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CHAPTER 3

RINGS

In this chapter we introduce another algebraic system called a ring. We will
define ring and prove several elementary theorerns about rings. Then several
examples will be considered in detaii before 'ye study subrings and ideals
and homomorphisms and isomorphisms. ;

A ring is, first of all, a nonempty set. waever, it differs from a group
in that a ring must have two binary oper ations defined on it instead of just
one, as in a group. Each of the binary Op erations must satisfy certain axioms,
and both must satisfy an axiom relating the two binary operations. As will
be clear later, these axioms are chosen’because of the many concrete examples
which satisfy them. :

3.1 DEFINITION OF A RING

3.1.1 Definition. A nonempty siet R is said to be a ring if there are defined
on R two binary operations, diznoted by + and - and called addition and
multiplication, which satisfy th.e Sollowing axioms.

Rl a+ beRforalla, b e R. (closure law of addition)

R2 @+ b)+c=a+ (b +c)foralla, b, cecRr
Coatie SN AT (associative law of addition)
"R3 There exists an elemen't 0'€ R such that 0 + a = a Jor all a € R.
ey Sy iEy UL R (existence of additive identity)

R4 For each a € R, e re exists x € R such that a s =0,
A (existence of additive inverses)

RSa+b=0b+afc alla, b €R.
! (commutative law of addition)

» ' »
R6 a- b € R for all a;b e R. (closure law of multiplication)
R7 (@-b)-c=a-(b-c)foralla,b, c eR.
‘ (associative law of multiplication)
R8a-(b+c)=(a-b)+ (a:c)and
(@+b)-c=(@c)+ (b-c)foralla, b, c €R.
(distributive laws)

Notice that axioms R1-R4 simply state that a ring is a group under the
binary operation addition; i.e., if one ignores the binary operation called
57
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multiplication, the set R and the binary operation called addition fulfill the
requirements that /® be a group. Furthermore, R5 states that R considered
as a group-with binaiy operation addition is abelian. Consequently, axioms
R1-R5 may be summerized by saying that R is an abelian group with binary
operation addition. Axiom R6 is simply a reiteration of the fact that multj-
plication is a binary operation on R. Axiom R7 states that multiplication is
associative. Axiom R8 shk-ows the relationship between addition and multi-
plication. In particular, R'8 states that multiplication is right-distributive
and left-distributive over adclition.

In view of the above discussion, we can restate the definition of a ring
in the following way. iy

3.1.2 Definition (alternative). A nonempty set R is said to be a ring if
there is defined on R two binary: operations + and - such that

a) R is an abelian group with rei'pect 10 +,

b) - is an associative binary operai‘ion on R, and

¢) - is left- and right-distributive over +.

Let us consider the additive group of R for a moment. We proved in
Section 2.2 that the identity element was urrique and that each element had a
unique inverse. Applying these facts to the additive group of R tells us that
the additive identity of R is unique and that each element has a unique
additive inverse. We will use the symbol 0 flor the unique additive identity
of R, and we call O the zero of the ring R. For 2ach element a of R, its'unique
inverse will be denoted by —a and will be called “negative a.”

‘ The most obvious example of a ring is the s;et 7 of integers with the usual

addition and multiplication. That the axioms F-.1-R8 hold for / follows from
well-known properties of the addition and mu ltiplication of integers. The
zero of the ring is the integer *“zero.” Another. easy example of a ring is the
set Q of all rational numbers with the ordinary, additisn and multipiication.

Compared with the addition on a ring R, ‘he multiplication on R is
relatively unknown to us. For instance, the definition of ring does not
guarantee the existence of a multiplicative identit: ; nor does it guarantee the
existence of multiplicative inverses. Moreover, th¢ multiplication may not be
commutative. Therefore, we consider several specid | classes of rings.

3.1.3 Definition. Let R be a ring. We say R is a ring with unity element
if there exists e € R such that a - e = e a = aforallacRr, If such
an element e exists, it is called a unity element of R.

3.1.4 Definition. Let R be a ring with unity. e;fe’)ﬁ_e’nt. We say R is a
division ring if for each nonzero element a & R.})there exists an element
X € R such that a - x = x-a = e where e is.a; unity element of R. If
such an x exists, we sa y X is a multiplicative inverse of a.

-
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In other words, a ring R with unity element is a division ring if each
nonzero element of R has a multiplicative inverse in R. Observe that in order
that the multiplicative inverse of a nonzero element a of R may be discussed,
R must have a unity element.

