Group theory

In this lecture we give outline and it is not limited about group theory which we must

take it in this course

Syllabus :

1- Group , definition and examples explain it .

2- Some important theories on group and properties of its .
3- Important group , symmetric group , group of integer number modulo n (i.e. Z,) .
4- A belian group .

5- Cyclic group .

6- Subgroups .

7- Centre of group .
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I- Definition (1.1) : Semigroup

Let A be anon-empty set . A binary operation * is a function from the Cartesian

product AXA into A . This means that * : AXA — A is a binary operation iff :

1- a*b € A for each a,b € A (closure condition) .



2- Ifa,b,c,d € Asuchthata=c,and b =d, then a*b = c*d (well-define condition) .
Exampes(1.2):

1- (+, -, X ) are binary operationsonR ,Z,Q, C.

2- (+, -) are not binary operation on odd integer number .

3-( -) is not binary operation on N ( natural number ) .

Homework :

1- Let a*b = a+b+2 for each a,o € Z . Is * binary operation on Z .
2-aPb=a,foreachab € Z.

3-a*b=ath-2 ,ab €N.

Definition(1.3): Mathematical system

A mathematical system is a non-empty set of elements with one or more binary

operation defined on this set .

Examples(1.4):

1-(R,+), (R, -), (R-{0},+).

2- (R, +,%), (R, =, X), (N,+) and ( Z, %, +) are mathematical systems .

3- (N,-) ,(R, ), (Zoga , *+,-) are not mathematical systems .

Definition(1.5): Semigroup

A semigroup is a non-empty set with an associative binary operation * defined on A .
Examples(1.6):

1- (Z, ), (Z,%) , (N,*),(N,x) , (Z., +) and ( Z, , x) are semigroups .

2- (Zogd » 1), (Z,-) ,(Ze, -) and (R-{0},~) are not semigroups .
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Definition(1.7): Group

A group is a non-empty set with binary operation * define on its such that it is satisfy

the following :
1- The closure : for eacha,o € G we havea*b € G .
2- The associative : for each a,b,c € G , we have (a*b)*c = a*(b*c)

3- The identity element : there exists identity element e € G such that foreacha € G

.wehavea*e=e*a=a.
4- The inverse : foreacha € G |, there existsa® € G suchthata*a®*=a'*a=e.

Note: Every group is semigroup , but the converse is not true in general for example

(N,+) is semgroup but not group because there is no inverse element belong to N .
Definition(1.8): commutative group (Abelian group)

A group is called commutative iff a *b = b*a for eacha, b € G

Examples(1.9):

1- Eachof (Z,4), (Z¢, +), (R,+), (Q,+) and (T, +) are commutative group .

2- ({1,0,-1,2},+) is not group

3- ({-1,1}, ) is a commutative group .

Homework :

1- Let G = {a,b,c,d} . Define * a binary operation on G as the following table shows :

* a

b
b c

a
b b c d
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Is (G,*) commutative group or not .

2- Let G ={1,-1,i,-i} be a mathematical system with multiplication ( i.e. (G,*)) . Show

that G is commutative group .
3-1Is(Z,*) group, such that a* b = a+b+2 for eacha,b € Z.
Definition(1.9): Symmetric group

Let A be a non-empty set , then every (1-1) and onto map from A into itself is called

permutation or symmetric on A , and it is denoted by symm(A) .
Example(1.10):
1- (Symm(A), o) is group . (HW.) .

2- Let A={1,2,3} beasetand S; = { f,f, {3 ,f4,f5 ,f¢ } . (S5, ©) is symmetric group ,

whereflz(i g g),fzz(i § 3)’f3:(§ % i)’f“:(é i g)

=z 3 155G 1 )

Definition(1.11): Leta,b € Z, n € N, then we said that a congruent to b modulo n iff

a-b =nk , where k € Z , and denoted by a = b or a = b(mod n) .
Examples(1.12):

1-1s 30 = 2(mod 4) .

Sol.:30-2=28=4*7,s0k =7 € Zand 30 = 2(mod 4)
2-1s-5=2 (mod 7). (H.W.)

3-1s3=1(mod 3) . (H.W.)



