that Theorem 5.7.2 remains valid
even in the absence of roots of unity.

We shall make use of the fact that polynomials with rational coefficients
have all their roots in the complex field.

We now prove

THEOREM 5.81 Let q(x) be an irreducible polynomial of degree p, p a prime,
over the field Q of rational numbers. Suppose that q(x) has exactly two nonreal roots
in the field of complex numbers. Then the Galois group of q(x) over Q is S, the
symmetric group of degree p. Thus the splitting field of q(x) over Q has degree p!
over Q.

Proof. Let K be the splitting field of the polynomial ¢(x) over @. If
o is a root of ¢(x) in K, then, since g(x) is irreducible over @, by Theorem
5.1.3, [Q(x):Q] = p. Since K o Q(x) > @ and, according to Theorem
5.1, [K:Q] = [K:Q()][Q(2):Q] = [K:Q(@)]p, we have that p|[K:Q].
If G is the Galois group of K over @, by Theorem 5.6.4, o(G) = [K:F].
Thus p|0(G). Hence, by Cauchy’s theorem (Theorem 2.11.3), G has
an element o of order p.

To this point we have not used our hypothesis that ¢(x) has exactly two
nog,real roots. We use it now. If a,, a, are these nonreal roots, then
Oy = &,, a, = a,; (see Problem 13, Section 5.3), where the bar denotes
the complex conjugate. If a3, - .., &, are the other roots, then, since they
are real, @; = «; for i > 3. Thus the complex conjugate mapping takes
K into itself, is an automorphism 7 of K over @, and interchanges o, and
®, leaving the other roots of g(x) fixed.

Now, the elements of G take roots of g(x) into roots of ¢(x), so induce
Permutations of ay,..., o, In this way we imbed G in S,- The auto-
morphism t described above is the transposition (1, 2) since 7(a;) = a,,

i
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t(a,) = oy, and t(e;) = a; for 7 > 3. What about the element ¢ €G,
which we mentioned above, which has order p? As an element of S,
o has order p. But the only elements of order p in §, are p-cycles. Thus ¢
must be a p-cycle.

Therefore G, as a subgroup of §,, contains a transposition and a p-cycle.
It is a relatively easy exercise (see Problem 4) to prove that any transposition
and any p-cycle in S, generate §,. Thus ¢ and 7 generate S,. But since
they are in G, the group generated by ¢ and 7 must be in G. The net result
of this is that G = §,. In other words, the Galois group of g(x) over @ is
indeed §,. This proves the theorem.

The theorem gives us a fairly general criterion to get S, as a Galois group
over Q. Now we must produce polynomials of degree p over the rationals
which are irreducible over  and have exactly two nonreal roots. To pro-
duce irreducible polynomials, we use the Eisenstein criterion (Theorem
3.10.2). To get all but two real roots one can play around with the co-
efficients, but always staying in a context where the Eisenstein criterion is
in force.

We do it explicitly for p = 5. Let g(x) = 2x> — 10x + 5. By the
Eisenstein criterion, ¢(x) is irreducible over . We graph y = g(x) =
2x5 — 10x + 5. By elementary calculus it has a maximum at x = —1
and a minimum at x = 1 (see Figure 5.8.1). As the graph clearly indicates,

J
4

IR
i

-

T @, =3)
Figure 5.8.1

9 = g(x) = 2x5 — 10x + 5 crosses the x-axis exactly three times, so g(¥)
has exactly three roots which are real. Hence the other two roots must be
complex, nonreal numbers. Therefore g(x) satisfies the hypothesis of
Theorem 5.8.1, in consequence of which the Galois group of ¢(x) over @
is S5. Using Theorem 5.7.2, we know that it is not possible to express the
roots of ¢(x) in a combination of radicals of rational numbers.
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Problems

1. In §5 show that (1 2) and (1234 5) generate .

- In 85 show that (1 2) and (1 324 5) generate Ss.

. If p > 2 is a prime, show that (12) and (12---p — 1 p) generate S,

Prove that any transposition and p-cycle in S, p a prime, generate Sy

O oW

. Show that the following polynomials over @ are irreducible and have
exactly two nonreal roots.
(a)p(‘x) = x3 — 3x — 3:
(b) £(x) = x5 — 6x + 3,
(€) p(x) = > + 5x* 4 1023 + 10x2 — 5 — 9.
6. What are the Galois groups over Q of the polynomials in Problem 5?

7. Construct a polynomial of degreee 7 with rational coefficients whose
Galois group over Q is S,.
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Linear Transformations

In Chapter 4 we defined, for any two vector spaces V and W over the
same field F, the set Hom (V, W) of all vector space homomorphisms
of Vinto W. In fact, we introduced into Hom (¥, W) the operations
of addition and of multiplication by scalars (elements of F) in such a
way that Hom (V, W) itself became a vector space over F.

Of much greater interést is the special case V = W, for here, in
addition to the vector space operations, we can introduce a multi-
plication for any two elements under which Hom (V, V) becomes a
ring. Blessed with this twin nature—that of a vector space and of a
ring—Hom (V, V) acquires an extremely rich structure. It is this
structure and its consequences that impart so much life and sparkle
to the subject and which justify most fully the creation of the abstract
concept of a vector space.

Our main concern shall be concentrated on Hom (V, V) where V
will not be an arbitrary vector space but rather will be restricted to be
a finite-dimensional vector space over a field F. The finite-
dimensionality of V imposes on Hom (V, V) the consequence that
each of its elements satisfies a polynomial over F. This fact, perhaps
more than any other, gives us a ready entry into Hom (V, V) and
allows us to probe both deeply and effectively into its structure.

The subject matter to be considered often goes under the name of
linear algebra. It encompasses the isomorphic theory of matrices. The
statement that its results are in constant everyday use in every aspect
of mathematics (and elsewhere) is not in the least exaggerated.
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A popular myth is that mathematicians revel in the inapplicability of
their discipline and are disappointed when one of their results is “soiled”
by use in the outside world. This is sheer nonsense! It is true that a mathe-
matician does not depend for his value judgments on the applicability of a
iven result outside of mathematics proper but relies, rather, on some
jintrinsic, and at times intangible, mathematical criteria. However, it is
equally true that the converse is false—the utility of a result has never
lowered its mathematical value. A perfect case in point is the subject of
finear algebra; it is real mathematics, interesting and exciting on its own,
yet it is probably that part of mathematics which finds the widest applica-
tion—in physics, chemistry, economics, in fact in almost every science and
pseudoscience.

6.1 The Algebra of Linear Transformations

Let V be a vector space over a field F and let Hom (¥, V), as before, be
the set of all vector-space-homomorphisms of V into itself. In Section 4.3
we showed that Hom (V, V) forms a vector space over F, where, for
Ty, T,eHom (V, V), Ty + T, is defined by o(T, + T5) = vT; + vT,
for all ve V and where, for a € F, aT; is defined by v(aT;) = a(vT)).
For T,, T,e Hom (V, V), since vTy € V for any ve V, (vT;)T, makes
sense. As we have done for mappings of any set into itself, we define
T,T, by o(T,T,) = (vT,)T, for any ve V. We now claim that T,T, e
Hom (¥, V). To prove this, we must show that for all a, f € F and all
woeV, ( + po)(T;Ty) = a(u(T,T;) + Bo(Ty Ty)). We compute

(au + Bo)(T)T3) = ((ou + Po)T) T,

(2(uTy) + B(T1))T,

a@T)T, + B(vT)T,

«(w(TyT3)) + B(o(TyTy)).

~ We leave as an exercise the following properties of this product in
Hom (7, 1):

L (T, + T))Ty = T, T, + T,Ts;
2. Ty(T, + T,) = T,T, + T,Ty;
3. Tl(Tsz) = (T, T3)T5;

4. (T Ty) = (aTy) T, = Ty(aTy);

Note that properties 1, 2, 3, above, are exactly what are required to
make of Hom (V, V) an associative ring. Property 4 intertwines the
aracter of Hom (V, V'), as a vector space over F, with its character as a
ing.
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Note further that there is an element, I, in Hom (V, V), defined by
oI = v for all v V, with the property that TI = IT = T for every Te
Hom (V, V). Thereby, Hom (¥, V) is a ring with a unit element. More-
over, if in property 4 above we put T, = I, we obtain a7, = T;{al).
Since (al)T, = a(IT;) = a7}, we see that (al)T, = Ty(al) for all T} e
Hom (¥, V), and so al commutes with every element of Hom (V, V).
We shall always write, in the future, ol merely as a.

DEFINITION An associative ring 4 is called an algebra over F if 4 is a
vector space over F such that for all ,be 4 and a € F, a(ab) = (oa)b =
a(ab).

Homomorphisms, isomorphisms, ideals, etc., of algebras are defined as
for rings with the additional proviso that these must preserve, or be in-
variant under, the vector space structure.

Our remarks above indicate that Hom (¥, V) is an algebra over F. For
convenience of notation we henceforth shall write Hom (V, V) as A(V);
whenever we want to emphasize the role of the field F we shall denote it by
Ap(V).

DEFINITION A linear transformation on V, over F, is an element of Ap(V).

We shall, at times, refer to A(V) as the ring, or algebra, of linear trans-
formations on V.

For arbitrary algebras 4, with unit element, over a field F, we can prove
the analog of Cayley’s theorem for groups; namely,

LEMMA 6.1.1 If A is an algebra, with unit element, over F, then A is isomorphic
to a subalgebra of A(V) for some vector space V over F.

Proof. Since 4 is an algebra over F, it must be a vector space over F.
We shall use ¥ = 4 to prove the theorem.

If ae 4, let T,:A - A be defined by 2T, = va for every ve 4. We
assert that T}, is a linear transformation on V(=4). By the right-distribu-
tive law (v, + 05) T, = (v, + vy)a = v1a + vpa = 0, T+ 0,1, Since 4
is an algebra, ()7, = (w)a = a(va) = a(vT,) for ved, ael Thus
T, is indeed a linear transformation on 4.

Consider the mapping ¥:4 —» A(V) defined by ay = T, for every
ae A. We claim that y is an isomorphism of 4 into 4(V). To begin with,
if a,bed and a, feF, then for all ved, vT u1p = v(oa + Pb) =
a(va) + P(vb) [by the left-distributive law and the fact that A is an algebra
over F] = a(vT,) + B(T,) = v(aT, + BT,) since both T, and T, are
linear transformations. In consequence, Tpuypp = 2T, + BTs whence ¥
is a vector-space homomorphism of 4 into A(V). Next, we compute, for
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a,bed, vT, = o(ab) = (va)h = WT,)T, = o(T,T,) (we have used
~the associative law of 4 in this computation), which implies that 7, =
T,T}, In this way,  is also a ring-homomorphism of 4. So far we have
proved that  is a homomorphism of 4, as an algebra, into A(V). All that
_remains is to determine the kernel of . Let ae 4 be in the kernel of 1/
then ay = 0, whence 7, = 0 and so 27, = 0 for all ye V. Now V — 4,
and 4 has a unit element, ¢, hence eT, = 0. However, 0 = eT, = ea = g,
roving that @ = 0. The kernel of { must therefore merely consist of 0,
hus implying that y is an isomorphism of 4 into A(V). This completes the
i proof of the lemma.

 Thelemma points out the universal role played by the particular algebras,
~ A(V), for in these we can find isomorphic copies of any algebra.
~ Let 4 be an algebra, with unit element ¢, over F, and let p(x) = ay +
X+ + + a,#" be a polynomial in F[x]. For ae 4, by p(a), we shall
~ mean the element oge + 0@ + -+ + a,a" in 4. If p(a) = 0 we shall say
. a satisfies p(x).

 LEMMA 6.1 -2 Let A be an algebra, with unit element, over F, and suppose that

A is of dimension m over F. Then every element in A satisfies some nontrivial poly-
. nomial in F[x] of degree at most m.

 Proof. Let ¢ be the unit element of 4; if ae 4, consider the m + 1
~elements ¢,a,a% ...,a"in A. Since 4 is m-dimensional over F, by Lemma
424,¢0,a%, ..., a", being m + 1 in number, must be linearly dependent
fff:‘tf',over F. In other words, there are elements ®gs ®ys- .., 0y in F, not all
0, such that e + aja + - + 2,a" = 0. But then a satisfies the non-
~ trivial polynomial q(x) = o9 + oax + -+ + o,4™ of degree at most 7,
i Fx.

- If Vis a finite-dimensional vector space over F, of dimension n, by
- Corollary 1 to Theorem 4.3.1, A(V) is of dimension n? over F. Since A(V)
_isan algebra over F, we can apply Lemma 6.1.2 to it to obtain that every
element in A(V) satisfies a polynomial over F of degree at most n2. This
fact will be of central significance in all that follows, so we single it out as

HEOREM 6.1.1 Ifv {r an n-dimensional vector space over F, then, given any
ent T in A(V), there exists a nontrivial polynomial q(x) € F[x] of degree at
st n?, such that ¢(T) = 0.

We shall see later that we can assert much more about the degree of ¢(x);
fact, we shall eventually be able to say that we can choose such a q(x)
degree at most n. This fact is a famous theorem in the subject, and is
known as the Cayley-Hamilton theorem. For the moment we can get by

i
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without any sharp estimate of the degree of g(x); all we need is that a
suitable ¢(x) exists.

Since for finite-dimensional ¥V, given T € A(V), some polynomial g(x)
exists for which ¢(7) = 0, a nontrivial polynomial of lowest degree with
this property, p(x), exists in F[x]. We call p(x) a minimal polynomial for T
over F. If T satisfies a polynomial k(x), then p(x) | A(x).

DEFINITION An element T € A(V) is called right-invertible if there exists
an S € A(V) such that TS = 1. (Here ! denotes the unit element of A(V).)

Similarly, we can define left-invertible, if there is a Ue A(V) such
that UT = 1. If T is both right- and left-invertible and if TS = UT = 1,
it is an easy exercise that § = U and that § is unique.

DEFINITION An element T in A(V) is invertible or regular if it is both
right- and left-invertible; that is, if there is an element $ € A(V) such that
ST = TS = 1. We write Sas T %

An element in A(V) which is not regular is called singular.

It is quite possible that an element in A(V) is right-invertible but is not
invertible. An example of such: Let F be the field of real numbers and let
V be F[x], the set of all polynomials in ¥ over F. In Vlet § be defined by

158 = = g
and T by
2T = f " g(x) d.
1

Then ST s 1, whereas TS = 1. As we shall see in a moment, if V is
finite-dimensional over F, then an element in A(V) which is right-invertible
is invertible.

THEOREM 6.1.2 If V is finite-dimensional over F, then T e A(V) is in-
vertible if and only if the constant term of the minimal polynomial for T is not O.

Proof. Let p(x) = oy + o + *+* + 2%, a, # 0, be the minimal
polynomial for T over F.

If 0p # 0, since 0 =p(T) = T  + T ' + -+ + o, T + g, WE
obtain

1= T( 1 (T Y 4 T2 4+ + al))
do :

(_ L ST ocl))T.
oo
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~ Therefore,

S= = L @I+t )
%o

. acts as an inverse for T, whence 7T is invertible.

Suppose, on the other hand, that T is invertible, yet o = 0. Thus
0=0T+ 7% + -+ T" = (¢, + a,T + -+ + ¢ T* 1) 7. Multi-
_plying this relation from the right by 77! yields a, + a,7 + -+ +
@, T ! = 0, whereby T satisfies the polynomial g(x) = a; + ax + -« +
‘ox* "' in F[x]. Since the degree of ¢(x) is less than that of p(x), this is
impossible. Consequently, o, # 0 and the other half of the theorem is
- established.

COROLLARY 1 If V is finite-dimensional over F and if Te A(V) is in-
vertible, then T~ is a polynomial expression in T over F.

- Proof. Since T is invertible, by the theorem, oy + o, 7 + * -+ +
© o T* = 0 with ¢y # 0. But then

1
T ' = — —(ay + 0,7 + -+ + o, TF ).
%

~ COROLLARY 2 If V is finite-dimensional over F and if T € A(V) is singular,
then there exists an S # 0 in A(V) such that ST = TS = 0.

; Proof. Because T is not regular, the constant term of its minimal
* polynomial must be 0. That is, p(x) = o;x + -+ + ox*, whence 0 =
T+ TS If S=o0 4+ -+ aqT* !, then S # 0 (since
0y + -+ 4 ax* "1 is of lower degree than p(x)) and ST = 7S = 0. .

COROLLARY 3 If V is finite-dimensional over F and if TeA(V) is right-
invertible, then it is invertible.

Proof. Let TU = 1. If T were singular, there would be an § # 0
such that S7 = 0. However, 0 = (ST)U = §(TU) = 81 = § # 0,
a contradiction. Thus 7 is regular.

We wish to transfer the information contained in Theorem 6.1.2 and its
;)

corollaries from A(V) to the’action of T on V. A most basic result in this
Vein is

THEOREM 6.1.3 If V is finite-dimensional over F, then T € A(V) is singular
Y and only if there exists a v # 0 in V such that vT = 0.

Proof. By Corollary 2 to Theorem 6.1.2, T is singular if and only if
‘fhere is an § # 0 in A(V) such that ST = TS = 0. Since S # 0 there
15 an element w € ¥ such that wS # 0.
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Let » = wS; then T = wS)T = w(ST) = w0 = 0. We have produced
a nonzero vector v in V which is annihilated by 7. Conversely, if o7 = 0
with v # 0, we leave as an exercise the fact that T is not invertible.

We seek still another characterization of the singularity or regularity of
a linear transformation in terms of its overall action on V.

DEFINITION If T e A(V), then the range of T, VT, is defined by VT =
{oT |veV}

The range of T is easily shown to be a subvector space of V. It merely
consists of all the images by 7T of the elements of V. Note that the range
of T is all of V if and only if T is onto.

THEOREM 6.1.4 If V is finite-dimensional over F, then T € A(V') is regular
if and only if T maps V onto V.

Proof. As happens so often, one-half of this is almost trivial; namely,
if T is regular then, given veV, v = (vT~YT, whence VT =V and
T is onto.

On the other hand, suppose that T is not regular. We must show that
T is not onto. Since T is singular, by Theorem 6.1.3, there exists a vector
vy # 0in V such that », T = 0. By Lemma 4.2.5 we can fill out, from vy,
to a basis vy, 03, ..., 0, of V. Then every element in VT is a linear com-
bination of the elements w, = v, T, w, = v,T,...,w, =v,T. Since
w, =0, VT is spanned by the n — 1 elements w,,...,w,; therefore
dim VT <n—1 < n=dim V. But then VT must be different from V;
that is, 7 is not onto.

Theorem 6.1.4 points out that we can distinguish regular elements from
singular ones, in the finite-dimensional case, according as their ranges are
or are not all of V. If Te A(V) this can be rephrased as: T is regular if
and only if dim (VT) = dim V. This suggests that we could use dim (VT)
not only as a test for regularity, but even as a measure of the degree of
singularity (or, lack of regularity) for a given T € A(V).

DEFINITION If V is finite-dimensional over F, then the rank of T is the
dimension of VT, the range of T, over F.

We denote the rank of 7' by 7(T'). At one end of the spectrum, if 7(7") =
dim V, T is regular (and so, not at all singular). At the other end, if
r(T) = 0, then T = 0 and so T is as singular as it can possibly be. The
rank, as a function on A(V), is an important function, and we now investigate
some of its properties.
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LEMMA 6.1.3 If V is finite-dimensional over F then for S, T € A(V).
L. 7(ST) < r(T);

2. r(78) < r(T);

(and 50, r(ST) < min {r(T), 7(S)})

3. 1(ST) = r(TS) = r(T) for S regular in A(V).
Proof. We go through 1, 2, and 3 in order.

1. Since VS < V, V(ST) = (V8)T < VT, whence, by Lemma 4.2.6,
dim (V(ST)) < dim VT; that is, 7(ST) < #(T).

2. Suppose that r(T) = m. Therefore, VT has a basis of m elements,
. Wi, W, -+, Wy, But then (VT)S is spanned by w,S, w,S, ..., w,S, hence
has dimension at most m. Since 7(7S) = dim (V(TS)) = dim (VT)S) <
- m =dim VT = r(T), part 2 is proved.
- 3. If § is invertible then VS = V, whence V(ST) = (VS)T = vVT.

Thereby, 7(ST) = dim (V(ST)) = dim (VT) = 7{T). On the other hand,
if VT has wy, ..., w, as a basis, the regularity of § implies that w,S, . ..,
 w,S are linearly independent. (Prove!) Since these span V(TS) they form
a basis of V(7S). But then 7(7S) = dim (V(TS)) = dim (VT) = r(T).

; COROLLARY IfTeA(V) and if S € A(V) is regular, thenr(T) = r(STS™ b,

Proof. By part 3 of the lemma, r(STS"~ Y=r(S(TS™Y) =r((TS" Hs) =
o (7).

Problems
In all problems, unless stated otherwise, V will denote a finite-dimensional
. Vector space over a field F.

1. Prove that Se A(V) is regular if and only if whenever v,...,0,€ V
are linearly independent, then ,,,S, ..., v,S are also linearly
independent.

2. Prove that T e A(V) is completely determined by its values on a
basis of V.

3. Prove Lemma 6.1.1 even when/A does not have a unit element.

4. If A is the field of complex numbers and F is the field of real numbers,
then 4 is an algebra over F of dimension 2. For a = a + fiin 4,
compute the action of 7, (sce Lemma 6.1.1) on a basis of 4 over F.

5. If V is two-dimensional over F and 4 = A(V), write down a basis
of 4 over F and compute T, for each a in this basis.

6. If dim; ¥V > 1 prove that A(V) is not commutative.
7. In A(V) let Z = {TedA(V)|ST = TSforall Se A(V)}. Prove that

-
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10.

11.

12.

13.

*14.

*15.
*16.

17.

18.

*19.

20.

21.

22.

23.

Linear Transformations

Ch. 6

Z merely consists of the multiples of the unit element of A(V) by the
elements of F.
If dimy (V) > 1 prove that A(V) has no two-sided ideals other than
(0) and A(V).

_ Prove that the conclusion of Problem 8 is false if V is not finite-

dimensional over F.

If V is an arbitrary vector space over F and if T € A(V) is both
right- and left-invertible, prove that the right inverse and left inverse
must be equal. From this, prove that the inverse of T is unique.

If V is an arbitrary vector space over F and if T e A(V) is right-
invertible with a unique right inverse, prove that T is invertible.

Prove that the regular elements in A(V) form a group.

If F is the field of integers modulo 2 and if V is two-dimensional over
F, compute the group of regular elements in A(V) and prove that
this group is isomorphic to S5, the symmetric group of degree 3.

If F is a finite field with ¢ elements, compute the order of the group
of regular elements in A(V) where V is two-dimensional over F.

Do Problem 14 if V is assumed to be n-dimensional over F.

If V is finite-dimensional, prove that every element in A(V) can be
written as a sum of regular elements.

An element E € A(V) is called an idempotent if E* = E. If Ee A(V)
is an idempotent, prove that V = Vo @ V, where yE = 0 for all
vo€ Vo and v, E = v, for all v, € V.

If TeAp(V), F of characteristic not 2, satisfies T3 = T, prove
that V=¥, @ V; ® V, where

(a) vy € Vy implies y,T = 0.

(b) v, € Vy implies v; T = v;.

(c) vy € V, implies v, T = —v,.

If V is finite-dimensional and T # 0e A(V), prove that there is
an S e A(V) such that E = TS # 0 is an idempotent.

The element T e A(V) is called nilpotent if T™ = 0 for some m. If
T is nilpotent and if vT = av for some v # 0 in V, with a € F, prove
that a = 0.

If TeA(V) is nilpotent, prove that oy + o; T + a,T? + -+ +
a, T* is regular, provided that oy % 0.

If A is a finite-dimensional algebra over F and if a € 4, prove that

—_

for some integer £ > 0 and some polynomial p(x) € F[x], =
ak +1 p( a).

Using the result of Problem 22, prove that for a € 4 there is a poly-
nomial ¢(x) € F[x] such that ¢* = a%*q(a).
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. Using the result of Problem 23, prove that given ae A either g is
nilpotent or there is an element b # 0 in 4 of the form b — ah(a),
where 4(x) € F[x], such that 2 = p.

. If 4 is an algebra over F (not necessarily finite-dimensional) and if
foraed, a® — ais nilpotent, prove that either q is nilpotent or there
is an element b of the form b = ah(a) # 0, where h(x) € F[x], such
that 2 = b.

. If T 5 0€ A(V) is singular, prove that there is an element S e A(V)
such that 7'S = 0 but ST + 0.

. Let V be two-dimensional over F with basis 01, v. Suppose that
TeA(V) is such that o, T = avy + Boy, v, T = po; + 6v,, where
% B,7, 6 € F. Find a nonzero polynomial in F [%] of degree 2 satisfied
by T.

. If V is three-dimensional over F with basis 1, Uy, v3 and if T'e A(V)
is such that o, = a0, + a0, + a0 for ¢ =1,2,3, with all
a;; € F, find a polynomial of degree 3 in F [#] satisfied by T.

. Let V be n-dimensional over F with a basis V15 -+, Up. Suppose that
T e A(V) is such that

Ul =0,0,T =0;,...,0,_,T =0,

0T = —apy — 0y v, — 0 — %10
where a;,. .., a, € F. Prove that T satisfies the polynomial
p(F) = 2" + " + "2 - 4 g, over .

- If TeA(V) satisfies a polynomial q(x) € F[x], prove that for Se

A(V), S regular, STS™! also satisfies g(x). -

- (a) If Fis the field of rational numbers and if ¥ is three-dimensional
over F with a basis v, v,, v;, compute the rank of Te A(V)
defined by

nT =0, — v,
0, T = v, + v,
;17 = v, + v,
(b) Find a vector ve V, v # 0. such that »7 = 0.

- Prove that the range of 7 and U = {ve V|vT = 0} are subspaces
of V.

I TedV), let Vy={ve V|vT* = 0 for some £}. Prove that
Vo is a subspace and that if 9T™ ¢ Vo, then v € V.

- Prove that the minimal polynomial of T over F divides all polynomials
satisfied by T over F.

- If n(T) is the dimension of the U of Problem 32 prove that r(T) +
n(T) = dim V.

-

1
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6.2 Characteristic Roots

For the rest of this chapter our interest will be limited to linear transfor-
mations on finite-dimensional vector spaces. Thus, henceforth, V will always
denote a finite-dimensional vector space over a field F.

The algebra A(V) has a unit element; for ease of notation we shall write
this as 1, and by the symbol A — T, for AeF, T e A(V) we shall mean
Al —T.

DEFINITION If TeA(V) then AeF is called a characteristic root (or
eigenvalue) of T if A — T is singular.

We wish to characterize the property of being a characteristic root in the
behavior of T on V. We do this in

THEOREM 6.21 The element A€ F is a characteristic root of T € A(V) if
and only if for some v # 0in V, oT = Jo.

Proof. If 1is a characteristic root of T then 4 — T is singular, whence,
by Theorem 6.1.3, there is a vector v # 0 in V such that »(4 — T) = 0.
But then Av = vT.

On the other hand, if T = Av for some v # 0 in V, then o(A—T) =0,
whence, again by Theorem 6.1.3, A — T must be singular, and so, 4 is a
characteristic root of T.

LEMMA 6.21 If AeF is a charasteristic root of T € A(V), then for any
polynomial q(x) € F[x], q(A) is a characteristic root of q(T).

Proof. Suppose that A€ F is a characteristic root of 7. By Theorem
6.2.1, there is a nonzero vector v in ¥ such that o7 = Av. What about 0 T??

Now 0T? = ()T = A@T) = A(Av) = A%». Continuing in this way,
we obtain that 7% = A% for all positive integers k. If g(x) = oox™ +
a0 x 1 4+ 4y, oy €F, then ¢(T) = aoT™ + a, T™ 1 oo b O
whence vg(T) = v(apT™ + o, T™ "1+ 4 ap) = a(0T™) + a,(@T™ 1) +
coe oo = (0™ 4+ A" 4 o + a,)o = ¢(A)v by the remark made
above. Thus v(q(A) — ¢(T)) = 0, hence, by Theorem 6.2.1, g(d) is 2
characteristic root of ¢(T').

As immediate consequence of Lemma 6.2.1, in fact as a mere special
case (but an extremely important one), we have

THEOREM 6.2.2 If AeF is a characteristic root of Te‘A(V), then A is @
root of the minimal polynomial of T. In particular, T only has a Sfinite number of
characteristic roots in F.
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Proof. Let p(x) be the minimal polynomial over F of T; thus p(T) = 0.
If A€ F is a characteristic root of 7, there is a » # 0in V with o7 = Jo.
As in the proof of Lemma 6.2.1, w(T) = p(A)v; but p(T) = 0, which
thus implies that p(1)v = 0. Since » 3 0, by the properties of a vector
space, we must have that p(1) = 0. Therefore, 1 is a root of p(x). Since
p(x) has only a finite number of roots (in fact, since deg p(x) < n? where

n = dimg V, p(x) has at most n® roots) in F, there can only be a finite
number of characteristic roots of 7 in F.

If T'e A(V) and if S € A(V') is regular, then (STS™1)2 = STS~1STS™ ! =
ST2S™1, (STS™1)3 = S§T35~1, ... , (STS™YH! = ST'S™ 1. Consequently,
for any ¢(x) € Fx], ¢(STS™ ') = Sg(T)S~!. In particular, if ¢(T) = 0,
then ¢(STS™ ') = 0. Thus if p(x) is the minimal polynomial for T, then it

follows easily that p(x) is also the minimal polynomial for STS~!. We have
proved

LEMMA 6.2.2 If T,Se A(V) and if S is regular, then T and STS™ ! have
the same minimal polynomial.

DEFINITION The element 0 # ve V is called a characteristic vector of T
belonging to the characteristic root A e Fif oT = Ao.

What relation, if any, must exist between characteristic vectors of T
belonging to different characteristic roots? This is answered in

THEOREM 623 If A\,..., A, in F are distinct characteristic roots of Te
A(V) and if v,,...,v, are characteristic veciors of T belonging to 1, ... s
respectively, then v,, . . . , v, are linearly independent over F.

Proof. For the theorem to require any proof, k£ must be larger than 1;
30 we suppose that £ > 1.

_Ifv,..., 5 are linearly dependent over F, then there is a relation of the
form o9, + -+ + oy, = 0, where ay,..., o, are all in F and not all of
them are 0. In all such relations, there is one having as few nonzero co-

efficients as possible. By suitably renumbering the vectors, we can assume
this shortest relation to be -

Pioy + -+ By =0, B #£0,..., 8 #0. )
We know that 0,7 = 1,,, so, applying T to equation (1), we obtain
MBioy + 00 + AiBjv; = 0. 2)

Multiplying equation (1) by 1; and subtracting from equation (2), we
tain
(A2 = 4)Bavz + -+ + (A; — 4,)Bv; = 0.

1
-
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Now A; — Ay # 0 for 2 > 1, and f; # 0, whence (1; — 4;)B; # 0. But
then we have produced a shorter relation than that in (1) between o,,
Uz, - .- U This contradiction proves the theorem.

COROLLARY 1 If Te A(V) and if dimy V = n then T can have at most
n distinct characteristic roots in F.

Proof. Any set of linearly independent vectors in ¥ can have at most »
elements. Since any set of distinct characteristic roots of 7, by Theorem
6.2.3, gives rise to a corresponding set of linearly independent characteristic
vectors, the corollary follows.

COROLLARY 2 If Te A(V) and if dimp V = n, and if T has n distinct
characteristic roots in F, then there is a basis of V over F which consists of characteristic
vectors of T.

We leave the proof of this corollary to the reader. Corollary 2 is but the
first of a whole class of theorems to come which will specify for us that a
given linear transformation has a certain desirable basis of the vector space
on which its action is easily describable.

Problems
In all the problems ¥V is a vector space over F.

1. If Te A(V) and if g(x) € F[x] is such that ¢(T) = 0, is it true that
every root of ¢(x) in F is a characteristic root of T? Either prove that
this is true or give an example to show that it is false.

2. If Te A(V) and if p(x) is the minimal polynomial for T over F, sup-
pose that p(x) has all its roots in F. Prove that every root of p(x) is 2
characteristic root of 7.

3. Let ¥V be two-dimensional over the field F, of real numbers, with a
basis v, v,. Find the characteristic roots and corresponding charac-
teristic vectors for T defined by
(@) T =v, + vy, 0, T =09, — v,

(b) o, T = 50, + 6v,, v, T = —7o,.
() vuT = v, + 205, v,T = 3v; + 6v,.

4. Let V be as in Problem 3, and suppose that 7 € A(V) is such that
0T = av; + Pvy, 0,7 = yv; + dv,, where a, B, y, 6 are in F.

(a) Find necessary and sufficient conditions that 0 be a characteristic
root of T in terms of a, B, y, d.
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(b) In terms of «, B, v, 6 find necessary and sufficient conditions that
T have two distinct characteristic roots in F.

5. If V is two-dimensional over a field F prove that every element in
A(V) satisfies a polynomial of degree 2 over F.

6. If V is two-dimensional over F and if S, T e A(V), prove that
(ST — TS)? commutes with all elements of A(V).

7. Prove Corollary 2 to Theorem 6.2.3.

8. If V is n-dimensional over F and Te A(V) is nilpotent (ie., T* = 0
for some k), prove that 7" = 0. (Hint: If v € V use the fact that v, vT,
vT?,...,9T" must be linearly dependent over F.)

6.3 Matrices

- Although we have been discussing linear transformations for some- time, it
has always been in a detached and impersonal way; to us a linear trans-

face with specific linear transformations. At the same time it is clear that
if one were to pursue the subject further there would often arise the need

of making a thorough and detailed study of a given linear transformation.
To mention one precise problem, presented with a linear transformation
@and suppose, for the moment, that we have a means of recognizing it),
ow does one go about, in a “practical” and computable way, finding its
characteristic roots? ‘
What we seek first is a simple notation, or, perhaps more accurately,
€presentation, for linear transformations. We shall accomplish this by
€ of a particular basis of the vector space and by use of the action of a
€ar transformation on this basis. Once this much is achieved, by means
the operations in A(V) we can induce operations for the symbols created,
king of them an algebra. This new object, infused with an algebraic life
its own, can be studied as a mathematical entity /_having an interest by
If. This study is what comprises the subject of matrix theory.
HOWevcr, to ignore the source of these matrices, that is, to investigate the
of symbols independently of what they represent, can be costly, for we
ould be throwing away a great deal of useful information. Instead we
all always use the interplay between the abstract, A(V), and the concrete,
© matrix algebra, to obtain information one about the other.
Let ¥ be an n-dimensional vector space over a field F and let v,, .. ., v,
' @ basis of Vover F. If Te A(V) then T is determined on any vector as
I as we know its action on a basis of V. Since 7 maps V into V, v, T,
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v,T,...,0,T mustall bein V. As elements of V, each of these is realizable
in a unique way as a linear combination of ;, . .. , 7, over F. Thus

0T = 0140y + 04505 + 00+ g0,

va = 0171 + 2 Z2%1%) + -+ Uy pyly

v, T = o0y + oy + o+ Qiglp

vnT = U1 + Xn2¥s + 0t Enn¥ns

where each o;; € F. This system of equations can be written more compactly as
n
0, T = Za;jvj, for i =1,2,...,n
j=1

The ordered set of n2 numbers «;; in F completely describes 7. They will
serve as the means of representing 7.