3.1.5 Definition. Let R be a ring. Then R is said to be a commutative
ringifa-b = b-aforalla, b e R.

If ¢+ d  d- c for some pair of elements ¢, d of a ring R, we say R is a
noncommutative ring.
’ The ring 7 of integers and the ring Q of rational numbers both have a
unity element—namely 1. Furthermore, one can easily see that both are
commutative. But Q is a division ring, whereas 7 is not. For any nonzero
element a/b of Q, b/a € Q and (a/b)(b/a) = (b/a)(a/b) = 1. On the other
hand, 3 € I has no multiplicative inverse in 7, so 7 is not a division ring. .-

Notice that a commutative ring need not have a unity element and, more-
over, a ring with unity element need not be commutative. Examples will be
given (Section 3.3) of rings which are commutative and have a unity element,
which are noncommutative and have a unity element, which are commutative
and do not have a unity element, and which are noncommutative and do
not have a unity element. Those examples will establish the complete
independence of Definitions 3.1.2 and 3.1.4. It is worthwhile to note also
that a division ring need not be commutative.

3.2 SIMPLE PROPERTIES OF A RING

In this section we state and prove some elementary properties of a ring.
First of all, we show that, if a ring has a unity element, it is unique. As in
Section 2.2, to prove uniqueness of the unity element, we assume that there
are two and then prove that they are equal. The details are left as an exercise.

3.2.1 Theorem. Let R be a ring with unity element. Then the unity
element of R is unique.

Observe that, since a ring need not have a unity element, it was necessary
in Theorem 3.2.1 to require that R have a unity element in order to prove that
it was unique.

Next we show that if a nonzero element of a ring with unity element has
a multiplicative inverse, the multiplicative inverse must be unique. We will

“follow the same procedure for proving uniqueness that was used before.

3.2.2 Theorem. Let R be a ring with unity element e and let a be a nonzero
element of R which has a multiplicative inverse in R. Then the multi-

plicative inverse of a is unique.
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Proof. Let s and ¢ be multi
multiplicative inverses,

3.2

plicative inverses of a. Then, by definition of

(1) a*§F=8-a=e
and
2) a't=1t-a=e.
Then
§=g-e (definition of unity element)
=s:(a-n  (by(2)
= (s-a)-t (associative law of multiplication)
= €1 (by (1))
= - (definition of unity element)

Hence s = 7, so that the multiplicative inverse of a is unique, as asserted.

Since we now know that if an element a of a ring with unity has a multi-
plicative inverse, it is unique, then we may speak of “the” multiplicative
inverse of a. The symbol a~! will be used to denote the unique multiplicative
inverse of the element a.

An effort must be made to avoid confusion because of the terminology
associated with the two binary operations addition and multiplication defined
on a ring. Since there are two binary operations, a ring may have two ident-
ities—one for each binary operation. The additive identity will always be
denoted by 0 and called the “zero of the ring” and the multiplicative identity
will be denoted by either e or 1 and called the “unity element of the ring.”
Similarly each nonzero element x of a ring may have two inverses. The
additive inverse of x is denoted by —x and is called “negative x” or ‘“‘the
negative of x,” whereas the multiplicative inverse of x is denoted by x~! and
is called “the multiplicative inverse of x.”” Furthermore, R5 guarantees that
the addition of a ring is always commutative; hence, when one speaks of the
commutativity or noncommutativity of a ring, one is referring to the multi-

plication.
3.2.3 Theorem. Let O be the zero of a ring R. Then

. a-0=0-a=0
for all a € R.

:’P}Qof> Let a € R. Thenia = a + O Multiply both sides of this equation

on'the right by a. Thus h

a-0 400 = ©
aa =

[+ N
@+ 0)-a=

a-a+0-a
by the right-distributivity of - over 4. Thus '

(1) sa-"a~,+o=a-q\,+o~a.
o o

~




3.2 SIMPLE PROPERTIES OF A RING 61
®

Since R is a group with respect to addition, we can apply Theorem 2.2.2

(Cancellation Law of Addition) to (l) Thus O = 0-a. That 0 = a-0can

be proved in a similar manner. ,
Theorem 3.2.3 allows us to prove several computatlonal results. For

convenience of notation, we will write @ — b instead of a + (—b) for ele-
ments a, b of a ring.

3.2.4 Theorem. Let a, b, ¢ be arbitrary elements of a ring R. Then the
Jfollowing are true.
1) a-(—b) = —(a"b).
2) (—a) b= —(a"b).
3) (=a)- (=b) = ,
Ha b—-—c)= (@ b)— (a-o).
-5 (a@a—b)y-c=(@c)— (b-o).

/Pr/mJy We will prove (1) and leave the remaining parts as exer01ses Note
“that —(a-b)is the symbol for the umque additive mverse of 4 - b, and ob-

(@ b)+a- (—b =@y (6 + (—b)) (distributive law)
pe = = a- (0) (definition of —b)
= 0. (Theorem 3.2.3)

Since addition is commutative in R,
a(—b)+a-b=0.