Definition(1.13): Congruence class

Leta € Z, then the set of all integer congruent to a modulo n is denoted by [a] , where
[a]=a={xeZ:x=a(modn)}.Then[a] (ora) is called congruence class of a .
Examples(1.14):

1- If n =3, then find [1], [7] . (H.W.)

2-1fn =4, then find [-2] .

Sol.: [[2]={ x€eZ:x=-2(mod4)}={xeZ:x=-2+4k ,k=0,+1,+£2,...} =
{..,-10,6,-2,2,6,10,...} .

Definition(1.15) : Division algorithm

Leta,b € Zsuchb # 0, then there exists r,t € Z suchthata=bt+r, 0<r<|b]| .
Note :

1- The set of all congruence classes is denoted by Z,, , where Z,= { [0], [1], ..., [n-

11}

2- (Z,, +n) isgroup . HW.

3- (Z,-{0}, x;,) is group if n is prime number .
Example(1.16) :

1- Show that (Z4 , +4) is a commutative group .
Some properties of group :

Theorem(1.17): If (G, *) isagroup , then :

1- The identity element of a group (G ,*) is unique .

2- The inverse element of each element of G is unique .
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4- (@)'t=a ,foreachaeG.

5- (a*b)* =b* *a' foreacha,be G.

Proof : HW.

Theorem(1.18):Cancellation laws

Let (G, *) be agroup, then foreacha,b e G :
1- Ifa*b =a*c,thenb=c.

2- Ifb*a=c*a,thenb=c.

Proof :

1- Leta ,bce G, thenate G

a’* (a*b) = a™ *(a*c) . As * is associative , so we have (a™* *a)*b = (@™ *a)*c . Thus,
e *b = e *c which implies thatb = c .

Theorem(1.19): In a group (G,*) , the equations a*x = b and y *a = b have unique

solutions .

Proof : HW.

Theorem(1.20): Let (G,*) be agroup . Then :
1- (a*b)* = a™* b iff G is abelian group .

2- If a=a’, then G is commutative group . The converse of this part is not true in
general (find example H.W. ).

Proof: H.W.

Definition(1.21) : Let (G,*) isa group . The power of a € G, is defined by :



1- a“=a *a*...*a (k-times) .

3-a*=@"Y), kez,.

4-dt=g"*a ke z,.

Examples(1.22) :

1-In (R, +), we have :

3°=0,3°=3+3=6, 3" = (31" = (-3)* = -3+(-3)+(-3)+(-3) = -12.
2-In (R,*) , we have :

2°=1,28=2**2=8,2"=(2Y)" = (1/2)*= 1/16 .
Definitions(1.23) :

1- Order of group : The order of a finite group (G,*) is the number of all its elements
and we denoted by | G | (or O(G)) .

2- Order of element : The order of an element a € G is the least positive integer n
such that a" = e , where e is the identity element of G . We denoted order of a by | a | (
orO(a)).

Example(1.24):

If (G ,*) is a group , such that G = { 1,-1,i,-i }, then | G | =4. | a| =2ifa=-1.
Homework:

1- Find order of the rest of the group's elements G above .

2- Find the order of each element of the following groups ( if exists) :

(ZG , +6) , (Zg ) +8) and (83, °) .



I1- Subgroups

Definition(2.1) : Let (G,*) be a group and A € G, A is a non-empty subset of G .
Then (A,*) is a subgroup of (G,*) if (A*) is itself group .

Or:

Let (G,*) be a group and A € G, A is a non-empty subset of G . Then (A*) is a
subgroup of (G,*) if :

1- Foreacha,b € A,wehavea*b € A.
2-e € A, eisthe identity element of G .
3- Foreacha € A, there exists a*e A .

Remark :Each group (G,*) has at least two subgroups ({e},*) and (G,*) , which are
called trivial subgroups and any subgroup different from these subgroups known

proper subgroup .

Examples(2.2):

1- (Z. ,+) is subgroup of the group (Z,+) .

2- (Q,*) is not subgroup of (R,*) .

3- A={[0], [2] ,[4] } € Z¢, then (A, +¢) is subgroup of Zg .
Theorem (2.3) :

Let (G, *) beagroupand A # ¢, AC G.Then, (A*) is a subgroup of (G,*) iff a*b™

€ A foreachab eA.