DEFINITION Let V be an n-dimensioned vector space over F and let
9y, .., 0, be a basis for V over F. If T'€ A(V) then the matrix of T in the
basis vy, . . . , v, written as m(T), is

Oyg O3 7 Oy
Oor Ony ¢ &
m(T) = | %2t %22 X2n

: Xpy Opz *°° Upp
where v, T = ¥; a;;0;.

A matrix then is an ordered, square array of elements of F, with, as yet,
no further properties, which represents the effect of a linear transformation
on a given basis.

Let us examine an example. Let F be a field and let ¥ be the set of all
polynomials in x of degree n — 1 or less over F. On V let D be defined
by (Bo + Bix + v+ Buoy® D =By + 2px + - BTN+
(n — 1)B,_,#"~ 2 Tt is trivial that D is a linear transformation on V; in
fact, it is merely the differentiation operator.

What is the matrix of D? The questions is meaningless unless we specify
a basis of V. Let us first compute the matrix of D in the basis 7, = 1,

v, =% 03 = x%,...,0,=x"1, ..., 0, =x"" Now,

01D=1D=0 001+002+-’"+01),,
sz=xD=l=lvl+Ovz+---+Ovn

0D

=x"1D = (§ — 1)x'"2
=00 + 00, +---+ 09;_, + (1 — Do,y + Oy,
+ -+ Oy,
2,D = 2D = (n — )"~ 2

Ov; + 0oy + -+ 0v,_5 + (n — Do,y + Ov,
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oing back to the very definition of the matrix of a linear transformation
a given basis, we see the matrix of D in the basis v,,. .., v,, my(D), is
fact

000 0 0
1 00 0 0
m(D) =[0 2 0 0 0
00 3 0 0
000 n—1) 0

However, there is nothing special about the basis we just used, or in how
we numbered its elements. Suppose we merely renumber the elements of
s basis; we then get an equally good basis w; = 2" !, w, = ¥"~2, ...,
w, ="' ...,w, =1. What is the matrix of the same linear trans-
ormation D in this basis? Now, /

w,D =+""'D = (n— 1)x"" 2
= 0w, + (n — Nw, + Ow; + -+ + Ow,

wD = D = (n — i) i~1
Owy + -+ 4 Ow; + (n — wyyy + Owyyy + -+ + Ow,

;UnD=]D=O=0wl+0w2+...+0w

n

0 (n—1) 0 0 ... 00

0 0 (n -2 0 00

0 0 0 (n — 3) 0 0 v
my(D) =| 0 .

0 0 0 .01

0 0 0 el ... 000

Before leaving this example, let us compute the matrix of D in still another
‘basis of ¥ over F. Let =1 uy=1+4x uz=1+2%.. ju,=1+x"1;
t is easy to verify that u,,...,u, form a basis of ¥ over F. What is the
matrix of D in this basis? Since

1D=1D=0=0”1+0u2+'+0u"
2D=(1+xD=1=lu1+0u2+---+0u"
3D = (1 + x%)D = 2x = 2(u; — u;) = —2u; + 2u, + Ouy + +-- + Ou,

D =(1+#D=(n—12=(n— 1), — 1)
—(m—Nuy + Ouy + -+ Oup_p + (n — Du,_, + Ou,.
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The matrix, m5(D), of D in this basis is

0 00 0 0
1 00 0 0

-2 20 0 0

-3 03 0o 0

my(D) = 0 0
0 0

—~(n—1 00 ... m=1) 0

By the example worked out we see that the matrices of D, for the three
bases used, depended completely on the basis. Although different from each
other, they still represent the same linear transformation, D, and we could
reconstruct D from any of them if we knew the basis used in their determi-
nation. However, although different, we might expect that some relationship
must hold between m, (D), m,(D), and m3(D). This exact relationship will
be determined later.

Since the basis used at any time is completely at our disposal, given a
linear transformation T (whose definition, after all, does not depend on any
basis) it is natural for us to seek a basis in which the matrix of T has a
particularly nice form. For instance, if T is a linear transformation on V,
which is n-dimensional over F, and if 7 has n distinct characteristic roots
A4y -+ Ay in F, then by Corollary 2 to Theorem 6.2.3 we can find a basis
945+ .., 0, of V over Fsuch that 9,7 = A9;. In this basis T has as matrix
the especially simple matrix,

4 0 0 0

0 A, O 0
m(T)=

0 0 A,

We have seen that once a basis of V is picked, to every linear transforma-
tion we can associate a matrix. Conversely, having picked a fixed basis
¥4, ...,0, of Vover F, a given matrix

Oyq ... Oy
: ) ayeh
%n1 cer Opp
gives rise to a linear transformation 7" defined on V by ;T = > oivj on
this basis. Notice that the matrix of the linear transformation 7, just con-
structed, in the basis vy, . . . , 9, is exactly the matrix with which we started.
Thus every possible square array serves as the matrix of some linear trans-
formation in the basis v, ..., v,
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It is clear what is intended by the phrase the first row, second row,. . .,

of a matrix, and likewise by the first column, second column,.... In the
matrix

Uy eee Oy,

. . b

Oyt v Oy

the element a;; is in the ith row and Jth column; we refer to it as the (i 5)
entry of the matrix.

To write out the whole square array of a matrix is somewhat awkward;
instead we shall always write a matrix as (2;;); this indicates that the (7, ¥
entry of the matrix is a;;.

Suppose that V is an n-dimensional vector space over F and v, ..., 9,
is a basis of V over F which will remain fixed in the following discussion.
Suppose that S and T are linear transformations on ¥ over F having matrices
m(S) = (o), m(T) = (t:;), respectively, in the given basis. Our objective
is to transfer the algebraic structure of A(V) to the set of matrices having
entries in F.

To begin with, § = T if and only if v§ = 7T for any v e V, hence, if
and only if 4,8 = ;T for any o,,..., v, forming a basis of V over F.
Equivalently, § = T if and only if 6;; = 7,; for each 7 and J-

Given that m(S) = (o; ;) and m(T) = (ti;); can we explicitly write down
m(S + T)? Because m(S) = (1)), v:8 = X; 0,50, likewise, 0, T = 2T
whence

v,-(S —+ T) = v‘-S + viT = Z Uijvj + Z Tijvj = E (aij + Tij)vj.
7 7 7 .

i

But then, by what is meant by the matrix of a linear transformation in a
given basis, m(S + T) = (4ij) where 4;; =0 + 7y for every i and j.
A computation of the same kind shows that for YEF, m(yS)~= (u;)
where p;; = yo, ; for every 7 and j.

The most interesting, and complicated, computation is that of m(ST).
Now

w(ST) = @S)T = (zj o) T =Y ou(uT).
T 3
However, 5, T = 2_j Tx;v;; substituting in the above formula yields

ST) = 3 o (Z r,u-vj) -3 (zk; a,-krk_,)vj.

j

(Prove ') Therefore, m(ST) = (v,;), where for each i and BV
k OipTyj-

ij
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At first glance the rule for computing the matrix of the product of two
linear transformations in a given basis seems complicated. However, note
that the (i, j) entry of m(ST') is obtained as follows: Consider the rows of
§ as vectors and the columns of T as vectors; then the (i, j) entry of m(ST)
is merely the dot product of the ith row of § with the jth column of T

Let us illustrate this with an example. Suppose that

N
m(T) = (‘; g)

the dot product of the first row of § with the first column of T is (1)(—1) +
(2)(2) = 3, whence the (I, 1) entry of m(ST) is 3; the dot product of the
first row of S with the second column of T'is (1)(0) + (2)(3) = 6, whence
the (1, 2) entry of m(ST') is 6; the dot product of the second row of § with
the first column of T'is (3)(—=1) + (4)(2) = 5, whence the (2, 1) entry of
m(ST) is 5; and, finally the dot product of the second row of § with the
second column of T is (3)(0) + (4)(3) = 12, whence the (2,2) entry of

M(ST) is 12. Thus
3 6
ST) = .
m(8T) (5 12)

The previous discussion has been intended to serve primarily as a motiva-
tion for the constructions we are about to make.
Let F be a field; an n x n mairix over F will be a square array of elements

in F,
(an Oyg +ve ozl,,)
Oni L% R Cnn

(which we write as (a;;)). Let F, = {(o;;) | a;; € F}; in F, we want to
introduce the notion of equality of its elements, an addition, scalar multipli-

and

cation by elements of F and a multiplication so that it becomes an algebra
over F. We use the properties of m(T') for T'€ A(V) as our guide in this.

1. We declare (a;;) = (B;)), for two matrices in F,, if and only if a;; =
B; for each ¢ and j.

9. We define (a;;) + (Bi;) = (4;;) where A;; = a;; + B;; for every 1, j.

3. We define, for y € F, y(a;;) = (u;;) where p;; = ya; for every i and j.

4. We define (a;;)(B;;) = (vi;), where, for every 1 and j, v;; = 2 o
Let V be an n-dimensional vector space over F and let vy, ..., 7, b€ 2

basis of ¥ over F; the matrix, m(T), in the basis vy, ..., 0, associates with
T € A(V) an element, m(T), in F,. Without further ado we claim that the
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mapping from A(V) into F, defined by mapping T onto m(T) is an algebra
isomorphism of A(V) onto F,. Because of this isomorphism, F, is an
associative algebra over F (as can also be verified directly). We call F,
the algebra of all n x n matrices over F.

Every basis of V' provides us with an algebra isomorphism of A(V) onto
F,. Itis a theorem that every algebra isomorphism of A(V) onto F, is so
obtainable.

In light of the very specific nature of the isomorphism between 4(V) and
F,, we shall often identify a linear transformation with its matrix, in some
basis, and A(V) with F,. In fact, F, can be considered as A(V) acting on
the vector space ¥V = F® of all n-tuples over F, where for the basis v, =
(1,0,...,0), 2, =(0,1,0,...,0),..., 9, = 0,0,...,0,1), (a;; €F,
acts as v;(a;;) = ith row of (a;;).

We summarize what has been done in

THEOREM 6.31  The set of all n x n matrices over F JSorm an associative
algebra, F,, over F. If V is an n-dimensional vector space over F, then A(V) and
F, are isomorphic as algebras over F. Given any basis vy, ..., v, of V over F, if
Jor Te A(V), m(T) is the matrix of T in the basis Hls oo Uy, the mapping
T — m(T) provides an algebra isomorphism of A(V) onto F,.

The zero under addition in F, is the zero-matrix all of whose entries are 0;
we shall often write it merely as 0. The unit matrix, which is the unit element
“of F, under multiplication, is the matrix whose diagonal entries are 1 and
whose entries elsewhere are 0; we shall write it as I, I, (when we wish to
emphasize the size of matrices), or merely as 1. For o € F, the matrices

A

o
ol =
o

(blank spaces indicate only 0 entries) are called scalar matrices. Because of the
isomorphism between A(V) and F,, it is clear that T'e A(V) is invertible
if and only if m(T'), as a matrix, has an inverse in F,.

Given a linear transformation 7T e A(V), if we pick two bases, Uy ooy U
and w,, ..., w, of V over F, each gives rise to a matrix, namely, m, (7" and
my(T'), the matrices of T in the bases V5. --,0, and wy, ..., w,, respec-
tively. As matrices, that is, as elements of the matrix algebra F,, what is
the relationship between my(T) and m,(T)?

THEOREM 6.3.2 If V is n-dimensional over F and if T e A(V) has the ma-
trix m,(T) in the basis vy, . .., v, and the matrix my(T') in the basis wy, . . ., w,
o V over F, then there is an element C e F, such that my(T) = Cm,(T)C™ 1.

-
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In fact, if S is the linear transformation of V defined by v,S = w; fori=12,...,n
then C can be chosen to be my(S).

Proof. Let my(T) = (;;) and my(T) = (Bij); thus o, T = i %0y
w; T = ¥; Bijw;

Let S be the linear transformation on ¥V defined by v;S = w;. Since
045+ » 0, and Wy, ..., W, are bases of V over F, § maps ¥ onto V, hence,
by Theorem 6.1.4, S is invertible in A(V).

Now w;T = ¥ Biw;; since w; = 2,S, on substituting this in the ex-
pression for w;T we obtain 08T = X; Bij(v;S). But then ,(ST) =
(X, Bijvj)S; since S is invertible, this further simplifies to v;(STS™ 1y =
Y Bijv;- By the very definition of the matrix of a linear transformation in
a given basis, m(STS 1 = (B;;) = my(T). However, the mapping
T — m,(T) is an isomorphism of A(V) onto F,; therefore, m (STS™1) =
ml(S)ml(T)ml(S'l) = ml(S)ml(T)ml(S)”l. Putting the pieces together,
we obtain m,(T) = ml(S)ml(T)ml(S)'l, which is exactly what is claimed
in the theorem.

We illustrate this last theorem with the example of the matrix of D, in
various bases, worked out earlier. To minimize the computation, suppose
that V is the vector space of all polynomials over F of degree 3 or less, and let
D be the differentiation operator defined by (¢ + ;% + ayx? + a3x)D =
ot + 20,% + 3agx’.

As we saw earlier, in the basis v; = 1, v, = %, 93 = x2, v, = %3, the
matrix of D is

0000
1 000
mD) =10 2 0 0
0030

In the basis u, = L, u, =1 + % u3 =1+ x2, uy = 1 + x3, the matrix
of D is

w o oo

0 0 0

1 0 0

my(D) = | _o o 0

-3 0 0

Let § be the linear transformation of V defined by .8 = w, (=01)s

0,8 =w, =1+ % =0y + 0y 2,8 = w, = 1 + 2% =y + 23, and also

0,8 =wy =1+ x3 = v, + vy The matrix of S in the basis vy, 83, 03, 4
is

— b —
oo -0
o - O O
-0 O O
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A simple computation shows that

1 000
-1 10 0
o
CT=1_1 01 o
~1 0 0 1
- Then
1 00 0,/00 0 0 1 000
. 1 10 o0}f1 00 ol[f=1120 o0
)
Cmy (D)C "1 o1 0flo 2 0 0)l=1 01 o
1 00 1/\00 3 0/\=1 0 0 1
0 000
1 000
“1-2 2 0 of =™
-3 0 3 0

as it should be, according to the theorem. (Verify all the computations
- used!)

The theorem asserts that, knowing the matrix of a linear transformation
in any one basis allows us to compute it in any other, as long as we know the
linear transformation (or matrix) of the change of basis.

We still have not answered the question: Given a linear transformation,
how does one compute its characteristic roots? This will come later. F rom
the matrix of a linear transformation we shall show how to construct a
polynomial whose roots are precisely the characteristic roots of the linear
transformation.

Problems

1. Corapute the following matrix products:

(@ 1 2 3 1 0 1
(1 -1 2( o 2 3]
3 4 5/\—-1 —1 =1

(b) 6\/3 -2

,<~ 1)(2 3)'

(C)( 2

(d) 1 1?2,

(o -)

2. Verify all the computations made in the example illustrating Theorem
6.3.2.

-

QY -

= ol ot
= )= Gl

W= = L
|
SN —

W
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3. In F, prove directly, using the definitions of sum and product, that
(a) A(B + C) = AB + AGC;

(b) (4B)C = A(BC);
for A, B, C € F,,.

4. In F, prove that for any two elements A and B, (4B — BA)? is a
scalar matrix.

5. Let ¥ be the vector space of polynomials of degree 3 or less over F.
In V define T by (2 + ayx + apx> + a32%) T = 0g + oy (x + 1) +
a(x + 1)2 + a3(x + 1)°. Compute the matrix of T in the basis
(a) 1, x, 2, x°.

(b) I, 1 + 1 + %2, 1 + %%
(c) If the matrix in part (a) is A and that in part (b) is B, find a
matrix C so that B = CAC™ 1.

6. Let ¥V = F® and suppose that

1 1 2
-1 2 1
01 3

is the matrix of T'e A(V) in the basis o; = (1,0,0), v, = (0, 1,0},
vs = (0,0, 1). Find the matrix of T in the basis

(a) U = (1$ L), u= (09 1, 1), 3= (0, 0, 1).

(b) u = (1» 1,0), u = (1: 2,0), u3 = (1: 2, ).

7. Prove that, given the matrix

0 1 0
4=|0 0 1|eF
6 —11 6

(where the characteristic of F is not 2), then
(a) 4% — 64% + 114 — 6 = 0.
(b) There exists a matrix C € F3 such that

1 00
cAC~1 =0 2 0}.
0 0 3

8. Prove that it is impossible to find a matrix C € F, such that
c 11 o1 = a 0 ’
0 1 0 B

9. A matrix A€ F, is said to be a diagonal matrix if all the entries off
the main diagonal of 4 are 0, i.e., if 4 = (a;;) and a;; = 0 for i #J-
If 4 is a diagonal matrix all of whose entries on the main diagonal

for any «, f € F.
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are distinct, find all the matrices B € F, which commute with 4, that is,
all matrices B such that BA = AB.

. Using the result of Problem 9, prove that the only matrices in F,

which commute with all matrices in F, are the scalar matrices.

. Let 4 € F, be the matrix

0100 ..00
0010 ..00

v
A=9001 00
0000 ...0 1
0000 ...00

whose entries everywhere, except on the superdiagonal, are 0, and
whose entries on the superdiagonal are 1’s. Prove A" = 0 but 4"~ ! # 0.
If 4 is as in Problem 11, find all matrices in ¥, which commute with
A and show that they must be of the form o + 0,4 + a,4% + -+ +
a,_1 4"~ ! where o, oy, ..., 0,_; € F.

Let AeF, and let C(4) = {BeF, | AB = BA}. Let C(C(4)) =
{GeF,|GX = XG forall Xe C(A4)}. Prove that if G e C(C(4)) then
G is of the form ay + o, 4, oy, o, € F.

Do Problem 13 for A€ F;, proving that every Ge C(C(4)) is of
the form oy + 0,4 + o, 42

In F, let the matrices E;; be defined as follows: E;; is the matrix
whose only nonzero entry is the (i, j) entry, which is 1. Prove

(a) The E;; form a basis of F, over F.

(b) E;jEy, = Oforj # k; Ej B, = E,.

(c) Given i, j, there exists a matrix C such that CE;C™' = E.
(d) If i # j there exists a matrix C such that CE;;C™! = E,,.

(e) Find all B € F, commuting with E,.

(f) Find all B € F, commuting with E,;.

Let F be the field of real numbers and let C be the field of complex
numbers. For ae C let T,:C - C by xT, = xa for all xe C. Using
the basis 1, 7 find the matrix of the linear transformation 7, and so get
an isomorphic representation of the complex numbers as 2 x 2
matrices over the real field.

Let @ be the division ring of quaternions over the real field. Using
the basis 1, ¢, j, £ of @ over F, proceed as in Problem 16 to find an
isomorphic representation of @ by 4 x 4 matrices over the field of
real numbers.

Combine the results of Problems 16 and 17 to find an isomorphic

representation of @ as 2 x 2 matrices over the field of complex
numbers.
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19.

20.

21.

22.

23.

24.

25.

26.

27.

Let # be the set of all n x n matrices having entries 0 and 1 in such

a way that there is one 1 in each row and column. (Such matrices

are called permutation matrices.)

(a) If M e M, describe AM in terms of the rows and columns of 4.

(b) If Me M, describe M4 in terms of the rows and columns of 4.

Let # be as in Problem 19. Prove

(a)  has n! elements.

(b) If M e #, then it is invertible and its inverse is again in /.

(c) Give the explicit form of the inverse of M.

(d) Prove that . is a group under matrix multiplication.

(e) Prove that . is isomorphic, as a group, to S,, the symmetric
group of degree n.

Let A = (a;;) be such that for each 2, ¥;a; = 1. Prove that 1 is

a characteristic root of 4 (that is, 1 — A is not invertible).

Let A = (a;;) be such that for every J» Ty oy; = 1. Prove that 1 is

a characteristic root of 4.

Find necessary and sufficient conditions on a, B, v, 6, so that

A= (“ ﬁ ) is invertible. When it is invertible, write down 4-1
Y

explicitly.
If EeF, is such that E2 = E # 0 prove that there is a matrix
C e F,, such that

1 0 ... O 0 ... 0
0 1 0
U LI B
10 0 0o ... 0}’
0 0 0 ... 0

where the unit matrix in the top left corner is r x 7, where 7 is the
rank of E.

If F is the real field, prove that it is impossible to find matrices
A, B € F, such that AB — BA = 1.

If Fis of characteristic 2, prove that in F, it is possible to find matrices
A, B such that AB — BA = 1.

The matrix A is called triangular if all the entries above the main

diagonal are 0. (If all the entries below the main diagonal are 0 the

matrix is also called triangular).

(a) If 4 is triangular and no entry on the main diagonal is 0, prove
that A is invertible.

(b) If 4 is triangular and an entry on the main diagonal is 0, prove
that A4 is singular.
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28. If 4 is triangular, prove that its char}cteristic roots are precisely the
elements on its main diagonal.

29. If N* = 0, Ne F,, prove that 1 + N is invertible and find its inverse
as a polynomial in N.

30. If 4 € F, is triangular and all the entries on its main diagonal are 0,
prove that 4" = 0.

31. If AeF, is triangular and all the entries on its main diagonal are
equaltoa # 0e F, find 4~ L.

32. Let S, T be linear transformations on V such that the matrix of S
in one basis is equal to the matrix of 7 in another. Prove there exists
a linear transformation 4 on V such that 7 = 4S5S4~ 1.

6.4 Canonical Forms: Triangular Form

Let V be an n-dimensional vector space over a field F.

DEFINITION The linear transformations S, T'e A(V) are said to be
similar if there exists an invertible element C € A(V) such that T = GSC ™ 1.

In view of the results of Section 6.3, this definition translates into one
about matrices. In fact, since F, acts as A(V) on F™, the above definition
already defines similarity of matrices. By it, 4, B € F, are similar if there
is an invertible C € F, such that B = CAC™ 1.

The relation on A(V) defined by similarity is an equivalence relation;
the equivalence class of an element will be called its similarity class. Given
two linear transformations, how can we determine whether or not they are
similar? Of course, we could scan the similarity class of one of these to"see
if the other is in it, but this procedure is not a feasible one. Instead we try
to establish some kind of landmark in each similarity class and a way of
going from any element in the class to this landmark. We shall prove the
existence of linear transformations in each similarity class whose matrix,
in some basis, is of a particularly nice form. These matrices will be called
the canonical forms. To determine if two linear transformations are similar,
we need but compute a particular canonical form for each and check if
these are the same.

There are many possible canonical forms; we shall only consider three of
these, namely, the triangular form, Jordan form, and the rational canonical
form, in this and the next three sections.

DEFINITION The subspace W of V is invariant under T e A(V) if
WT < w.

LEMMA 6.4.1 If W < V is invariant under T, then T induces a linear
transformation T on V|W, defined by (v + W)T = oT + W. If T satisfies
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the polynomial q(x) € F[x], then so does T. If py(x) is the minimal polynomial
for T over F and if p(x) is that for T, then p(x) | p(x)-

Proof. Let V = V|W; the elements of V are, of course, the cosets
v+ W of Win V. Given 3 =0 + We V define 5T =T + W. To
verify that T has all the formal properties of a linear transformation on |4
is an easy matter once it has been established that T is well defined on V. We
thus content ourselves with proving this fact.

Suppose that 7 = v, + W = v, + W where vj,0,€ V. We must show
that o, T + W = 2,T + W. Since v; + W =1, + W, v, — v, must be
in W, and since W is invariant under T, (v; — ;) T must also be in W.
Consequently v, T — v,T e W, from which it follows that v T + W=
0, T + W, as desired. We now know that T defines a linear transformation
on V =VIW.

If 5=0+ WeV, then (T2 =oT?+ W= (INT + W=
T + WYT = ((v + W)T)T = 3(T)?; thus (T?) = (T)?. Similarly,
(T® = (T)* for any k > 0. Consequently, for any polynomial ¢(x)
F[x], ¢(T) = ¢(T). For any q(x) € F[x] with ¢(T) = 0, since 0 is the
zero transformation on V, 0 = ¢(T) = ¢(T).

Let p;(x) be the minimal polynomial over F satisfied by T. Ifg(T) =0
for ¢(x) € F[x], then p,(x) | g(x). If p(x) is the minimal polynomial for T
over F, then p(T) = 0, whence p(T) = 0; in consequence, p;(x) | p(x).

As we saw in Theorem 6.2.2, all the characteristic roots of T which lie
in F are roots of the minimal polynomial of T over F. We say that all the
characteristic roots of T are in F if all the roots of the minimal polynomial of T
over F lie in F.

In Problem 27 at the end of the last section, we defined a matrix as being
triangular if all its entries above the main diagonal were 0. Equivalently, if
T is a linear transformation on V over F, the matrix of T in the basis
04, - - - » U, Is triangular if

nT = a0,

0, T = ap101 + 030,

;T = ooy + X0y + 50+ 40
UnT = “nlvl + 0+ amnvn’

i.e., if »; T is a linear combination only of v; and its predecessors in the basis.

THEOREM 6.41 If Te A(V) has all its characteristic roots in F, then there
is a basis of V in which the matrix of T is triangular. :

Proof. 'The proof goes by induction on the dimension of ¥ over F.
If dimy V = 1, then every element in A(V) is a scalar, and so the
theorem is true here.
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Suppose that the theorem is true for all vector spaces over F of dimension
n — 1, and let ¥ be of dimension n over F.

The linear transformation 7 on V has all its characteristic roots in F;
let 4, € F be a characteristic root of 7. There exists a nonzero vector v,
in Vsuch that o, T = A;v;,. Let W = {aw, | « € F}; W is a one-dimensional
subspace of V, and is invariant under 7. Let ¥ = V/W; by Lemma 4.2.6,
dim V=dimV —~dimW =n—1. By Lemma 64.1, T induces a
linear transformation 7 on V whose minimal polynomial over F divides
the minimal polynomial of T over F. Thus all the roots of the minimal
polynomial of 7, being roots of the minimal polynomial of T, must lie in F.
The linear transformation T in its action on V satisfies the hypothesis of
the theorem; since V is (n — 1)-dimensional over F, by our induction
hypotbhesis, there is a basis v,, 7, . .., 7, of V7 over F such that

7, T = a,,0,

v3T = 03,0, + a3303

ZiT = aizzz + ai3(_}3 + -+ Otiiﬁ,-

z_)nT = “nzz_’z + an353 +s 4+ annan'

Let v,,...,0, be elements of V mapping into 7,,..., 7, respectively.
Then v,, v,,..., v, form a basis of V (see Problem 3, end of this section).
Since 9, T = ay,7,, 9, T — a,,0, = 0, whence v, T — a,,v, must be in W.
Thus 2, T — «y,v, is a multiple of v,, say a,,v;, yielding, after transposing,
03T = 03,0y + a0,  Similarly, 0,7 ~ a0, — @305 — -+ — a0, € W,
whence v;T = «;,0, + @;,0, + *+ + o;v;. The basis v,,...,v, of V over
F provides us with a basis where every v, T is a linear combination of v;
and its predecessors in the basis. Therefore, the matrix of T in this basis
is triangular. This completes the induction and proves the theorem.

We wish to restate Theorem 6.4.1 for matrices. Suppose that the matrix
A € F, has all its characteristic roots in F. A defines a linear transforma-
tion 7 on F™ whose matrix in the basis

9, = (1,0,...,0),0, = (0,1,0,...,0),...,9, = (0,0,...,0,1),

is precisely 4. The characteristic roots of T, being equal to those of 4, are
all in F, whence by Theorem 6.4.1, there is a basis of F® in which the
matrix of T is triangular. However, by Theorem 6.3.2, this change of basis
Ierely changes the matrix of 7, namely 4, in the first basis, into CAC ~*
for a suitable C = F,. Thus

ALTERNATIVE FORM OF THEOREM 6.4.1 If the matrix Ae€F, has
all its characteristic roots in F, then there is a matrix C e F, such that CAC™ 1 is
a triangular matrix.

-
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Theorem 6.4.1 (in either form) is usually described by saying that T
(or A) can be brought to triangular form over F.

If we glance back at Problem 28 at the end of Section 6.3, we see that
after T has been brought to triangular form, the elements on the main
diagonal of its matrix play the following significant role: they are precisely
the characteristic roots of T.

We conclude the section with

THEOREM 6.4.2 If V is n-dimensional over F and if T € A(V) has all its
characteristic roots in F, then T satisfies a polynomial of degree n over F.

Proof. By Theorem 6.4.1, we can find a basis vy,. .., 9, of V over F
such that:
0, T = Ay
0, T = 03101 + 420,

0,7 = ayoy +°°* + % i-q%i-g + A0s
fori=1,2,...,n
Equivalently
o (T — 4) =0
?2(T — Az) = %10y

;)i(T — A) = ooy + 0t 1P
fori =1,2,...,n
What is v,(T — A)(T — 41)? As a result of v,(T — 45) = 219 and
v,(T — A;) = 0, we obtain v,(T — )T — 4) = 0. Since
(T = )T = &) = (T = 2)(T = 4y),
o (T — )T = 4) = 0(T = 4)(T = 4) = 0.

Continuing this type of computation yields

0, (T — )T — Aicg) (T = 4) =0,
v (T — ANT — Ai—qg) = (T — M) = 9,

0T = A)(T = Ayy) = (T = 4y) = 0.

For i = n, the matrix § = (T — A)(T — A—q) (T — 4y) satisfies
9,8 = 0,8 =-+-=17,5 = 0. Then, since S annihilates a basis of ¥, § must
annihilate all of V. Therefore, § = 0. Consequently, T satisfies the poly-
nomial (¥ — A;)(* — ;)" (x — 4,) in F[x] of 'degree n, proving the
theorem.

Unfortunately, it is in the nature of things that not every linear trans-
formation on a vector space over every field F has all its characteristic roots
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in F. This depends totally on the field F. For instance, if F is the field of
real numbers, then the minimal equation of

(1 9

over Fis x2 + 1, which has no roots in F. Thus we have no right to assume
that characteristic roots always lie in the field in question. However, we
may ask, can we slightly enlarge F to a new field K so that everything works
all right over K?

The discussion will be made for matrices; it could be carried out equally
well for linear transformations. What would be needed would be the follow-
ing: given a vector space V over a field F of dimension #, and given an
extension K of F, then we can embed ¥V into a vector space Vg over K of
dimension z over K. One way of doing this would be to take a basis vy, . . .,
v, of V over F and to consider Vi as the set of all ayv; + * -+ + a,2, with
the «; € K, considering the o; linearly independent over K. This heavy use
of a basis is unaesthetic; the whole thing can be done in a basis-free way
by introducing the concept of fensor product of vector spaces. We shall not
do it here; instead we argue with matrices (which is effectively the route
outlined above using a fixed basis of V).

Consider the algebra F,. If K is any extension field of F, then F, < K,
the set of 7 x n matrices over K. Thus any matrix over F can be considered
as a matrix over K. If T e F, has the minimal polynomial p(x} over F,
considered as an element of K, it might conceivably satisfy a different
polynomial py(x) over K. But then py(x) | p(x), since py(x) divides all
polynomials over K (and hence all polynomials over F) which are satisfied
by T. We now specialize K. By Theorem 5.3.2 there is a finite extension,
K, of F in which the minimal polynomial, p(x), for T over F has all its roots.
As an element of K, for this K, does T have all its characteristic roots in
K? As an element of K,, the minimal polynomial for T over K, p,(x)
divides p(x) so all the roots of py(x) are roots of p(x) and therefore lie in K.
Consequently, as an element in K, T has all its characteristic roots in K.

Thus, given T in F,, by going to the splitting field, K, of its minimal
polynomial we achieve the situation where the hypotheses of Theorems 6.4.1
and 6.4.2 are satisfied, not over F, but over K. Therefore, for instance, T’
can be- brought to triangular form over K and satisfies a polynomial of
degree n over K. Sometimes, when luck is with us, knowing that a certain
result is true over K we can “cut back” to F and know that the result is still
true over F. However, going to K is no panacea for there are frequent
situations when the result for K implies nothing for F. This is why we have
two types of “canonical form” theorems, those which assume that all the
characteristic roots of T lie in F and those which do not.

A final word; if T € F,, by the phrase “a characteristic root of T we shall
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mean an element A in the splitting field K of the minimal polynomial
p(x) of T over F such that A — T is not invertible in K,. It is a fact (see
Problem 5) that every root of the minimal polynomial of T over F is a
characteristic root of 7.

Problems

1. Prove that the relation of similarity is an equivalence relation in 4(V).

2. If TeF, and if K o F, prove that as an element of K,, T is in-
vertible if and only if it is already invertible in F,.

3. In the proof of Theorem 6.4.1 prove that v,,..., v, is a basis of V.

4. Give a proof, using matrix computations, that if 4 is a triangular
n X n matrix with entries 4,, ..., 4, on the diagonal, then

(4= 2)A4 =2 (4d—4,) =0

*5. If TeF, has minimal polynomial p(x) over F, prove that every
root of p(x), in its splitting field K, is a characteristic root of 7.

6. If Te A(V) and if A€ F is a characteristic root of T in F, let U, =
{veV|oT = Jv}. If Se A(V) commutes with T, prove that U,
is invariant under S.

*7. If A is a commutative set of elements in A(V) such that every
M e # has all its characteristic roots in F, prove that there is a
C e A(V) such that every CMC ™!, for M € #, is in triangular form.

8. Let W be a subspace of V invariant under T'€ A(V). By restricting
T to W, T induces a linear transformation 7' (defined by wT =
wT for every we W). Let p(x) be the minimal polynomial of T
over F. .

(a) Prove that p(x) | p(x), the minimal polynomial of T over F.
(b) If T induces T on VW satisfying the minimal polynomial p(x)
over F, prove that p(x) | f(x)p(x).
*(c) If p(x) and p(x) are relatively prime, prove that p(x) = p(x)p(x)-
*(d) Give an example of a T for which p(x) # p(x)p(x).

9. Let ./ be a nonempty set of elements in A(V); the subspace W < V
is said to be invariant under M if for every Me M, WM c W. If
W is invariant under .# and is of dimension r over F, prove that there
exists a basis of V over F such that every M e .# has a matrix, in

this basis, Of the form
( )
4 112 4 42 ’

where M, is an r X r matrix and M, is an (n — r) x (n — r) matrix.




*13.

14.

10.

*]1.

*]12,

15.