These two expressions imply that a - (—b) is also an additive inverse of a - b.
Since the additive inverse of a-b is unique, we must have

a-(=b)= —(a-b).

3.2.5 Notation. It is quite common to use juxtaposition to indicate multi-
piication; i.e., one may write ab for a - b. Furthermore, multiplication will
always take preference over addition, so that ab + ac means (a - b) + (a - ¢).
For convenience, these notational conventions will be used throughout the
rest of this book. Their value can be seen by comparing (4) and (5) of
Theorem 3.2.4 with the same statements when they are expressed in the
following form:

4) a(b — ¢) = ab — ac

5) (@ — b)c = ac — bec.

However, there will be instances when the original notation using - to indicate
multiplication is retained for clarity and emphasis.
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3.2.6 Exercises

. Prove Theorem 3.2.1.
Use the fact that 0 + 0 = 0 to obtain a different proof of Theorem 3.2.3.
_ Suppose R is a ring such that x2 = x for all x € R. Prove that R is_com- .

" mutative.

4. _}-;rove parts (2) through (5) of Theorem 3.2.4.

3.3 EXAMPLES OF RINGS

In this section several examples of rings will be discussed. For each example,
the reader should verify that all the axioms R1-R8 for a ring hold; in par-
ticular, the zero and the additive inverse should be made explicit. The
reader should also answer the following questions with regard to each
example. Does the ring have a unity element? What is it? If the ring has a
unity element, which elements have multiplicative inverses? Is the ring

commutative ?

7Example 1. Let E be the set.of even integers. Let + and - be the ordinary

addition and multiplication of integers respectively. Then Eis a commutative
ring. However E does not have a unity element since there is no even integer
e such that x - e = x for all even integers x.

Example 2. Let 7 be the set of all integers and let  be a fixed positive integer.
We have shown that the definition

a = b (mod n) if a — b is a multiple of n
defines an equivalence relation on 7. In Example 2 of Section 2.3, we showed
that the integers modulo n

/() = {[0L [1],...,[n — 1)}
are an abelian group with addition defined by
[m] + [k] = [m + K]
for all [m], [k] € I/(n). The reader should review that work.
Define a multiplication of 7/(n) by setting -
[m] - [k] = [mk]

for all [m], [k] € I/(n). To show that I/(n) is a ring with respect to this
addition and multiplication, we need only to show that the multiplication

is well defined and associative and that the, distributive laws hold. The
associativity part is included here, and the rest is left as an exercise.
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Let [m], [k], and [j] €& 1/(n). Then [m]- ([k]-[j]) = [m]- [kj] =

[m(kj)] = [(mk)j]1 = [mk]-[j] = ([m]-[K]) - [j], proving that the multi-

plication of I/(n) is associative. : ‘ :

Example 3. Let M denote the set of 2 )X 2 matrices over the ring of integers; < it

i.e., M consists of all symbols of the form At

2

where a, b, ¢, d € 1. (See Example 3, Section 2.3.) Recall that twe_elements

e e

of M are equal if and only if a = e, b = f, ¢ = g, and d = h. Addition is
defined by the formula

Gl R (e S

(o ) (3ot e

In Example 3 of Section 2.3, we verified that M is an abelian group with this
addition. The additive identity (i.e., the zero) is

(6 o)

and the additive inverse of an element

a b : —a —b
(C d) of M is (_C _>.

Now define a multiplication of matrices by
a. by (e f\ _ (ae+ bg af+ bh
c d g h) \ce+dg cf + dh

a b é i
(c d)’ <g h>EM'
Then it is easy to show that this multiplication is associative and that the '
distributive laws hold. We will show that one distributive law holds and
leave to the reader the remainder of the verification that M is a ring with the
addition and multiplication defined here. Let

Coalsi) . e ()

for all

for all
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be arbitrary elements of M. Then

d b e m n
(C d>'[<g £>+<p q)]
_(a b).<e—{—m f+n>
c 4/ \g+p . h+gq .
% <a(e+m)+b(g+p) a(f+n)+b(h+q)>
cle + m) 4 d(g + p) c(f + n) + dth + q)
- <(ae+am)+(bg+bp) (af + _an)+(bh+bq)>
(ce + cm) + (dg + dp) (cf 4}% cn) + (dh + dg)

- {ae+ bg. ‘af 4 bk o am —+ bp an + bq
~ \ce +dg cf + an cm + cn + dg

AL TR T

proving that multiplication is left-distributive over addition. The ring M
has a unity element, namely

1 0y

0 ]

However, M is not commutative. (Find a counterexample showing M is not
commutative. [ e .

