Group theory

In this lecture we give outline and it is not limited about group theory which we must take it in this course

Syllabus:

- 1- Group, definition and examples explain it.
- 2- Some important theories on group and properties of its .
- 3- Important group, symmetric group, group of integer number modulo n (i.e. Z_n).
- 4- A belian group.
- **5-** Cyclic group.
- **6-** Subgroups .
- 7- Centre of group.

References:

- **1-** Introduction to modern algebra by David Burton .
- 2- Group theory by M.Suzuki.
- 3- A first course in abstract algebra by J.B.Fraleigh .
- . نظریة الزمر تألیف د. باسل عطا و د. عادل غسان 4-

I- Definition (1.1): Semigroup

Let A be anon-empty set . A binary operation * is a function from the Cartesian product $A \times A$ into A . This means that * : $A \times A \longrightarrow A$ is a binary operation iff :

1- $a*b \in A$ for each $a,b \in A$ (closure condition).

2- If $a,b,c,d \in A$ such that a=c, and b=d, then a*b=c*d (well-define condition).

Exampes(1.2):

- **1-** $(+, -, \times)$ are binary operations on R, Z, Q, \mathbb{C} .
- **2-** (+ ,) are not binary operation on odd integer number .
- **3-(**-) is not binary operation on N (natural number).

Homework:

- **1-** Let a*b = a+b+2 for each $a,b \in Z$. Is * binary operation on Z.
- **2-** $a \oplus b = a^b$, for each $a,b \in Z$.
- **3-** a*b = a+b-2 , $a,b \in N$.

Definition(1.3): Mathematical system

A mathematical system is a non-empty set of elements with one or more binary operation defined on this set .

Examples(1.4):

- **1-** (R, +), (R, -), $(R-\{0\}, \div)$.
- **2-** (R, +,×) , (R, ÷, ×) , (N,+) and (Z_e , × , +) are mathematical systems .
- **3-** (N,-),(R, \div), (Z_{Odd}, +,-) are not mathematical systems.

Definition(1.5): Semigroup

A semigroup is a non-empty set with an associative binary operation * defined on A .

Examples(1.6):

- 1- (Z, ×) , (Z,+) , (N,+),(N,×) , (Z_e , +) and (Z_e , ×) are semigroups .
- **2-** $(Z_{Odd}, +), (Z, -), (Z_e, -)$ and $(R-\{0\}, \div)$ are not semigroups.

Definition(1.7): Group

A group is a non-empty set with binary operation * define on its such that it is satisfy the following :

- **1-** The closure : for each $a,b \in G$ we have $a*b \in G$.
- **2-** The associative : for each a,b,c \in G , we have (a*b)*c = a*(b*c)
- **3-** The identity element : there exists identity element $e \in G$ such that for each $a \in G$, we have a * e = e*a = a.
- **4-** The inverse: for each $a \in G$, there exists $a^{-1} \in G$ such that $a^* a^{-1} = a^{-1} a^* = e$.

Note: Every group is semigroup, but the converse is not true in general for example (N,+) is semgroup but not group because there is no inverse element belong to N.

Definition(1.8): commutative group (Abelian group)

A group is called commutative iff a *b = b*a for each a, $b \in G$.

Examples(1.9):

- **1-** Each of (Z,+) , (Z_e , +) , (R,+) , (Q,+) and (\mathbb{C} , +) are commutative group .
- **2-** $(\{1,0,-1,2\},+)$ is not group
- **3-** $(\{-1,1\}, \bullet)$ is a commutative group.

Homework:

1- Let $G = \{a,b,c,d\}$. Define * a binary operation on G as the following table shows :

*	a	b	С	d
a	a	b	c	d
b	b	С	d	a
c	c	d	a	b

d	d	a	b	c

Is (G,*) commutative group or not.

- **2-** Let $G = \{1,-1,i,-i\}$ be a mathematical system with multiplication (i.e. (G, \bullet)). Show that G is commutative group .
- **3-** Is (Z, *) group, such that a*b = a+b+2 for each $a,b \in Z$.

Definition(1.9): Symmetric group

Let A be a non-empty set, then every (1-1) and onto map from A into itself is called permutation or symmetric on A, and it is denoted by symm(A).