16.

Sec. 6.4 Canonical Forms: Triangular Form

In Problem 9 prove that M| is the matrix of the linear transformation
M induced by M on W, and that M, is the matrix of the linear trans-
formation M induced by M on V/W.

The nonempty set, .#, of linear transformations in A(V) is called an
irreducible set if the only subspaces of V invariant under 4 are (0)
and V. If A is an irreducible set of linear transformations on ¥ and if

D= {TedAV)|TM = MT for all M € .4},

prove that D is a division ring.

Do Problem 11 by using the result (Schur’s lemma) of Problem 14,
end of Chapter 4, page 206.

If F is such that all elements in A(V) have all their characteristic
roots in F, prove that the D of Problem 11 consists only of scalars.

Let F be the field of real numbers and let

0 1
eF,.
(7 o)=

(a) Prove that the set .# consisting only of

01
-1 0
is an irreducible set.

(b) Find the set D of all matrices commuting with

01
-1 0
and prove that D is isomorphic to the field of complex numbers.

Let F be the field of real numbers.
(a) Prove that the set

01 00 0 0 0 1
-1 0 0 0 0 1 0
= 00 o 1J°l 0o -1 00
00 —1 0 -1 00

. is an irreducible set.
(b) Find all 4 € F, such that AM = MA for all Mec /.
(c) Prove that the set of all Ain part (b) is a division ring isomorphic
to the division ring of quaternions over the real field.

A set of linear transformations, .# < A(V), is called decomposable
if there is a subspace W < V such that V= W@ W,, W # (0),
W #£ V, and each of W and W, is invariant under . If .# is not
decomposable, it is called indecomposable.

-
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(a) If 4 is a decomposable set of linear transformations on V, prove
that there is a basis of V in which every M e . has a matrix

of the form
M, 0
0 M,)

where M, and M, are square matrices.

(b) If V is an n-dimensional vector space over F and if TeA(V)
satisies T" = 0 but 7"~ ! # 0, prove that the set {7} (con-
sisting of T') is indecomposable.

17. Let Te A(V) and suppose that p(x) is the minimal polynomial for
T over F.
(a) If p(x) is divisible by two distinct irreducible polynomials p; (x)
and p,(x) in F[x], prove that {T'} is decomposable.
(b) If {T}, for some T e A(V) is indecomposable, prove that the
minimal polynomial for T over F is the power of an irreducible
polynomial.

18. If T e A(V) is nilpotent, prove that T can be brought to triangular
form over F, and in that form all the elements on the diagonal are 0.

19. If Te A(V) has only 0 as a characteristic root, prove that T is nil-
potent.

6.5 Canonical Forms: Nilpotent Transformations

One class of linear transformations which have all their characteristic roots
in F is the class of nilpotent ones, for their characteristic roots are all 0,
hence are in F. Therefore by the result of the previous section a nilpotent
linear transformation can always be brought to triangular form over F.
For some purposes this is not sharp enough, and as we shall soon see, a
great deal more can be said.

Although the class of nilpotent linear transformations is a rather re-
stricted one, it nevertheless merits study for its own sake. More important
for our purposes, once we have found a good canonical form for these we
can readily find a good canonical form for all linear transformations which
have all their characteristic roots in F.

A word about the line of attack that we shall follow is in order. We
could study these matters from a “‘ground-up” approach or we could invoke
results about the decomposition of modules which we obtained in Chapter 4.
We have decided on a compromise between the two; we treat the material
in this section and the next (on Jordan forms) independently of the notion
of 2 module and the results about modules developed in Chapter 4. How-
ever, in the section dealing with the rational canonical form we shall com-
pletely change point of view, introducing via a given linear transformation
a module structure on the vector spaces under discussion; making use of
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- Theorem 4.5.1 we shall then get a decomposition of a vector space, and the
resulting canonical form, relative to a given linear transformation.

Even though we do not use a module theoretic approach now, the reader
hould note the similarity between the arguments used in proving Theorem
.5.1 and those used to prove Lemma 6.5.4.

Before concentrating our efforts on nilpotent linear transformations we
rove a result of interest which holds for arbitrary ones.

EMMA 651 If V=V, ®V,® - ®V,, where each subspace V; is of

12
imension n; and is invariant under T, an element of A(V), then a basis of V can

~be found so that the matrix of T in this basis is of the form

4, 0 ... 0
0 4, ... 0
0 0 .. o4

where each A; is an n; x n; matrix and is the matrix of the linear transformation
nduced by T on V..

Proof.  Choose a basis of V as follows: 0,V, ..., v, is a basis of V,,
0,P,0,, .., v, @ is a basis of ¥, and so on. Since each V,; is invariant
under T, 92T eV, so is a linear combination of 0D, 0,9, ... ,0,®,
~and of only these. Thus the matrix of T in the basis so chosen is of the
desired form. That each 4, is the matrix of T, the linear transformation
induced on V; by T, is clear from the very definition of the matrix of a
“linear transformation.

We now narrow our attention to nilpotent linear transformations.

LEMMA 652 If Te A(V) is nilpotent, then ay + o, T + -+ + «, T™,
‘Wwhere the o; € F, is invertible if ay # 0.
Proof. 1f S is nilpotent and oy # 0 € F, a simple computation shows that
1 S $2 5t

% % %o %o
$7=0. Now if 7" =0, S =, T + 0, T2 + -+ + o, T™ also must
tisfy §” = 0. (Prove!) Thus for oy 5 0 in F, %y + S is invertible.

Notation. M, will denote the ¢ x ¢ matrix

010 ...00
001 ...00
0 0 .01
00 ...00

1 of whose entries are 0 except on the superdiagonal, where they are all 1’.

-
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DEFINITION If T e A(V) is nilpotent, then k is called the index of mil-
potence of T if T* = 0 but T 1 % 0.

The key result about nilpotent linear transformations is

THEOREM 6.51 If T e A(V) is nilpotent, of index of nilpotence ny, then a
basis of V can be found such that the matrix of T in this basis has the form

M, O ... 0
Q M,, e O ’
o 0 ... M,
where ny > ny > -+ > n, and where ny + ny + + -+ 4+ n, = dimg V.

Proof. The proof will be a little detailed, so as we proceed we shall
separate parts of it out as lemmas.

Since 7"t = 0 but 7™~ ! # 0, we can find a vector v € V such that
»T™~1 £ 0. We claim that the vectors v,07,...,9T™ ! are linearly
independent over F. For, suppose that av + a7 + -+ + o, 0T™" 1=0
where the a; € F; let o be the first nonzero «, hence

0T Yooy + otgpq T +++- + o, T™7%) = 0.

Since o, # 0, by Lemma 6.5.2, a; + g4, T + -+ + «, 7™ * is invertible,
and therefore 7T~ ! = 0. However, s < n;, thus this contradicts that
oT™~1 % 0. Thus no such nonzero o, exists and v, v7T, ..., vT™ ™1 have
been shown to be linearly independent over F.

Let V, be the subspace of V spanned by v, = v, v, = v7T,...,0, =
»T™~1; V, is invariant under 7, and, in the basis above, the linear trans-
formation induced by T on ¥V has as matrix M, .

So far we have produced the upper left-hand corner of the matrix of the

theorem. We must somehow produce the rest of this matrix.

LEMMA 6.5.3 If ueV, is such that uT™ * = 0, where 0 < k < ny, then
u = uyT* for some uy € V.

Proof. Sinceue Vy, u = a0 + a1 + -+ + T ! + ak+1ka +
s 4w, oT™ L Thus 0 = uT™™% = qoT™™* + -+ + 0 oT™
However, oT™ 7k ..., vT™ ! are linearly independent over F, whence
=y =-=0a, =0, and 50, u = oy, PT* + +++ + o, vT™ " = u T
where uy = a0 + - + @, 0T eV,

The argument, so far, has been fairly straightforward. Now it becomes
a little sticky.
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LEMMA 6.5.4 There exists a subspace W of V, invariant under T, such that

Proof. Let W be a subspace of V, of largest possible dimension, such that

LVinW=(0);
2. W is invariant under 7"

We want to show that V = Vi + W. Suppose not; then there exists an
element z € V such that z¢ V, + W. Since 7™ — 0, there exists an in-
teger £, 0 < k£ < ny, such that 2T%* € V, + W and such that zT* ¢V, +w
for ¢ < k. Thus zT* = u + w, where u ¢ Vi and where we W. But then
0 = 2T™ = (2THT™M % = yTm—k 4 wT™~*%; however, since both v,
“and W are invariant under T,uT" ¥ eV, and wT™ * e W. Now, since
Vi 0 W = (0), this leads to u 7™ % = _zyTm~k¢ Vi n W = (0), resulting
in uT™TF = 0, By Lemma 6.5.3, u = u,T* for some uy € Vy; therefore,
2T =u+w=uT"+w Letz =z— uy; then 2, T* = 2T% — 4 T* =
‘weW, and since W is invariant under T this yields 2, 7™ e W for all
m 2> k. On the other hand, if i <k, 2,7 = 27" — uT ¢ V, + W, for
_otherwise 27" must fall in ¥V, + W, contradicting the choice of .

~ Let W, be the subspace of V spanned by Wand z,, 2, T, ..., z,T* 1.
Since z; ¢ W, and since W, o W, the dimension of W, must be larger than
“that of W. Moreover, since z;T*e W and since W is invariant under 7T,
W, must be invariant under 7. By the maximal nature of W there must
be an element of the form w, + o2, + 0217 + - + gz, T*1 £ 0 in
W, N V,, where wye W. Not all of ®y,--., 0 can be O; otherwise we
would have 0 # wye W N Vi = (0), a contradiction. Let o be the first
nonzero o; then wy + 2,7 Yoy + oy, T + -+ + uT* %) eV,. Since =
% # 0, by Lemma 6.5.2, a5 + o,y ;7 + -+ - + o, T*"* is invertible and its
inverse, R, is a polynomial in 7. Thus W and V| are invariant under R;
however, from the above, woR + 2,T°" ' e ViR < V,, forcing 2z, T° ' e
Vi+ WReV, + W. Since s — 1 <k this is impossible; therefore

Vi + W= V. Because VinW=1(0), V="V, ® W, and the lemma is
“proved.

The hard work, for the moment, is over; we now complete the proof of
Theorem 6.5.1.

By Lemma 6.5.4, V = Vi @ W where W is invariant under T. Using

‘;the basis v, ..., vn, of Vi and any basis of W as a basis of V, by Lemma
6.5.1, the matrix of 7 in this basis has the form

M, 0
0 4,)

here 4, is the matrix of T, the linear transformation induced on Wby T.
Since 7" = 0, T," = 0 for some n, < n;. Repeating the argument used
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for T on V for T, on W we can decompose W as we did V (or, invoke an
induction on the dimension of the vector space involved). Continuing this
way, we get a basis of ¥ in which the matrix of T is of the form

M, O ... 0
0" M,
0 . M,
That n, + n, + -+ + n, = dim V is clear, since the size of the matrix is

n x nwheren = dim V.
DEFINITION The integers ny, n,, .. ., n, are called the invariants of T.

DEFINITION If T e A(V) is nilpotent, the subspace M of V, of dimen-
sion m, which is invariant under 7, is called ¢yelic with respect to T if

1. MT™ = (0), MT™" ' # (0);
2. there is an element z € M such that z, 2T, ..., zT™ ! form a basis of M.

(Note: Condition 1 is actually implied by Condition 2).

LEMMA 6.5.5 If M, of dimension m, is cyclic with respect to T, then the
dimension of MT* ism — k for all k < m.

Proof. A basis of MT* is provided us by taking the image of any basis of
M under T*. Using the basis z, 27, ..., zT™ ! of M leads to a basis 27",
ZT*+1 . 2T™ ' of MT*. Since this basis has m — k elements, the
lemma is proved.

Theorem 6.5.1 tells us that given a nilpotent T in A(¥V) we can find
integers n, > n, > +-- > n, and subspaces, V,,..., V, of V cyclic with

r

respect to 7 and of dimensions 7, n,,...,n, respectively such that
V=V,® &V,
Is it possible that we can find other integers m; > m, > +-+ > mg and

subspaces U, ..., Us of V, cyclic with respect to T and of dimensions
my, ..., ms, respectively, such that V= U, @ ---@® U,? We claim that
we cannot, or in other words that s =7 and m; = n;, my = n,,...,m, =
n,. Suppose that this were not the case; then there is a first integer ¢ such
that m; # n;, We may assume that m; < n;.

Consider VT™. On one hand, since V=V, @ ---@®V, VI™ =
nr~ e---@ virm @---® V,T™. Since dim V\T™ = n, — mp
dim V,T™ = n, — m;, ..., dim V;T™ = n, — m; (by Lemma 6.5.5),
dim VT™ > (n; — m;) + (n, — m;) + -+ + (n; — m;). On the other
hand, since V= U, @ - @® U, and since U;T™ = (0) forj > i, VT™ =
uT™ e U,T™ + ---@® U;_,T™. Thus

dim VT™ = (my — m;) + (my — m;) + -+ + (mi_y — my).
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By our choice of 7, n) = m,, n, = My, ..., M;_y = m;_,, whence
dim VI™ = (n, — m;) + (n, — m) + o+ (g — my).

However, this contradicts the fact proved above that dim V7™ >
(ng —my) +- 4+ (n_y —m,) + (n; — m;), since n; — m; > 0.

Thus there is a unigue set of integers n; > n, > -+ > n, such that V is
the direct sum of subspaces, cyclic with respect to 7" of dimensions ny,
s -« 5 M. Equivalently, we have shown that the invariants of T are unique.

Matricially, the argument just carried out has proved that if n; > n, >

*tr2mn and my > m, > -+ > m, then the matrices

M, ... 0 M, ... 0

0 0

. . and |. .

0 e M, 0 ce. M,
are similar only if r = s and n, = My, Ny = my,..., 0 =m,.

So far we have proved the more difficult half of

THEOREM 6.5.2 Two nilpotent linear transformations are similar if and only
if they have the same invariants.

Proof. The discussion preceding the theorem has proved that if the two
nilpotent linear transformations have different invariants, then they can-
not be similar, for their respective matrices

M, ... 0 :Mml 0

el and |: el

0 e M, 0 e M, -
cannot be similar.

In the other direction, if the two nilpotent linear transformations § and T
have the same invariants ny = --- 2= n, by Theorem 6.5.1 there are bases
U5+, v, and wy, ..., w, of V such that the matrix of S in v35...,0, and
that of Tin w,, ..., w,, are each equal to
M, 0
0 e M,
But if 4 is the linear transformation defined on ¥ by ;4 = w,, then § =
ATA~!  (Prove! Compare with Problem 32 at the end of Section 6.3),
whence § and T are similar.

Let us compute an example. Let

01 1
T={0 0 0)er,
00 0

-

297



98

Linear Transformations Ch. 6

act on F® with basis 2, = (1,0,0), 2, = (0,1,0), u3 = (0,0, 1). Let
v, = Uy, vy = u T = uy + U3, V3 = Us; in the basis v;, v,, v3 the matrix

of T is
0 1 0
(0 0 0),
000

so that the invariants of T are 2, 1. If 4 is the matrix of the change of
basis, namely

1 00
0o 1 1},
0 0 1

a simple computation shows that

01 0
ATA™* = |0 0 O}.
0 0O
One final remark: the invariants of 7' determine a partition of n, the
dimension of V. Conversely, any partition of n, ny > -2 n, 7y +
n, + +++ + n,=n, determines the invariants of the nilpotent linear
transformation.

M, ... 0

Thus the number of distinct similarity classes of milpotent n X n matrices is precisely
p(n), the number of partitions of n.

6.6 Canonical Forms: A Decomposition of V: Jordan Form

Let V be a finite-dimensional vector space over F and let 7" be an arbitrary
element in A(V). Suppose that V; is a subspace of V invariant under 7.
Therefore T induces a linear transformation 7; on V; defined by uly =
uT for every ueV,. Given any polynomial ¢(x) € F[x], we claim that
the linear transformation induced by ¢(7’) on V, is precisely ¢(T)- (The
proof of this is left as an exercise.) In particular, if ¢(T") = 0 then ¢(T'y) =
0. Thus 7, satisfies any polynomial satisfied by 7" over F. What can be
said in the opposite direction? -

LEMMA 6.6.1 Suppose that V =V, @ V,, where V, and V, are subspaces
of V invariant under T. Let Ty and T, be the lincar transformations induced by
T on V, and V,, respectively. If the minimal polynomial of Ty over F is py (x) while
that of T, is p,(x), then the minimal polynomial for T over F is the least common
multiple of py(x) and p,(x).
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Proof. If p(x) is the minimal polynomial for T over F, as we have seen
above, both p(T'|) and p(T,) are zero, whence b1(x) | p(x) and p,(x) | p(x).
But then the least common multiple of g, (x) and p,(x) must also divide px).

On the other hand, if ¢(x) is the least common multiple of p,(x) and
£2(%), consider ¢(T'). For ; € Vy, since p, (x) | ¢(x), 0,9(T) = v,¢(T,) = 0;
similarly, for v, € V,, v,9(T) = 0. Given any v€ V, v can be written as
v = vy + v;, where v; € V; and v, € V,, in consequence of which vq(T) =
(0 + 22)9(T) = v,9(T) + v,9(T) = 0. Thus q9(T) = 0 and T satisfies
¢(x). Combined with the result of the first paragraph, this yields the lemma.
COROLLARY If V=V, @ - @® V, where each V, is invariant under T
and if p;(x) is the minimal polynomial over F of T, the linear transformation induced
by T on V,, then the minimal polynomial of T over F is the least common multiple
prl (x)> pz("): ] pk(x)

We leave the proof of the corollary to the reader.

Let T € Ap(V) and suppose that p(x) in F[x] is the minimal polynomial
of T over F. By Lemma 3.9.5, we can factor p(x) in F[x] in a unique way
as p(x) = q;(x)""g,(%)"2+ - - ¢ (x)*, where the g;(x) are distinct irreducible
polynomials in F[x] and where {, [,,..., [ are positive integers. Our
objective is to decompose V as a direct sum of subspaces invariant under
T such that on each of these the linear transformation induced by T has,
-as minimal polynomial, a power of an irreducible polynomial. If & = 1,
Vitself already does this for us. So, suppose that £ > 1.

Let V; = {veV]og,(T)" =0}, V, = {ve V0vg,(T)2 = 0},...,
Vi={veV]|ovg(T)* = 0}. Itis a triviality that each V, is a subspace

t

of V. In addition, V; is invariant under 7, for if u e Vi, since T and ¢,(7T")

commute, (27)q,(T)" = (uq(T)")T = 0T = 0. By the definition of v,
this places u7in V;. Let T be the linear transformation induced by Ton V.

THEOREM 6.6.1 For ecach i = 1,2,...,k, Vi (0)and V=V, @V, ®
* @ Vi The minimal polynomial of T is q;(x)".

Proof. 1Ifk =1 then V = V, and there is nothing that needs proving.
Suppose then that £ > 1.

We first want to prove that each Vi # (0). Towards this end, we intro-
duce the & polynomials:

hy(x) = ’!2(")’293(’5)13 (%),
hy(x) = q1(x)"g5(x)" - -~ gu(x), .. .,
h’t(x) = I;Ii qj(x)lj> R ]

hk.<x) = 41 (x)"1g2(%)"2 -+ - gy ()1,

Since £ > 1, k(%) # p(x), whence k,(T) # 0. Thus, given i, there is a
veV such that_w = oh;(T) # 0. But wg(T)" = v(h(T)q,(T)") = vp(T)
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= 0. In consequence, @ # 0 is in V; and so V; # (0). In fact, we have
shown a little more, namely, that Vi,(T) # (0) is in V5. Another remark
about the h;(x) is in order now: if v; € V; for j # i, since qj(x)’f | hy(x),
vh(T) = 0.

The polynomials Ay (x), hy(%), - - h(x) are relatively prime. (Prove!)
Hence by Lemma 3.9.4 we can find polynomials a,(x), ..., g(x) in
F[x] such that a,(x)A;(x) + -+ a,(x)h(x) = 1. From this we get
a (T)h(T) + -+ + a(T)h(T) = 1, whence, given veV, v =0l =
o(ay(T)hy(T) + -+ + a(T)h(T)) = vay (T)hy(T) + -+ + va(T)h(T).
Now, each va,(T)h;(T) is in Vh;(T), and since we have shown above that
Vh(T) < V;, we have now exhibited v as v = v, + *** + ¥, where each

. = 0a,(T)hy(T) isin V;. Thus V=7V, + V, + + Vi

We must now verify that this sum is a direct sum. To show this, it is
enough to prove that if u; + u; + -+ % = 0 with each u; € V;, then
each u; = 0. So, suppose that u; + u; + " * + % = 0 and that some u;,
say 4y, is not 0. Multiply this relation by hy(T); we obtain u;a,(T) + -~ +
uh, (T) = Ohy(T') = 0. However, uhy(T) = 0 for j# 1 since u;€Vj;
the equation thus reduces to uh (T) = 0. But u;q,(T)"* = 0 and since
h,(x) and g (x) are relatively prime, we are led to u; = 0 (Prove!) which
is, of course, inconsistent with the assumption that #, # 0. So far we
have succeeded in proving that V.=V, @ V, @ --* @ Ve

To complete the proof of the theorem, we must still prove that the
minimal polynomial of 7'; on V; is g(x)%. By the definition of V;, since
Vgi(T) = 0, ¢;(T)" = 0, whence the minimal equation of T'; must be a
divisor of g;(x)%, thus of the form g;(x)’¢ with f; < [;. By the corollary to
Lemma 6.6.1 the minimal polynomial of T over F is the least common
multiple of g, (%)%, ..., g(x)’* and so must be gy (x)71 - -+ g (x)7*. Since
this minimal polynomial is in fact gy (%) -+ - g(x)™ we must have that
fizly, fo =l o, fi =4 Combined with the opposite inequality
above, this yields the desired result [; = fifori =1,2,..., k and so com-
pletes the proof of the theorem.

If all the characteristic roots of T should happen to lie in F, then
the minimal polynomial of T takes on the especially nice form g¢(x) =
(x — Ao (x — )% where Ay,..., 4 are the distinct characteristic
roots of 7. The irreducible factors ¢;(x) above are merely ¢;(x) = * — A
Note that on V,, T; only has ; as a characteristic root.

COROLLARY If all the distinct characteristic roots Aiy-vos Mof T liein F, then
V can be writtenas V=V, @ -+ ® V, where V; = {ve V| o(T — 1)t = 0}

and where T}, has only one characteristic root, ;, on V.

Let us go back to the theorem for a moment; we use the same notation
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T}, V; as in the theorem. Since V=V, ® - @ V,, if dim Vi=n; by
Lemma 6.5.1 we can find a basis of ¥ such that in this basis the matrix of
T is of the form
4,
4,

4,

where each 4, is an #; X n; matrix and is in fact the matrix of T..

What exactly are we looking for? We want an element in the similarity
class of 7" which we can distinguish in some way. In light of Theorem 6.3.2
this can be rephrased as follows: We seek a basis of ¥ in which the matrix
of 7" has an especially simple (and recognizable) form.

By the discussion above, this search can be limited to the linear trans-
formations 77; thus the general problem can be reduced from the discussion
of general linear transformations to that of the special linear transformations
whose minimal polynomials are powers of irreducible polynomials. For
the special situation in which all the characteristic roots of 7 lie in F we do
it below. The general case in which we put no restrictions on the charac-
teristic roots of 7" will be done in the next section.

We are now in the happy position where all the pieces have been con-
structed and all we have to do is to put them together. This results in the
highly important and useful theorem in which is exhibited what is usually
called the Jordan canonical form. But first a definition.

DEFINITION The matrix

A1 0 0 T
0 1

. 1

0 o A

with A’s on the diagonal, 1’s on the superdiagonal, and 0’s elsewhere, is a
basic Jordan block belonging to A.

" TH EOREMl 6.6.2 Let TeAp(V) have all its distinct characteristic roots,
Ats..y iy, in F. Then a basis of V can be found in which the matrix T is of the

Ji
J2

Ji
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where each

B

Ji = Bi
B

and where By, - - ., By, are basic Jordan blocks belonging to A;.
Proof. Before starting, note that an m X m basic Jordan block belonging
to A is merely A + M,,, where M, is as defined at the end of Lemma 6.5.2.
By the combinations of Lemma 6.5.1 and the corollary to Theorem 6.6.1,
we can reduce to the case when 7 has only one characteristic root A, that is,
T — ) is nilpotent. Thus T =4 + (T — %), and since T — A is nil-
potent, by Theorem 6.5.1 there is a basis in which its matrix is of the form

(Mn |
M,

But then the matrix of T is of the form

) (Mm ‘ ) (Bm . )
.. + - = . ,
A Mn,- Bn,.

using the first remark made in this proof about the relation of a basic Jordan
block and the M,’s. This completes the theorem.

A

Using Theorem 6.5.1 we could arrange things so that in each J; the size
of B,y >size of By = * "+ When this has been done, then the matrix

—

is called the Jordan form of T. Note that Theorem 6.6.2, for nilpotent
matrices, reduces to Theorem 6.5.1.

We leave as an exercise the following: Two linear transformations in
Ap(V) which have all their characteristic roots in F are similar if and only if they
can be brought to the same Jordan form.

Thus the Jordan form acts as a “determiner” for similarity classes of this
type of linear transformation.

In matrix terms Theorem 6.6.2 can be stated as follows: Let A€ F,
and suppose that K is the splitting field of the minimal polynomial of A over F;
then an invertible matrix C € K,, can be found so that CAC™ ! is in Jordan form:
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We leave the few small points needed to make the transition from Theorem
6.6.2 to its matrix form, just given, to the reader.

One final remark: If 4 € F, and if in K,, where K is the splitting field
of the minimal polynomial of 4 over F,

Ji
cAC™ = J2
J

i where each Ji corresponds to a different characteristic root, 4, of 4, then
' the multiplicity of 1, as a characteristic root of 4 is defined to be n;, where J;
is an n; x n; matrix. Note that the sum of the multiplicities is exactly n.

Clearly we can similarly define the multiplicity of a characteristic root
of a linear transformation.

Problems

1. If § and T are nilpotent linear transformations which commute,
prove that ST and S + T are nilpotent linear transformations.

2. By a direct matrix computation, show that

0100 0100
001 0 001 0
oo0oo0o0] 2 oo 01
00 0 0 00 0 0

are not similar.

3. If n; > n, and m; > m,, by a direct matrix computation prove that

M"l Mml )
M, and M,

are similar if and only if n;, = m,, n, = m,.
*4. If n; > n, > n; and m; > m, > ms, by a direct matrix computation
prove that
M M,

ny my

M and M

ny m2
M M

n3 ms,

are similar if and only if n, = m, n, = m,, ny = m,.

1 1 1
-1 -1 -1
1 1 0

is nilpotent, and find its invariants and Jordan form.

5. (a) Prove that the matrix
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10.

11.

12.

13.

(b) Prove that the matrix in part (a) is not similar to

1 1 1
-1 -1 -=1]1.
1 0 0

. Prove Lemma 6.6.1 and its corollary even if the sums involved are not

direct sums.

. Prove the statement made to the effect that two linear transformations

in Ap(V) all of whose characteristic roots lie in F are similar if and
only if their Jordan forms are the same (except for a permutation in
the ordering of the characteristic roots).

. Complete the proof of the matrix version of Theorem 6.6.2, given in
the text.
. Prove that the n X 7 matrix
0 00 00
1 00 00
010 00
0 0 1° 0 0}’
000 10

having entries 1’s on the subdiagonal and 0’s elsewhere, is similar to M,

1 o
If F has characteristic p > 0 prove that 4 = (O 1) satisfies 47 = 1.

1 o

If F has characteristic 0 prove that 4 = satisfies A™ = 1,

p 01

form > 0, only if ¢ = 0.

Find all possible Jordan forms for

(a) All 8 x 8 matrices having x*(x — 1)? as minimal polynomial.

(b) All 10 x 10 matrices, over a field of characteristic different from
2, having ¥2(x — 1)2(x 4+ 1) as minimal polynomial.

Prove that the n X z matrix

[om—y
—
[
[—

is similar to
00 ... 0
0 00 ... 0

B4

000 ... 0

if the characteristic of F is 0 or if it is p and p ¥ n. What is the multi-
plicity of 0 as a characteristic root of 4?
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A matrix 4 = (a;;) is said to be a diagonal matrix if a;; = 0 for i # j,
that is, if all the entries off the main diagonal are 0. A matrix (or linear
transformation) is said to be diagonalizable if it is similar to a diagonal
matrix (has a basis in which its matrix is diagonal).

14. If T is in A(V) then T is diagonalizable (if all its characteristic roots
are in F) if and only if whenever o(T — )™ =0, for ve V and
A€ F, then o(T — 1) = 0.

15. Using the result of Problem 14, prove that if E2 = £ then E is
diagonalizable.

16. If E* = Eand F2 = F prove that they are similar if and only if they
have the same rank.

17. If the multiplicity of each characteristic root of T is 1, and if all the

characteristic roots of T are in F, prove that T is diagonalizable
over F.

18. If the characteristic of F is 0 and if T € Ap(V) satisfies T™ = 1,

prove that if the characteristic roots of T are in F then T is diagonaliz-
able. (Hint: Use the Jordan form of T)

- If 4, Be F are diagonalizable and if they commute, prove that
there is an element Ce F, such that both CAC~! and CBC-! are
diagonal.

. Prove that the result of Problem 19 is false if 4 and B do not commute.

Canonical Forms: Rational Canonical Form

-

The Jordan form is the one most generally used to prove theorems about
linear transformations and matrices. Unfortunately, it has one distinct,
serious drawback in that it puts requirements on the location of the charac-
teristic roots. True, if 7€ Ag( V)(or 4 € F,) does not have its characteristic
roots in F we need but go to a finite extension, K, of F in which all the char-
acteristic roots of 7 lie and then to bring T to Jordan form over K. In
fact, this is a standard operating procedure; however, it proves the result
In K, and not in F,. Very often the result in F, can be inferred from that
n K, but there are many occasions when, after a result has been established
or 4 € F,, considered as an element in K,, we cannot go back from K, to
et the desired information in F,

Thus we need some canonical form for elements in Ap(V) (or in F,)
Which presumes nothing about the location of the characteristic roots of its
~€ments, a canonical form and a set of invariants created in Ap(V) itself
sing only its elements and operations. Such a canonical form is provided

s by the rational canonical Jorm which is described below in Theorem 6.7.1
nd its corollary.

-
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Let T € Ax(V); by means of T we propose to make V into a module over
F[x], the ring of polynomials in x over F. We do so by defining, for any
polynomial f(x) in F[x], and any ve V, f(x)v = of (T). We leave the
verification to the reader that, under this definition of multiplication of
elements of V by elements of F[x], V becomes an F[x]-module.

Since V is finite-dimensional over F, it is finitely generated over F, hence,
all the more so over F[x] which contains F. Moreover, F[x] is a Euclidean
ring; thus as a finitely generated module over F[x], by Theorem 4.5.1, V is
the direct sum of a finite number of cyclic submodules. From the very way
in which we have introduced the module structure on V, each of these
cyclic submodules is invariant under T; moreover there is an element m,,
in such a submodule M, such that every element m, in M, is of the form
m = my f (T) for some f(x) € F[x].

To determine the nature of T on Vit will be, therefore, enough for us to
know what T looks like on a cyclic submodule. This is precisely what we
intend, shortly, to determine.

But first to carry out a preliminary decomposition of V, as we did in
Theorem 6.6.1, according to the decomposition of the minimal polynomial
of T as a product of irreducible polynomials.

Let the minimal polynomial of T over F be p(x) = q;(x)' -+ - g, (%)%,
where the g;(x) are distinct irreducible polynomials in F[x] and where
each ¢; > 0; then, as we saw earlier in Theorem 66.1, V=V, @V, @ -
@ V), where each V;is invariant under T and where the minimal polynomial
of T on V;is g;(x)*. To solve the nature of a cyclic submodule for an
arbitrary T we see, from this discussion, that it suffices to settle it for a T
whose minimal polynomial is a power of an irreducible one.

We prove the

LEMMA 6.7.1  Suppose that T, in Ap(V), has as minimal polynomial over F the
polynomial p(x) = yo + px + -+ y,_ &1 + &, Suppose, further, that
V, as a module (as described above), is a cyclic module (that is, is cyclic relative to T.)
Then there is basis of V over F such that, in this basis, the matrix of T is

0 1 0 ... 0

0 o 1 ... 0

0 0 0 ... 1
Y P - -0 TVr-a

Proof. Since V is cyclic relative to T, there exists a vector » in ¥ such
that every element w, in V, is of the form w = of (T') for some f (x) in F[x]-

Now if for some polynomial s(x) in F[x], vs(T) = 0, then for any @
in V, ws(T) = (of (T))s(T) = vs(T) f(T) = 0; thus s(T) annihilates all
of V and so s(T") = 0. But then p(x) | s(x) since p(x) is the minimal poly-
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- nomial of T. This remark implies that v, 7T, vT2, ..., 0T 1 are linearly

independent over F, for if not, then %0 + @l + -+ 4 o _ 0T 1 =
with «,...,0,_, in F. But then ooy + o, T+ -+ 4 % T77 1) =0,
hence by the above discussion )| (g + ogx + -+ + o—1%"~ 1), which
s impossible since p(x) is of degree r unless

OCO=O£1 ="'=ar_1 = 0.

Since T" = —y, — L ==y, T we immediately have that
r+k for £ > 0, is a linear combination of 1, 7). .. ,T" 1 and so f(T),
or any f(x) e F[x], is a linear combination of 1, T,...,T""1 over F.
‘Since any w in V is of the form w = of (T') we get that w is a linear com-
bination of v, 7, ... 7" 1,

We have proved, in the above two paragraphs, that the elements v, 0T,
© oo, 0T form a basis of V over F. In this basis, as is immediately veri-
* fied, the matrix of 7 is exactly as claimed

DEFINITION If f(x) = Yo+ Mix+ -+ 9, "+ 4 is in Flx],
 then the r x 7 matrix

0 1 0 ... 0
0 o 1 ... 0
0 0 0 .. 1
TP TV - . =7y

is called the companion matrix of J (x). We write it as C(f (x)).

Note that Lemma 6.7.1 says that if V is ¢yclic relative to T and if the minimal

polynomial of T in F[x] is p(x) then for some basis of V the matrix of Tis C(p(x)).
Note further that the matrix C (f (%)), for any monic J (%) in F[x], satisfies

S (x) and has f(x) as its minimal polynomial. (See Problem 4 at the end of

this section; also Problem 29 at the end of Section 6.1.)