T ¥The ring 7 of integers is a commutative ring with unity element; E of
Example 1 is commutative but does not_have a unity element; and M of

Example 3 has a unity element but is not commutative. Furthermore, the
set N of all 2 X 2 matrices over E, Le., all symbols of the form

JE g

u v
where 7, s, u, v are even integers, with the addition and multiplication as
defined in Example 3,Is a ring which is not commutative and does not have a

Example 4. Let R be the set {a,b, c,d}, and define addition and multipli-
cation by these tables.

=ESINg b e a b e id
al'a bc .d Q@ |l a0 ‘a
b'baldc e a b
! X Guliesad o b CREaN 600 g
d fdiic=b . ua dilasds diva
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For example, the product ¢ - b is at the intersection of the row of ¢ and the

column of b; hence ¢+ b = c.

The verification of the ring axioms is essentially a process of detailed
enumeration of possible cases of each of the axioms. In the case of commuta-
tivity, either of addition or multiplication, we may check by seeing if the
operation table is symmetric with respect to the main diagonal, that is, the
diagonal from upper left to lower right. Thus, addition is commutative, as
it must be in a ring, while multiplication is not commutative. The additive
identity, or zero element, 15\(1 This fact can be used to decrease the number
of cases one must consider when verifying the axioms. For instance, when
checking the left distributivity of multiplication over addition it is sufficient
to use all possible arrangements of b, ¢, and d. The reader should observe

that the ring in this example does not have a unity element.

Example 5. Let S be a fixed set. Let R be the set of all subsets of .S. We
define an addition and a multiplication on R by

A+ B={xeS|xeAorxeB,butx& AN B}
and )

A-B=AnNB

for all A, B € R (i.e., for all subsets 4, B of S). Then clearly for A, B € R,
A + B and A4 - B are elements of R. Moreover, it is clear that for all 4, B,
CeRi/A+ B=B+ A, A-B=B-A,and (4-B)-C=A-(B-C) by
definition of + and properties of the intersection of sets. A pictorial descrip-
tion ‘of A + B s given by the Venn diagram in Fig. 3.1, where A is the circle
on the left, B is the circle on the right and 4 + B is {fie shaded area. The
zero is the empty set @ since 4 + 0 = A for all A € R. The additive inverse
of an element A4 of R is the set A itself. The associativity of addition and one
of the distributive laws can be verified or can be illustrated using Venn
diagrams. Thus R is a ring; this ring is called the ring of all subsets of S.
Does this ring have a unity element? , What is it?

Figure 3.1

Example 6. For this example the student must recall some elementary
facts from calculus. The symbol [0, 1] will denote the set {x | x is a real
number and 0 < x < I}. Recall that if £ is a continuous function on
[0, 1], then for x € [0, 1] f(x) is the value of f at x. Let C be the set of all
continuous functions on [0, 1]. Recall the definition of equality of functions
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(Section 1.2). Forf, g € C, define their sum f 4 g by (f + g)(x) = f(x) +
g(x) for all x € [0, 1]; i.e., the value of f 4 g at x is the sum of the value of
S at x and the value of g at x. Also for f, g € C, define the product fg of f
and g by (fg)(x) = f(x)g(x) for all x € [0, 1]; i.e., the value of fg at x is the
product of the values of fand g at x.

From our experience with calculus, we know that the sum of continuous
functions on [0, 1] is a continuous function on [0, 1T and the product of
continuous functions on [0, 1] is a continuous function on [0, 1]. Also if
/. & and h are elements of C, then for all x [0, 1],

[(f+ &) + Alx) = (f + g)(x) + h(x)
= (/) + g(x) + h(x)

S+ (g(x) + h(x)) (associativity of the

=f(x) + (g + h)(x) real numbers)

= [f =+ g+ B))(x)
Therefore (f+ g) + h = f+ (g + h). Similarly, one shows that
(fg)h = f(gh). Furthermore, the commutativity of addition and multi-
plication on C is inherited from the real numbers as well as the distributivity
of multiplication over addition.

What is the zero? Let 0 be the function on [0, 1] defined by O(x) = 0

for all x €[0,1]; i.e., O is a constant function. Then for any fe C,
(f+0)(x) = f(x) + O(x) = f(x) + 0 = f(x) for all x e [0, 1]. Thus
S+ 0 = fand so 0 is the zero. For each f € C, we let f* be the function
defined by f*(x) = —f(x) for all x €[0,1]. Then f+ f* = 0 since
(f+/)x) = f(x) + [*(x) = f(x) — f(x) = 0 = O(x) for all x [0, 1].
Hence f* is negative f. This proves that C is a commutative ring! Does C
have a unity element?

Il

3.3.1 Exercises

1. Which of the following sets and binary operations are rings? Of those that are
rings, which have a unity element? Which are division rings? Which are com-
mutative ?