Example(1.10):

- 1- $(Symm(A), \circ)$ is group . (H.W.) .
- **2-** Let A = $\{1,2,3\}$ be a set and $S_3 = \{f_1,f_2,f_3,f_4,f_5,f_6\}$. (S_3,\circ) is symmetric group,

where
$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$
, $f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$, $f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$, $f_4 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$

$$f_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, f_6 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}.$$

Definition(1.11): Let $a,b \in Z$, $n \in N$, then we said that a congruent to b modulo n iff a-b=nk, where $k \in Z$, and denoted by $a \equiv b$ or $a \equiv b \pmod n$.

Examples(1.12):

1- Is
$$30 \equiv 2 \pmod{4}$$
.

Sol. :
$$30 - 2 = 28 = 4 *7$$
, so $k = 7 \in Z$ and $30 \equiv 2 \pmod{4}$

2- Is
$$-5 \equiv 2 \pmod{7}$$
 . **(H.W.)**

3- Is
$$3 \equiv 1 \pmod{3}$$
. **(H.W.)**

Definition(1.13): Congruence class

Let $a \in Z$, then the set of all integer congruent to a modulo n is denoted by [a] , where

 $[a] = \overline{a} = \{ x \in Z : x \equiv a \pmod{n} \}$. Then [a] (or \overline{a}) is called congruence class of a.

Examples(1.14):

1- If n = 3, then find [1], [7]. (**H.W.**)

2- If n = 4, then find [-2].

Sol.: $[-2] = \{ x \in \mathbb{Z} : x \equiv -2 \pmod{4} \} = \{ x \in \mathbb{Z} : x = -2 + 4k, k = 0, \pm 1, \pm 2, \ldots \} = \{ \ldots, -10, -6, -2, 2, 6, 10, \ldots \}.$

Definition(1.15): Division algorithm

Let $a,b \in Z$ such $b \neq 0$, then there exists $r,t \in Z$ such that a = bt + r, $0 \le r < |b|$.

Note:

1- The set of all congruence classes is denoted by Z_n , where Z_n = { [0] , [1] , ... , [n-1]}.

2- $(Z_n, +_n)$ is group . **H.W.**

3- $(Z_n - \{0\}, \times_n)$ is group if n is prime number.

Example(1.16):

1- Show that $(Z_4, +_4)$ is a commutative group.

Some properties of group:

Theorem(1.17): If (G, *) is a group, then:

1- The identity element of a group (G,*) is unique.

2- The inverse element of each element of G is unique.

 $3-e^{-1}=e$.

4- $(a^{-1})^{-1} = a$, for each $a \in G$.

5- $(a*b)^{-1} = b^{-1} * a^{-1}$ for each $a, b \in G$.

Proof: H.W.

Theorem(1.18):Cancellation laws

Let (G, *) be a group, then for each $a,b \in G$:

1- If a*b = a*c, then b = c.

2- If b*a = c*a, then b = c.

Proof:

1- Let a ,b,c \in G , then $a^{-1} \in$ G

 $a^{-1}*(a*b)=a^{-1}*(a*c)$. As * is associative , so we have $(a^{-1}*a)*b=(a^{-1}*a)*c$. Thus, e*b=e*c which implies that b=c .

Theorem(1.19): In a group (G,*), the equations a*x = b and y*a = b have unique solutions.

Proof: H.W.

Theorem(1.20): Let (G,*) be a group . Then :

1- $(a*b)^{-1} = a^{-1}*b^{-1}$ iff G is abelian group.

2- If $a = a^{-1}$, then G is commutative group . The converse of this part is not true in general (find example H.W.).

Proof: H.W.

Definition(1.21): Let (G, *) is a group . The power of $a \in G$, is defined by :

1- $a^k = a * a * ... * a (k-times)$.

2-
$$a^0 = e$$
.

3-
$$a^{-k} = (a^{-1})^k$$
, $k \in \mathbb{Z}_+$.

4-
$$a^{k+1} = a^k * a , k \in \mathbb{Z}_+ .$$

Examples(1.22):

1- In (R, +), we have:

$$3^{0}=0$$
, $3^{2}=3+3=6$, $3^{-4}=(3^{-1})^{4}=(-3)^{4}=-3+(-3)+(-3)+(-3)=-12$.

2- In (R,•), we have :

$$2^0 = 1$$
, $2^3 = 2 *2*2 = 8$, $2^{-4} = (2^{-1})^4 = (1/2)^4 = 1/16$.