We now prove the very important

THEOREM 671 If T in Ap(V) has as minimal polynomial p(x) = q(x)e,
Where q(x) is a monic, irreducible polynomial in F[x), then a basis of V over F can
e found in which the matrix of T is of the form

C(g(x)™)
Clg(%))

Clg(%)*)

’leree=e1 e > >

Proof. Since V, as a module over F [x], is finitely generated, and since
[x] is Euclidean, we can decompose Vas V="V, @ - @ V. where the

-
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V, are cyclic modules. The V; are thus invariant under T if T is the
linear transformation induced by 7" on V,, its minimal polynomial must be
a divisor of p(x) = ¢(x)¢ so is of the form ¢(x)®. We can renumber the
spaces so thate; > ¢, > - = ¢,

Now ¢(T)°* annihilates each V;, hence annihilates V, whence g(1)** =
0. Thus ¢; > ¢; since ¢, is clearly at most ¢ we get that ¢; = e.

By Lemma 6.7.1, since each V; is cyclic relative to T, we can find a basis
such that the matrix of the linear transformation of T; on V;is C(g(x)).
Thus by Theorem 6.6.1 a basis of ¥ can be found so that the matrix of T

in this basis is

Clg(x)*)
C(q(x)*)

Clg(*)™)

COROLLARY If Tin Ap(V) has minimal polynomial p(x) = q,(x)" - - i (%)%
over F, where q,(x), - . ., q(x) are irreducible distinct polynomials in F[x], then a
basis of V can be found in which the matrix of T s of the form

R,
R,

R,
where each

¢ (Qa(x)e""))

wheree; = ¢,y = € =2 ¢

irg*

Proof. By Theorem 6.5.1, ¥ can be decomposed into the direct sum
V=V, @ ®V, where each V, is invariant under 7" and where the
minimal polynomial of T, the linear transformation induced by T on Vi
has as minimal polynomial g;(x)%. Using Lemma 6.5.1 and the theorem
just proved, we obtain the corollary. If the degree of ¢,(x) is d;, note that
the sum of all the dig;; is n, the dimension of V over F.

DEFINITION The matrix of 7 in the statement of the above corollary
is called the rational canonical form of T.

DEFINITION The polynomials g (%)%, g, (%)%, . . ., g (%)°"1,. - -5 @ (%)
. o5 4 (%)% in F[x] are called the elementary divisors of T. \

One more definition!
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DEFINITION If dimg (V) = n, then the characteristic polynomial of T,
pr(x), is the product of its elementary divisors.

We shall be able to identify the characteristic polynomial just defined
with another polynomial which we shall explicitly construct in Section 6.9.
The characteristic polynomial of 7 is a polynomial of degree n lying in
F[x]. It has many important properties, one of which is contained in the

REMARK  Every linear transformation T € Ap(V) satisfies its characteristic
polynomial.  Every characteristic root of T is a root of prp(x).

Note 1. 'The first sentence of this remark is the statement of a very famous
theorem, the Cayley-Hamilton theorem. However, to call it that in the form
we have given is a little unfair. The meat of the Cayley-Hamilton theorem
is the fact that T satisfies p7(x) when p(x) is given in a very specific, con-
crete form, easily constructible from 7. However, even as it stands the
remark does have some meat in it, for since the characteristic polynomial is
a polynomial of degree n, we have shown that every element in Ap(V) does
satisfy a polynomial of degree n lying in F[x]. Until now, we had only
proved this (in Theorem 6.4.2) for linear transformations having all their
characteristic roots in F.

Note 2. As stated the second sentence really says nothing, for whenever T
satisfies a polynomial then every characteristic root of 7 satisfies this same
polynomial; thus p(x) would be nothing special if what were stated in the
theorem were all that held true for it. However, the actual story is the
following: Every characteristic root of 7 is a root of bp7(x), and conversely,
every 100t of pr(x) is a characteristic root of T'; moreover, the multiplicity of any
100t of pr(x), as a root of the polynomial, equals its multiplicity as a characteristic
700t of T. We could prove this now, but defer the proof until later when we
shall be able to do it in a more natural fashion.

Proof of the Remark. We only have to show that T satisfies pr(x), but
this beomes almost trivial. Since pp(x) is the product of g, (x)°'t, g,(x)°2,

s @)™, ..., and since e = e, 6, =65, ..., 0, = ¢, pr(x) is di-
visible by p(x) = g,(x)°* - - - ¢,(x)°%, the minimal polynomial of 7. Since
H(T) = 0 it follows that p(T) = 0.

We have called the set of polynomials arising in the rational canonical
form of T the elementary divisors of 7. It would be highly desirable if these
determined similarity in Ag(V), for then the similarity classes in Ag(V)
would be in one-to-one correspondence with sets of polynomials in F[x].
We propose to do this, but first we establish a result which implies that two
linear transformations have the same elementary divisors.

- THEOREM 6.7.2 Let V and W be two vector spaces over F and suppose that

-

309



310

Linear Transformations Ch. 6

is a vector space isomorphism of V onto W. Suppose that S € Ap(V) and T e
Ap(W) are such that for any ve V, (v8)y = () T. Then S and T have the

same elementary divisors.

Proof. We begin with a simple computation. If v € V, then (28%)y =
(@8)S)Hy = (YT = ()T = (oy)T?. Clearly, if we continue in
this pattern we get (o8™)§ = (oy)T™ for any integer m > O whence for
any polynomial f (x) € F[x] and for any v e V, (of ()Y = (oY) f(T).

If £(S) =0 then () f(T) =0 for any ve V, and since § maps V
onto W, we would have that W/ (T) = (0), in consequence of which
f(T) = 0. Conversely, if g(x) € F[x] is such that g(T') = 0, then for any
veV, (g(S))y =0, and since ¥ is an isomorphism, this results in
2g(S) = 0. This, of course, implies that g(§) = 0. Thus § and 7 satisfy
the same set of polynomials in F[x], hence must have the same minimal polynomial.

p) = 1(0)g (%) qulx)™

where ¢ (%), . - -, g,(x) are distinct irreducible polynomials in F[x]

If U is a subspace of V invariant under S, then Uy is a subspace of W
invariant under T, for (UY)T = (US)y < Uy. Since U and Uy are
isomorphic, the minimal polynomial of §;, the linear transformation induced
by S on U is the same, by the remarks above, as the minimal polynomial of
T,, the linear transformation induced on Uy by T.

Now, since the minimal polynomial for S on Vis p(x) = ¢; (%)t -+ - qu(x),
as we have seen in Theorem 6.7.1 and its corollary, we can take as the
first elementary divisor of S the polynomial g;(x)® and we can find a sub-
space of V; of ¥ which is invariant under § such that

1. V = V, @ M where M is invariant under S.

2. The only elementary divisor of S;, the linear transformation induced
on V; by S, is g, (x)¢".

3. The other elementary divisors of S are those of the linear transformation
S, induced by S on M.

We now combine the remarks made above and assert

1. W= W, ® N where W, = V;j and N = My are invariant under 7.

2. The only elementary divisor of 7}, the linear transformation induced
by T on W, is q,(x)°* (which is an elementary divisor of T since the minimal
polynomial of T'is p(x) = g;(%)°** - qu(x))-

3. The other elementary divisors of 7" are those of the linear transformation
T, induced by T on N.

\
Since N = My, M and N are isomorphic vector spaces over F under the
isomorphism , induced by Y. Moreover, if ueM then WSY, =
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(wSW = ()T = (w,)T,, hence S, and T, are in the same relation
vis-a-vis ¥/, as § and T were vis-2-vis . By induction on dimension (or
repeating the argument) S, and T, have the same elementary divisors.
But since the elementary divisors of § are merely ¢:1(x)?* and those of S,
while those of T are merely ¢,(x)°* and those of T,, S, and T must have
the same elementary divisors, thereby proving the theorem.

Theorem 6.7.1 and its corollary gave us the rational canonical form and
gave rise to the elementary divisors. We should like to push this further
and to be able to assert some uniqueness property. This we do in

THEOREM 6.7.3  The elements S and T in Ap(V) are similar in Ap(V) if
and only if they have the same elementary divisors.

Proof. In one direction this is easy, for suppose that § and T have the
same elementary divisors. Then there are two bases of V over F such that
the matrix of § in the first basis equals the matrix of 7 in the second (and
each equals the matrix of the rational canonical form). But as we have
seen several times earlier, this implies that S and 7 are similar.

We now wish to go in the other direction. Here, too, the argument
resembles closely that used in Section 6.5 in the proof of Theorem 6.5.2.
Having been careful with details there, we can afford to be a little sketchier
here.

We first remark that in view of Theorem 6.6.1 we may reduce from the
general case to that of a linear transformation whose minimal polynomial
is a power of an irreducible one. Thus without loss of generality we may
suppose that the minimal polynomial of T is g(x)¢ where g(x) is irreducible
in F[x] of degree d. "

The rational canonical form tells us that we can decompose V as V =
Vi @+ @V, where the subspaces V; are invariant under T and where
the linear transformation induced by 7 on V; has as matrix C (g(x)%), the
companion matrix of ¢(x)¥. We assume that what we are really trying to
prove is the following: If V = U, @ U, ® - ® U, where the U; are
invariant under 7 and where the linear transformation induced by T on U;
has as matrix C(q(x)’%), f, >f,=2"2f, then r=5 and ¢ = f,
€ = fy ..., 6 = f,. (Prove that the proof of this is equivalent to proving
the theorem!)

Suppose then that we do have the two decompositions described above,
V=V, ® @V, and V=U, @ - ® U,, and that some e # fi
Then there is a first integer m such that bm # S whileeg = fi, ... e, , =
Jm-1- We may suppose that e, > f,.

Now ¢(7')/™ annihilates U, U,,,,, ..., U, whence

Vg(T)'™ = Uyg(TY" @ --- @ U,_,q9(T)"™.
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However, it can be shown that the dimension of Ug(T)™ for i <m is
d(f; — f) (Prove!) whence

dim (Vg(T)!™) = d(fy = fu) + -+ d(Jm-1 = Ju-

On the other hand, Vg(T)'™ > Vg(TY@® - @ @ V,q(T)™ and
since V;g(T)’™ has dimension d(e; — fm), fori < m, we obtain that

dim (Vg(TY™) = d(e; — fu) + -+ den = Ju)-

Since ¢; = ypoq = fm-1 and &y > fm this contradicts the equalit
1 1 m—1 m—1 m m q y
proved above. We have thus proved the theorem.

COROLLARY 1 Suppose the two matrices A, B in F, are similar in K, where
K is an extension of F. Then A and B are already similar in F,.

Proof. Suppose that 4, B € F, are such that B = C~'4C with Ce K,
We consider K, as acting on K™, the vector space of n-tuples over K.
Thus F™ is contained in K™ and although it is a vector space over F it s
not a vector space over K. The image of ®_in K, under C need not fall
back in F™ but at any rate F®C is a subset of K™ which is a vector space
over F. (Prove!) Let V be the vector space F® over F, W the vector space
F™C over F, and for ve V let vy = 2C. Now 4 € Ap(V) and Be Ax(W)
and for any ve V, (@A) = 24C = »CB = (v)B whence the conditions
of Theorem 6.7.2 are satisfied. Thus 4 and B have the same elementary
divisors; by Theorem 6.7.3, 4 and B must be similar in F,.

A word of caution: The corollary does not state that if A, BeF, are such
that B = C~'4C with Ce K, then C must of necessity be in F,; this is
false. It merely states that if 4, Be F, are such that B = C~'4C with
Ce K, then there exists a (possibly different) D e F, such that B =
D™ '4D.

Problems

1. Verify that V becomes an F [x]-module under the definition given.

2. In the proof of Theorem 6.7.3 provide complete proof at all points
marked ““(Prove).”

*3, (a) Prove that every root of the characteristic polynomial of T"is 2
characteristic root of 7.
(b) Prove that the multiplicity of any root of pr(x) is equal to its
multiplicity as a characteristic root of 7.

4. Prove that for f(x) € F[x], €(f (x)) satisfies f (x) and has f (x) as its

minimal polynomial. What is its characteristic polynomial?

5. If F is the field of rational numbers, find all possible rational canonical
forms and elementary divisors for
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(a) The 6 x 6 matrices in F¢ having (x — 1)(x® + 1)2 as minimal
polynomial.

(b) The 15 x 15 matrices in F,s having (x* + x + 1)%(x3 + 2)2
as minimal polynomial.

(c) The 10 x 10 matrices in F;, having (x? + 1)2(x3 + 1) as mini-
mal polynomial.

6. (a) If K is an extension of F and if 4 is in K,, prove that 4 can be

written as 4 = 4,4, + -+ + LA, where Ay, ..., 4, are in F,
and where A, ..., 4, are in K and are linearly independent over

F.
(b) With the notation as in part (a), prove that if Be F, is such that
AB = 0 then 4B = 4)B =+-- = A B = 0.

(c) If C in F, commutes with 4 prove that C commutes with each
of 4;, 4,,..., 4,
*7. If Ay, ..., 4, are in F, and are such that for some Aty ooy Ay in K,
an extension of F, 4,4, + -+ A4, is invertible in K, prove that
if F has an infinite number of elements we can find Oy, ..., 04 in F such
2 that a4, + -+ + @A, is invertible in F,.
i . *8. IfFisa Jinite field prove the result of Problem 7 is false.

| *9. Using the results of Problems 6(a) and 7 prove that if F has an infinite

number of elements then whenever 4, B € F,, are similar in K,, where
K is an extension of F, then they are familiar in F,. (This provides us
with a proof, independent of canonical forms of Corollary 1 to Theorem
6.7.3 in the special case when F is an infinite field.)

10. Using matrix computations (but following the lines laid out in Problem
9), prove that if F is the field of real numbers and K that of complex
numbers, then two elements in F, which are similar with K, are already
similar in F,.

6.8 Trace and Transpose

After the rather heavy going of the previous few sections, the uncomplicated
nature of the material to be treated now should come as a welcome respite.
Let F be a field and let 4 be a matrix in F,.

DEFINITION The trace of 4 is the sum of the elements on the main
diagonal of 4.

We shall write the trace of A as tr 4; if 4 = (a;;), then

n
trd = Z oy
i=1

The fundamental formal properties of the trace function are contained in
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LEMMA 6.81 For A, BeF,and A €F,

l. tr (14) = Atr A.
2.tr (A 4+ B) =tr4d + tr B.
3. tr (4B) = tr (B4).

Proof. To establish parts 1 and 2 (which assert that the trace is a linear
functional on F,) is straightforward and is left to the reader. We only
present the proof of part 3 of the lemma.

If 4 = (v;;) and B = (B;;) then AB = (y;;) where
Yij = I‘Z_:l By

and B4 = (p;;) where

n
Hij = ,‘Zl ﬁikakj'
Thus

i k

tr (4B) = Z Vii = Z(Z “ikﬁki)Q

if we interchange the order of summation in this last sum, we get

tr (4B) = Z Z B = Z( Z ﬁki“ik) = ’; Mo = tr (BA).

k=1i=1 k=1 i=1

COROLLARY  If A is invertible then tr (ACA™") = tr C.

Proof. Let B = CA™'; then tr (ACA™Y) = tr (AB) = tr (BA) =
tr (CA™1'4) = tr C.

This corollary has a twofold importance; first, it will allow us to define
the trace of an arbitrary linear transformation; secondly, it will enable us
to find an alternative expression for the trace of 4.

DEFINITION If T e A(V) then tr T, the trace of T, is the trace of m, (T
where m,(T") is the matrix of T in some basis of V.

We claim that the definition is meaningful and depends only on T and
not on any particular basis of V. For if m,(T) and m,(T) are the matrices
of T in two different bases of V, by Theorem 6.3.2, m,(T) and m,(T) are
similar matrices, so by the corollary to Lemma 6.8.1 they have the same
trace. -

LEMMA 6.8.2 If T e A(V) then tr T is the sum of the characteristic roots of
T (using each characteristic root as oflen as its multiplicity).
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Proof. 'We can assume that T'is a matrix in F,; if K is the splitting field
for the minimal polynomial of 7" over F, then in K,, by Theorem 6.62, T
can be brought to its Jordan form, J. Jis a matrix on whose diagonal
appear the characteristic roots of T, each root appearing as often as its
multiplicity. Thus tr J = sum of the characteristic roots of T; however,
since [ is of the form ATA ', tr J = tr T, and this proves the lemma.

If T is nilpotent then all its characteristic roots are 0, whence by Lemma
6.8.2, tr T=0. But if T is nilpotent, then so are T2, T3, ... ; thus
tr T" = Oforalli > |.

What about other directions, namely, if tr 78 =0 for i = 1,9,. ..
does it follow that 7 is nilpotent? In this generality the answer is no, for
if Fis a field of characteristic 2 then the unit matrix

(o 1)

in F, has trace 0 (for 1 + | = 0) as do all its powers, yet clearly the unit
matrix is not nilpotent. However, if we restrict the characteristic of F to

- be 0, the result is indeed true.

LEMMA 683 If Fisa Jield of characteristic 0, and if TeAg(V) is such
that tv TV = O for all i > 1 then T is nilpotent.

Proof. Since Te Ap(V), T satisfies some minimal polynomial p(x) =
A+ o™ e 4o from T 4 T™ Ve o T+ ay, =0,
taking traces of both sides yields -

trT"'+oz1trT'"'1+---+cx,,,_ltrT+trocm=0.

However, by assumption, tr 79 = 0 for ; > 1, thus we get tra, = 0; if
dim V = n, tr o, = na.,, whence na,, = 0. But the characteristic of F is 0;
therefore, n # 0, hence it follows that %, = 0. Since the constant term
of the minimal polynomial of T is 0, by Theorem 6.1.2 T is singular and
$0 0 is a characteristic root of 7',

We can consider T as a matrix in F, and therefore also as a matrix in K o
Where K is an extension of F which in turn contains all the characteristic

Toots of 7. In K,, by Theorem 6.4.1, we can bring T to triangular form,

and since 0 is a characteristic root of T, we can actually bring it to the form

0 0 ... 0
B, a 0. 0 | (0 0 )
: U * ’
* ) &
- ﬂn Ay
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where
o, O 0

%y

is an (n — 1) x (n — 1) matrix (the #’s indicate parts in which we are
not interested in the explicit entries). Now

e - (9]0
* T,k

hence 0 = tr T% = tr T,*. Thus T, is an (n — 1) x (n — 1) matrix with
the property that tr T,* = 0 for all £ > 1. Either using induction on n,
or repeating the argument on T, used for T, we get, since Qy, - . - , O, are
the characteristic roots of T, that a, = -+ =a, = 0. Thus when T is
brought to triangular form, all its entries on the main diagonal are 0,
forcing T to be nilpotent. (Prove!)

This lemma, though it might seem to be special, will serve us in good
stead often. We make immediate use of it to prove a result usually known
as the _Jacobson lemma.

LEMMA 6.8.4 If F is of characteristic O and if S and T, in Ap(V), are such
that ST — TS commutes with S, then ST — TS is nilpotent.

Proof. For any k > 1 we compute (ST — TS)k. Now (ST — TS)* =
(ST — TS~ Y(ST — TS) = (§T — TS)*~ 18T — (ST — TS)* 'TS.
Since ST — TS commutes with S, the term (ST — TS)*~'ST can be
written in the form S((ST — TS)*~'T). If we let B = (ST — TSk 1T,
we see that (ST — TS)* = SB — BS; hence tr ((§7 — TS =
tr (SB — BS) = tr (SB) — tr (BS) = 0 by Lemma 6.8.1. The previous
lemma now tells us that $7° — 7'S must be nilpotent.

The trace provides us with an extremely useful linear functional on F,
(and so, on Ag(V)) into F. We now introduce an important mapping of
F, into itself.

DEFINITION If 4 = (x;;) € F, then the transpose of A, written as A
is the matrix 4' = (y;;) where y;; = «;; for each i and ;.

The transpose of 4 is the matrix obtained by interchanging the rows and
columns of 4. The basic formal properties of the transpose are contained in
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LEMMA 6.85 Forall 4, Be F,,

1. (4 = A
2. (A+ B =4 + B
3. (4B) = B'A".

Proof. The proofs of parts 1 and 2 are straightforward and are left to
the reader; we content ourselves with proving part 3.

Suppose that 4 = («;;) and B = (Bij); then AB = (1

Aij = ,; %t Brj-
Therefore, by definition, (4B)" = (1ij), where
Hij = Ay = ,; % B

On the other hand, 4’ = (y:;) where 7ij = %j; and B’ = (&;;) where
i = Bji, whence the (i, j) element of B'A’ is

ij) where

,; Caej = ,; Bt = 2 0B = .

k=1

That is, (4B)" = B'A’ and we have verified part 3 of the lemma.

In part 3, if we specialize 4 = B we obtain (42)' = (4')2. Continuing,
we obtain (4%)" = (A')* for all positive integers k. When 4 is invertible,
then (471) = (4")~ L

There is a further property enjoyed by the transpose, namely, if 1 e F
then (A4)’ = A4’ for all AeF,. Now, if AeF, satisfies a polynomial
%A™ + a; A" + -+ + o, = 0, we obtain (agA™ + - + a,) = 0 =0.
Computing out (a,dA™ + -+ + %,)" using the properties of the transpose,
we obtain oy (4)" 4 a,(A)"" ' 4 -+ 4+ @, = 0, that is to say, A’ satisfies
any polynomial over F which is satisfied by 4. Since 4 = (4')', by the
same token, A4 satisfies any polynomial over F which is satisfied by 4'.
In particular, 4 and 4’ have the same minimal polynomial over ¥ and so
they have the same characteristic roots. One can show each root occurs with
the same multiplicity in 4 and 4'. This is evident once it is established that
4 and A’ are actually similar (see Problem 14).

DEFINITION The matrix 4 is said to be a symmetric matrix if A' = A.

DEFINITION The matrix 4 is said to be a skew-symmetric matrix if
4 = —4.

When the characteristic of F is 2, since 1 = —1, we would not be able
to distinguish between symmetric and skew-symmetric matrices. We make

14
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the flat assumption for the remainder of this section that the characteristic of F is
different from 2.

Ready ways for producing symmetric and skew-symmetric matrices are
available to us. For instance, if 4 is an arbitrary matrix, then 4 + 4’ is
symmetric and 4 — A’ is skew-symmetric. Noting that A = (4 + 4') +
1(4 — A4'), every matrix is a sum of a symmetric one and a skew-symmetric
one. This decomposition is unique (see Problem 19). Another method of
producing symmetric matrices is as follows: if 4 is an arbitrary matrix,
then both A4’ and 4’4 are symmetric. (Note that these need not be equal.)

It is in the nature of a mathematician, once given an interesting concept
arising from a particular situation, to try to strip this concept away from
the particularity of its origins and to employ the key properties of the con-
cept as a means of abstracting it. We proceed to do this with the transpose.
We take, as the formal properties of greatest interest, those properties of
the transpose contained in the statement of Lemma 6.8.5 which asserts that
on F, the transpose defines an anti-automorphism of period 2. This leads
us to make the

DEFINITION A mapping * from F, into F, is called an adjoint on F, if

1. (A%)* = 4;
9. (4 + B)* = A* + B*;
3. (AB)* = B*A4*;

forall 4, Be F,.

Note that we do not insist that (A4)* = A4* for Ae F. In fact, in some
of the most interesting adjoints used, this is not the case. We discuss one
such now. Let F be the field of complex numbers; for 4 = (;;) € F,, let
A* = (y,;) where y;; = &;; the complex conjugate of «;;. In this case * is
usually called the Hermitian adjoint on F,. A few sections from now, we
shall make a fairly extensive study of matrices under the Hermitian adjoint.

Everything we said about transpose, e.g., symmetric, skew-symmetric,
can be carried over to general adjoints, and we speak about elements sym-
metric under * (i.e., 4* = A4), skew-symmetric under #, etc. In the exercises
at the end, there are many examples and problems referring to general
adjoints.

However, now as a diversion let us play a little with the Hermitian
adjoint. We do not call anything we obtain a theorem, not because it is
not worthy of the title, but rather because we shall redo it later (and properly
label it) from one central point of view.

So, let us suppose that F is the field of complex numbers and that the
adjoint, #, on F, is the Hermitian adjoint. The matrix 4 is called Hermitian
if 4* = A.
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First remark: If 4 # 0 e F,, then tr (44*) > 0. Second remark: As a
consequence of the first remark, if 4, ..., 4, € F, and if 4,4,* + 4,4,* +
e+ 44 =0, then 4, = A, =+++ =4, = 0. Third remark: If A
is a scalar matrix then A* = ], the complex conjugate of A.

Suppose that 4 € F, is Hermitian and that the complex number o + Bi,
where o and  are real and i2 = —1, is a characteristic root of 4. Thus
A — (a + pi) is not invertible; but then (4 — (o + P4 — (o — Bi)) =
(4 — 2)* + B? is not invertible. However, if a matrix is singular, it must
annihilate a nonzero matrix (Theorem 6.1.2, Corollary 2). There must
therefore be a matrix C # 0 such that C((4 — )2 + B?) = 0. We multiply
this from the right by C* and so obtain

C(A — @)2C* + B2CC* = 0. (1)

Let D =C(A - a) and E = BC. Since 4* = A4 and « is real,
C(4 — 2)?C* = DD*; since f is real, B2CC* = EE*. Thus equation
(1) becomes DD* + EE* = 0; by the remarks made above, this forces
D =0 and E = 0. We only exploit the relation £ = 0. Since 0 = E =
BC and since C # 0 we must have § = 0. What exactly have we proved?
In fact, we have proved the pretty (and important) result that if a complex
number A is a characteristic root of a Hermitian matrix, then A must be real. Ex-
ploiting properties of the field of complex numbers, one can actually restate
this as follows: The characteristic roots of a Hermitian matrix are all real.

We continue a little farther in this vein. For 4 ek, let B = AA*; B
is a Hermitian matrix. If the real number « is a characteristic root of B,
can o be an arbitrary real number or must it be restricted in some way?
Indeed, we claim that o must be nonnegative. For if ¢ were negative then
@ = —p> where B is a real number. But then B — ¢ = B + BT =
AA4* + B? is not invertible, and there is a C # 0 such that C(44* + B?)
= 0. Multiplying by C* from the right and arguing as before, we obtain
B = 0, a contradiction. We have shown that any real characteristic root
of AA* must be nonnegative. In actuality, the “real’” in this statement
is superfluous and we could state: For any AeF, all the characteristic
roots of 4A* are nonnegative.

Problems

Unless otherwise specified, symmetric and skew-symmetric refer to
transpose.

1. Prove that tr (4 + B) = tr 4 + tr B and that for AeF, tr (A4) =
Atr A

2. (a) Using a trace argument, prove that if the charactéristic of F is 0
then it is impossible to find 4, B e F, such that AB — BA = 1.

-
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(b) In part (a), prove, in fact, that 1| — (4B — BA) cannot be nil-
potent.

3. (a) Let f be a function defined on F, having its values in F such that

L. f(4 + B) =f(4) +f(B);
2. f(24) = M (4);
3. f(4B) = f (B4);
for all A, BeF, and all A€ F. Prove that there is an element
ao € F such that f(4) = « tr A for every 4 in F,.

(b) If the characteristic of F is 0 and if the f in part (a) satisfies the
additional property that f(1) = n, prove that f(4) = tr 4 for
all4 e F,.

Note that Problem 3 characterizes the trace function.

*4. (a) If the field F has an infinite number of elements, prove that every

*7.

10.
1.

element in F, can be written as the sum of regular matrices.
(b) If F has an infinite number of elements and if f, defined on F,
and having its values in F, satisfies

. f(4+ B) = f(4) +f(B);

2. f(44) = X (4);

3. f(BAB™?) = f(4);

for every Ae F,, A€ F and invertible element B in F,, prove
that f(4) = oy tr 4 for a particular oy € F and all 4€F,.

. Prove the Jacobson lemma for elements 4, Be F, if n is less than

the characteristic of F.

. (a) If CeF,, define the mapping d¢ on F,, by dc(X) = XC — CX

for XeF, Prove that do(XY) = (dc(X))Y + X(dc(Y))-
(Does this remind you of the derivative?)

(b) Using (a), prove that if AB — BA commutes with 4, then for
any polynomial ¢(x) € F[x], g(4)B — Bq(4) = ¢'(4)(AB — B4),
where ¢'(x) is the derivative of g(x).

Use part (b) of Problem 6 to give a proof of the Jacobson lemma.

(Hint: Let p(x) be the minimal polynomial for 4 and consider 0 =

H(A)B — Bp(4).)

. (a) If 4 is a triangular matrix, prove that the entries on the diagonal

of A are exactly all the characteristic roots of 4.
(b) If 4 is triangular and the elements on its main diagonal are 0,
prove that 4 is nilpotent.

. For any A,BeF, and AeF prove that (4') =4, (4 + B)' =

A + B', and (14) = AA'.
If A is invertible, prove that (471)" = (4")~ .

If A is skew-symmetric, prove that the elements on its main diagonal
are all 0.




12.

13.
*14.
15.

*16.

*17.

*18.

19.

20.

21.

22.

23.

*24.

25.
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If 4 and B are symmetric matrices, prove that 4B is symmetric if
and only if AB = BA.

Give an example of an 4 such that 44’ # A’A.
Show that 4 and A4’ are similar.

The symmetric elements in F, form a vector space; find its dimension
and exhibit a basis for it.

In F, let § denote the set of symmetric elements; prove that the
subring of F, generated by § is all of F,.

If the characteristic of F is 0 and 4 € F, has trace 0 (tr 4 = 0) prove
that there is a Ce F, such that CAC™! has only 0’s on its main
diagonal.

If F is of characteristic 0 and 4 € F, has trace 0, prove that there
exist B, ('€ F, such that 4 = BC — CB. (Hint: First step, assume, by
result of Problem 17, that all the diagonal elements of 4 are 0.)

(a) If F is of characteristic not 2 and if * is any adjoint on F,, let
§={4deF,|4* = A}andletK = {4 F,| 4* = — 4}. Prove
that § + K = F,.

(b) If AeF, and 4 = B 4+ C where Be § and CeK, prove that
B and ( are unique and determine them.

(a) If 4, B € S prove that AB + B4 € S.

(b) If 4, B € K prove that AB — BAe K.

(c) If Ae§ and Be K prove that AB — BAe S and that 4B +
BAeK.

If ¢ is an automorphism of the field F we define the mapping ® on
F, by: If 4 = (a;;) then ®(4) = (¢(a;;)). Prove that ®(4 + B) =
©(4) + ©(B) and that ®(4B) = ®(4)®(B) for all 4, BeF,.

If » and ® define two adjoints on F,, prove that the mapping
Y:4 - (4*)® for every AeF, satisfies Y4 + B) = y(4) + ¥(B)
and Y(4B) = y(A)y(B) for every 4, B€ F,.

If » is any adjoint on F, and 1 is a scalar matrix in F,, prove that 1*
must also be a scalar matrix.

Suppose we know the following theorem: If ¥ is an automorphism
of F, (i.e., ¥ maps F, onto itself in such a way that (4 + B) =
Y(4) + Y(B) and Y(4B) = Y(A)Y(B)) such that () = A for
every scalar matrix 1, then there is an element P e F, such that
Y(4) = PAP™ ! for every A€ F,. On the basis of this theorem, prove:
If * is an adjoint of F, such that A* = A for every scalar matrix A
then there exists a matrix P e F, such that 4* = PA'P~! for every
A e F,. Moreoever, P~ 1P’ must be a scalar.

If P e F, is such that P™'P’ & 0 is a scalar, prove that the mapping
defined by 4* = PA'P~1 is an adjoint on F,.
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#96. Assuming the theorem about automorphisms stated in Problem 24,
prove the following: If * is an adjoint on F, there is an automorphism
¢ of F of period 2 and an element P € F, such that A% = P(®(A)) P!
for all AeF, (for notation, see Problem 21). Moreover, P must
satisfy P~ 1®(P)’ is a scalar.

Problems 24 and 26 indicate that a general adjoint on F, is not so far
removed from the transpose as one would have guessed at first glance.

#97. If  is an automorphism of F, such that y(4) = 4 for all scalars,
prove that there is a P € F,, such that Y(A) = PAP ' forevery A€ F,

In the remainder of the problems, F will be the field of complex numbers and % the
Hermitian adjoint on F . i

98. If A € F, prove that there are unique Hermitian matrices B and C }
such that 4 = B + iC (i = —1).

29. Prove that tr A4* > 0if 4 # 0.

30. By directly computing the matrix entries, prove that if 4,4,* + -
+ 4A4F =0, then 4, =4, == 4, =0.

31. If Ais in F, and if BAA* = 0, prove that BA = 0.

32. If 4 in F, is Hermitian and B4* = 0, prove that B4 = 0.

33. If A € F, is Hermitian and if A, p are two distinct (real) characteristic
roots of A and if C(4 — 1) =0 and D(4 — p) = 0, prove that
CD* = DC* = 0.

#34. (a) Assuming that all the characteristic roots of the Hermitian matrix
A are in the field of complex numbers, combining the results of
Problems 32, 33, and the fact that the roots, then, must all be
real and the result of the corollary to Theorem 6.6.1, prove that
A can be brought to diagonal form; that is, there is a matrix P
such that PAP ™! is diagonal.

(b) In part (a) prove that P could be chosen so that PP* = l.

35. Let V, = {AeF,|AA* = 1}. Prove that V, is a group under

matrix multiplication.

36. If A commutes with A4* — A*A prove that A4* = A*4.

6.9 Determinants

The trace defines an important and useful function from the matrix ring
F, (and from Ap(V)) into F; its properties concern themselves, for the most
part, with additive properties of matrices. We now shall introduce the even
more important function, known as the determinant, which maps F, into F.

!
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Its properties are closely tied to the multiplicative properties of matrices.

Aside from its effectiveness as a tool in proving theorems, the determinant
is valuable in “practical” ways. Given a matrix 7, in terms of explicit
determinants we can construct a concrete polynomial whose roots are the
characteristic roots of 7T'; even more, the multiplicity of a root of this poly-
nomial corresponds to its multiplicity as a characteristic root of T. In fact,
the characteristic polynomial of 7, defined earlier, can be exhibited as this
explicit, determinantal polynomial.

Determinants also play a key role in the solution of systems of linear
equations. It is from this direction that we shall motivate their definition.

There are many ways to develop the theory of determinants, some very
elegant and some deadly and ugly. We have chosen a way that is at neither
of these extremes, but which for us has the advantage that we can reach the
results needed for our discussion of linear transformations as quickly as
possible.

In what follows F will be an arbitrary field, 7, the ring of n x n matrices
over F, and F™ the vector space of n-tuples over F. By a matrix we shall
tacitly understand an element in F,. As usual, Greek letters will indicate
elements of F (unless otherwise defined).

Consider the system of equations

op% + ax, = B,
Op1Xy + Upp%y = fB,.