" a) P= {m+ nv2 [ m, n & 1, with the usual addition and multiplication.

b)) M = {m — nv2|m,n €I, with the usual addition and multiplication.
¢) K = set of 2 X 2 matrices of the form

(et

where a, b, ¢ € I with the usual addition and multiplication of matrices.
d) T = {(s,t,u)|s,t,u €1 with addition and multiplication defined by
G+ end=Gt+xtdne+ z)
and
(s, 8, w) *(x, y, 2)'= (sx, sy + 1z, uz)

forall (s, 1, u), (x,y,2) ET.
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t
e) U = {u,v,w, x; and addition and multiplication are defined by the following
tables.
+ |u v wx u v W X
u u v w X u u u U
1% v u x w U u u uU U
w w X U U W u v w X
X X w v u X u U w X

You may assume that both addition and multiplication are associative in U.
2. Prove that the multiplication in //(n) is well defined. Verify that the distributive
laws hold in 7/(n). Also prove that //(n) is a commutative ring with unity
element.
3. Write out addition and multiplication tables for //(5) and //(6). Is either a divi-
sion ring? What can you conjecture about //(n)?
4. Define addition ® and multiplication © on the set of integers by/

m®n=m+n—1
and
mQOn=m+ n— mn

for all m, n € 1. Prove that I is a commutative ring with unity element and with
these definitions of addition and multiplication.

5. Following are the addition and multiplication tables for a ring having four
elements {a, b, ¢, d}.

+la b ¢ d cla b ¢ d
al|la b ¢ d ala a a a
b | b ¢c d a ‘bla - a ¢
c |lc d a b cla a a -
d|d a b c dla ¢ a -

Use the distributive laws to fill in the blanks in the multiplication table.
6. Let R be a ring with unity element e which has more than one element;
prove that e # 0.

3.4 GENERALIZED SUMS AND PRODUCTS

Let R be a ring and let ay, ag, . . ., a, be a collection of elements from R.
The addition of R is a binary operation, so we know how to add any rwo
of these elements. But what if we desire to add three or more of them to-
gether? If so, we must define precisely what is meant by the sum of more
than two elements. For three elements we define

a; + as + az = (a; + az) + as.
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By the associativity of addition, a; + ay + a3 = a; + (as + as); there-
fore the way we group the terms is irrelevant. In general, we must make an
inductive definition.

3.4.1 Definition. Let R be a ring and let a,, a., . . ., apy 1 be elements
of R. Whenever ay + - - + ay is defined, define
@1+ T @ = (@ ) B

Thus, by the Principle of Mathematical Induction, the sum of any finite
number of elements of a ring is defined. Such a sum is referred to as a

generalized sum.

3.4.2 Theorem. Let R be a ring and let n be any positive integer. Then
for elements a,, . .., a, of R,
a~+ -+ a, = (al+"'+as)+(as+l+ +an)

where s is any integer such that 1 < s < n. In other words, the sum of

ay, ...,a, with paie/zlheves in any position is equal to a, + - -+ + a,,
ZYT,

as defned above. j‘,:"j:u, ¥

Proof. The proof will be by mathematical induction. Let S, be the statement
of the theorem. For n = 2, we have a; + ay = a; + as. Hence S, is
true. Assume that S is true; i.e., assume that

(11+"‘+(1k=(01+"‘+(1s)+(as+1+"'+0k) ‘
where s is any integer such that 1 < s < k. Then for 1 < s < k, we have

a1+ * o Gugy = @y b ¢ A @) + @y (by 3.4.1)
= (@1 + -+ a) + @41+ -+ @) + aryq
' (by S)
= (a1 + "+ @) + (@q1+ * + a) + @ry1)
¥ (by R2)
:(al+"'+as)+(as+l+"'+(’I:+l)-
(by 3.4.1)

Furthermore, if s = k, then
di+ 2t appr =@+ o+ @) + @1 + 00 @)
by definition. Consequently SA+1 is true. Therefore, by the Principle of

Mathematical Induction, S,l is true for all positive 1ntegers n. Thus the
theorem is proved.

3.4.3 Remark. Generalized products are defined similarly to generalized
sums. Moreover, since the proof of Theorem 3.4.2 uses only the asso-
ciativity of addition, the same proof can be used to prove that the generalized
product of @y, ..., a,is (a, - - - ag)(as4, - - a,) where s is any integer such
that 1 < 5 < n,
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Other formulas can be generalized in a similar fashion. We will list two
such generalizations and prove one, leaving the other as an exercise.

3.4.4 Theorem. Let 'R be a ring and let n be any positive integer. For
al,..-,anER,
AT S ol R e o <

where iy, is, . . ., I, Is any rearrangement of 1,2, ..., n.

3.4.5 Corollary. Let R be a commutative ring and let n be any positive

integer. For ay, ...,a, € R,
aaz " ap = 445, " "4,
where iy, is, . .., I, Is any rearrangement of 1, 2, ..., n.