Definitions(1.23):

- **1- Order of group :** The order of a finite group (G,*) is the number of all its elements and we denoted by |G| (or O(G)).
- **2- Order of element :** The order of an element $a \in G$ is the least positive integer n such that $a^n = e$, where e is the identity element of G. We denoted order of a by |a| (or O(a)).

Example(1.24):

If (G, \bullet) is a group, such that $G = \{1, -1, i, -i\}$, then |G| = 4. |a| = 2 if a = -1.

Homework:

- **1-** Find order of the rest of the group's elements G above .
- 2- Find the order of each element of the following groups (if exists):

$$(Z_6\,,\,+_6)\,,\,(Z_8\,,\,+_8)$$
 and $(S_3\,,\,\circ)$.

II- Subgroups

Definition(2.1): Let (G,*) be a group and $A \subseteq G$, A is a non-empty subset of G. Then (A,*) is a subgroup of (G,*) if (A,*) is itself group.

Or:

Let (G,*) be a group and $A\subseteq G$, A is a non-empty subset of G. Then (A,*) is a subgroup of (G,*) if :

- **1-** For each a,b \in A, we have $a*b \in$ A.
- **2-** $e \in A$, e is the identity element of G.
- **3-** For each $a \in A$, there exists $a^{-1} \in A$.

Remark : Each group (G,*) has at least two subgroups $(\{e\},*)$ and (G,*), which are called trivial subgroups and any subgroup different from these subgroups known proper subgroup.

Examples(2.2):

- **1-** $(Z_e, +)$ is subgroup of the group (Z, +).
- **2-** (Q,+) is not subgroup of (R,\bullet) .
- **3-** A={[0], [2],[4]} $\subseteq Z_6$, then (A, +₆) is subgroup of Z_6 .

Theorem (2.3):

Let (G, *) be a group and $A \neq \varphi$, $A \subseteq G$. Then, (A, *) is a subgroup of (G, *) iff $a*b^{-1} \in A$ for each $a, b \in A$.

Proof : Let (A,*) is a subgroup and $a,b \in A$, then $a,b^{-1} \in A$ and so $a*b^{-1} \in A$ (by closure property). Conversely, let $a*b^{-1} \in A$. As $A \neq \varphi$, so there exists $b \in A$ which implies that $b*b^{-1} \in A$. Hence, $e \in A$. Now, since $b \in A$ and $e \in A$, so $e*b^{-1} \in A$

and then $b^{-1} \in A$. Finally, let $a \in A$ and $b^{-1} \in A$, so $a^*(b^{-1})^{-1} \in A$ which implies that $a^*b \in A$. Therefore, $(A,^*)$ is subgroup of $(G,^*)$.

Example(2.4):

Let (Z,+) be a group and $A = \{5A, a \in Z\}$. Then A is subgroup of Z.

Theorem(2.5): If $(A_i, *)$ is the collection of subgroups of (G, *), then $(\bigcap A_i, *)$ is also subgroup of G.

Proof:

1- \bigcap $A_i \neq \emptyset$, since there exists $e \in A_i$, for each i, so $e \in \bigcap A_i$.

2- Let $x,y \in \cap A_i$, then $x,y \in A_i$ for each i. Thus $x^*y^{-1} \in A_i$ for each i (since each A_i is subgroup). Then $x^*y^{-1} \in \cap A_i$ and $(\cap A_i, *)$ is subgroup of G.

Theorem (2.6): Let $(A_1,^*)$ and $(A_2,^*)$ are two subgroups of $(G,^*)$, then $(A_1 \cup A_2,^*)$ is subgroup of $(G,^*)$ iff $A_1 \subseteq A_2$ or $A_2 \subseteq A_1$.

Proof: Let $A_1 \cup A_2$ is subgroup and $A_1 \nsubseteq A_2$ and $A_2 \nsubseteq A_1$. Then, there exists $a \in A_1$ and $a \notin A_2$ and $b \in A_2$, $b \notin A_1$. This implies that $a,b \in A_1 \cup A_2$ and then $a*b^{-1} \in A_1 \cup A_2$. Thus, $a*b^{-1} \in A_1$ or $a*b^{-1} \in A_2$. Now, $a,b \in A_1$ or $a,b \in A_2$ and this means that $A_1 \subseteq A_2$ or $A_2 \subseteq A_1$. Conversely, let $A_1 \subseteq A_2$ or $A_2 \subseteq A_1$. If $A_1 \subseteq A_2$, then $A_1 \cup A_2 = A_2$. If $A_2 \subseteq A_1$, then $A_1 \cup A_2 = A_1$. Therefore $(A_1 \cup A_2, *)$ is subgroup of G.