We ask: Under what conditions on the a;; can we solve for x,, x, given
arbitrary 8, f,? Equivalently, given the matrix

A = (“11 o‘12) -
- 3
X271 O3
when does this map F(? onto itself?
Proceeding as in high school, we eliminate x, between the two equations;
the criterion for solvability then turns out to be ®y10p — Oyp0,; # 0.
We now try the system of three linear equations
ap¥y + Xy + 38y = By,
ApXy + 0% + Op3%3 = Py,
a31%1 + 30X + O33%3 = B,
and again ask for conditions for solvability given arbitrary B, §,, Bs.

Eliminating x; between these two-at-a-time, and then ¥, from the resulting
two equations leads us to the criterion for solvability that

Xq1®pp033 + 0103037 + 01301035 — Op0p;033

— 01103033 — Oy30p303; # O.
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Using these two as models (and with the hindsight that all this will work)
we shall make the broad jump to the general case and shall define the de-
terminant of an arbitrary n X n matrix over F. But first a little notation!

Let S, be the symmetric group of degree n; we consider elements in S,
to be acting on the set {1,2,...,n}. For o €S,, o(i) will denote the image
of i under ¢. (We switch notation, writing the permutation as acting from
the left rather than, as previously, from the right. We do so to facilitate
writing subscripts.) The symbol (—1)? for o € §, will mean +1ifg1s an
even permutation and —1 if ¢ is an odd permutation.

DEFINITION If A4 = (a;;) then the determinant of A, written det 4, is the
element ZGGS,. (_ l)aala(l)aZG(Z) © Upg(n) in F.

We shall at times use the notation

Qg "7 Oy

oyt cee

nn

for the determinant of the matrix

S R P

Gy "'t O

Note that the determinant of a matrix A4 is the sum (neglecting, for the
moment, signs) of all possible products of entries of 4, one entry taken
from each row and column of 4. In general, it is a messy job to expand the

determinant of a matrix—after all there are n! terms in the expansion—but
for at least one type of matrix we can do this expansion visually, namely,

LEMMA 6.9.1 The determinant of a triangular matrix is the product of its

entries on the main diagonal.

Proof. Being triangular implies two possibilities, namely, either all the
elements above the main diagonal are O or all the elements below the main
diagonal are 0. We prove the result for 4 of the form

o; O .- 0
%22
* .
ann
and indicate the slight change in argument for the other kind of triangular
matrices.
Since a,; = 0 unless i = 1, in the expansion of det 4 the only nonzero
contribution comes in those terms where ¢(1) = 1. Thus, since ¢ is 2
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permutation, ¢(2) s 1; however, if a(2) > 2, %352y = 0, thus to get a
nonzero contribution to det 4, ¢(2) = 2. Continuing in this way, we must
have ¢(i) = i for all 7, which is to say, in the expansion of det 4 the only
~ nonzero term arises when ¢ is the identity element of S,. Hence the sum of
- the n! terms reduces to Just one term, namely, a,;a,, - - - %, Which is the
contention of the lemma.

If 4 is lower triangular we start at the opposite end, proving that for a
nonzero contribution ¢(n) = n, theno(n — 1) = n — 1, etc.

Some special cases are of interest:

1. If
z
4 =
Ao
is diagonal, det 4 = 4,1, - - A,.
2. If
1
4 = ! ,
1
the identity matrix, then det 4 = 1.
3. If
A
4 = A ,
i )

the scalar matrix, then det 4 = A",

Note also that if a row (or column) of a matrix consists of O’s then the determinant
i 0, for each term of the expansion of the determinant would be a product
In which one element, at least, is 0, hence each term is 0.

Given the matrix 4 = (a;;) in F, we can consider its first row v =

%i1s Uiz, -+ -5 Uy,) @ @ Vector in F™; similarly, for its second row, v,, and
the others. We then can consider det 4 as a function of the 7 vectors
1> -+, 0, Many results are most succinctly stated in these terms so we
hall often consider det 4 = 4 (v4,...,0,); in this the notation is always
Meant to imply that v, is the first row, v, the second, and so on, of 4.
One further remark: Although we are working over a field, we could just
easily assume that we are working over a commutative ring, except in
he obvious places where we divide by elements. This remark will only
fter when we discuss determinants of matrices having polynomial entries,
little later in the section.
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LEMMA 69.2 IfAeF,and ye Fthend(vy,...,0;—1; Vi Viv1s- - > v,) =
Yd 1y -+ s Vim1s Vis V1> -« + 3 Un)-

Note that the lemma says that if all the elements in one row of 4 are
multiplied by a fixed element y in F then the determinant of 4 is itself
multiplied by 7.

Proof. Since only the entries in the ith row are changed, the expansion
of d(Dyy - s Vimt> V0is Visgse -+ Up) 1

;s (=D pqy - oi— 1,0~ 1) (Vo) Lit 1,0G+1) """ Fna(ny>
since this equals y X es, (—1)%0o1) " Lig(ty """ na(my 1t dOES indeed
equal yd(vy, ..., v,).

LEMMA 6.9.3
d(@yy - o5 Vs> Vi Vig1s e o s 0,) + d@y, -5 Vimps Uiy Vipgse - v V)
=d@yy s Vi1> U F U Vigrs v v V)

Before proving the result, let us see what it says and what it does not say.
It does not say that det A + det B = det (4 + B); this is false as is mani-

fest in the example
4 = 1 0 ’ B - 00 ’
0 0 1

where det 4 = det B = 0 while det (4 + B) = 1. It does say that if 4
and B are matrices equal everywhere but in the ith row then the new matrix
obtained from 4 and B by using all the rows of 4 except the ith, and using
as ith row the sum of the ith row of 4 and the ith row of B, has a deter-
minant equal to det 4 + det B. If

A=12andB=11,
3 4 3 4

then
2 3
detA = —2, detB =1, det 3 4 = —1 =det 4 + det B.
Proof. If v, = (0yps -~ Aip)s oovr 03 = (Qirs cov> Fin)s o5 Un =
(Otpgy - - -5 Oyy) and if u; = (Byy, ..o, B:.), then
d(vl’ L] vi—l, Uy + Vis Uit1s v v+ Z)n)
= Z (”I)U“mu)"'“i—l,a(i—n(aio(i) + ﬁia(i))“in,a(iﬂ)“ * UAyg(n)
cESnh
= Z (= 1)tga) " " Lie1,0~ 1% " Fno(n)
6ES,
+ ; (=Dayey - “i—l,a(t—l)ﬂia(i)' ** Upg(n)
(4 n

= dOgy s Viye-rVp) + d(0gs s Upy e e Vp)e
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The properties embodied in Lemmas 6.9.1, 6.9.2, and 6.9.3, along with
that in the next lemma, can be shown to characterize the determinant
function (see Problem 13, end of this section). Thus, the formal property
exhibited in the next lemma is basic in the theory of determinants.

LEMMA 6.9.4 If two rows of A are equal (that is, v, = vg for v # 5), then
- det 4 = 0.

Proof. Let A = (x;;) and suppose that for some 7,s where 7 # 5
a,; = a; for all j. Consider the expansion

det 4 = Z (_ l)aalo'(l). o am(r)’ o asa(s)' o ana’(n)'
a € sn

In the expansion we pair the terms as follows: For ¢ € S, we pair the term
(= 1)°i51)" * " Opy(my With the term (=)0 o(1)" * * Opeomy Where 7 is
the transposition (a(r), o(s)). Since 7 is a transposition and 72 = 1, this
indeed gives us a pairing. However, since Uro(r) = Usg(ryy DY assumption,
and 0, = Og,s, We have that Uro(r) = Ogea(s)r  Similarly, o, =
Ureory- On the other hand, for i # 7 and i # s, since t6(i) = o(i),
%io(i) = Qirg()» Lhus the terms o,y " 0y, and Oteo(1) """ Eneg() Are
-equal. The first occurs with the sign (—1)° and the second with the sign
(=1)* in the expansion of det A. Since 7 is a transposition and so an
‘odd permutation, (—1)*" = —(—1)°. Therefore in the pairing, the paired
terms cancel each other out in the sum, whence det 4 = 0. (The proof
does not depend on the characteristic of F and holds equally well even in
the case of characteristic 2.)

From the results so far obtained we can determine the effect, on a de-
-terminant of a given matrix, of a given permutation of its rows.

LEMMA 6.9.5 Interchanging two rows of A changes the sign of its determinant.

Proof. Since two rows are equal, by Lemma 6.9.4, d(v,,...,;_q,
Ui+ 0505405050159 + U V4, .. .,0,) = 0. Using Lemma 6.9.3
several times, we can expand this to obtain d(z, ..., Vimts Vis+ -+ Uy,
Vppeees ) + d(ps e 0y O Vg, Vg ey 0,) + A0y, Dy, v,

Uty Vipeey Uy) + A0y Vg, Ve, 05y, Vjsoevy 0y) = 0.
However, each of the last two terms has in it two equal rows, whence, by
Lemma 6.9.4, each is 0. The above relation then reduces to d{g, .. 5 v; g,
Uiy ooy Uity Uy eves 0,) + d(vg,. ., v, Vjsvnvs Ujoygy Ugyevny 0,) = 0,
Which is precisely the assertion of the lemma.

‘COROLLARY If the matrix B is obtained from A by a permutation of the rows
of A then det A = tdet B, the sign being +1 if the permutation is even, —1
if the permutation is odd.
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We are now in a position to collect pieces to prove the basic algebraic
property of the determinant function, namely, that it preserves products.
As a homomorphism of the multiplicative structure of F, into F the de-
terminant will acquire certain important characteristics.

THEOREM 6.9.1 For 4, B € F,, det (4AB) = (det 4) (det B).

Proof. Let A = (x;;) and B = (B;;); let the rows of B be the vectors
Uy, Uy, - - - » U,. We introduce the n vectors wy, ..., w, as follows:

wy = Oy Uy + Oaly + o Gyl
wy = 0y Uy + Ogally + 7+ Ayl

Wy = Opyly + Oly2lUs + 0+ Oy ntn-

Consider d(wy,...,w,); expanding this out and making many uses of
Lemmas 6.9.2 and 6.9.3, we obtain

d(wy, ..., w,) = Z ECNCTA U, A Uy Uiy -+ -5 Ui)-
P1,825.0050n
In this multiple sum i, . . . , i, run independently from 1 to n. However, if
any two i, = i, then u;, = u; whence d(u;, ..., U, 5 Uiy - o) u;) =0
by Lemma 6.9.4. In other words, the only terms in the sum that may give a

nonzero contribution are those for which all of i}, 7,,..., ¢, are distinct,
that is for which the mapping

(1 2 ... n)
o=1. . .
i i, i,

is a permutation of 1,2,...,n Also any such permutation is possible.
Finally note that by the corollary to Lemma 6.9.5, when

(1 2 ... n)
g=1{. . .
iody i,

is a permutation, then d(u;, ty,..., %) = (=1, ..., u,) =
(—1)? det B. Thus we get

dw,, ..., w,) = ; Gott) " * Cnoem(—1)7 det B

(det B) Z (—‘ l)"ala(l) tee Otm,(,,)

GESn

AN

= (det B) (det 4).
We now wish to identify d(w,...,w,) as det (4B). However, since

wy = 0y U+ Ol Wy = Opqly H o Ol - Wa

= Uy ly + + annu"
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we get that d(w,, . .., w,) is det C where the first row of C is w,, the second
is w,, etc.
However, if we write out w,, in terms of coordinates we obtain

wy = ayty + A+ gy = 0y (Brgs Brzs - -5 Bin)
+ ot aga(Bars -5 Bun)
= (B + aaBay + gy 0y Pra + 0
+ 0ypBuzs s 0y Pra + 0+ 0,8,

which is the first row of 4B. Similarly w, is the second row of AB, and so
for the other rows. Thus we have C = AB. Since det (4B) = det C =
d(wy, ..., w,) = (det 4)(det B), we have proved the theorem.

COROLLARY 1 If A is invertible then detA # 0 and det (4™ 1!) =
(det 4)~ 1.

Proof Since AA™! = 1,det (447 !) = det1 = 1. Thus by the theorem,
1 =det (447) = (det A)(det A~ '). This relation then states that
det A # Oanddet 47! = 1/det A.

COROLLARY 2 If A is invertible then for all B, det (ABA™') = det B.

Proof. Using the theorem, as applied to (4B)A™!, we get
det ((4B)A™") = det (AB) det (A™') = det Adet Bdet (4™1). Invoking
Corollary 1, we reduce this further to det B. Thus det (ABA™ ') = det B.

Corollary 2 allows us to define the determinant of a linear transformation.
For, let Te A(V) and let m (T) be the matrix of T in some basis of V.
Given another basis, if m,(T") is the matrix of T in this second basf, then
by Theorem 6.3.2, m,(T") = Cm,(T)C ™', hence det (m,(T)) = det (m,(T))
by Corollary 2 above. That is, the matrix of T in any basis has the same
determinant. Thus the definition: det T = detm,(T) is in fact independent
of the basis and provides A(V) with a determinant function.

In one of the earlier problems, it was the aim of the problem to prove that
A’, the transpose of 4, is similar to 4. Were this so (and it is), then 4’ and
4, by Corollary 2, above would have the same determinant. Thus we should
not be surprised that we can give a direct proof of this fact.

LEMMA 6.9.6 det 4 = det (4').
Proof. Let A = (a;;) and 4’ = (B;;); of course, B;; = aj;.
det 4 = Z (=D %e1) " * " Cnggmy

GESH

Now

while

det 4" = Z (- l)aﬁlu(l) e ﬂna(n) = Z (— 1)“%(1)1 ©C Olg(myn

agESp a€ES,
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However, the term (—1)%0yy; " Gpemn 15 €qual to (— Doy p-1ay "
Upg-1(m) (Prove!) Buto and ¢~ ! are of the same parity, that is, if ¢ is odd,
then so is 6~ !, whereas if ¢ is even then ¢~ ! is even. Thus

-1
(— 1)y 5-11) """ Lng=1(n) = (=17 “dyg-11) """ Lng-1(ny

Finally as ¢ runs over S, then ¢~ ! runs over §,. Thus

det A = Z (——l)"_‘alo_l(l)' * g - 1(nm)

6~1ESy

= Z (—1)0“10(1)' T Opg(n)

6 ESn
= det 4.

In light of Lemma 6.9.6, interchanging the rows and columns of a matrix
does not change its determinant. But then Lemmas 6.9.2-6.9.5, which held
for operations with rows of the matrix, hold equally for the columns of the same mairix.

We make immediate use of the remark to derive Cramer’s rule for solving
a system of linear equations.

Given the system of linear equations

?‘11’51 + g, = By

xp1%¥1 + o0+ Opp¥n = ﬁna

we call 4 = (a;;) the matrix of the system and A = det 4 the determinant of
the system.
Suppose that A # 0; that is,

%y "t Ky
A=\ # 0.

%n1 Tt O
By Lemma 6.9.2 (as modified for columns instead of rows),

Ogy T gy Tt gy

Ot o OniXy 77 Olnn

However, as a consequence of Lemmas 6.9.3, 6.9.4, we can add any multiple
of a column to another without changing the determinant (see Problem 5).
Add to the ith column of x;A, ¥, times the first column, x, times the second,
..., x; times the jth column (for j # ¢). Thus

Ogy t 0y g (@qgp¥y g%y o0 Oy p¥Xn) Op,i41 " %am
XA = : : : :

Opy °°° an,i—l (anlxl + (xnle + + annxn) an,i+1 trt Olpg
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and using ay % + -+ + + o,x, = B, we finally see that
Gy v oo By Ay it1 "77 Ogy

XA = : Do 1| = A, say.
Olyn U an,i—l ﬂn an,i+1 e Olyn

Hence, x; = A;/A. This is

THEOREM 6.9.2 (Cramer’s RuLg) If the determinant, A, of the system of
linear equations

Opp% + o+ oy x, = By

Op1%y + OppXy = ﬂn

is different from O, then the solution of the system is given by x; = A/A, where
A; is the determinant obtained from A by replacing in A the ith column by B,
Ba ..., B, :

Example The system
% + 2%, + 3x3 = —5,
2%y + x5 + x5
¥ + % + x5 =0,

Il
I
~

has determinant

1 2 3
A=121 1=1%0,
1 11
hence
-5 2 3 1 -5 3 1 2 -5 _
-7 1 1 2 -7 1 2 1 -7
x=011 x=l 0 1 x=ll 0
1 T’ 2—A_a 3 —_A .

We can interrelate invertibility of a matrix (or linear transformation)
- with the value of its determinant. Thus the determinant provides us with a
~ criterion for invertibility.

- THEOREM 6.9.3 4 is invertible if and only if det A # 0.

Proof. If 4 is invertible, we have seen,'};l Corollary 1 to Theorem 6.9.1,
that det 4 # 0.

~ Suppose, on the other hand, that detd4 # 0 where 4 = (a;;)- By
. Cramer’s rule we can solve the system

OypXy + o g, = Py

Op1 X1 + o+ Opn¥n = ﬁn
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for x4, ..., x, given arbitrary f,,..., B, Thus, as a linear transformation
on F™, A’ is onto; in fact the vector (B, ..., B,) is the image under 4’ of

(% s AAJ . Being onto, by Theorem 6.1.4, 4’ is invertible, hence 4

is invertible (Prove!).

We can see Theorem 6.9.3 from an alternative, and possibly more in-
teresting, point of view. Given 4 € F, we can embed it in K, where K is an
extension of F chosen so that in K,, 4 can be brought to triangular form.
Thus there is a B € K, such that

4 0 - 0
Ay

* .. )

2

BAB™! =

here A;,..., 4, are all the characteristic roots of 4, each occurring as
often as its multiplicity as a characteristic root of 4. Thus det 4 =
det (BAB™1') = A; A,-++ 1, by Lemma 6.9.1. However, 4 is invertible
if and only if none of its characteristic roots is 0; but det 4 # 0 if and
only if Ay A,-+- 1, # 0, that is to say, if no characteristic root of 4 is 0.
Thus 4 is invertible if and only if det 4 # 0.

This alternative argument has some advantages, for in carrying it out we
actually proved a subresult interesting in its own right, namely,

LEMMA 6.9.7 det 4 is the product, counting multiplicities, of the characteristic
rools of A.

DEFINITION Given A€ F,, the secular equation of A is the polynomial
det (x — A) in F[x].

Usually what we have called the secular equation of A is called the
characteristic polynomial of 4. However, we have already defined the
characteristic polynomial of 4 to be the product of its elementary divisors.
It is a fact (see Problem 8) that the characteristic polynomial of A equals its secular
equation, but since we did not want to develop this explicitly in the text, we
have introduced the term secular equation.

Let us compute and example. If _

1=(5 o)
(96 -5 Y

then
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hence det (x — 4) = (x — 1)x — (=2)(=3) = 2% — x — 6. Thus the
secular equation of
1 2
(o)
isx? — x — 6. _

A few remarks about the secular equation: If 1 is a root of det (x — 4),
then det (1 — 4) = 0; hence by Theorem 6.9.3, 1 — A4 is not invertible.
Thus 4 is a characteristic root of A. Conversely, if 1 is a characteristic root
of 4, A — 4 is not invertible, whence det (A—=4) =0and so 1is a root
of det (x — A). Thus the explicit, computable polynomial, the secular
equation of 4, provides us with a polynomial whose roots are exactly the characteristic
roots of A. We want to go one step further and to argue that a given root
enters as a root of the secular equation precisely as often as it has multiplicity
as a characteristic root of 4. For if A; s the characteristic root of 4 with
multiplicity m;, we can bring A4 to triangular form so that we have the

t
matrix shown in Figure 6.9.1, where each 4; appears on the diagonal m;

/11 0 e 0
Ay
2
-1 _
BAB™! = Ih
Ak ha
Figure 6.9.1

times. But as indicated by the matrix in Figure 6.9.2, det (x — 4) =
det (B(x — A)B™ 1) = (x — A)™(x = A)™ - (x — )™ and so each

X — Ak
Figure 6.9.2
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A;, whose multiplicity as a characteristic root of 4 is m; is a root of the poly-
nomial det (x — 4) of multiplicity exactly m;. We have proved

THEOREM 6.9.4 The characteristic roots of A are the roots, with the correct
multiplicity, of the secular equation, det (x — A), of A.

We finish the section with the significant and historic Cayley-Hamilton
theorem.

THEOREM 6.9.5 Every A € F,, satisfies ils secular equation.

Proof. Given any invertible B e K, for any extension K of F, AeF
and BAB™ ! satisfy the same polynomials. Also, since det (x — BAB™') =
det (B(x — A)B™1') = det (x — 4), BAB™' and 4 have the same secular
equation. If we can show that some BAB™ ! satisfies its secular equation,
then it will follow that 4 does. But we can pick K o F and Be K, so
that BAB™! is triangular; in that case we have seen long ago (Theorem
6.4.2) that a triangular matrix satisfies its secular equation. Thus the
theorem is proved.

Problems

1. If F is the field of complex numbers, evaluate the following determi-
nants:
5 6 8 -1
© 4 3 0 0
10 12 16 -2|
1 2 3 4

i

1 1
@y _ 3|- ®) |2

Q0 G N
O D W

9. For what characteristics of F are the following determinants 0:

3 0

12
3 45
@22 % wmle s 3
1111 ro
2 4 5 6

3. If 4 is a matrix with integer entries such that 47! is also a matrix
with integer entries, what can the values of det 4 possibly be?

4. Prove that if you add the multiple of one row to another you do not
change the value of the determinant.

*5, Given the matrix 4 = (a;;) let 4;; be the matrix obtained from 4 by
removing the ith row and jth column. Let M;; = (—1)"*/ det 4;;.
M, is called the cofactor of a;;. Prove that det 4 = oMy + 0+
o,

mM

in*




6.

10.

11.

*12.

*13.

Sec. 6.9 Determinants

(a) If 4 and B are square submatrices, prove that

det (g g) = (det 4)(det B).

(b) Generalize part (a) to

4,
*
det 4z .
0 4,

where each 4, is a square submatrix.

- If C(f) is the companion matrix of the polynomial f (x), prove that

the secular equation of C(f) is f ().

. Using Problems 6 and 7, prove that the secular equation of 4 is its

characteristic polynomial.  (See Section 6.7; this proves the remark
made earlier that the roots of p(x) occur with multiplicities equal to
their multiplicities as characteristic roots of 7.)

Using Problem 8, give an alternative proof of the Cayley-Hamilton
theorem.

If F is the field of rational numbers, compute the secular equation,
characteristic roots, and their multiplicities, of
01 00 4 111
1 2 3
0 0 01 1 4 1 1
@11 000 (b)gi;})' @111 40
0 01O 1 11 4

-

For each matrix in Problem 10 verify by direct matrix computation
that it satisfies its secular equation.

If the rank of 4 is r, prove that there is a square r x r submatrix of
4 of determinant different from 0, and if r < n, that there is no
(r + 1) x (r + 1) submatrix of 4 with this property.

Let f be a function on #n variables from F®™ to F such that

(@) f(vs---59,) = O0foro, =v;€ F™ fori # j.

(b) f(vy,---savyy...,0,) = af (v;,...,0,) for each i, and a € F.

(C) f(vla IREEN + Up Vit v o5 ZJ,,) = f(vlgd' o Ve U Uiy ek vn)
+ SO Ui Uy Uiy e s )

(d) fes...,e,) =1, where ¢, = (1,0,...,0), e, = (0,1,0,...,0),

.,e,=(0,0,...,0,1).
Prove that f(vy,...,9,) = detA4 for any AeF,, where v, is the
first row of 4, v, the second, etc.

14. Use Problem 13 to prove that det 4’ = det 4.
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15. (a) Prove that AB and BA have the same secular (characteristic)
equation.
(b) Give an example where AB and BA do not have the same minimal
polynomial.
16. If A is triangular prove by a direct computation that A satisfies its
secular equation.

17. Use Cramer’s rule to compute the solutions, in the real field, of the

systems

(@) x +y +2z=1, b)x +y+2z+w=1,
2% + 3 + 4z = 1, 4+ 29 + 32 4+ 4w =0,
x—y—2=0. x+y+ 42+ 5w=1,

x+)y+ 52+ 6w=0.

18. (a) Let GL(n, F) be the set of all elements in F, whose determinant
is different from 0. Prove GL(n, F) is a group under matrix
multiplication.

(b) Let D(n, F) = {A€ GL(n, F) |det A = 1}. Prove that D(n, F)
is a normal subgroup of GL(n, F).

(c) Prove that GL(n, F)[D(n, F) is isomorphic to the group of non-
zero elements of F under multiplication.

19. If K be an extension field of F, let E(n, K, F) = {A€ GL(n, K) |
det 4 € F}.
(a) Prove that E(n, K, F) is a normal subgroup of GL(n, K).
*(b) Determine GL(n, K)/E(n, K, F).
#90. If F is the field of rational numbers, prove that when N is a normal
subgroup of D(2, F) then either N = D(2, F) or N consists only of
scalar matrices.

6.10 Hermitian, Unitary, and Normal Transformations

In our previous considerations about linear transformations, the specific
nature of the field F has played a relatively insignificant role. When it did
make itself felt it was usually in regard to the presence or absence of charac-
teristic roots. Now, for the first time, we shall restrict the field F—generally
it will be the field of complex numbers but at times it may be the field of
real numbers—and we shall make heavy use of the properties of real and
complex numbers. Unless explicitly~stated otherwise, in all of this section F will
denote the field of complex numbers.

We shall also be making extensive and constant use of the notions and
results of Section 4.4 about inner product spaces. The reader would be
well advised to review and to digest thoroughly that material before
proceeding.
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One further remark about the complex numbers: Until now we have
managed to avoid using results that were not proved in the book. Now,
however, we are forced to deviate from this policy and to call on a basic
fact about the field of complex numbers, often known as “the _fundamental
theorem of algebra,” without establishing it ourselves. It displeases us to pull
such a basic result out of the air, to state it as a fact, and then to make use
of it. Unfortunately, it is essential for what follows and to digress to prove
it here would take us too far afield. We hope that the majority of readers
will have seen it proved in a course on complex variable theory.

FACT 1 4 polynomial with coefficients which are complex numbers has all its
rools in the complex field.

Equivalently, Fact 1 can be stated in the form that the only nonconstant

rreducible polynomials over the field of complex numbers are those of
degree 1. '

FACT 2 The only irreducible, nonconstant, polynomials over the field of real
numbers are either of degree | or of degree 2.

The formula for the roots of a quadratic equation allows us to prove easily
he equivalence of Facts 1 and 2.

The immediate implication, for us, of Fact 1 will be that every linear
ansformation which we shall consider will have all its characteristic ro0ts in the
eld of complex numbers.

In what follows, ¥ will be a finite-dimensional inner-product space over
» the field of complex numbers; the inner product of two elements of V
ill be written, as it was before, as (2, w). ‘

EMMA 6.101 If Te A(V) is such that (0T, 0) =0 for all veV, then
= 0.

Proof. Since (vT,v) = Oforve V, givenu, we V, (v + w)T,u + w) =
Expanding this out and making use of (uT,u) = (wT,w) =0, we
btain

T, w) + (wT,u) = Oforallu, we V. ()

Since equation (1) holds for arbitrary w in V, it still must hold if we
place in it w by 7w where i2 = —1; but (LT, iw) = —1(uT, w) whereas
)T, u) = i(wT, u). Substituting these values in (1) and canceling out ¢
ads us to

— T, w) + (T, u) = 0. (2)

Adding (1) and (2) we get (wT,u) =0 for all u, we V, whence, in
rticular, (w7, wT) = 0. By the defining properties of an inner-product
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space, this forces wT = 0 for all we ¥, hence T = 0. (Note: If V is an
inner-product space over the real field, the lemma may be false. For
example, let ¥V = {(a, B) | @, p real}, where the inner-product is the dot
product. Let T be the linear transformation sending (a, ) into (— B, o).
A simple check shows that (vT,0) = Oforallve V, yet T # 0.)

DEFINITION The linear transformation T € A(V) is said to be unitary
if (uT,oT) = (u,v) forallu, ve V.

A unitary transformation is one which preserves all the structure of V,
its addition, its multiplication by scalars and iis inner product. Note that a
unitary transformation preserves length for

lo]l = V(@ 0) = VT, sT) = |oT.

Is the converse true? The answer is provided us in

LEMMA 6.10.2 If (o7, oT) = (v, ) for all v € V then T is unitary.

Proof. The proof is in the spirit of that of Lemma 6.10.1. Let u,ve V:
by assumption ((u + )T, (u + 2)T) = (v + v,u + v). Expanding this
out and simplifying, we obtain

T, vT) + (T, uT) = (4, 0) + (v, u), (N

for u, v € V. In (1) replace » by iv; computing the necessary parts, this yields

— T, oT) + (T, uT) = —(u, v) + (v, u). (2)

Adding (1) and (2) results in (T, T) = (u, ) for all u,0 €V, hence
T is unitary.

We characterize the property of being unitary in terms of action on 2
basis of V.

THEOREM 6.10.1 The lincar transformation T on V is unitary if and only if
it takes an orthonormal basis of V into an orthonormal basis of V.

Proof. Suppose that {v;,...,0,} is an orthonormal basis of V; thus
(v;v;) = 0 for i # j while (v;,2,) = 1. We wish to show that if 7' is
unitary, then {9,T,...,0,T} is also an orthonormal basis of V. But
(@,T,0;,T) = (v,0;) =0 for i #j and (;T,0,T) = (v,0;) = 1, thus
indeed {v,T,...,,T} is an orthonormal basis of V.

On the other hand, if T'e A(V) is such that both {v,...,2,} and
{o4T,...,v,T} are orthonormal bases of V, if u, w € V then

n n
u = Z 0¥/ w = Z Bivss
i=1 i=1
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whence by the orthonormality of the s,

n

(w, ) = 2 aiB;
i=1
However,

uT = i a;T and wT = Z BT
=1 i=1

whence by the orthonormality of the ;77s,

(uT> wT) = Z aiﬁi = (u, w):
i=1
proving that 7 is unitary.

Theorem 6.10.1 states that a change of basis from one orthonormal basis
to another is accomplished by a unitary linear transformation.

LEMMA 6.10.3 If Te A(V) then given any ve V there exists an element
we V, depending on v and T, such that (uT,v) = (u, w) for all ue V. This
element w is uniquely determined by v and T.

Proof. To prove the lemma, it is sufficient to exhibit a w e V which
works for all the elements of a basis of V. Let {u;,...,u,} be an ortho-

normal basis of V; we define

w = Z: (w; T, v)u,.

i=1
An easy computation shows that (u;, w) = (1,7, v) hence the element w
has the desired property. That w is unique can be seen as follows: Suppose
that (uT,v) = (u, w,) = (u, w,); then (y,w; — w,) =0 for all ue
which forces, on putting ¥ = w; — w,, w; = w,.

Lemma 6.10.3 allows us to make the

DEFINITION 1If T e A(V) then the Hermitian adjoint of T, written asT*,
is defined by (u7,v) = (u, vT*) for all u, v e V.

Given v € V we have obtained above an explicit expression for sT* (as
w) and we could use this expression to prove the various desired properties
of 7*. However, we prefer to do it in a “basis-free” way.

4
LEMMA 6.10.4 If Te A(V) then T* € A(V). ‘Moreover,
(T*)* = T;
2. (S + T)* = 8* + T*;
< (A8)* = AS*;
4. (ST)* = T*S*;
Jor all S, Te A(V) and all L e F.
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Proof. 'We must first prove that 7* is a linear transformation on V. If
u, v, warein V, then (u, (v + w)T*) = (T, v + w) = (@T,v) + T, w) =
(u, vT*) + (u, wT*) = (u, vT* + wT™*), in consequence of which
(v + w)T* = oT* + wT*. Similarly, for e F, (4, ()T*) = (uT, Av) =
A(uT,v) = A(u, vT*) = (u, A(vT*)), whence (A)T* = L(vT*). We have
thus proved that T* is a linear transformation on V.

To see that (T*)* = T notice that (u, 2(T*)*) = (uT*, v) = (v,uT™*) =
(vT, u) = (u, oT) for all u, » € V whence »(T*)* = vT which implies that
(T*)* = T. We leave the proofs of (§ 4+ T)* = §* + T* and of (AT)* =
IT* to the reader. Finally, (u, o(ST)*) = (uST,v) = (uS, vT*) =
(u, vT*S*) for all u,ve V; this forces v(ST)* = vT*S* for every veV
which results in (ST)* = T*S§*.

As a consequence of the lemma the Hermitian adjoint defines an adjoint,
in the sense of Section 6.8, on A(V).

The Hermitian adjoint allows us to give an alternative description for
unitary transformations in terms of the relation of 7" and T*.

LEMMA 6.10.5 T e A(V) is unitary if and only if TT* = 1.

Proof. If T is unitary, then for all u,ve V, (u,vTT*) = (uT,oT) =
(1, ) hence TT* = 1. On the other hand, if 77* = 1, then (u,0) =
(u, vTT*) = (uT, vT), which implies that T is unitary.

Note that a unitary transformation is nonsingular and its inverse is just
its Hermitian adjoint. Note, too, that from T7T* = 1 we must have that
T*T = 1. We shall soon give an explicit matrix criterion that a linear
transformation be unitary.

THEOREM 6.10.2 If {v,,...,v,} is an orthonormal basis of V and if the
matrix of T e A(V) in this basis is (a;;) then the matrix of T* in this basis is
(:Bij)’ where ﬁij = aji'

Proof. Since the matrices of T and T* in this basis are, respectively,
(a;;) and (B;)), then

n n
v, T = 21 a;0; and 9, T* = Zl Bij;
i= i=

Bij = (v, T, vj) = (viﬁ\ va) = (% Z fljk”k) = djy
i=1

by the orthonormality of the »;’s. This proves the theorem.

This theorem is very interesting to us in light of what we did earlier in
Section 6.8. For the abstract Hermitian adjoint defined on the inner-product
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space V, when translated into matrices in an orthonormal basis of ¥, becomes
nothing more than the explicit, concrete Hermitian adjoint we defined
there for matrices.

Using the matrix representation in an orthonormal basis, we claim that
T € A(V) is unitary if and only if, whenever () is the matrix of T in this
orthonormal basis, then

D@y =0 forj #k
i=1

while

Z: I“ij|2 = L.

i=1

In terms of dot products on complex vector spaces, it says that the rows of
the matrix of T form an orthonormal set of vectors in F® under the dot
product.

DEFINITION T e A(V) is called self~adjoint or Hermitian if T* = T.

If T* = —T we call skew-Hermitian. Given any S € A(V),
* — §*
5= S+ S +i S .S ,
2 2

and since (S + §$*)/2 and (S — §%*)/2/ are Hermitian, § = 4 + iB where
both 4 and B are Hermitian.

In Section 6.8, using matrix calculations, we proved that any complex
characteristic root of a Hermitian matrix is real; in light of Fact 1, this can
be changed to read: Every characteristic root of a Hermitian matrix is real.
We now re-prove this from the more uniform point of view of an inner-
product space.