3.4.6 Theorem. Let R be a ring and let n be any positive integer. For
a,bl,...,bnER,

alb; + by + -+ b,) = ab; + aby + - - - + ab,.

Theorem 3.4.4 and Corollary 3.4.5 are generalized commutative laws, and

Theorem 3.4.6 is a genezahzed a’zstrzbunve law. We will now prove Theorem
3.4.6.

* Proof. Let S, be the statement of the theorem. Then S, is true by the
distributive law (R8). Assume that Sy is true; i.e., assume that

atby + -+ + br) = aby + - - + aby.
Then ;
a(by + -+ bryr) = a((bg + - - + b) + biyr)  (by 34.0)
= a(b, + -+ + b)) + abk4, (by R8)
(aby + -+ - + aby) + abyy, (by Sk)
aby + -+ + abxy, (by 3.4.1)

Hence Sy is true, and so, by the Principle of Mathematical Induction, S, is
true for all positive integers n. This proves the theorem.

Il

3.4.7 Exercises

1. Give an explicit definition of generalized product, and state and prove a theorem
similar to Theorem 3.4.2. '

2. Prove Theorem 3.4.4 and Corollary 3.4.5.

3. Let R be a ring and let n be any positive integer. Foray, ..., a, € R, prove that

ajas - - dy if n is even.
—(araz -+ a,) if nisodd.

(—a)(—a2) - (—as) =

4. Theorem 3.4.6 gives one generalized distributive law. State and prove another
generalized distributive law. ,
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3.5 SUBRINGS AND IDEALS

When we studied groups, we investigated subsets of groups that were groups
in their own right. Such subsets were called subgroups and they played an
‘important role in the development of the theory of groups. Here we carry
out the same procedure for rings.

3.5.1 Definition. A nonempty set S is a subring of a ring R if Sisa
subset of R and if S itself is a ring with respect to the addition and multi-
plication of R.

The ring E of even integers (Example 1 above) is a subring of the ring /
of all integers. . The ring N discussed in Example 3 above is a subring of M
of the same example.

The next theorem simplifies the procedure for showing that a subset of a

ring is actually a subring.

3.5.2 Theorem. Let R be a ring and let S be a nonempty subset of R.
Then S is a subring of R if and only if '
)a+beSforalla bes,
2) —g e SforallacsS, and
3)a-be Sforalla, b c 8.

This theorem says that in order to prove a subset S of a ring R is a sub-
ring of R, one needs only to prove that addition and multiplication are
closed on S and that every element of S has an additive inverse in S. The
set .S “inherits” the other essential properties of a ring from R. The proof
of this theorem is simple and is left as an exercise. Note that (1) and (2)
simply state that S is a subgroup of R under addition.

- A comparison of examples shows that subrings do not necessarily inherit
the property of having a unity element, for the ring £ of even integers is a
subring of the ring 7 of all integers, and 7 has a unity element, whereas £
does not.. On the other hand, every subring of a commutative ring is com-
mutative. To see this, let .S be a subring of a commutative ring R and let
a, b be elements of S. Since S is a subset of R, a and b must also belong to R.
Since R is commutative, ab = ba. Hence, for alla, b € S, ab = ba, so S is
commutative. ' :

Next we will consider a very important type of subring.

3.5.3 Definition. Let R be a ring. A nonempty subset U of R is an ideal
of R if

1) U is a subring of R, and if,

2) forallr R, u € U, ru and ur belong to U.
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In other words, an ideal U of guring R is a subring of R with the addi-
tional property that U “swallows up” multiplication; ie., the product
of an element of U and an element of R must belong to,U. Idealsxplay a role
in the development of ring theory similar to the role played by normal sub-
groups in group theory. However, an intensive study of ideals is beyond the
scope of this course. Hence we will end the discussion of subrings and ideals
by considering some examples and proving a theorem which charactenzes
the ideals of the ring of integers.

Example 1. The ring E of even 1ntegers is an ideal of the ring / of all integers.

We have previously shown that E is a subring of /, so it is sufficient to show
that (2) holds. Let x € E and n € I. Then x = 2m for some integer m.

Hence
xn = (2m)n = 2(mn) and nx = n(2m) = 2(nm),
and so xn and nx both belong to E. Thus E is an ideal of /.
'Example 2. Let R be a commutative ring. Let a be an element of R and let
(a) = {ar|r € R}.

We will show that (a) is an ideal. Two arbitrary elements of (@) are as and
at for s, t € R. Then as + at = a(s + 1) by the distributive law. Hence
as + at € (a). Also, the additive inverse of as is a(—s) since

‘as + a(—s) = a(s + (—=s)) = a-0=0.
Moreover, a(—s) € (a). Finally,
(as)at) =a(s(ar)) € (a).