Proof : Let (A*) is a subgroup and a,b € A , then a,b’e A and so a*b™ € A (by
closure property ) . Conversely , leta*b™ € A . As A # ¢ , so there exists b € A which
implies that b *b™ € A . Hence ,e € A. Now , sinceb € Aande € A, so e*b’e A



and thenb™ € A . Finally , leta€ Aand b™ € A, so a*(b™)" € A which implies that
a*b € A . Therefore , (A,*) is subgroup of (G,*) .

Example(2.4):
Let (Z,+) beagroupand A={5A,a € Z}. Then A is subgroup of Z .

Theorem(2.5): If (Ai, *) is the collection of subgroups of (G,*) , then (N A;i, *) is

also subgroup of G .
Proof :
1- N Ai # ¢ , since there existse € A, foreachi,soee N A;.

2- Letx,y € N A; , then x,y € A, for each i . Thus x*y‘l € A, for each i (since each A,
is subgroup) . Then x*y™* € N A;and ( N A;, *) is subgroup of G .

Theorem (2.6): Let (A(,*) and (A,,*) are two subgroups of (G,*) , then (A{UA, , *) is
subgroup of (G*) iff A, S A, orA, C A,

Proof: Let A;UA; is subgroup and A; £ A,and A, € A; . Then, there exists a € A;
anda ¢ A,and b € A, , b € A, . This implies that a,b € A;UA, and then a*b’e
A;UA, . Thus, a*b™* € A, or a*b* € A, . Now, a,b € A, or a,b € A, and this means
that A; € A, or A, € A, . Conversely, let A; € A, or Ay € A, . If A; € A, , then
AUA, = A, . IfA, € A;, then A{UA, = A, . Therefore (A UA,, *) is subgroup of G.

Note: (A;UA,, *) is not subgroup in general unless the condition of theorem (2.5) is
satisfy. For example: Let R> = RxR , A = {(a,0)|a € R} and B = {(0,b)|a € R} .
Then, (A,+) and (B,+) are subgroups of RxR , but AUB is not subgroup , since (1,0) €
Aand (0,1) e B, but (1,1) ¢ AUB.

Definition(2.7): Let (G,*) be a group and (A,*) , (B,*) are two subgroups of G, then
the product of Aand Bistheset A*B={a*h:a€ A,beB}

Theorem(2.8): Let (G,*) be group and (A,*) ,(B,*) be two subgroups of G, then :
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1-A*B# ¢ and A*BC G.

2- If (G,*) is commutative group , then (A*B,*) is a subgroup of G .
Proof : H.W.

Note : A*B # B*A .

Example(2.9) :

1- In (Zg , +g) , let A = {[0] , [6]} and B ={[0],[4].[8]} . Then A+B
={[0],[4],[8].[6].[2]}-

2-1sH={[0], [1],[2]} subgroup of (Z,, +4) .
3- IsA={f,, f,, f3} subgroup of (S3, o) .
Definition (2.10): Center of the group

The center of the a group (G,*) which is denoted by C(G) is equal to the following

set: {ceG:c*x=x*c,VxeGQG}.
Note :

The set of the center of a group is always non-empty set since there exists e € G such

thata*e = e *aforeacha e G.
Example(2.11) :

1- In the group (R-{0},») , C(R) = R (since R is commutative group with

multiplication ) .

2- In the group (Ss, ), C(S3) = f; where f; is the identity element .
Theorem(2.12): Let (G,*) be a group . Then (C(G),*) is a subgroup of (G,*) .
Proof: C(G) # ¢ sincee € C(G) . Leta,b € C(G).

Ifae C(G),soa*x=x*a,VXeEG.
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Ifbe C(G),sob*x=x*b,VXxXeG.
(@*b)*x =a*(b' *x) =a* (x*b)* =a* (b*x™)™* (since b € C(G))
=a*(x*b™) = (@*x)*b™ = (x*a)* b™ (since a € C(G))
=x* (a*b™).
Thus , a*b™* € C(G) and C(G) is subgroup of G .
Theorem(2.13): Let (G,*) be a group . Then C(G) =G iff G is commutative group .
Proof : H.W.
Definition(2.14) : Cyclic group

Let (G,*) be agroup and a € G, the cyclic subgroup of G generated by a is denoted by

(a) (or <a>) and defined as follows : { a“: k € Z} where a is called generator of (a) .
Examples(2.15): In (Zy, +o) . Find the cyclic subgroup generated by [2], [3], [1] .
Sol.: <[B1>={[3]*:kez}={...,[31% , 31", I31°, [3] ,[3]%. ...} = {[0].[31.[6]}

<RI>={[20:kez}=1{..,[21" ,[2I*, [21°, [2] .[2)*, ...} = {[0], [1], [2],
[31,[41[51 , [6] , [7], [8] } = Z5 .