THEOREM 6.10.3 If T € A(V) is Hermitian, then all its characteristic roots

are real.

Proof. Let A be a characteristic root of T'; thus thereisa v # 0in V
such that vT = Av. We compute: A(v,0) = (40, 0) = (0T, v) = (v, vT*) =
(v, 9T) = (v, ) = A(v, v); since (v,v) # 0 we are left with 4 = 1 hence
A is real.

3
~ We want to describe canonical forms for unitary, Hermitian,\ and even

more general types of linear transformations which will be even simpler
..than the Jordan form. This accounts for the next few lemmas which,
although of independent interest, are for the most part somewhat technical
in nature.
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LEMMA 6.10.6 IfSe A(V) and if vSS* = 0, then vS = 0.

Proof. Consider (vSS*, v); since v55* = 0, 0 = (v855*, v) = (S, v(S$*)*) =
(S, »S) by Lemma 6.10.4. In an inner-product space, this implies that
8 = 0.

COROLLARY If T is Hermitian and vT* = 0 for k > 1 then vT = 0.

Proof. We show that if 972" = 0 then vT = 0; for if § = 72", then
S* = § and S§* = T2", whence (0S5%,0) = 0 implies that 0 = o5 =
»T?" . Continuing down in this way, we obtain 27 = 0. If oT* =0,
then »T2™ = 0 for 2™ > k, hence vT = 0.

We introduce a class of linear transformations which contains, as special
cases, the unitary, Hermitian and skew-Hermitian transformations.

DEFINITION T e A(V) is said to be normal if TT* = T*T.

Instead of proving the theorems to follow for unitary and Hermitian
transformations separately, we shall, instead, prove them for normal linear
transformations and derive, as corollaries, the desired results for the unitary
and Hermitian ones.

LEMMA 6.10.7 If N is a normal linear transformation and if vN = 0 for
veV, then v N* = 0.

Proof. Consider (vN*, yN*); by definition, (o N*, s N*) = (vN*N, v) =
(vNN*,v), since NN* = N*N. However, oN = 0, whence, certainly,
oNN* = 0. In this way we obtain that (vN*, vN*) = 0, forcing vN* = 0.

COROLLARY 1 If A is a characteristic root of the normal transformation N
and if vN = v then vN* = .

Proof. Since Nisnormal, NN* = N* N, therefore, (N — A)(N — A)* =
(N — 2)(N* — 1) = NN* — JN* — JN + AL = N*N — AN* — [N +
M = (N* = I)(N— 1) = (N — A)*(N — 1), that is to say, N — 1 is
normal. Since (N — A) = 0 by the normality of ¥ — A, from the lemma,
o(N — A)* = 0, hence oN* = Jo.

The corollary states the interesting fact that if A is a characteristic root of
the normal transformation N not only is 1 a characteristic root of N* but
any characteristic vector of N belonglng to A is a characteristic vector of
N* belonging to 4 and vice versa.

COROLLARY 2 If T is unitary and if 1 is a characteristic root of T, then
1Al =
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Proof. Since T is unitary it is normal. Let A be a characteristic root of
T and suppose that 7' = Ao with v 3 0 in V. By Corollary 1, o7* = o,
thus v = oTT* = JwT* = Ao since TT* = 1. Thus we get A= 1,
which, of course, says that || = 1.

We pause to see where we are going. Our immediate goal is to prove that
a normal transformation N can be brought to diagonal form by a unitary
one. If y,..., 4, are the distinct characteristic roots of V, using Theorem
6.6.1 we can decompose V as V="V, @ - @ V,, where for v;e V,,
v(N — ;)" = 0. Accordingly, we want to study two things, namely, the
relation of vectors lying in different Vs and the very nature of each V,.
When these have been determined, we will be able to assemble them to
prove the desired theorem.

LEMMA 6.10.8 If N is normal and if vN* = 0, then vN = 0.

Proof. Let § = NN*; § is Hermitian, and by the normality of N,
v8* = p(NN*)¥ = yN¥(N*)* = 0. By the corollary to Lemma 6.10.6, we
deduce that 2§ = 0, that is to say, vNN* = 0. Invoking Lemma 6.10.6
itself yields oN = 0.

- COROLLARY If N is normal and if for XeF, o(N — A)* =0, then
oN = Q.

Proof. From the normality of N it follows that N — 1 is normal, whence
by applying the lemma just proved to N — A we obtain the corollary.

In line with the discussion just preceding the last lemma, this corollary
shows that every vector in V; is a characteristic vector of N belonging to the charac-
teristic root ;. We have determined the nature of V;; now we proceed to
investigate the interrelation between two distinct V;’s.

LEMMA 6.10.9 Let N be a normal transformation and suppose that A and
M are two distinct characteristic roots of N. If v, w are in V and are such that
oN = Jo, wN = pw, then (v, w) = 0.

Proof. We compute (sN, w) in two different ways. As a consequence
of vN = Jv, (N, w) = (Ao, w) = A(v, w). From wN = pw, using Lemma
6.10.7 we obtain that wN* = jiw, whence (vN, w) = (v, wN*) = (v, jw) =
K(v, w). Comparing the two computations gives us A(v, @) = u(v, w) and
since A # , this results in (, w) = 0. &

All the background work has been done to enable us to prove the basic
and lovely
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THEOREM 6.10.4 If N is a normal linear transformation on V, then there exists
an orthonormal basis, consisting of characteristic vectors of N, in which the matrix of
N is diagonal. Equivalently, if N is a normal matrix there exists a unitary matrix
U such that UNU~ ! (= UNU*) is diagonal.

Proof. We fill in the informal sketch we have made of the proof prior
to proving Lemma 6.10.8.

Let N be normal and let Ay,..., 4, be the distinct characteristic roots
of N. By the corollary to Theorem 6.6.1 we can decompose V =
V, @ - @ V, where every v; € V; is annihilated by (N — 1,)". By the
corollary to Lemma 6.10.8, V; consists only of characteristic vectors of N
belonging to the characteristic root A;. The inner product of V induces an
inner product on V;; by Theorem 4.4.2 we can find a basis of V; orthonormal
relative to this inner product.

By Lemma 6.10.9 elements lying in distinct ¥;’s are orthogonal. Thus
putting together the orthonormal bases of the V;’s provides us with an
orthonormal basis of V. This basis consists of characteristic vectors of N,
hence in this basis the matrix of N is diagonal.

We do not prove the matrix equivalent, leaving it as a problem; we only
point out that two facts are needed:

1. A change of basis from one orthonormal basis to another is accomplished
by a unitary transformation (Theorem 6.10.1).

2. In a change of basis the matrix of a linear transformation is changed
by conjugating by the matrix of the change of basis (Theorem 6.3.2).

Both corollaries to follow are very special cases of Theorem 6.10.4, but
since each is so important in its own right we list them as corollaries in order
to emphasize them.

COROLLARY 1 If T is a unitary transformation, then there is an orthonormal
basis in which the matrix of T is diagonal; equivalenily, if T is a unilary matrix,
then there is a unitary matrix U such that UTU ' (= UTU*) is diagonal.

COROLLARY 2 If T is a Hermitian linear transformation, then there exists an
orthonormal basis in which the matrix of T is diagonal ; equivalently, if T is a Hermitian
mairix, then there exists a unitary matrix U such that UTU ™! (= UTU*) is
diagonal.

The theorem proved is the basicwresult for normal transformations, for it
sharply characterizes them as precisely those transformations which can
be brought to diagonal form by unitary ones. It also shows that the distinc-
tion between normal, Hermitian, and unitary transformations is merely a
distinction caused by the nature of their characteristic roots. This is made
precise in
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LEMMA 6.10.10  The normal transformation N is

1. Hermitian if and only if its characteristic roots are real.
2. Unitary if and only if its characteristic roots are all of absolute value 1.

Proof. 'We argue using matrices. If Nis Hermitian, then it is normal and
all its characteristic roots are real. If N is normal and has only real charac-
teristic roots, then for some unitary matrix U, UNU~! = UNU* — D,
where D is a diagonal matrix with real entries on the diagonal. Thus
- D* = Dj; since D* = (UNU*)* = UN*U*, the relation D* = D implies
 UN*U* = UNU*, and since U is invertible we obtain N* —= N, Thus N
is Hermitian.

We leave the proof of the part about unitary transformations to the reader.

If 4 is any linear transformation on V, then tr (44*) can be computed
- by using the matrix representation of 4 in any basis of V. We pick an
~ orthonormal basis of V; in this basis, if the matrix of 4 is (a;;) then that of
- A* is (B;;) where B, = &;;. A simple computation then shows that
tr (A4*) = 3, ;la;|? and this is O if and only if each a;; = 0, that is, if
“and only if 4 = 0. In a word, tr (44*) = 0 if and only if A = 0. This is a
~ useful criterion for showing that a given linear transformation is 0. This
s illustrated in

- LEMMA 6.10.11  If N is normal and AN = NA, then AN* = N*4.

~ Proof. We want to show that X = AN* — N*4 is 0; what we shall
- do is prove that tr XX* = 0, and deduce from this that X — 0.

Since N commutes with 4 and with N *, it must commute with AN*, —
N*4, thus XX* = (AN* — N*A)(NA* — A*N) = (AN* — N*A)NA* —
(AN* — N*A)A*N = N{(AN* — N*A)A*} — {(AN* — N*A)A*}N.
‘Being of the form NB — BN, the trace of XX* is 0. Thus X = 0, and
AN* = N*4.

We have just seen that N* commutes with all the linear transformations

that commute with N, when N is normal; this is enough to force N* to be a
polynomial expression in N. However, this can be shown directly as a
Consequence of Theorem 6.10.4 (see Problem 14).
The linear transformation T is Hermitian if and only if (v7T, v) is real
for every ve V. (See Problem 19.) Of special interest are those Hermitian
linear transformations for which (vT,v) 2 0 for all ve V. We call these
Monnegative linear transformations and denote the fact that a linear trags-
‘formation is nonnegative by writing 7> 0. If 7> 0 and in addifion
(2T, v) > 0 for v # O then we call T positive (or positive definite) and write
T > 0. We wish to distinguish these linear transformations by their charac-
teristic roots.
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LEMMA 6.10.12 The Hermitian linear transformation T is nonnegative
(positive) if and only if all of its characteristic roots are nonnegative (positive).

Proof. Suppose that T > 0; if A is a characteristic root of T, then
oT = Av for some v # 0. Thus 0 < (¢7,0) = (Av,v) = Ao, v); since
(v,v) > 0 we deduce that 1 > 0.

Conversely, if T is Hermitian with nonnegative characteristic roots, then
we can find an orthonormal basis {;, ..., v,} consisting of characteristic
vectors of T. For each v;, v;T = Aw;, where 4, > 0. Given veVl,
v = Yau; hence oT = Yaw,T = Y loawp;. But (vT,0) = (X Ao0;, 2a0)
= Y Aa,%; by the orthonormality of the »/s. Since A; > 0 and a;&; > 0,
we get that (#7, v) > 0 hence T > 0.

The corresponding ““positive’ results are left as an exercise.

LEMMA 6.10.13 T > O i and only if T = AA* for some A.
Proof. We first show that A44* > 0. Given ve V, (vAA* v) =

(v4, v4) > 0, hence 44A* > 0.
On the other hand, if T > 0 we can find a unitary matrix U such that

2
UTU* = -
A

where each 4, is a characteristic root of T, hence each 4; > 0. Let

-
S = ;
Ji

since each 4; > 0, each \//1,- is real, whence S is Hermitian. Therefore,
U*SU is Hermitian; but

Ay
(U*SU)? = U*S?U = U* ( ) U=T.
A

We have represented T in the form 44*, where 4 = U*SU.

Notice that we have actually proved a little more; namely, if in construct-
ing § above, we had chosen the nonnegative \/ Ii for each A, then S, and
U*SU, would have been nonnegative. Thus 7 > 0 is the square of a non-
negative linear transformation; that is, every 7 > 0 has a nonnegative

square root. This nonnegative square root can be shown to be unique (se¢
Problem 24).

We close this section with a discussion of unitary and Hermitian matrices
over the real field. In this case, the unitary matrices are called orthogonal, and
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satisfy QQ’ = 1. The Hermitian ones are Jjust symmetric

We claim that a real Symmetric matrix can be brought lo diagonal Jorm by an
orthogonal matrix. Let A be a real symmetric matrix. We can consider 4 as
acting on a real inner-product space V, Considered as a complex matrix,
4 is Hermitian and thus all s characteristic roots are real. If these are
App+.., A4 then V can be decomposed as ¥ — Vi® - ®V, where
v(4 — 2)™ = 0 for v;€ V. As in the proof of Lemma 6.10.8 this forces
2,4 = ), Using exactly the same proof as was used in Lemma 6.10.9, we
show that for o, e V,, v;€ V; with i # j, (a,, v;) = 0. Thus we can find
an orthonormal basis of ¥ consisting of characteristic vectors of 4. The
change of basis, from the orthonormal basis {(1,0,..., 0), (0,1,0,..., 0),

-5(0,...,0, 1)} to this new basis is accomplished by a real, unitary matrix,
that is, by an orthogonal one. Thus 4 can be brought to diagonal form by
an orthogonal matrix, proving our contention.

To determine canonical forms for
real field is a little more com
We proceed to this now; b

unitary transformations.

If Wis a subspace of ¥ invariant under

3
is it true that W’, the orthogonal complement of W, is also invariant under
T? Let weW and xe W'-

; thus (w7, xT) = (w, x) = 0; since W is

invariant under 7 and T is regular, WT = W, whence xT, for x e w’,

is orthogonal to all of W. Thus indeed (W')T < W’. Recall that ¥V =
Weo w.

~ Let Q be a real orthogonal matrix; thus 7" = Q+Q 1=9 + Q' is
symmetric, hence has real characteristic roots. If these are Aq,..., I,
then V can be decomposed as V = Vi®: - @V, where v; € V implies
0, T = J,v;. The Vs are mutually orthogonal. We claim each V;is invariant
under Q. (Prove!) Thus to discuss the action of Qon T, it is enough to
describe it on each V.

On ¥, since Ap, = 5T = v,(Q + Q1),
%(Q2 — 2,0 + 1) = 0. Two special cases pre
A; = 2 and A; = —2 (which may, of cours
4vi(Q + 12 =0 leading to v,(Q + 1)
oras —].

, in this case.

the real orthogonal matrices over the
plicated, both in its answer and its execution.
ut first we make 2 general remark about all

the unitary transformation T

multiplying by @ yields
sent themselves, namely
€, not occur), for then
= 0. On these spaces Q acts as 1

If 2; # 2, —2, then @ has no characteristic vectors on
V# 0eV;,0,0Q are linearly independent.
& I, is invariant under @, since vQ?
with W' invariant under

Vi, hence for
The subspace they generate,
= 42Q — v. Now V, = wao w
Q. Thus we can get V; as a direct sum of two-
hogonal subspaces invariant under Q. To find

anonical forms of Q on Vi (hence on V), we must merely settle the question

 for 2 x 2 real orthogonal matrices.
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Let Q be a real 2 x 2 orthogonal matrix satisfying Q% — 4Q + 1 = 0;
suppose that @ = (oc ﬁ ) The orthogonality of  implies
Y

a2 + B2 =1; (1)
P2 4+ 62 =1; (2)
ay + o = 0; (3)

since Q2 — AQ + 1 = 0, the determinant of @ is 1, hence

ad — By = 1. 4)

We claim that equations (1)—(4) imply that a =9, B = —7v. Since
a? + B2 =1, |¢| < 1, whence we can write o = cos 0 for some real angle
0; in these terms = sin 6. Therefore, the matrix @ looks like

cos 0 sin 0
—sin @ cos )
All the spaces used in all our decompositions were mutually orthogonal,

thus by picking orthogonal bases of each of these we obtain an orthonormal
basis of V. In this basis the matrix of @ is as shown in Figure 6.10.1.

1

cos 0, sin 6,
—sin 6, cos 0,

cos 6, sin 0,
—sin 6, cos 0,

Figure 6.10.1

Since we have gone from one orthonormal basis to another, and since
this is accomplished by an orthogonal matrix, given a real orthogonal
matrix Q we can find an orthogonal matrix T such that TQT ™ (= TQT*)1s
of the form just described.
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Problems

1. Determine which of the following matrices are unitary, Hermitian,

normal.
1 000
111

0 i 0010
(2) ((1)(1)1) (b) (z 0) © 1o 1 00
0001

3 0 0

1 — 1

. 0 — i
1 2 — = =
(d) (2 4T ‘). (e) NCIEENG:
- :
V2
2. For those matrices in Problém 1 which are normal, find their charac-

teristic roots and bring them to diagonal form by a unitary matrix.

3. If T is unitary, just using the definition (v7,uT) = (v, u), prove
that T is nonsingular.

4. If @ is a real orthogonal matrix, prove that det @ = +1.

5. If @ is a real symmetric matrix satisfying Q* = 1 for £ > 1, prove
that Q2 = 1.

6. Complete the proof of Lemma 6.10.4 by showing that (§ + T)* =
S* + T* and (AT)* = AT*.

7. Prove the properties of * in Lemma 6.10.4 by making use of the explicit
form of w = »T* given in the proof of Lemma 6.10.3.

8. If T is skew-Hermitian, prove that all of its characteristic roots are
pure imaginaries.

9. If T is a real, skew-symmetric n# X n matrix, prove that if # is odd,
then det T = 0.

10. By a direct matrix calculation, prove that a real, 2 x 2 symmetric
matrix can be brought to diagonal form by an orthogonal one.

11. Complete the proof outlined for the matrix-equivalent part of Theorem
6.10.4.

12. Prove that a normal transformation is unitary if and only if the charac-
teristic roots are all of absolute value 1.
13. If v, . . ., N, is a finite number of commuting normal transformations,

prove that there exists a unitary transformation T such that all of
TN, T~"! are diagonal.




350

Linear Transformations Ch. 6

14. If N is normal, prove that N* = p(N) for some polynomial p(x).

15. If N is normal and if AN = 0, prove that AN* = 0.

16. Prove that 4 is normal if and only if 4 commutes with A4*.

17. If N is normal prove that N = > 1,E; where E;> = E,, E* = E,,
and the A;’s are the characteristic roots of N. (This is called the spectral
resolution of N.)

18. If N is a normal transformation on V and if f(x) and g(x) are two
relatively prime polynomials with real coefficients, prove that if
of (N) = 0 and wg(N) = 0, for v, w in V, then (v, w) = 0.

19. Prove that a linear transformation T on V is Hermitian if and only if
(vT,v) isreal forall ve V.

20. Prove that T > 0 if and only if T is Hermitian and has all its charac-
teristic roots positive.

21. If 4 > 0 and (v4, v) = 0, prove that 24 = 0.
22. (a) If A > 0 and 4? commutes with the Hermitian transformation
B then A commutes with B.
(b) Prove part (a) even if B is not Hermitian.
23. If A > 0 and B > 0 and AB = BA, prove that AB > 0.
24. Prove that if 4 > 0 then 4 has a unigue nonnegative square root.

25. Let 4 = (a;;) be a real, symmetric # x n matrix. Let

(“11 “1s)

4, = |: B

Os1 Tt O

(a) If A4 > 0, prove that A, > Ofors = 1,2,..., n.
(b) If A > 0 prove that det 4, > Ofors = 1,2,..., n
(c) Ifdet A4, > Ofors =1, 2,...,n, prove that 4 > O.
(d) If 4 > O prove that A4, > Ofors = 1,2,...,n.
(e) If A = O prove thatdet 4, > Ofors = 1,2,..., n

(f) Give an example of an A such that det 4, > 0 for all s = 1,2,
..., nyet A is not nonnegative.

26. Prove that any complex matrix can be brought to triangular form
by a unitary matrix.

6.11 Real Quadratic Forms

We close the chapter with a brief discussion of quadratic forms over the
field of real numbers.

Let V be a real, inner-product space and suppose that 4 is a (real) sym-
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metric linear transformation on V. The real-valued function Q (») defined
on Vby Q(v) = (v4, v) is called the quadratic form associated with A.

If we consider, as we may without loss of generality, that 4 is a real,
n X n symmetric matrix (o;;) acting on F™ and that the inner product for
(04--+,0,) and (yy,...,7,) in F® is the real number 8,7, + 8,7, +
+ 0,7 for an arbitrary vector v = (x,,...,x,) in F® a simple calcula-
tion shows that

Q(Z)) = (UA, U) = allxlz + o+ annxnz + 2 Z aijxixf

i<j

On the other hand, given any quadratic function in n-variables

'yllxlz + o+ ynn n + 2 Z: ?uxlxja
1<J
with real coefficients y,;, we clearly can realize it as the quadratic form
associated with the real symmetric matrix C = (y; i)

In real n-dimensional Euclidean space such quadratic functions serve to
deﬁne the quadratlc surfaces. For instance, in the real plane, the form
ax? + ﬁxy + yy gives rise to a conic section (p0551bly with its major axis
tilted). It is not too unnatural to expect that the geometric properties of
this conic section should be intimately related with the symmetric matrix

B
Bz v )

with which its quadratic form is associated.

Let us recall that in elementary analytic geometry one proves that by a
suitable rotation of axes the equation ax® 4+ Bxy + yp? can, in the fiew
coordinate system, assume the form a,(x')? + y,()2 Recall that
a + 9 =a+y and ay — B%/4 = o;y,. Thus ay, y, are the charac-

teristic roots of the matrix
G )
B2y )’

the rotation of axes is just a change of basis by an orthogonal transformation,
and what we did in the geometry was merely to bring the symmetn'c matrix
to 1ts diagonal form by an orthogonal matrix. The nature of ax? + fxy +
7% as a conic was basically determined by the size and sign of its charac-
teristic roots «;, y,.

A similar discussion can be carried out to classify quadric surfaces in
3-space, and, indeed quadric surfaces in n-space. What essentially deter-
mines the geometric nature of the quadric surface associated with

2 . 2 E
Oy1% " + + LpnXn ™ + 2 ' aijxl‘xj

i<j
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is the size and sign of the characteristic roots of the matrix (o). If we
were not interested in the relative flatness of the quadric surface (e.g., if we
consider an ellipse as a flattened circle), then we could ignore the size of the
nonzero characteristic roots and the determining factor for the shape of the
quadric surface would be the number of 0 characteristic roots and the num-
ber of positive (and negative) ones.

These things motivate, and at the same time will be clarified in, the
discussion that follows, which culminates in Sylvester’s law of inertia.

Let 4 be a real symmetric matrix and let us consider its associated
quadratic form @ (v) = (v4,v). If T is any nonsingular real linear trans-
formation, given ve F™, vy = wT for some we F™, whence (v4, ) =
(wTA, wT') = (wTAT', w). Thus 4 and TAT’ effectively define the same
quadratic form. This prompts the

DEFINITION Two real symmetric matrices 4 and B are congruent if
there is a nonsingular real matrix 7 such that B = TAT".

LEMMA 6.11.1  Congruence is an equivalence relation.
Proof. Let us write, when 4 is congruent to B, 4 ~ B.

1. A~ Afor 4 = 141"

2. If 4 @ B then B = TAT’ where T is nonsingular, hence 4 = SBS’
where § = T~ Thus B =~ A.

3. If A~ B and B = C then B = TAT’ while C = RBR', hence C =
RTAT'R' = (RT)A(RT)’, and so 4 =~ C.

Since the relation satisfies the defining conditions for an equivalence
relation, the lemma is proved.

The principal theorem concerning congruence is its characterization,
contained in Sylvester’s law.

THEOREM 6.11.1  Given the real symmetric matrix A there is an invertible
matrix T such that
I

r

TAT' = -1

s
0,
where 1, and I are respectively the r X r and s X s unit matrices and where 0,
is the t x t zero-matrix. The integers r ¥ s, which is the rank of A, and r — s,
which is the signature of A, characterize the congruence class of A. That is, two real
symmetric matrices are congruent if and only if they have the same rank and signature.

Proof. Since 4 is real symmetric its characteristic roots are all real; let
Ags-+.5 4, be its positive characteristic roots, — Apitseevy —Apps 1its
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negative ones. By the discussion at the end of Section 6.10 we can find a
real orthogonal matrix C such that

A

CAC™! = CAC' = ~ iy

__;['r+s

Ot

where ¢ = n — r — 5. Let D be the real diagonal matrix shown in Figure
6.11.1.

1
Vi,

Figure 6.11.1

A simple computation shows that
If
DCAC'D' = ~1

s

Ot
Thus there is a matrix of the required form in the congruence class of A.

Our task is now to show that this is the only matrix in the congruence
class of 4 of this form, or, equivalently, that

g 1.,

L= 4 and M = -1,
0, 0,

_are congruent only if r = #/, 5 = &', and ¢t = ¢,

. Suppose that M = TLT’ where T is invertible. By Lemma 6.1.3 the
ﬁf rank of M equals that of L; since the rank of M is n — ¢" while that of L
i — ¢ wegett=1t.

] Suppose that 7 < 7’; since n = 7 +s+t=7r"4+5 4+ ¢, and since
 t=1¢, we must have s > 5. Let U be the subspace of F® of all vectors
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having the first 7 and last ¢ coordinates 0; U is s-dimensional and for u # 0
in U, (uL,u) < 0.

Let W be the subspace of F®™ for which the ' + 1,...,7" + s com-
ponents are all 0; on W, (wM, w) > 0 for any w € W. Since T is invertible,
and since W is (n — s')-dimensional, WT is (n — s')-dimensional. For
we W, (wM,w) > 0; hence (wTLT', w) > 0; that is, (wTL,wT) = 0.
Therefore, on WT, (wTL,wT) > 0 for all elements. Now dim (WT) +
dimU = (n—s) +r=n+s—s >n;thus by the corollary to Lemma
426, WT n U # 0. This, however, is nonsense, forifx #0e WI'n U,
on one hand, being in U, (xL, x) < 0, while on the other, being in WT,
(xL,x) = 0. Thusr = 7’ andso s = 5.

The rank, 7 + s, and signature, 7 — s, of course, determine 7, s and so
t = (n — r — s), whence they determine the congruence class.

Problems

1. Determine the rank and signature of the following real quadratic forms:
(a) %2 + 222, + %%
(b) x,2 + xyxy + 2xy%3 + 2,2 + 4xpxy + 2x3%

2. If 4 is a symmetric matrix with complex entries, prove we can find a

complex invertible matrix B such that BAB' = <I’ 0) and that 7,

t
the rank of 4, determines the congruence class of 4 relative to complex

congruence.

3. If Fis a field of characteristic different from 2, given 4 € F,, prove that
there exists a B e F, such that BAB' is diagonal.

4. Prove the result of Problem 3 is false if the characteristic of Fis 2.

5. How many congruence classes are there of n X n real symmetric matrices.

Supplementary Reading

HaLmos, Paur R., Finite-Dimensional Vector Spaces, 2nd ed. Princeton, N.J.: D. Van
Nostrand Company, 1958.




| Selected Topics

In this final chapter we have set ourselves two objectives. Our first
is to present some mathematical results which cut deeper than most
of the material up to now, results which are more sophisticated, and
are a little apart from the general development which we have followed.
Our second goal is to pick results of this kind whose discussion, in
addition, makes vital use of a large cross section of the ideas and
theorems expounded earlier in the book. To this end we have decided
on three items to serve as the focal points of this chapter.

The first of these is a celebrated theorem proved by Wedderburn.in
1905 (A Theorem on Finite Algebras,” Transactions of the American
Mathematical Society, Vol. 6 (1905), pages 349-352) which asserts that
a division ring which has only a finite number of elements must be a
commutative field. We shall give two proofs of this theorem, differing
totally from each other. The first one will closely follow Wedderburn’s
original proof and will use a counting argument; it will lean heavily
on results we developed in the chapter on group theory. The second
one will use a mixture of group-theoretic and field-theoretic arguments,
and will draw incisively on the material we developed in both these
directions. The second proof has the distinct advantage that in the
course of executing the proof certain side-results will fall out which
will enable us to proceed to the proof, in the division ring case, of a
beautiful theorem due to Jacobson (“Structure Theory for Algebraic
Algebras of Bounded Degree,” Annals of Mathematics, Vol. 46 (1945),
pages 695-707) which is a far-reaching generalization of Wedderburn’s
theorem.
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Our second high spot is a theorem due to Frobenius (“Uber lineare
Substitutionen und bilineare Formen,” Journal fiir die Reine und Angewandte
Mathematik, Vol. 84 (1877), especially pages 59-63) which states that the
only division rings algebraic over the field of all real numbers are the field
of real numbers, the field of complex numbers, and the division ring of real
quaternions. The theorem points out a unique role for the quaternions, and
makes it somewhat amazing that Hamilton should have discovered them
in his somewhat ad hoc manner. Our proof of the Frobenius theorem, now
quite elementary, is a variation of an approach laid out by Dickson and
Albert; it will involve the theory of polynomials and fields.

Our third goal is the theorem that every positive integer can be represented
as the sum of four squares. This famous result apparently was first con-
jectured by the early Greek mathematician Diophantos. Fermat grappled
unsuccessfully with it and sadly announced his failure to solve it (in a paper
where he did, however, solve the two-square theorem which we proved in
Section 3.8). Euler made substantial inroads on the problem; basing his
work on that of Euler, Lagrange in 1770 finally gave the first complete proof.
Our approach will be entirely different from that of Lagrange. It is rooted
in the work of Adolf Hurwitz and will involve a generalization of Euclidean
rings. Using our ring-theoretic techniques on a certain ring of quaternions,
the Lagrange theorem will drop out as a consequence.

En route to establishing these theorems many ideas and results, interesting
in their own right, will crop up. This is characteristic of a good theorem—
its proof invariably leads to side results of almost equal interest.

7.1 Finite Fields

Before we can enter into a discussion of Wedderburn’s theorem and finite
division rings, it is essential that we investigate the nature of fields having
only a finite number of elements. Such fields are called finite fields. Finite
fields do exist, for the ring J, of integers modulo any prime p, provides us
with an example of such. In this section we shall determine all possible
finite fields and many of the important properties which they possess.

We begin with

LEMMA 7.1.1 Let F be a finite field with q elements and suppose that F < K
where K is also a finite field. Then K has q" elements where n = [K:F].

Proof. K is a vector space over F and since K is finite it is certainly finite-
dimensional as a vector space over F. Suppose that [K:F] = n; then K
has a basis of n elements over F. Let such a basis be 2,93, - - ¥ Then

every element in K has a unique representation in the form o4 +
oy0, + -+ + a0, where ay, 0y, ..., &, are all in F. Thus the number of
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elements in K is the number of o0, + a0, + --- + a0, as the oy,
0y, - - ., 0, range over F. Since each coefficient can have g values K must
clearly have ¢" elements.

COROLLARY 1 Let F be a finite field; then F has p™ elements where the prime
number p is the characteristic of F.

Proof. Since F has a finite number of elements, by Corollary 2 to
Theorem 2.4.1, f1 = 0 where f is the number of elements in F. Thus F
has characteristic p for some prime number p. Therefore F contains a field
F, isomorphic to J,. Since F, has p elements, F has p™ elements where

= [F:F,], by Lemma 7.1.1.

COROLLARY 2 If the finite field F has p™ elements then every a € F satisfies

m
a = a.

Proof. 1If a = 0 the assertion of the corollary is trivially true.

On the other hand, the nonzero elements of F form a group under multi-
plication of order p™ — 1 thus by Corollary 2 to Theorem 2.4.1, "~ ! = 1
for all a # 0 in F. Multiplying this relation by a we obtain that a?" = a.

From this last corollary we can easily pass to

LEMMA 7.1.2 If the finite field F has p™ elements then the polynomial x*" — x
in F[x] factors in F[x] as s — % = [[ser (* — 4)-

Proof. By Lemma 5.3.2 the polynomial #*” — x has at most p*™ roots
in F. However, by Corollary 2 to Lemma 7.1.1 we know p™ such roots,
namely all the elements of F. By the corollary to Lemma 5.3.1 we can
conclude that ™ — x = [[,er (* — 4).

COROLLARY If the field F has p™ elements then F is the splitting field of the
polynomial xP" — x.

Proof. By Lemma 7.1.2, " — x certainly splits in F. However, it
cannot split in any smaller field for that field would have to have all the
roots of this polynomial and so would have to have at least p™ elements.
Thus F is the splitting field of x*™ — x.

As we have seen in Chapter 5 (Theorem 5.3.4) any two splitting fields
over a given field of a given polynomial are isomorphic. In light of the
corollary to Lemma 7.1.2 we can state

LEMMA 7.1.3 Any two finite fields having the same number of elements are
isomorphic.
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Proof. If these fields have p™ elements, by the above corollary they are
both splitting fields of the polynomial xP" — x, over J, whence they are
isomorphic.

Thus for any integer m and any prime number p there is, up to iso-
morphism, at most one field having p™ elements. The purpose of the next
lemma is to demonstrate that for any prime number p and any integer m
there is a field having p™ elements. When this is done we shall know that
there is exactly one field having p™ elements where p is an arbitrary prime
and m an arbitrary integer.

LEMMA 7.1.4 For every prime number p and every positive integer m there exisis
a field having p™ elements.

Proof. Consider the polynomial ™ — x in J,[x], the ring of polynomials
in x over J,, the field of integers mod p. Let K be the splitting field of this
polynomial. In K let F = {ae K |a”" = a}. The elements of F are thus
the roots of #*" — x, which by Corollary 2 to Lemma 5.5.2 are distinct;
whence F has p™ elements. We now claim that F is a field. If ¢, b eF
then @™ = a, b*" = b and so (ab)?" = a”"b*" = ab; thus abeF. Also
since the characteristic is p, (a + b)P" = a”" + b"" =a + b, hence
a + beF. Consequently F is a subfield of K and so is a field. Having
exhibited the field F having p™ elements we have proved Lemma 7.1.4.

Combining Lemmas 7.1.3 and 7.1.4 we have

THEOREM 7.1.1  For every prime number p and every positive integer m there
is a unique field having p™ elements.

We now return to group theory for a moment. The group-theoretic
result we seek will determine the structure of any finite multiplicative
subgroup of the group of nonzero elements of any field, and, in particular,
it will determine the multiplicative structure of any finite field.

LEMMA 7.1.5 Let G be a finite abelian group enjoying the property that the
relation x" = e is satisfied by at most n elements of G, for every integer n. Then G
s a cyclic group.

Proof. If the order of G is a power of some prime number ¢ then the
result is very easy. For suppose that a € G is an element whose order is as
large as possible; its order must be ¢" for some integer r. The elements
e,a,a%,...,a" 1 give us ¢ distinct solutions of the equation 1 = e,
which, by our hypothesis, implies that these are all the solutions of this
equation. Now if b € G its order is ¢° where s < 7, hence b7 = BT =e.
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By the observation made above this forces b = ' for some i, and so G is
cyclic.