Hence, by Theorem .5.2, (a) is a subring of R. Now let » € R and as € (a).

Then
r(as) = (ra)s = (ar)s = a(rs) € (a),
and 5
(as)r = a(sr) € (a).
Hence (a) is an ideal. Geres
This ideal (a) is important enough to warrant a special name.

3.5.4 Definition. Let R be a commutative ring and let a € R. The ideal
(a) = {ar|r € R} is called the principal ideal generated by a.

Principal ideals are often associated with. commutative rings which have
a unity element, for in that case a € (a). This may not be true if the ring does
not have a unity element. As we will see in Theorem 3.5.5, every ideal in-/
is a principal ideal. But first, another example.

Example 3. Let R be a ring with unity element. If U is an ideal of R such
that 1 € U, then U = R. For, clearly, U € R. Now let r be an arbitrary
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element of R. Since U is an ideal and | Ur=r-1€lU. ThusRcU
and hence R = U, as claimed. :

The next theorem tells us that every idealp&’the ring / of all integers with
ordinary addition and multiplication is a principal ideal.

3.5.5. Theorem Every ideal of the ring of integers is principal.

Proof. Let U be an ideal of I. We must show that U = (v) for some v € 1.
If U consists of the zero element alone, then U = 0) =‘{'D “r|rel}, and
hence U is principal. Thus we now assume that U contains a nonzero integer,
say u. If u is negative, then —u € U and —u is positive. Hence there is a
smallest positive integer in U. We know such a “smallest” positive integer v
exists since the set of positive integers in U is nonempty.

We want-to show that U = (v). Clearly (v) C U. Letw e U. By the
division algorithm (Lemma 1.6.1), there exist integers ¢, » such that
w = quv+ rand0 < r < v. Butsince Uisanideal andv € U, we must have
gve U, and thus » = w —gv € U. If r # 0, then we have r € U and
0 < r < v, contradicting the fact that v is the smallest positive integer in U.
Hence r» must be zero. This implies that w = qu; hence w € (v). Since w
is an arbitrary element of U, this proves that U C (v). Hence U = (v),
proving the theorem.

3.5.6 Exercises

1. Prove Theorem 3.5.2.
2. Let L be the set of all 2 X 2 matrices of the form

a 0
b 0
where a, b € I. Show that L is a subring of the ring M of all 2 X 2 matrices

discussed in Example 3, Section 3.3. Is this subring an ideal ?

3. a) Let 4 and B be subrings of a ring R. Prove that 4 N B is a subring.
b) If 4 and B are ideals of R, prove that A N B is an ideal._

. 4. If 4 and B are ideals of a ring R, define 4 + B = {a+blac 4, be B .
Prove that 4 + B is an ideal.

5. Recall the ring C of continuous functions on [0, 1] of Example 6, Section 3.3.
Let D = {feC|f() = 0}.
a) Prove that D is an ideal of C.
b) Prove that the only proper ideal of C which contains D is C itself.

6. Let R be a ring and let U be an ideal of R. Let R/U be the set of all (additive)
left cosets of U in R; that is,

| | RIU= [r 4+ U[reR.
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Define addition and multiplication on R/ U as follows:

G+ D+Gc+U)=0+0+TU

and ' ' '
e+ G+ U=+ U
forall r, s € R. _
a) Prove in detail that this makes R/U into a ring.
b) Point out where you make use of the fact that U is an ideal of R.
¢) ‘What properties could R have that will always remain as properties of R/U?
For instance, will R commutative imply R/U commutative?

3.6 HOMOMORPHISMS

In Section 2.7, we defined and discussed homomorphisms between two
groups. Homomorphisms were defined as those mappings between two
groups that preserved the binary operations on those groups. Since rings
have two binary operations defined on them, rather than one, it is not un-
usual that a homomorphism between two rings must preserve both the addi-
tion and multiplication of the rings.

3.6.1 Definition. Let R and S be rings. A (ring) homomorphism is a
mapping o from R to S such that

(D . a(a + b) = a(a) + ab)
and .
) a(a - b) = aa) - a(b)

Soralla, b € R.

The name ‘“homomorphism” is used for mappings between groups and
between rings. No confusion should arise, however; one simply understands
that Definition 3.6.1 applies when one is speaking of rings and Definition
2.7.1 applies: when one is speaking of groups. To emphasize the fact that
the algebraic objects in question are groups or rings, one may use the names
“group homomorphism” or “ring homomorphism” for “homomorphism.”
In (1) above, the addition on the right-hand side is that of the ring S, whereas
the addition on the left-hand side is that of the ring R. Similarly, @ - b in (2)
means multiplication in R and a(a) - «(b) means multiplication in S.