Note: $(A_1 \cup A_2, *)$ is not subgroup in general unless the condition of theorem (2.5) is satisfy. For example: Let $R^2 = R \times R$, $A = \{(a,0) \mid a \in R\}$ and $B = \{(0,b) \mid a \in R\}$. Then, (A,+) and (B,+) are subgroups of $R \times R$, but $A \cup B$ is not subgroup, since $(1,0) \in A$ and $(0,1) \in B$, but $(1,1) \notin A \cup B$.

Definition(2.7): Let (G,*) be a group and (A,*), (B,*) are two subgroups of G, then the product of A and B is the set $A*B = \{ a*b : a \in A , b \in B \}$.

Theorem(2.8): Let (G, *) be group and (A, *), (B, *) be two subgroups of G, then:

1- $A*B \neq \varphi$ and $A*B \subseteq G$.

2- If (G,*) is commutative group, then (A*B,*) is a subgroup of G.

Proof: H.W.

Note: $A*B \neq B*A$.

Example(2.9):

1- In $(Z_8, +_8)$, let $A = \{[0], [6]\}$ and $B = \{[0], [4], [8]\}$. Then $A+B = \{[0], [4], [8], [6], [2]\}$.

2- Is $H = \{ [0], [1], [2] \}$ subgroup of $(Z_4, +_4)$.

3- Is $A = \{f_1, f_2, f_3\}$ subgroup of (S_3, \circ) .

Definition (2.10): Center of the group

The center of the a group (G,*) which is denoted by C(G) is equal to the following set: $\{c \in G : c*x = x*c, \forall x \in G\}$.

Note:

The set of the center of a group is always non-empty set since there exists $e \in G$ such that $a^*e = e$ *a for each $a \in G$.

Example(2.11):

1- In the group $(R-\{0\}, \bullet)$, C(R) = R (since R is commutative group with multiplication) .

2- In the group (S_3, \circ) , $C(S_3) = f_1$ where f_1 is the identity element.

Theorem(2.12): Let (G,*) be a group. Then (C(G),*) is a subgroup of (G,*).

Proof: $C(G) \neq \varphi$ since $e \in C(G)$. Let $a,b \in C(G)$.

If $a \in C(G)$, so a*x = x*a, $\forall x \in G$.

If $b \in C(G)$, so b *x=x*b, $\forall x \in G$.

$$(a*b^{-1})*x = a*(b^{-1}*x) = a*(x^{-1}*b)^{-1} = a*(b*x^{-1})^{-1} \text{ (since } b \in C(G) \text{)}$$

$$= a*(x*b^{-1}) = (a*x)*b^{-1} = (x*a)*b^{-1} \text{ (since } a \in C(G))$$

$$= x*(a*b^{-1}).$$

Thus, $a*b^{-1} \in C(G)$ and C(G) is subgroup of G.

Theorem(2.13): Let (G, *) be a group. Then C(G) = G iff G is commutative group.

Proof: H.W.

Definition(2.14): Cyclic group

Let (G, *) be a group and $a \in G$, the cyclic subgroup of G generated by a is denoted by (a) (or <a>) and defined as follows : { $a^k : k \in Z$ } where a is called generator of (a).

Examples(2.15): In $(\mathbb{Z}_9, +_9)$. Find the cyclic subgroup generated by [2], [3], [1].

Sol. :
$$\langle [3] \rangle = \{ [3]^k : k \in \mathbb{Z} \} = \{ \dots, [3]^{-2}, [3]^{-1}, [3]^0, [3], [3]^2, \dots \} = \{ [0], [3], [6] \}$$

$$\langle [1] \rangle = \{ [1]^k : k \in Z \} = \{ \dots, [1]^{-2}, [1]^{-1}, [1]^0, [1], [1]^2, \dots \} = \{ [0], [1], [2], [3], [4], [5], [6], [7], [8] \} = Z_9.$$

Homework:

1- In (Z,+), find cyclic group generated by 1, -1, 2.