The general finite abelian group G can be realized as G = §,.S,, ..., S,
where the ¢; are the distinct prime divisors of o(G) and where the S, are
the Sylow subgroups of G. Moreover, every element g € G can be written
in a unique way as g = s;5;, ..., 5 where s;€ S5, (see Section 2.7). Any
solution of x” = ¢ in §,, is one of »" = ¢ in G so that each S, inherits the
hypothesis we have imposed on G. By the remarks of the first paragraph
of the proof, each §,, is a cyclic group; let a; be a generator of §,,. We
claim that ¢ = aa,, ..., g, is a cyclic generator of G. To verify this all
we must do is prove that o(G) divides m, the order of ¢. Since ¢" = ¢, we
have that a,"a,™---a/™ = e¢. By the uniqueness of representation of an
element of G as a product of elements in the S, we conclude that each
a;" = e. Thus o(S,,) | m for every i. Thus o(G) = o(S,,)o(S,,) - - - 0(S,,) | m.
However, m | 0(G) and so o(G) = m. This proves that G is cyclic.

Lemma 7.1.5 has as an important consequence

LEMMA 7.1.6 Let K be a field and let G be a finite subgroup of the muliiplicative
group of nonzero elements of K. Then G is a cyclic group.

Proof. Since K is a field, any polynomial of degree » in K[x] has at most
n roots in K. Thus in particular, for any integer n, the polynomial x* — 1
has at most n roots in K, and all the more so, at most n roots in G. The
hypothesis of Lemma 7.1.5 is satisfied, so G is cyclic.

Even though the situation of a finite field is merely a special case of
Lemma 7.1.6, it is of such widespread interest that we single it out as

THEOREM 7.1.2 The multiplicative group of nonzero elements of a finite field
is ¢yclic.

Proof. Let F be a finite field. By merely applying Lemma 7.1.6 with
F = K and G = the group of nonzero elements of F, the result drops out.

We conclude this section by using a counting argument to prove the
existence of solutions of certain equations in a finite field. We shall need
the result in one proof of the Wedderburn theorem.

LEMMA 7.1.7 If F is a finite field and oo £ 0, B # O are two elemenis of F
then we can find elements a and b in F such that 1 + aa® + P62 = 0.

Proof. 1If the characteristic of F is 2, F has 2" elements and every
element x in F satisfies 2" = x. Thus every element in F is a square. In
particular a~' = @? for some ae F. Using this @ and b = 0, we have
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1 +o0a® + b2 =1+a0 ! +0=1+1=0, the last equality being a
consequence of the fact that the characteristic of F'is 2.

If the characteristic of F is an odd prime p, F has p” elements. Let
W, = {1 + ax? | xe F}. How many elements are there in W,? We
must check how often 1 + ax? = 1 + ap?. But this relation forces ax?® =
ap? and so, since o # 0, x> = »?. Finally this leads to x = +y. Thus for
x # 0 we get from each pair x and —x one element in W,, and for x =0
we get 1e W,. Thus W, has 1 + (p" = 1)/2 = (" + 1)[2 elements.
Similarly W, = {—pBx*|xe F} has (p" + 1)/2 clements. Since each of
W, and W; has more than half the elements of F they must have a non-
empty intersection. Let ce W, n W, Since ceW,, ¢ =1+ aa® for
some a € F; since c € Wy, ¢ = — pb* for some b € F. Therefore 1 + aa® =
— Bb2, which, on transposing yields the desired result 1 + aa® + pb* = 0.

Problems

1. By Theorem 7.1.2 the nonzero elements of J, form a cyclic group under
multiplication. Any generator of this group is called a primitive root of p.
(a) Find primitive roots of: 17, 23, 31.

(b) How many primitive roots does a prime p have?

2. Using Theorem 7.1.2 prove that x* = —1 mod p is solvable if and only

if the odd prime p is of the form 4n + 1.

3. If a is an integer not divisible by the odd prime p, prove that x2=a
mod p is solvable for some integer x if and only if a‘~ /2 = 1 mod p.
(This is called the Euler criterion that a be a quadratic residue mod p.)

4. Using the result of Problem 3 determine if:
(a) 3 is a square mod 17.
(b) 10 is a square mod 13.

5. If the field F has p" elements prove that the automorphisms of F form
a cyclic group of order n.

6. If F is a finite field, by the quaternions over F we shall mean the set of
all oy + 041 + 0,j + azk where o, ay, oy, a3 € F/ and where addition
and muliiplication are carried out as in the real quaternions (i.e.,
i2 = j2 = k? = {jk = —1, etc.). Prove that the quaternions over a
finite field do not form a division ring.

7.2 Wedderburn's Theorem on Finite Division Rings

In 1905 Wedderburn proved the theorem, now considered a classic, that a
finite division ring must be a commutative field. This result has caught the
imagination of most mathematicians because it is so unexpected, interrelating
two seemingly unrelated things, namely the number of elements in a certain
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algebraic system and the multiplication of that system. Aside from its
intrinsic beauty the result has been very important and useful since it arises
in so many contexts. To cite just one instance, the only known proof of the
purely geometric fact that in a finite geometry the Desargues configuration
implies that of Pappus (for the definition of these terms look in any good
book on projective geometry) is to reduce the geometric problem to an
algebraic one, and this algebraic question is then answered by invoking the
Wedderburn theorem. For algebraists the Wedderburn theorem has served
as a jumping-off point for a large area of research, in the 1940s and 1950s,
concerned with the commutativity of rings.

THEOREM 7.21 (WEDDERBURN) A finite division ring is necessarily a
commutative field.

First Proof. Let K be a finite division ring and let Z = {z e K | zx = xz
for all x € K} be its center. If Z has ¢ elements then, as in the proof of
Lemma 7.1.1, it follows that K has ¢" elements. Our aim is to prove that
Z = K, or, equivalently, that n = 1.

If aeK let N(a) = {xe K|xa = ax}. N(a) clearly contains Z, and,

as a simple check reveals, N(a) is a subdivision ring of K. Thus N(a)
contains ¢"® elements for some integer n(a). We claim that n(a) | #. For,
the nonzero elements of N(a) form a subgroup of order ¢"® — 1 of the
group of nonzero elements, under multiplication, of K which has ¢" — 1
elements. By Lagrange’s theorem (Theorem 2.4.1) ¢"® — 1 is a divisor
of ¢" — 1; but this forces n(a) to be a divisor of n (see Problem 1 at the end
of this section).

In the group of nonzero elements of K we have the conjugacy relation
used in Chapter 2, namely a is a conjugate of & if a = x~ bx for some
x # 0in K.

By Theorem 2.11.1 the number of elements in K conjugate to a is the
index of the normalizer of 4 in the group of nonzero elements of K. Therefore
the number of conjugates of a in K is (¢" — 1)/(¢"®@ — 1). Now ae Z if
and only if n(a) = n, thus by the class equation (see the corollary to
Theorem 2.11.1)

o l=g—1+ =1 1
q g (; 7o 1 1)
n(a)#n
where the sum is carried out over one « in each conjugate class for a’s not
in the center.
The problem has been reduced to proving that no equation such as (1)
- can hold in the integers. Up to this point we have followed the proof in
Wedderburn’s original paper quite closely. He went on to rule out the
possibility of equation (1) by making use of the following number-theoretic
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result due to Birkhoff and Vandiver: for n > 1 there exists a prime number
which is a divisor of ¢" — 1 but is not a divisor of any ¢" — 1 where m is a
proper divisor of n, with the exceptions of 2° — 1 = 63 whose prime factors
already occur as divisors of 22 — 1 and 23 — 1, and n = 2, and g a prime
of the form 2% — 1. If we grant this result, how would we finish the proof?
This prime number would be a divisor of the left-hand side of (1) and also
a divisor of each term in the sum occurring on the right-hand side since it
divides ¢" ~ 1 but not ¢"® — 1; thus this prime would then divide ¢ — 1
giving us a contradiction. The case 2° — 1 still would need ruling out but
that is simple. In case n = 2, the other possibility not covered by the
above argument, there can be no subfield between Z and K and this forces
Z = K. (Prove!—See Problem 2.)

However, we do not want to invoke the result of Birkhoff and Vandiver
without proving it, and its proof would be too large a digression here. So
we look for another artifice. Our aim is to find an integer which divides
(¢" = D/(g"® — 1), for all divisors n(a) of n except n(a) = n, but does
not divide ¢ — 1. Once this is done, equation (1) will be impossible unless
n = | and, therefore, Wedderburn’s theorem will have been proved. The
means to this end is the theory of cyclotomic polynomials. (These have
been mentioned in the problems at the end of Section 5.6.)

Consider the polynomial #" — 1 considered as an element of C[x] where
Cis the field of complex numbers. In C[x]

¥ =1 =11 -5, (2)

where this product is taken over all 1 satisfying A" = 1.

A complex number 0 is said to be a primitive nth root of unmity if " = 1
but 6™ # 1 for any positive integer m < n. The complex numbers satis-
fying " = 1 form a finite subgroup, under multiplication, of the complex
numbers, so by Theorem 7.1.2 this group is cyclic. Any cyclic generator of
this group must then be a primitive nth root of unity, so we know that such
primitive roots exist. (Alternatively, § = ¢*/" yields us a primitive nth
root of unity.)

Let @,(x) = ] (x — 0) where this product is taken over all the primitive
nth roots of unity. This polynomial is called a ¢yclotomic polynomial. We
list the first few cyclotomic polynomials: ®,(x) = x — 1, ®,(x) = x + 1,
Dy(x) = x> + x4+ 1, Oyx) = 22 + 1, Og(x) = 2* + 2> + 2% + 2 + 1,
®g(x) = x> — x + 1. Notice that these are all monic polynomials with
integer coefficients. ~

Our first aim is to prove that in general @, (x) is a monic polynomial with
integer coefficients. We regroup the factored form of " — 1 as given in (2),
and obtain

& — 1 = J] @4(x). (3)

din
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By induction we assume that @,(x) is a monic polynomial with integer
coefficients for d|n, d # n. Thus 5" — 1 = ®,(x)g(x) where g(x) is a
monic polynomial with integer coefficients. Therefore,

®,(x) =

g~

which, on actual division (or by comparing coefficients), tells us that D, (x)
is a monic polynomial with integer coefficients.
We now claim that for any divisor d of n, where d # n,

X -1

2 — 1

®,(x)

in the sense that the quotient is a polynomial with integer coefficients. To
see this, first note that

=1 =] Oulx),
kla

and since every divisor of d is also a divisor of n, by regouping terms on
the right-hand side of (3) we obtain #* — 1 on the right-hand side; also
since d < n, 2 — 1 does not involve ®,(x). Therefore, x" — 1 =
@, (x)(x* — 1) f (x) where

S ) = g @, (x)

n

kfd
has integer coefficients, and so
A =1
®,(x)
" =1 .

in the sense that the quotient is a polynomial with integer coefficients.
This establishes our claim.

For any integer £, ®,(¢) is an integer and from the above as an integer
divides (t" — 1)/(¢* — 1). In particular, returning to equation (1),
¢ —1

qn(a) -1

and @,(q) | (4" — 1); thus by (1), ®,(¢) | (¢ — 1). We claim, however,
that if n > 1 then |®,(q)] > ¢ — 1. For ®,(g) =]](g — 0) where 0 runs
over all primitive nth roots of unity and |g — 0] > ¢ — 1 for all 0 # 1
a root of unity (Prove!) whence |®,(q)] = [Jlg — 0] > ¢ — 1. Clearly,
+then ®,(¢) cannot divide ¢ — 1, leading us to a contradiction. We must,
therefore, assume that n = 1, forcing the truth of the Wedderburn theorem.

,(g)

Second Proof. Before explicitly examining finite division rings again,
we prove some preliminary lemmas.
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LEMMA 7.21 Let R be a ring and let a€ R. Let T, be the mapping of R
into ttself defined by xT, = xa — ax. Then

m(m — 1) a2xa™ 2

xT,™ = xa™ — maxa™ ' +
= Dl =) g

Proof. What is xT,2? xT,2 = xT,)T, = (xa — ax) T, = (xa — ax)a —
a(xa — ax) = xa® — 2axa + a*x. What about x7T,3? xT,> = (xT,2)T, =
(xa? — 2axa + a’x)a — a(xa® — 2axa + a®x) = xa® — 3axa® + 3a’xa — ax.
Continuing in this way, or by the use of induction, we get the result of
Lemma 7.2.1.

+...

COROLLARY If R is a ring in which px = O for all x € R, where p is a prime

number, then xT,P" = xa?" — aP"x.

Proof. By the formula of Lemma 7.2.1, if p = 2, xT,% = xa® — a’x,
since 2axa = 0. Thus, xT,* = (xa? — a’x)a® — a*(xa® — a%x) = xa* —
a*x, and so on for xT,%".

If p is an odd prime, again by the formula of Lemma 7.2.1,

+l>(l>—1) 2
2 a

xT,? = xa? — paxaP~?! xa?~?% + -+ — aPx,

and since

P pp—1)---(p—i+ 1)

!

for i < p, all the middle terms drop out and we are left with x7T,? =
xaP — aPx = xT,,. Now xT,”" = x(T,,)? = T2, and so on for the
higher powers of p.

LEMMA 7.2.2 Let D be a division ring of characteristic p > O with cenler Z,
and let P = {0, 1,2,..., (p — 1)} be the subfield of Z isomorphic to J,. Suppose
that a€ D, a¢ Z is such that a’" = a for some n > 1. Then there exists an
x € D such that

1. xax™ ! # a.
2. xax™ ' e P(a) the field obtained by adjoining a to P.

Proof. Define the mapping T, of D into itself by yT, = ya — ay for
every y € D.

P(a) is a finite field, since a is algebraic over P and has, say, p™ elements.
These all satisfy «”" = u. By the corollary to Lemma 7.2.1, yT,”" =
ya’" — a®"y = ya — ay = yT,, and so T 7" = T,.
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Now, if 1€ P(a), (Jx)T, = (Ax)a — a(Ax) = Jxa — lax = A{xa — ax)
= A(xT,), since A commutes with a. Thus the mapping AJ of D into itself
defined by AI:y - Ay commutes with T, for every A€ P(a). Now the
polynomial

W —u= ] (-4
1€ P(a)
by Lemma 7.2.1. Since T, commutes with I for every A€ P(a), and since
T, = T, we have that
0=T/"-T,= [] (T,- ).
1€P(a)

If for every 2 # 0 in P(a), T, — A annihilates no nonzero element in
D (Gfy(T, — M) = 0 implies y = 0),since T (T, — A L) - (T, — A1) =
0, where A,,..., 4, are the nonzero elements of P(a), we would get
T,=0. That is, 0 = T, = ya — ay for every y € D forcing a € Z con-
trary to hypothesis. Thus there is a 2 # 0 in P(a) and an x # 0 in D
such that (7, — AI) = 0. Writing this out explicitly, xa — ax — Ax = 0;
hence, xax™' = a + A is in P(a) and is not equal to a since 4 # 0. This
proves the lemma.

COROLLARY In Lemma 7.2.2, xax™ ' = a' # a for some integer i.

Proof. Let a be of order s; then in the field P(a) all the roots of the
polynomial &5 — 1 are 1, a,42,...,a°" ! since these are all distinct roots
and they are s in number. Since (xax™!)* = xa°x~! = 1, and since
xax~ ' € P(a), xax™ ' is a root in P(a) of u* — 1, hence xax~! = a'.

We now have all the pieces that we need to carry out our second proof of
Wedderburn’s theorem. -

Let D be a finite division ring and let Z be its center. By induction we
may assume that any division ring having fewer elements than D is a
commutative field.

We first remark that if a, b € D are such that b'a = ab® but ba # ab,
then #'e Z. For, consider N(b') = {xe D | b'x = xb'}. N(b") is a sub-
division ring of Dj; if it were not D, by our induction hypothesis, it would
be commutative. However, both a and & are in N(4") and these do not
commute; consequently, N(b") is not commutative so must be all of D.
Thus 4' € Z.

Every nonzero element in D has finite order, so some positive power of it
falls in Z. Given w € D let the order of w relative to Z be the smallest positive
integer m(w) such that w™™ e Z. Pick an element a4 in D but not in Z
having minimal possible order relative to Z, and let this order be r. We
claim that r is a prime number, for if r = r;r, with 1 < r; < r then 4" is not
in Z. Yet (a")" = d" € Z, implying that & has an order relative to Z
smaller than that of a.
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By the corollary to Lemma 7.2.2 there is an x € D such that xax™ ! =

a' # a; thus x%ax™ 2 = x(xax™V)x~ ' = xa'x~ ! = (xax™ V) = (d))' = a.
Similarly, we get ¥~ 'ax™ ™D = ¢""". However, r is a prime number,
thus by the little Fermat theorem (corollary to Theorem 24.1), 7 ' =
1 + uyr, hence a” ' = al*"" = gg"" = Ja where A =a""€Z Thus
X~ lg = Jax"~!. Since x ¢ Z, by the minimal nature of 7, '~ ' cannot be
in Z. By the remark of the earlier paragraph, since xa # ax, ¥’ " la # ax !
and so A% 1. Let b=x""1; thus bab~' = Aa; consequently, Aa" =
(bab™')" = ba"b~ ! = & since a"€ Z. This relation forces A" = 1.

We claim that if y € D then whenever )’ = 1, then y = A% for some ¢,
for in the field Z( ) there are at most r roots of the polynomial «" — 1;
the elements 1, 2, A2, ..., A7~ 1 in Z are all distinct since 2 is of the prime
order r and they already account for r roots of ¥ — 1 in Z (»), in con-
sequence of which y = 2%

Since A" =1, 6" = A6 = (Ab)" = (a” 'ba)" = a~ 'b'a from which we
get ab" = b'a. Since a commutes with 4" but does not commute with b, by
the remark made earlier, 5" must be in Z. By Theorem 7.1.2 the multi-
plicative group of nonzero elements of Z is cyclic; let y € Z by a generator.
Thus a" = 9/, b" = y*; if j = sr then &" = y*, whence (afy®)" = 1; this
would imply that a/y* = A}, leading to a € Z, contrary to a ¢ Z. Hence,
r ¥ j; similarly r f k. Let a; = @ and b, = b’; a direct computation
from ba = Jab leads to a,b, = pbya, where p = A7/* € Z. Since the prime
number 7 which is the order of A does not divide j or &, A/* # 1 hence
u # 1. Note that y"= 1.

Let us see where we are. We have produced two elements a,, b; such that

l.a  =b"=0aeZ
2. a;b, = pbja, with g # 1 in Z.
3.um =1

We compute (a;716,)"; (a;,” 'by)* = a,” tbya, 70y = a, " (bay )by =
a,” Y(ua;”'b,)b, = pa,”2b,%. If we compute (g, 'b,)* we find it equal to
p'*2q,73b,3. Continuing, we obtain (g, ~ '6,)" = p'* 2+ " * 7 Ve 77h/"
plt2roooFe-h - w2 If r is an odd prime, since pu” = 1, we get
w12 — 1 whence (a,7'6,)" = 1. Being a solution of " =1,
a,~ b, = )} so that b, = Aa;; but then pba, = ab; = byay, contra-
dicting g # 1. Thus if 7 is an odd prime number, the theorem is proved.

We must now rule out the case r = 2. In that special situation we have
two elements a,, b, € D such that w,? = b,> = 0 € Z, a,b, = pb,a; where
p?> =1and g # 1. Thus p = —1 and ab, = —bya; # byay; in conse-
quence, the characteristic of D is not 2. By Lemma 7.1.7 we can find elements
¢, ne Z such that 1 + {* — an® = 0. Consider (a; + (b + na,;by)*; on
computing this out we find that (a, + {by + na;by)? = a(l + {* — an?) =0.
Being in a division ring this yields that a, + {b; + na;b; = 0; thus 0 #
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2a,> = a\(ay + (b + narby) + (ay + lby + nash)ay = 0. This contra-
diction finishes the proof and Wedderburn’s theorem is established.

This second proof has some advantages in that we can use parts of it to
proceed to a remarkable result due to Jacobson, namely,

THEOREM 7.2.2 (JacossoN) Let D be a division ring such that for every
a € D there exists a positive integer n(a) > 1, depending on a, such that a"® = 4,
Then D is a commutative field.

Proof. If a # 0 is in D then ¢" = ¢ and (2a)™ = 2a for some integers
n,m>1 Lets=(n—1)(m—1)+1;s>1 and a simple calculation
shows that ¢ = ¢ and (22)° = 2a. But (22)° = 25%° = 2%, whence
2°a = 2a from which we get (2° — 2)a = 0. Thus D has characteristic
p > 0. If P c Zis the field having p elements (isomorphic to Jp)s since
a is algebraic over P, P(a) has a finite number of elements, in fact, p* ele-
ments for some integer h. Thus, since ae€ P(a), a” = a. Therefore, if
a ¢ Z all the conditions of Lemma 7.2.2 are satisfied, hence there exists a
b € D such that

bab™! = " # a. (1)
By the same argument, b = b for some integer £ > 1. Let

"

pk
W = {xeD|x = pija‘t’ wherep,-jeP}~
i=1 j=1

W is finite and is closed under addition. By virtue of (1) it is also closed
under multiplication. (Verify!) Thus W is a finite ring, and being a sub-
ring of the division ring D, it itself must be a division ring (Problem 3).
Thus W is a finite division ring; by Wedderburn’s theorem it is commutative.
But ¢ and & are both in W; therefore, ab = ba contrary to a*h = ba. This
proves the theorem.

Jacobson’s theorem actually holds for any ring R satisfying a"® = a for
every a € R, not just for division rings. The transition from the division
ring case to the general case, while not difficult, involves the axiom of choice,
and to discuss it would take us too far afield.

Problems

1. If ¢ > 1is an integer and (t™ — 1)|(¢t" — 1), prove that m | n.

2. If D is a division ring, prove that its dimension (as a vector space)
over its center cannot be 2.

3. Show that any finite subring of a division ring is a division ring.
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4. (a) Let D be a division ring of characteristic p # 0 and let G be a
finite subgroup of the group of nonzero elements of D under
multiplication. Prove that G is abelian. (Hint: consider the sub-
set xeD|x = X8 4 €P, g;€G})

(b) In part (a) prove that G is actually cyclic.
*5. (a) If R is a finite ring in which #" = x, for all x € R where n > 1
prove that R is commutative.
(b) If R is a finite ring in which x2 = 0 implies that x = 0, prove
that R is commutative.
%G, Let D be a division ring and suppose that a€ D only has a finite
number of conjugates (i.e., only a finite number of distinct x~ ax).
Prove that a has only one conjugate and must be in the center of D.

7. Use the result of Problem 6 to prove that if a polynomial of degree n
having coefficients in the center of a division ring has n + 1 roots in the
division ring then it has an infinite number of roots in that division ring.

#8. Let D be a division ring and K a subdivision ring of D such that
xKx~1 < K for every x # 0 in D. Prove that either K < Z, the center
of D or K = D. (This result is known as the Brauer-Cartan-Hua theorem.)

#9. Let D be a division ring and K a subdivision ring of D. Suppose that
the group of nonzero elements of K is a subgroup of finite index in the
group (under multiplication) of nonzero elements of D. Prove that
either D is finite or K = D.

10. If @ # 1 is a root of unity and if ¢ is a positive integer, prove that
lg — 0l >q— 1

7.3 A Theorem of Frobenius

In 1877 Frobenius classified all division rings having the field of real numbers
in their center and satisfying, in addition, one other condition to be described
below. The aim of this section is to present this result of Frobenius.

In Chapter 6 we brought attention to two important facts about the
field of complex numbers. We recall them here:

FACT 1 Every polynomial of degree n over the field of complex numbers
has all its n roots in the field of complex numbers.

FACT 2 The only irreducible polynomials over the field of real numbers
are of degree 1 or 2. “
DEFINITION A division algebra D is said to be algebraic over a field F if

1. Fis contained in the center of D;
2. every a € D satisfies a nontrivial polynomial with coefficients in F.
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If D, as a vector space, is finite-dimensional over the field F which is
contained in its center, it can easily be shown that D is algebraic over F (see
Problem 1, end of this section). However, it can happen that D is algebraic
over F yet is not finite-dimensional over F.

We start our investigation of division rings algebraic over the real field
by first finding those algebraic over the complex field.

LEMMA 7.3.1 Let C be the field of complex numbers and suppose that the division
ring D is algebraic over C. Then D = C.

Proof. Suppose that ae D. Since D is algebraic over C, a" +
a4+ a,_ja + a, = 0 for some o, a5, ..., 0, inC.

Now the polynomial p(x) = 2" + ;2" "' + -+ + a,_1% + &, in C[x],
by Fact 1, can be factored, in C[#], into a product of linear factors; that is,
px) = (x — A)(x — A5) -+ (x — A,), where 4y, 45,..., 4, are all in C.
Since C is in the center of D, every element of ¢ commutes with a, hence
pla) = (a— A)(a— Ay)++-(a — A,). But, by assumption, p(a) =0,
thus (¢ — A;)(@a — 2,)-+-(a — A,) = 0. Since a product in a division
ring is zero only if one of the terms of the product is zero, we conclude that
a — J = 0 for some k, hence a = 4, from which we get that a € C.
Therefore, every element of D is in C; since C < D, we obtain D = C.

We are now in a position to prove the classic result of Frobenius, namely,

THEOREM 7.3.1 (Frosents) Let D be a division ring algebraic over F,
the field of real numbers. Then D is isomorphic to one of : the field of real numbers,
the field of complex numbers, or the division ring of real quaternions.

-

Proof. The proof consists of three parts. In the first, and easiest, we
dispose of the commutative case; in the second, assuming that D is not
commutative, we construct a replica of the real quaternions in D; in the
third part we show that this replica of the quaternions fills out all of D.

Suppose that D # F and that a is in D but not in F. By our assumptions,
a satisfies some polynomial over F, hence some irreducible polynomial over
F. In consequence of Fact 2, a satisfies either a linear or quadratic equation
over F. If this equation is linear, 2 must be in F contrary to assumption.
So we may suppose that ¢ — 2aa + B = O where a, f € F. Thus
(@ — @)% = a® — B; we claim that a®> — 8 < 0 for, otherwise, it would
have a real square root § and we would have ¢ — a = +6 and so a would
be in F. Since a®> — B < 0 it can be written as —y? where y € F. Con-
sequently (a — o)2 = —9y2, whence [(a — «)/y]* = —1. Thus if a€D,
a ¢ F we can find real o, y such that [(a — a)[y]* = —1.

If D is commutative, pick ae D, a ¢ F and let i = (a — a)/y where a,
in F are chosen so as to make 2 = —1. Therefore D contains F (i), a field
isomorphic to the field of complex numbers. Since D is commutative and
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algebraic over F it is, all the more so, algebraic over F(i). By Lemma 7.3.1
we conclude that D = F(i). Thus if D is commutative it is either F or F(z).

Assume, then, that D is nof commutative. We claim that the center of D
must be exactly F. If not, there is an a in the center, a not in F. But then
for some a, y€F, [(a — a)/y]®> = —1 so that the center contains a field
isomorphic to the complex numbers. However, by Lemma 7.3.1 if the
complex numbers (or an isomorph of them) were in the center of D then
D = C forcing D to be commutative. Hence F is the center of D.

Let ae D, a¢ F; for some o, yeF, i = (a — a)y satisfies i* = —1.
Since ¢ ¢ F, 7 is not in the center of F. Therefore there is an element b € D
such that ¢ = b — ib # 0. We compute ic + ¢i; ic + ¢t = i(bi — 1b) +
(bi — ib)i = ibi — i%b + bi* — ibi = O since i = —1. Thus ic = —ci;
from this we get ic? = —c(ic) = —c(—ci) = c? 2
with 7. Now ¢ satisfies some quadratic equation over F, ¢ + Ac + p = 0.
Since ¢? and p commute with ¢, Ac must commute with 7; that is, Aci =
ilc = Mic = — Aci, hence 2A¢i = 0, and since 2¢ci # 0 we have that 4 = 0.
Thus ¢? = —pu; since c¢ F (for ci = —ic # ic) we can say, as we have
before, that y is positive and so g = v2 where v e F. Therefore ¢? = —vZ;
let j = ¢/v. Then j satisfies

2

t, and so ¢“ commutes

Lj2=5 =1
v
2. i+g="ivil=2ET%_ o
A4 \% v

Let k = 4. The ¢, j, k we have constructed behave like those for the qua-
ternions, whence T = {og + a7 + 0, ] + ozk | 2, %y, %y, @3 € F'} forms a
subdivision ring of D isomorphic to the real quaternions. We have produced
a replica, T, of the division ring of real quaternions in D!

Our last objective is to demonstrate that 7 = D.

If re D satisfies 72 = —1 let N(r) = {xe D |xr = rx}. N(r) is a sub-
division ring of D; moreover r, and so all oy + a7, 0, o € F, are in the
center of N(r). By Lemma 7.3.1 it follows that N(r) = {up + o7 | oo,
o, € F}. Thus if xr = rx then x = oy + a,7 for some ay, a; in F.

Suppose that ue D, u¢ F. For some o, feF, w = (u — «)/f satisfies
w? = —1. We claim that wi + iw commutes with both ¢ and w; for
i(wi + w) = wi + 2w = wi + wi® = (w + wi)i since i = —1.
Similarly w(wi + iw) = (wi + iw)w. By the remark of the preceding
paragraph, wi + iw = af + aji = & + aw. If we¢ T this last relation
forces o, = 0 (for otherwise we could solve for w in terms of ). Thus
wi + 1w = ay € F. Similarly wj + jw = foeF and wk + kw = y € F.
Let

s=wt 2By oy
2 27 "2
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Then
Zz'+z'z=wi+z'w+g29(i2+i2)+E29(ji+ij)+%(ki+ik)
=dp ~ % = 0;

similarly zj + jz = 0 and zk + kz = 0. We claim these relations force z
to be 0. For 0 = 2k + kz = 2 + ijz = (zi + iz)j + i(jz — z) =
i(jz — zj) since zi + iz = 0. However i # 0, and since we are in a
division ring, it follows that jz — zj = 0. Butjz + zj = 0. Thus 2jz = 0,
and since 2j # 0 we have that z = 0. Going back to the expression for
Z we get
wr @i b Py
2 2 2

hence we T, contradicting w¢ T. Thus, indeed, we T. Since w =
(u — a)/f, u = Pw + o and so ue T. We have proved that any element
in Disin T. Since T < D we conclude that D = T; because T is iso-
morphic to the real quaternions we now get that D is isomorphic to the
division ring of real quaternions. This, however, is just the statement of
the theorem.

Problems

1. If the division ring D is finite-dimensional, as a vector space, over the
field F contained in the center of D, prove that D is algebraic over F.

2. Give an example of a field K algebraic over another field F but not
finite-dimensional over F.

3. If 4 is a ring algebraic over a field F and 4 has no zero divisors p;ove
that 4 is a division ring.

7.4 Integral Quaternions and the Four-Square Theorem

In Chapter 3 we considered a certain special class of integral domains
called Euclidean rings. When the results about this class of rings were
applied to the ring of Gaussian integers, we obtained, as a consequence,
the famous result of Fermat that every prime number of the form 4n + 1
is the sum of two squares.

We shall now consider a particular subring of the quaternions which, in
all ways except for its lack of commutativity, will look like a Euclidean ring.
Because of this it will be possible to explicitly characterize all its left-ideals.
This characterization of the left-ideals will lead us quickly to a proof of the
classic theorem of Lagrange that every positive integer is a sum of four
squares.

3N



372

Selected Topics Ch.7

Let @ be the division ring of real quaternions. In @ we now proceed to
introduce an adjoint operation, *, by making the

DEFINITION For x = oy + o;¢ + 0, + azk in § the adjoint of x, de-
noted by x*, is defined by x* = oy — 03¢ — a5 — a3k

LEMMA 7.41  The adjoint in Q satisfies

1. x** = x;
2. (6x + p)* = ox* + P¥*;
3. (o)* = y¥*a*

Sor all x, y in Q and all real & and .

Proof. If x = og + a;i + apj + azk then x* = oy — ayi — ayj — ask,
whence x** = (x*)* = ay + o,i + 0 + 03k, proving part .

Let x = ap + a,¢ + apj + azk and y = By + Byt + Boj + Pak bein @
and let § and 7 be arbitrary real numbers. Thus éx 4 yy = (60 + 7B,) +
6oty + B + (Say + yB3)J + (803 + pB3)k; therefore by the definition
of the *, (3x + w)* = (609 + yBo) — (6o, + ¥By)i — (602 + Vf2)J —
6oz + yB3)k = 8(ag — ayi — aj — azk) + y(Bo — Byt — Boj — B3k)=
ox* + yy*. This, of course, proves part 2.

In light of part 2, to prove 3 it is enough to do so for a basis of @ over
the reals. We prove it for the particular basis 1, ¢, j, k. Now ¢j = £, hence
(* = k* = —k = ji = (—j)(—i) = j*i*. Similarly (k)* = k*i*,
(jk)* = k**. Also (i2)* = (—=1)* = —1 = (*)?, and similarly for j
and k. Since part 3 is true for the basis elements and part 2 holds, 3 is true
for all linear combinations of the basis elements with real coefficients,
hence 3 holds for arbitrary x and y in Q.

DEFINITION If xe @ then the norm of x, denoted by N(x), is defined
by N(x) = xx*.

Note that if x = g + ;7 + 05§ + azk then N(x) = xx* = (ap + oy +
Uy + 0zk) (g — g8 — Gpf — azk) = ap? + ;2 4+ a2 + ay?; therefore
N(0) = 0 and N(x) is a positive real number for x # 0 in @. In particular,
for any real number a, N(a) = a?. If x # O note that x~! = [1/N(x)]«*.

LEMMA 7.4.2 Forallx,y€ @, N(xp) = N(x)N(y).

Proof. By the very definition of norm, N(xy) = (xy)(xp)*; by part 3
of Lemma 7.4.1, (x9)* = y*x* and so N(xy) = xpy*x*. However, yy* =
N () is a real number, and thereby it is in the center of @; in particular it
must commute with x*. Consequently N (xp) = x( py*)x* = (xx*)(p*) =
N@x)N ().
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As an immediate consequence of Lemma 7.4.2 we obtain

LEMMA 7.4.3 (Lacrance IpeNTITY) If 0f, 01, 0y, 03 and By, By, Bas B
are real numbers then (5% + ;% + % + 32)(Bo? + B2 + B2 + Bi?) =
(B0 — @By — 0B, — a3B3)? + (afy + By + Py — a3fy)? +
(B2 — wifs + azBy + a3f1)? + (fs + 4By — axfy + asfo)?.

Proof. Of course there is one obvious proof of this result, namely,
multiply everything out and compare terms.

However, an easier way both to reconstruct the result at will and, at the
same time, to prove it, is to notice that the left-hand side is N(x)N ()
while the right-hand side is N(xy) where x = ay + 0,7 + a5 + azk and
Y = Po + Bii + Bpj + Bsk. By Lemma 7.4.2, N(x)N(y) = N(xp), ergo
the Lagrange identity.