Observe that (1) simply states that « is a group homomorphism from the
~ additive group of R into the additive group of S. Hence the results of Sec-
tion 2.7 apply. In particular, the following theorem is simply a restatement of

Theorem 2.7.3.
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3.6.2 Theorem. Let R and S be rings and let o be a homomorphism from R

to S. Then ‘

1) «(0) = 0 and

2) forallr € R, a(—r) = —a(r).

3.6.3 Definition. Let R and S be rings and let « be a homomorphism from

R 1o S.

1) Im(a) = {s € S| a(r) = s for some r € R} is called the image set
under «a.

2) Ker(e) = {r € R|a(r) = 0} is called the kernel of .

3) If eis onto S, then a is called an epimorphism.

4) If «a is one-to-one, then o is called a monomorphism.

5) If a is both an epimorphism and a monomorphism, then « is called an
isomorphism.

It is important to notice that the kernel of a ring homomorphism is the
set of elements whose image is zero, the additive identity of the ring. Con-
sequently, the kernel of a ring homomorphism is just the kernel of the group
homomorphism between the additive groups of the rings. Therefore, by
Theorem 2.7.3, the kernel of a ring homomorphism is an abelian subgroup
of the additive group of the ring on which the homomorphism is defined.
In fact, the following theorem is evident from the definitions given above and
the results obtained in Section 2.7.

3.6.4 Theorem. Let o be a homomorphism from the ring R to the ring S

Then the following are true.

1) Im(e) is a subring of S.

2) Ker(a) is a subring of R.

3) a is an epimorphism if and only if Im(a) = S.

4) « is a monomorphism if and only if Ker(a) = {0).

The only assertion of this theorem which has not been proved previously
is that Im(a) and Ker(a) are closed with respect to the multiplications in .S
and R respectively. The proof of this is left as an exercise.

3.6.5 Theorem. Let o be an isomorphism from a ring R onto a ring S.

1) The ring R has a unity element if and only if S has a unity element.

2) Suppose R has a unity element. Then R is a division ring if and only if

S is a division ring.
3) The ring R is commutative if and only if S is commutative.

Proof. We will prove (1) and leave the proof of (2) and (3) as exercises.
Suppose R has a unity element e. Let s € S: since « is an epimorphism,
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there exists » € R such that a(r) = s. Then r-e = e-r = r and hence,

since « is a homomorphism,

s=alr) = a(r-e) = a() ale) = s ale)
and

s=a(r) = ale r) = ale) - a(r) = ale) - s.
Since s is an arbitrary element of S, this proves that a(e) is the unity element
of S.

Conversely, suppose that S has a unity element e’. Since « is an iso-

morphism, there exists a unique e € R such that a(e) = e¢’. Let r € R.
Then, since « is a homomorphism,

a(r-e) = a(r) - ale) = a(r)- e = ar).

Since « is one-to-one, this implies that » - e = r. Moreover, a(e - r) = a(r)
and so e - r = r. Hence e is the unity element of R.

The concept of isomorphism between two rings is important enough
to deserve additional comment. If R and S are isomorphic rings, then there
is a one-to-one mapping from R onto S, and furthermore, this mapping
preserves the additive and multiplicative structure. In addition, Theorem
3.6.5 shows that R and S have essentially the same properties. In other words,
R and S are essentially the same rings; the only difference is in the naming
of the elements of each. Moreover, quite often in modern algebra, one
identifies the elements of R and the elements of S; i.e., no distinction is made
between elements of R and elements of .S since they differ only in name.

3.6.6 Exercises

Let R and S denote arbitrary rings.

1. Prove that the mapping a: R — S defined by a(r) = O forallr € Risa homo-
morphism. What is Ker(a) and Im(c)?

2. Let B B

P={m+nv2|mnel} and M= {m—nVv2|mnel;.

We have seen that P and M are rings with the usual multiplication and addition.
Define a mappinga: P — Mbya(m + n\/2) = m — nv/2forallm + n\/2€EP.
Prove or disprove that a is a monomorphism.

3. Recall the rings K and 7T of Exercise 1(c) and (d), Section 3.3.1. Define a map-

ping B: K — T by
a b
B ((O c)) = (a, b, c).

Prove that 3 is an isomorphism.
4. If « is a homomorphism from R to S, prove that
a) Ker(a) is an ideal of R, and b) Im(e) is a subring of S.
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. Let « be an isomorphism from R onto S. Let e and ¢’ denote the unity elements
of Rand S respectively. If an element € R has a multiplicative inverse r=1
prove that a(r—1) = (a(r)—1. Using this fact, prove Theorem 3.6.5 (2).

6. Prove Theorem 3.6.5 (3).

7. If « is an epimorphism from R onto S, and if U is an ideal of R, then a(U) =
{a) | u € U} is an ideal of S.

n
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