<A ={[:kez}={..., 177, [AI*, [1I°, [1] .[1)*, ...} = {[0], [1], [2],
[31,[41[51 . [6] , [7],[8] } = Z5 .

Homework :

1- In (Z,+) , find cyclic group generated by 1, -1, 2.

2- In (Ze,+¢) , find cyclic subgroup generated by [5] , [2] .
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Theorem(2.16) : Every cyclic group is commutative .
Proof : HW.
Note : The converse of theorem(2.17) is not true in general , for example :

G={e,a,b c}*suchthata®=b’=c*=e.Sincea®=a*a=e,soa=a".
Similarly for other element of G . Thus x = x™ , for each x € G and then G is

commutative group . But G is not cyclic since :
<e>={e}#G.

<a>={a“:k €z}={ea} #G.

<b>={b*:k €Z2}={be} #G.

<c>={c*: k € Z}={c,e} # G . Thus G is not cyclic .
Theorem(2.17) : Inagroup G ,<a>=<a™>,vVa€G.
Proof : H.W.

Theorem (2.18) : Every subgroup of cyclic group is cyclic .

Proof : Let (G,*) be cyclic group . Then there exists a € G such that G = <a> ={a* : k
€ Z }. Let (H,*) be subgroup of G . Now , if H =G, then H is cyclic group .

If H={e},then H= <e>iscyclic. IfH+# Gand H # {e} , then H is proper

subgroup of G. Letx eH,sox=a", meZand x'€H,thenx*=a™,-meZ.

Let m be the least positive integer such thata™ € H . To prove H=<a™ ={(@")’: g €
Z}. LetyeH,soy=a’,s € Z.By division algorithm of s and m, we have s = mg+r
,r=s-mg.Now,a =a’*@")*%,0<r<m.Thena'€ H,but0<r<m,sor=0ands=

mg . Thus a° = (@)’ € <a™> which implies that y=a° € <a™> and H € <a™> ...(1).
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Letx €<a™ ,thenx=(a")? suchthatg € Z.a" € H,then (@™)? € H . Thus, xe H,
then <a™> < H ...(2) . From (1) and (2) , we have H = <a™> and (H,*) is cyclic

subgroup .

Examples (2.19):

1- Find all subgroups of (Z4 , +14) -
m=1,2714.

m=1=<[1]>=Zu.

m =2 = <[1]*> = { [0] ,[2],[4] , [6],[8],[10],[12]}.
M =7 =<[1]>={[0][7]} -

M = 14 = <[1]*> = {[0]} .

2- Find all subgroups of (Z;, +7) . H.W.

Definition(2.20) : A positive integer c is said to be greatest common divisor of two

non-zero numbers X,y iff :

1- c/x and cly .

2- If a/x and aly , then a/c .

Thus, g.c.d(x,y) =c.

Examples(2.21):

1- Find g.c.d(12,18)=6 . Since 6/12 and 6/18 .

Also 3/12 and 3/18 which implies that 3/6 . Finally 1/12 and 1/18 which implies that
1/6 .

2- Find g.c.d(12,24) . H.W.
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Note : If (G,*) is finite cyclic group of order n generated by a , then the generator of G

is a“ such that g.c.d(k,n) = 1 .
Example(2.22): Find all generators of (Zg , +¢) .
Sol. : g.c.d(k,6)=1,k=1,2,3,4,5.

g.c.d(1,6)=1 , g.c.d(2,6)#1 , g.c.d(3,6)#1 , g.c.d(4,6)#1 , g.c.d(5,6)=1 . Thus , the
generators of Zs = {[1], [5] } .
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