The Lagrange identity says that the sum of four squares times the sum
of four squares is again, in a very specific way, the sum of four squares. A
very striking result of Adolf Hurwitz says that if the sum of n squares times
the sum of n squares is again a sum of n squares, where this last sum has
terms computed bilinearly from the other two sums, then n = 1, 2, 4, or 8.
There is, in fact, an identity for the product of sums of eight squares but
it is too long and cumbersome to write down here.

Now is the appropriate time to introduce the Hurwitz ring of integral
quaternions. Let { = 4(1 + ¢ + j + k) and let

H = {my{ + myi + myj + myk | my, my, m,, my integers}.

LEMMA 7.4.4 H is a subring of Q. If xe H then x* € H and N(x)vis a
positive integer for every nonzero x in H.

We leave the proof of Lemma 7.4.4 to the reader. It should offer no
difficulties. ’

In some ways H might appear to be a rather contrived ring. Why use the
quaternions {? Why not merely consider the more natural ring Q, =
{my + mi + myj + m3k | my, my, my, my are integers}? The answer is that
Qo is not large enough, whereas H is, for the key lemma which follows to
hold in it. But we want this next lemma to be true in the ring at our disposal
for it allows us to characterize its left-ideals. This, perhaps, indicates why
we (or rather Hurwitz) chose to work in H rather than in Q.

. LEMMA 7.45 (Lerr-DivisioN ArGoriTHM) Let a and b be in H with
b # 0. Then there exist two elements ¢ and d in H such that a = cb + d and
N(d) < N(b).
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Proof. Before proving the lemma, let’s see what it tells us. If we look
back in the section in Chapter 3 which deals with Euclidean rings, we can
see that Lemma 7.4.5 assures us that except for its lack of commutativity H
has all the properties of a Euclidean ring. The fact that elements in A may
fail to commute will not bother us. True, we must be a little careful not to
jump to erroneous conclusions; for instance a = ¢b + d but we have no
right to assume that a is also equal to b¢ + 4, for b and ¢ might not commute.
But this will not influence any argument that we shall use.

In order to prove the lemma we first do so for a very special case, namely,
that one in which a is an arbitrary element of H but b is a positive integer
n. Suppose that a = to{ + t,i + t,j + ts3k where fy, 1y, 15, 15 are integers and
that b = n where n is a positive integer. Let ¢ = x{ + %@ + %] + x3k
where x,, ;, %,, 3 are integers yet to be determined. We want to choose
them in such a manner as to force N(a — ¢n) < N(n) = n*. But

@ —on = (to(u'-iiQ'—]ﬂ) oL+ L)+ t3k>

(1 +i+5+ k) . .
— nxg — 5 — nxi — nxyj — nxsk

= %(to - nxo) + %(to + 2t1 - n(to + 2x1))i

+ 3o + 2t — nlty + 2%,)) J + Fto + 23 — nllo + 2x3))k-

If we could choose the integers xo, %;, %3, 43 in such a way as to make
lto — nxol < 4m, lto + 2ty — 0ty + 2x%)| <, ltg + 20, — 0ty + 225)| < 7
and |ty + 2t; — n(fy + 2%3)] < n then we would have
(tg — nxp)? 4 (o + 2, — n(ty + 2x1))° b

N{a — ¢n) =
(a n) , ,

< &n? + tn? 4+ $n? + in? <n? = N(n),
which is the desired result. But now we claim this can always be done:

I. There is an integer x, such that f, = xgn + r where —¥n <1 < in;
for this x,, |ty — %onl = Ir] < 3.

2. There is an integer k such that {, + 24, = kn + r and 0 <7 < 7. If
k —t, is even, put 2x; =k — fy; then fo + 24 = (2%, + to)n + 7
and |ty + 2t; — (2%, + fo)n] = 7 < n. If, on the other hand, £ — {§ is
odd, put 2%, =k —to + 1; thus f5 + 2 = (2%, + fo — Do +r=
(2%, + to)n + r — n, whence |t + 2¢; — (2%, + to)n] = |r —nf < n
since 0 < r < n. Therefore we can find an integer x, satisfying
lto + 2t; — (2%, + fo)n| < n.

3. As in part 2, we can find integers x, and x3 which satisfy |ty + 2¢, —
(2%, + to)n] < n and |t + 25 — (2x3 + fo)n| < m, respectively.
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In the special case in which @ is an arbitrary element of H and b is a
positive integer we have now shown the lemma to be true.

We go to the general case wherein a and & are arbitrary elements of H
and & # 0. By Lemma 7.4.4, n = bb* is a positive integer; thus there exists
ac € Hsuch thatab* = ¢n + d, where N(d;) < N(n). Thus N(ab* — ¢n) <
N(n); but n = bb* whence we get N(ab* — cbb*) < N(n), and so
N((a — cb)b*) < N(n) = N(bb*). By Lemma 7.4.2 this reduces to
N(a — cd)N(b*) < N(b)N(b*);since N(b*) > O we get N(a — cb) < N(b).
Putting d = a — ¢b we have a = ¢b + d where N(d) < N(b). This
completely proves the lemma.

As in the commutative case we are able to deduce from Lemma 7.4.5

LEMMA 7.4.6 Let L be a left-ideal of H. Then there exists an element ue L
such that every element in L is a left-multiple of u; in other words, there exists
u € L such that every x € L is of the form x = ru where r € H.

Proof. If L = (0) there is nothing to prove, merely put u = 0.

Therefore we may assume that L has nonzero elements. The norms
of the nonzero elements are positive integers (Lemma 7.4.4) whence there
is an element z # 0 in L whose norm is minimal over the nonzero elements
of L. Ifxe L, by Lemma 7.4.5, x = cu + d where N(d) < N(u). However
d is in L because both x and u, and so cu, are in L which is a left-ideal.
Thus N(d) = 0 and so d = 0. From this x = c¢u is a consequence.

Before we can prove the four-square theorem, which is the goal of this
section, we need one more lemma, namely

LEMMA 7.47 IfaecH thena ' e Hif and only if N(a) = 1. -

Proof. If both a and a~! are in H, then by Lemma 7.4.4 both N(a)
and N(a~ ') are positive integers. However, aa™! = 1, hence, by Lemma
742, N(@)N(a~ ') = N(aa~')»= N(1) = 1. This forces N(a) = 1.

On the other hand, if a€e H and N(a) = 1, then aa* = N(a) = 1 and
so a~! = a*. But, by Lemma 7.4.4, since a € H we have that a* € H,
and so a~! = a* is also in H.

We now have determined enough of the structure of H to use it effectively
to study properties of the integers. We prove the famous classical theorem
of Lagrange,

. THEOREM 7.41 Every positive integer can be expressed as the sum of squares
of four integers.

Proof. Given a positive integer n we claim in the theorem that n =
%02 + %% + %2 + x32 for four integers xg, x;, ¥, X3. Since every integer
factors into a product of prime numbers, if every prime number were
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realizable as a sum of four squares, in view of Lagrange’s identity (Lemma
7.4.3) every integer would be expressible as a sum of four squares. We
have reduced the problem to consider only prime numbers 7. Certainly the
prime number 2 can be written as 12 + 12 + 02 + 0% as a sum of four
squares.

Thus, without loss of generality, we may assume that n is an odd prime
number. As is customary we denote it by p.

Consider the quaternions W, over [, the integers mod p; W, =
{0 + ayi + opf + ozk | g, 0y, %y, a3 € J,}. W, is a finite ring; moreover,
since p # 2 it is not commutative for ij = -—ji # ji. Thus, by Wedder-
burn’s theorem it cannot be a division ring, hence by Problem 1 at the
end of Section 3.5, it must have a left-ideal which is neither (0)
nor Wp.’

But then the two-sided ideal V in H defined by V = {x,{ + %7 + x5 +
x5k | p divides all of xy, %, X, #3} cannot be a maximal left-ideal of H,
since H|V is isomorphic to W,. (Prove!) (If V were a maximal left-ideal
in H, H|V, and so W, would have no left-ideals other than (0) and
H|V).

Thus there is a left-ideal L of H satisfying: L # H, L # V,and L o> V.
By Lemma 7.4.6, there is an element u € L such that every element in L is
a left-multiple of u. Since pe V, pe L, whence p = cu for some ce H.
Since u ¢ V, ¢ cannot have an inverse in H, otherwise u = ¢~ 1 would be
in V. Thus N(¢) > 1 by Lemma 7.4.7. Since L # H, u cannot have an
inverse in H, whence N(u) > 1. Since p = cu, p* = N(p) = N(cu) =
N(c)N(u). But N(c) and N(u) are integers, since both ¢ and u are in H,
both are larger than 1 and both divide p?. The only way this is possible
is that N(¢) = N(u) = p.

Since ue€ H, u = my{ + m,i + m,j + mzk where my, m,, m,, my are in-
tegers; thus 2u=2my{ + 2mi + 2m, j + 2myk = (mg + mgt +myj + mok) +
2myi + 2myj + 2mak = my + (2my + my)i + (2my + mg) § + (2my + mo)k.
Therefore N(2u) = my® + (2m, + mo)? + (2my + my)? + (2my + mp)?.
But N(2u) = N(2)N(u) = 4p since N(2) =4 and N(u) = p. We have
shown that 4p = my? + (2m, + mp)? + (2my + mg)* + (2my + mg)?. We
are almost done.

To finish the proof we introduce an old trick of Euler’s: If 2a = %2 +
%2 + %,2 + 232 where a, %, #;, x, and x; are integers, then a =y, +
912 + 9,2 + 952 for some integers 3y, ¥y, 92, ¥3. T see this note that, since
2a is even, the x’s are all even, all odd or two are even and two are odd.
At any rate in all three cases we can renumber the #’s and pair them n
such a way that
=x0-2i-x1’ ="M, =x2+x3, and y3=xz—x3

2 2 2 2

Jo




Sec. 7.4  Integral Quaternions and the Four-Square Theorem 377

are all integers. But
J’oz +}’12 +J’22 +J’32
_ (% +x 2+ Xo — % 2+ X, + x5 2+ Xy — %3\2
2 2 2 , 2
= %("o2 + x12 + x22 + x32)

= $(20)

= a.

Since 4p is a sum of four squares, by the remark just made 2p also is;
since 2p is a sum of four squares, p also must be such a sum. Thus p =
a® + a;? + a,® + a3? for some integers aq, a;, a,,a; and Lagrange’s
theorem is established.

This theorem itself is the starting point of a large research area in number
theory, the so-called Waring problem. This asks if every integer can be written
as a sum of a fixed number of kth powers. For instance it can be shown
that every integer is a sum of nine cubes, nineteen fourth powers, etc.
The Waring problem was shown to have an affirmative answer, in this
century, by the great mathematician Hilbert.

Problems

1. Prove Lemma 7.4.4.

2. Find all the elements a in @, such that a™ ! is also in Q,.

-

1 is also

3. Prove that there are exactly 24 elements a in H such that a~
in A. Determine all of them.

4. Give an example of an a and b, b # 0, in @, such that it is impossible
to find ¢ and d in @, satisfying @ = ¢b + d where N(d) < N(b).

5. Prove that if a € H then there exist integers «, § such that a? + oa +
p=0.

6. Prove that there is a positive integer which cannot be written as the
sum of three squares.

*7. Exhibit an infinite number of positive integers which cannot be written

as the sum of three squares.

Supplementary Reading

For a deeper discussion of finite fields: ALBERT, A. A., Fundamental Concepts of Higher
Algebra. Chicago: University of Chicago Press, 1956.
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For many proofs of the four-square theorem and a discussion of the Waring problem:
Harby, G. H., and Wricnr, E. M., An Introduction to the Theory of Numbers, 4th ed.
New York: Oxford University Press, 1960.

For another proof of the Wedderburn theorem: ArtiN, E., “Uber einen Satz von
Herrn J. H. M. Wedderburn,” Abhandlungen, Hamburg Mathematisches Seminar,
Vol. 5 (1928), pages 245-50.
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ABEL, 237, 252, 256
Abelian group, 28
structure of finite, 109, 204
structure of finitely generated, 203
Adjoint(s), 318, 321
Hermitian, 318, 319, 322, 336, 339,
340
quaternions, 372
Adjunction of element to a field, 210
ALBERT, 356, 377
Algebra, 262
algebraic division, 368
of all » x n matrices over F, 278,
279 ’
Boolean, 9, 130
fundamental theorem of, 337
linear, 260
of linear transformations, 261
Algebraic of degree n, 212, 213
Algebraic division algebra, 368
Algebraic element, 209, 210
Algebraic extension, 213
Algebraic integer, 215
Algebraic number(s), 214-216
Algorithm
division, 155
Euclidean, 18
left-division, 373
ALpPERW, 119

Alternating group, 80, 256

Angle, trisecting, 230

Annihilator of a subspace, 188

ARTIN, 237, 259, 378

Associates, 146, 162

Associative law(s), 14, 23, 27, 28,
36

Associative ring, 121
Automorphism(s)

of a cyclic group, 66, 67

of the field, 237

fixed field of a group of, 238

group of inner, 68

group of outer, 70

inner, 68

of K relative to F, 239
Axiom of choice, 138, 367

Basis(es), 177, 180
dual, 187
orthonormal, 196, 338
Bessel inequality, 200
Binary relation, 11
BIRKHOFF, 25
Birknorr, G. D., 362
Boolean algebra, 9, 130
Boolean ring, 130
Brauer-Cartan-Hua theorem, 368
Burnsipg, 119
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Cancellation laws, 34
Canonical form(s), 285
Jordan, 299, 301, 302
rational, 305, 306, 308
Cardan’s formulas, 251
Cartesian product, 5, 6
Caucny, 61, 86, 87
Cauchy’s theorem, 61, 87
CAYLEY, 71
Cayley-Hamilton theorem, 263, 309,
334, 335
Cayley’s theorem, 71, 262
Center of a group, 47, 68
Centralizer, 47
Characteristic of integral domain, 129,
232, 235, 357
Characteristic polynomial, 309, 332
Characteristic root(s), 270, 286-289
multiplicity of, 303
Characteristic subgroup, 70
Characteristic vector, 271
Characteristic zero, 129, 232, 235
Choice, axiom of, 138, 367
Class(es)
congruence, 22, 353, 354
conjugate, 83, 89, 361
equivalence, 7
similarity, 285
Class equation, 85, 361
Closure under operation, 27
Coefficients, 153
Cofactor, 334
Column of a matrix, 277
Combination, linear, 177
Commutative group, 28
Commutative law, 23
Commutative ring(s), 121
polynomial rings over, 161
Commutator, 252
Commutator subgroup(s), 65, 70, 117,
252, 253
Companion matrix, 307
Complement, 5
Complement, orthogonal, 195
Complex vector space, 191
Composition of mappings, 13
Congruence class, 22, 353, 354
Congruence modulo a subgroup, 39
Congruence modulo 7, 22
Congruent, 352
Conjugacy, 83
Conjugate, 83

~

Conjugate class(es), 83, 89, 361
Conjugate elements, 83
Conjugate subgroups, 99
Constructible, 228, 230
Constructible number, 228
Construction, invariant, 187, 188
Construction with straightedge and
compass, 228
Content of polynomial, 159, 163
Correspondence, one-to-one, 15
Coset
double, 49, 97, 98
left, 47
right, 40
Cramer’s rule, 331
Criterion
Eisenstein, 160, 240, 249
Euler, 360
Cube, duplicating of, 231
Cycle decomposition, 78
Cyclic group, 30, 38, 49
generator of, 48
Cyclic module, 202
Cyclic subgroup, 38
Cyclic subspace, 296, 306
Cyclotomic polynomial, 250, 362

De Morgan rules, 8
Decomposable set of linear transforma-
tions, 291
Decomposition, cycle, 78
Definite, positive, 345
Degree n
algebraic of, 212, 213
alternating group of, 80, 256
of an extension, 208
general polynomial of, 251
of polynomial, 154, 162
symmetric group of, 28, 75, 241,
253-257, 284
DER WAERDEN, VAN, 259
Derivative, 158, 232, 233
Desargues’ theorem, 361
Determinant, 322
of linear transformation, 329
of matrix, 324
of system of linear equations, 330
Diagonal matrix, 282, 305
Diagonal subset, 6
Diagonalizable, 305
Dickson, 356
Difference module, 202




Difference set, 5
Dihedral group, 54, 81
Dimension, 181
DropuanToOs, 356
Direct product of groups, 103
external, 104, 105
internal, 106
Direct sum
external, 175
internal, 174, 175
of modules, 202
Disjoint sets, 4
mutually, 5
Distributive law(s), 23, 121
Divisibility, 144, 145
Division algebra, algebraic, 368
Division algorithm for polynomials, 155
Division ring, 126
finite, 360
Divisor(s), 18
elementary, 308, 309, 310
greatest common, 18, 145
Domain
integral, 126
unique factorization, 163
Dot product, 192
Double coset, 49, 97, 98
Dual basis, 187
Dual, second, 188
Dual space, 184, 187
Duplicating the cube, 231

Eigenvalue, 270
Eisenstein criterion, 160, 240, 249
Element(s)
algebraic, 209, 210
conjugate, 83
identity, 27, 28
order of, 43
order of (in a module), 206
period of, 43
prime, 146, 163
separable, 236
Elementary divisors of a linear trans-
formation, 308, 309, 310

. Elementary symmetric functions, 242,

243
Empty set, 2
Equality )
of mappings, 13
of sets, 2
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Equation(s)

class, 85, 361

linear homogeneous, 189, 190

rank of system of linear, 190

secular, 332
Equivalence class, 7
Equivalence relation, 6
Euclidean algorithm, 18
Euclidean rings, 143, 371
EuLer, 43, 356, 376
Euler criterion, 360
Euler phi-function, 43, 71, 227, 250
Even permutation, 78, 79
Extension

algebraic, 213

degree of, 208

field, 207

finite, 208-212

normal, 244-248

separable, 236, 237 -

simple, 235, 236
External direct product, 104, 105
External direct sum, 175

FermarT, 44, 144, 149, 152, 356, 366, 371
Fermat theorem, 44, 152, 366
Fermat theorem, little, 44, 366
Field(s), 126, 127, 207
adjunction of element to, 210
automorphism of, 237
extension, 207 -
finite, 122, 356
perfect, 236
of quotients, 140
of rational functions, 162, 241
of rattonal functions in n-variables, 241
splitting, 222-227, 245
of symmetric rational functions, 241
Finite abelian group(s), 109
fundamental theorem of, 109, 204
invariants of, 111
Finite characteristic, 129
Finite dimensional, 178
Finite extension, 208-212
Finite field, 122, 356
Finite group, 28
Finitely generated abelian group, 202
Finitely generated modules, 202
fundamental theorem on, 203
Fixed field of group of automorphisms,
238
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Form(s)

canonical, 285

Jordan canonical, 299, 301, 302

rational canonical, 305-308

real quadratic, 350

triangular, 285
Four-square theorem, 371
Frosenwus, 356, 368, 369
Frobenius theorem, 369
Functional, linear, 187, 200
Functions

elementary symmetric, 242, 243

rational, 162, 241

symmetric rational, 241
Fundamental theorem

of algebra, 337

of finite abelian groups, 109, 204

of finitely generated modules, 203

of Galois theory, 247

Gavors, 50, 207
Galois group, 237
Galois theory, 237-259
fundamental theorem of, 247
Gauss’ lemma, 160, 163, 164
Gaussian integers, 149
GELFOND, 216
General polynomial of degree n, 251
Generator of cyclic group, 48
Gram-Schmidt orthogonalization pro-
cess, 196
Greatest common divisor, 18, 145
Group(s), 28
abelian, 28, 109, 203, 204
alternating, 80, 256
automorphism(s) of, 66, 67
of automorphisms, fixed field of, 238
of automorphisms of K over F, 239
center of, 47, 68
commutative, 28
cyclic, 30, 38, 49
dihedral, 54, 81
direct product of, 103
factor, 52
finite, 28
Galois, 237
generator of cyclic, 48
homomorphism(s) of, 54
of inner automorphisms, 68
isomorphic, 58
isomorphism(s) of, 58
nilpotent, 117

order of, 28

‘of outer automorphisms, 70
permutation, 75

quaternion units, 81

quotient, 52

simple, 60

solvable, 116, 252

symmetric, 28, 75, 241, 253-257, 284

Hari, 119
Hawvmos, 206, 354
HamirTton, 124, 334, 356
Harpy, 378
Herwmrte, 216, 218
Hermitian adjoint, 318, 319, 322, 336,
339, 340
Hermitian linear transformation, 336,
341
Hermitian matrix, 319, 322, 336
Hexagon, regular, 232
Higher commutator subgroups, 252, 253
HiserT, 216, 377
Hom (U, V), 173
Homogeneous equations, linear, 189, 190
Homomorphism(s), 54, 131
of groups, 54
kernel of, 56, 131
of modules, 205
of rings, 131
of vector-spaces, 173
Hurwirz, 216, 356, 373

(2, §) entry, 277
Ideal(s), 133, 134, 137

left, 136

maximal, 138

prime, 167

principal, 144

radical of, 167

right, 136
Idempotent, 268
Identity(ies)

Lagrange’s, 373

Newton’s, 249
Identity element, 27, 28
Identity mapping, 11
Image, 11

inverse, 12, 58

of set, 12
Independence, linear, 177
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of Hin G, 41

of nilpotence, 268, 294
Index set, 5
Inequality

Bessel, 200

Schwartz, 194

triangle, 199
Inertia, Sylvester’s law of, 352
Infinite set, 17
Inner automorphism(s), 68

group of, 68
Inner product, 193
Inner product spaces, 191, 337
Integer(s), 18

algebraic, 215

Gaussian, 149

partition of, 88

relatively prime, 19
Integers modulo n, 22, 23
Integral domain, 126

characteristic of, 129, 232, 235, 237
Integral quaternions, 371
Internal direct product, 106
Internal direct sum, 174, 175
Intersection of sets, 3, 4
Invariant construction (or proof), 187,

188

Invariant subspace, 285, 290
Invariants

of finite abelian group, 111

of nilpotent linear transformation, 296
Inverse element, 28
Inverse image, 12, 58
Inverse of mapping, 15
Invertible linear transformation, 264
Irreducible elements, 163
Irreducible module, 206
Irreducible polynomial, 156
Irreducible set of linear transformations,

291

Isomorphic groups, 58
Isomorphic rings, 133
Isomorphic vector spaces, 173
Isomorphism

of groups, 58

of modules, 205

of rings, 133

of vector spaces, 173

Jacosson, 355, 367
Jacobson’s lemma, 316, 320
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Jacobson’s theorem, 367
Jordan block, 301
Jordan canonical form, 299, 301, 302

Kapransky, 259
Kernel of homomorphism, 56, 131

Lacrance, 40, 356, 371
Lagrange’s identity, 373
Lagrange’s theorem, 40, 375
Law(s)
associative, 14, 23, 27, 28, 36
cancellation, 34
commutative, 23
distributive, 23, 121
of inertia, Sylvester’s, 352
Sylvester’s, 352
Least common multiple, 23, 149
Left coset, 47
Left- dwlsxon algorithm, 373
Left ideal, 136
Left-invertible, 264
Lemma
Gauss’, 160, 163, 164
Jacobson’s, 316, 320
Schur’s, 206
Length, 192, 193
LinpeEmanN, 216
Linear algebra, 260
Linear combination, 177
Linear equations
determinant of system of, 330
rank of system of, 190
Linear functional, 187, 200
Linear homogeneous equations, 189, 190
Linear independence, 177
Linear sgan, 177
Linear transformation(s), 26
algebra of, 261
decomposable set of, 291
determinant of, 329
elementary divisors of, 308, 309, 310
Hermitian, 336
invariants of nilpotent, 296
invertible, 264
irreducible set of, 291
matrix of, 274
nilpotent, 268, 292, 294
nonnegative, 345
normal, 342
positive, 345
positive definite, 345
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Linear transformation(s) (continued)
range of, 266
rank of, 266
regular, 264
ring of, 261
singular, 264
trace of, 314
Linearly dependent vectors, 177
LiouviLLE, 216
Little Fermat theorem, 44, 366

McCoy, 169
McKay, 87, 119
MACLANE, 25
Mapping(s), 10
composition of, 13
equality of, 13
identity, 11
inverse of, 15
one-to-one, 12
onto, 12
product of, 13
restriction of, 17
set of all one-to-one, 15
Matrix(ces), 273
column of, 277
companion, 307
determinant of, 324
diagonal, 282, 305
Hermitian, 319, 322, 336
of a linear transformation, 274
orthogonal, 346
permutation, 284
real symmetric, 347
row of, 277
scalar, 279
skew-symmetric, 317
theory of, 260, 273
trace of, 313
transpose of, 316
triangular, 284, 286
unit, 279
Maximum ideal, 138
Minimal polynomial, 211, 264
Module(s), 201
cyclic, 202
difference, 202
direct sum of, 202
finitely generated, 202
fundamental theorem on finitely gen-
erated, 203
homomorphism(s) of, 205

irreducible, 206
isomorphism of, 205
order of element in, 206
quotient, 202
rank of, 203
unital, 201
Modulus, 22
Monic polynomial, 160
Morgan rules, De, 8
MortzKIN, 144, 169
Multiple, least common, 23, 149
Multiple root, 233
Multiplicative system, 142
Multiplicity
of a characteristic root, 303
of a root, 220
Mutually disjoint, 5

n x n matrix(ces) over F, 278
algebra of all, 278, 279
n-variables
field of rational functions, 241
polynomials in, 162
ring of polynomials in, 162
Newton’s identities, 249
Nilpotence, index of, 268, 294
Nilpotent group, 117
Nilpotent linear transformation, 268,
292, 294
invariants of, 296
Niven, 216, 259
Non-abelian, 28
Nonassociative ring, 121
Nonnegative linear transformation, 345
Nontrivial subgroups, 38
Norm, 193
Norm of quaternion, 372
Normal extension(s), 244-248
Normal linear transformation,-342
Normal subgroup(s), 49
Normalizer, 47, 84, 99, 361
nth root of unity, primitive, 249
Null set, 2
Number(s)
algebraic, 214-216
constructible, 228-230
prime, 19
transcendental, 214

Odd permutation, 78, 79
One-to-one correspondence, 15




One-to-one mapping(s), 12
set of all, 15
Onto mappings, 12
Operation, closure under, 27
Order
of an element, 43
of an element in a module, 206
of a group, 28
Orthogonal complement, 195
Orthogonal matrices, 346
Orthogonalization  process,
Schmidt, 196
Orthonormal basis, 196, 338
Orthonormal set, 196
Outer automorphism, 70
group of, 70

Gram-

p-Sylow subgroup, 93
Pappus’ theorem, 361
Partitions of an integer, 88
Pentagon, regular, 232
Perfect field, 236
Period of an element, 43
Permutation

even, 78, 79

groups, 75

matrices, 284

odd, 78, 79

representation, 81

representation, second, 81
Perpendicularity, 191, 195
phi-function, Euler, 43, 71, 227, 250
Pigeonhole principle, 127
PoLLARrD, 259
Polynomial(s)

characteristic, 308, 332

content of, 159, 163

cyclotomic, 250, 362

degree of, 152, 162

division algorithm for, 155

irreducible, 156

minimal, 211, 264

menic, 160

in n-variables, 162

over ring, 161

over rational field, 159

primitive, 159, 163

ring of, 161

roots of, 219

symmetric, 243, 244

value of, 209

Index

Positive

definite, 345

linear transformation, 345
Prime

primitive root of, 360

relatively, 19, 147
Prime element, 146, 163
Prime ideal, 167
Prime number, 19
Primitive nth root of unity, 249
Primitive polynomial, 159, 163
Primitive root of a prime, 360
Product

Cartesian, 5, 6

direct, 103

dot, 192

inner, 193

of mappings, 13
Projection, 11
Proper subset, 2

Quadratic forms, real, 350
Quadratic residue, 116, 360
Quaternions, 81, 124, 371
adjoint of, 372
group of quaternion units, 81
integral, 371
norm of, 372
Quotient group, 52
Quotient module, 202
Quotient ring, 133
Quotient space, 174 -
Quotient structure, 51
Quotients, field of, 140

R-module, 201
unital, 201
Radical of an ideal, 167
Radicals, solvable by, 250-256
Range of linear transformation, 266
Rank
of linear transformation, 266
of module, 203
of system of linear equations, 190
Rational canonical form, 305, 306,
308
Rational functions, 162, 241
field of, 162, 241
symmetric, 241
Real quadratic forms, 350
Real quaternions, 81
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index

Real symmetric matrix, 347
Real vector space, 191
Reflexivity of relations, 6
Regular hexagon, 232
Regular linear transformation, 264
Regular pentagon, 232
Regular septagon, 232
Regular 15-gon, 232
Regular 9-gon, 232
Regular 17-gon, 232
Relation(s)
binary, 11
equivalence, 6
reflexivity of, 6
symmetry of, 6
transitivity of, 6
Relatively prime, 19, 147
Relatively prime integers, 19
Remainder theorem, 219
Representation, permutation, 81
second, 81
Residue, quadratic, 116, 360
Resolution, spectral, 350
Restriction of mapping, 17
Right coset, 40
Right ideal, 136
Right invertible, 264
Ring(s), 120
associative, 121
Boolean, 9, 130
commutative, 121
division, 126, 360
Euclidean, 143, 371
homomorphisms of, 131
isomorphisms of, 133
of linear transformations, 261
nonassociative, 121
polynomial, 161
of polynomials, 161
of polynomials in n-variables, 162
quotient, 133
of 2 x 2 rational matrices, 123
unit in, 145
with unit element, 121
Root(s), 219, 232
characteristic, 270, 286-289
multiple, 233
multiplicity of, 220, 303
of polynomial, 219
Row of matrix, 277
Rule, Cramer’s, 331
Rule, De Morgan’s, 8

~

SaMuEL, 169
Scalar(s), 171
Scalar matrices, 279
Scalar product, 192
SCHNEIDER, 216
Schur’s lemma, 206
Schwarz’ inequality, 194
Second dual, 188
Second permutation
81

Secular equation, 332
SecaL, 119
Self-adjoint, 341
Separable element, 236
Separable extension, 236
Septagon, regular, 232
Set(s), 2

of all one-to-one mappings, 15

of all subsets, 12

difference, 5

disjoint, 4

empty, 2

image under mapping, 12

index, 5

infinite, 17

of integers modulo n, 22, 23

intersection of, 3, 4

null, 2

orthonormal, 2

theory of, 2

union of, 3
SiecEL, 216, 259
Signature of a real quadratic form,

352

Similar, 285
Similarity class, 285
Simple extension, 235, 236
Simple group, 60
Singular, 264
Singular linear transformation, 264
Skew-field, 125
Skew-Hermitian, 341
Skew-symmetric matrix, 317
Solvable group, 116, 252
Solvable by radicals, 250-256
Space(s)

complex vector, 191

dual, 184, 187

inner product, 191, 337

quotient, 174

real vector, 191

vector, 170

representation,




Span, linear, 177
Spectral resolution, 350
Splitting field, 222-227, 245
Straightedge and compass, construction
with, 228
Subgroup(s), 37
commutator, 65, 70, 117, 252, 253
conjugate, 99
cyclic, 38
generated by a set, 64
higher commutator, 253
left coset of, 47
nontrivial, 38
normal, 49
p-Sylow, 93
right coset of, 40
trivial, 38
Subgroup of G
characteristic, 70
commutator, 65, 70, 117, 252, 253
generated by a set, 64
Submodule, 202
Subset(s), 2
diagonal, 6
proper, 2
restriction of mapping to, 17
set of all, 12
Subspace, 172
annihilator of, 188
cyclic, 296, 306
1 invariant, 285, 290
. Sum
direct, 202
external direct, 175
internal direct, 174, 175
SvLow, 62, 87, 91
¥ Sylow’s theorem, 62, 91-101
| Sylvester’s law of inertia, 352
t Symmetric difference, 9
| Symmetric functions, elementary, 242,
’ 243
| Symmetric group(s), 28, 75, 241, 253~
3 257, 284
t  Symmetric matrix, 317
| Symmetric polynomial, 243, 244
Symmetric rational functions, 241
field of, 241
i Symmetry of relations, 6
E System, multiplicative, 142
- System of linear equations, 189, 190
determinant of, 330
rank of, 190

Index

Theorem
of algebra, fundamental, 337
Brauer-Cartan-Hua, 368
Cauchy’s, 61, 87
Cayley-Hamilton, 263, 309, 334,
335
Cayley’s, 71, 262
Desargues’, 361
Fermat, 44, 152, 366
four-square, 371
Frobenius’, 356, 359
Jacobson’s, 367
Lagrange’s, 40, 356, 375
little Fermat, 44, 366
Pappus’, 361
remainder, 219
Sylow’s, 62, 91-101
on symmetric polynomials, 244
unique factorization, 20, 148
Wedderburn’s, 355, 360, 376
Wilson’s, 116, 152
Theory
Galois, 237-259
matrix, 260, 273
set, 2
Trompson, 60
Trace, 313
of a linear transformation, 314
of a matrix, 313
Transcendence
of e, 216
of =, 216 A
Transcendental number(s), 214
Transformation(s)
algebra of linear, 261
Hermitian linear, 336, 341
invariants of nilpotent linear, 296
invertible linear, 264
linear, 261
nilpotent linear, 268, 292, 294
nonnegative linear, 345
normal linear, 336, 342
range of linear, 266
rank of linear, 266
regular linear, 261
singular linear, 264
unitary, 336, 338
Transitivity of relations, 6
Transpose, 313, 316
of a matrix, 316
Transpositions, 78 -
Triangle inequality, 199
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Index

Triangular form, 285
Triangular matrix, 284, 286
Trisecting an angle, 230
Trivial subgroups, 38

Union of sets, 3

Unique factorization domain, 163
Unique factorization theorem, 20, 148
Unit in matrix algebra, 279

Unit in ring, 145

Unital R-module, 201

Unitary transformation, 336, 338
Unity, primitive nth root of, 249

Value of polynomial, 209

VaN DErR WAERDEN, 259

VANDIVER, 362

Vector(s), 171
characteristic, 271
linearly dependent, 177

Vector space(s), 170
complex, 191

. homomorphism of, 173
isomorphism of, 173
real, 191

WAERDEN, VAN DER, 259

Waring problem, 377

WEDDERBURN, 355, 356, 360
Wedderburn’s theorem, 355, 360, 376
WEISNER, 259

WIELANDT, 92

Wilson’s theorem, 116, 152

WricHT, 178

ZARrisky, 169
Zero-divisor, 125
Zero-matrix, 279

15-gon, regular, 232

9-gon, regular, 232

17-gon, regular, 232

2 x 2 rational matrices, ring of, 123
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