2- In $(Z_6,+_6)$, find cyclic subgroup generated by [5], [2].

Theorem(2.16): Every cyclic group is commutative.

Proof: H.W.

Note: The converse of theorem(2.17) is not true in general, for example:

 $G=(\{e\ , a\ , b, c\ \}, ^*)$ such that $a^2=b^2=c^2=e$. Since $a^2=a^*a=e$, so $a=a^{-1}$. Similarly for other element of G. Thus $x=x^{-1}$, for each $x\in G$ and then G is commutative group. But G is not cyclic since:

$$\langle e \rangle = \{e\} \neq G$$
.

$$< a > = \{a^k : k \in Z \} = \{e,a\} \neq G.$$

$$< b > = \{b^k : k \in Z \} = \{b,e\} \neq G.$$

 $\langle c \rangle = \{c^k : k \in Z \} = \{c,e\} \neq G$. Thus G is not cyclic.

Theorem(2.17): In a group G, $< a > = < a^{-1} >$, $\forall a \in G$.

Proof: H.W.

Theorem (2.18): Every subgroup of cyclic group is cyclic.

Proof : Let (G,*) be cyclic group . Then there exists $a \in G$ such that $G = \langle a \rangle = \{a^k : k \in Z \}$. Let (H,*) be subgroup of G. Now , if H = G , then H is cyclic group .

If $H = \{e\}$, then $H = \langle e \rangle$ is cyclic. If $H \neq G$ and $H \neq \{e\}$, then H is proper subgroup of G. Let $x \in H$, so $x = a^m$, $m \in Z$ and $x^{-1} \in H$, then $x^{-1} = a^{-m}$, $-m \in Z$.

Let m be the least positive integer such that $a^m \in H$. To prove $H = \langle a^m \rangle = \{(a^m)^g : g \in Z \}$. Let $y \in H$, so $y = a^s$, $s \in Z$. By division algorithm of s and m, we have s = mg + r, r = s - mg. Now, $a^r = a^s * (a^m)^{-g}$, $0 \le r < m$. Then $a^r \in H$, but $0 \le r < m$, so r = 0 and s = mg. Thus $a^s = (a^m)^g \in \langle a^m \rangle$ which implies that $y = a^s \in \langle a^m \rangle$ and $H \subseteq \langle a^m \rangle \dots (1)$.

Let $x \in \langle a^m \rangle$, then $x = (a^m)^g$ such that $g \in Z$. $a^m \in H$, then $(a^m)^g \in H$. Thus, $x \in H$, then $\langle a^m \rangle \subseteq H$...(2). From (1) and (2), we have $H = \langle a^m \rangle$ and (H, *) is cyclic subgroup.

Examples (2.19):

1- Find all subgroups of $(Z_{14}, +_{14})$.

$$m = 1,2,7,14$$
.

$$m = 1 = \langle [1] \rangle = Z_{14}$$
.

$$m = 2 = \langle [1]^2 \rangle = \{ [0], [2], [4], [6], [8], [10], [12] \}.$$

$$M = 7 = \langle [1]^7 \rangle = \{[0], [7]\}$$
.

$$M = 14 = <[1]^{14}> = \{[0]\}$$
.

2- Find all subgroups of $(\mathbb{Z}_7, +_7)$. **H.W.**

Definition(2.20): A positive integer c is said to be greatest common divisor of two non-zero numbers x,y iff:

- 1- c/x and c/y.
- 2- If a/x and a/y, then a/c.

Thus, g.c.d(x,y) = c.

Examples(2.21):

1- Find g.c.d(12,18)=6 . Since 6/12 and 6/18 .

Also 3/12 and 3/18 which implies that 3/6. Finally 1/12 and 1/18 which implies that 1/6.

2- Find g.c.d(12,24) . **H.W.**

Note: If (G,*) is finite cyclic group of order n generated by a , then the generator of G is a^k such that g.c.d(k,n)=1.

Example(2.22): Find all generators of $(Z_6, +_6)$.

Sol.: g.c.d(k,6)=1, k = 1,2,3,4,5.

g.c.d(1,6)=1 , g.c.d(2,6) $\neq 1$, g.c.d(3,6) $\neq 1$, g.c.d(4,6) $\neq 1$, g.c.d(5,6)=1 . Thus , the generators of $Z_6=\{[1]$, [5] } .