Definitions

- Back sight (BS)
 - The <u>first</u> reading from a new instrument stand point (i.e. take the height to the instrument)
- Fore sight (FS)
 - The <u>last</u> reading from the current instrument station (i.e. give the height to a benchmark)
- Intermediate sight (IS)
 - Any sighting that is not a back sight or fore sight

Basic Rules for Leveling

- Always start and finish a leveling run on a Benchmark (BM or TGBM) and close the loops
- Keep fore sight and back sight distances as equal as possible
- Keep lines of sight short (normally < 50m)
- Never read below 0.5m on a staff (refraction)
- Use stable, well defined change points
- Beware of shadowing effects and crossing waters

ODINAFRICA/GLOSS Sea Level Training Course - Oostende, Belgium - 13-24 Nov. 2006

Observation, Field Notes, and Computation

is Cook

Compute levels

Back	Inter	Fore	dh	Н	Comment
1327				100 000	TH
2365		3982	′7345	97 345	BM1 ←
2347		0986	1379	98 724	BM2 ?
3753		3724	′8624	97 348	BM1
1		1101	2652	100 000	TH
				1	
9792		9793	0	0	
IST	-0001				
SOLL	0000				
	0001	(SOLL -	100		
	ODINAFRIO	AIGLOSS S	ea Level Tra	ining Course - Oost	ende, Belgium - 13-24 Nov. 2006

Loop misclosure

Misclosure Error

The difference of the measured height difference (ΔH_{meas}) to the known height (closed loops = 0, known benchmarks = height difference)

Misclosure = $\Delta H_{SOLL} - \Delta H_{IST}$

Point errors at double observed points

ODINAFRICA/GLOSS Sea Level Training Course - Oostende, Belgium - 13-24 Nov. 2006

Achievable Accuracy

- Instrument dependent
 - Roughly from the instrument
 - NI002 = 0,2mm/km (doubled line)
 - * NI025 = 2.5mm/km (doubled line)
- Survey line length dependent
 - $m_s = m_{1km} \sqrt{s}$, s in km
 - $m_H = (m_{1km}/2) \sqrt{s}$, s in km #(middle of the line)

An acceptable misclose?

- Small misclosures in closed level loops are expected because of the accumulation of random errors and can be adjusted
- If the misclosure is large, the loop (or part of it) must be repeated
- Misclosures can also result from errors in published BM levels and from BM instability

ODINAFRICA/GLOSS Sea Level Training Course - Oostende, Belgium - 13-24 Nov. 2006

Testing the misclose

- The amount of misclosure acceptable using a specific instrument and survey line length
- For our example, a second order leveling standard is adopted*...

misclosure ≤ 2,5√s mm

where s is the length of the line in km

*Dependent on your contry's rules and the instrument used

Our example

- The misclosure is +1 mm
- The length of the loop is 0.4 km
- Acceptable error is

$$2.5\sqrt{(0.4)} = \pm 1.6 \text{ mm}$$

- The misclosure of +1 mm is within the limit
- Mean error for NB1 = $2.5/2*\sqrt{(0.4)}$

ODINAFRICA/GLOSS Sea Level Training Course - Oostende, Belgium - 13-24 Nov. 2006

Errors and their effects

(many, but only a few addressed)

Errors in leveling, e.g.

- Collimation, Parallax کناری ا
- Change point / staff instability
- Instrument or Benchmark instability
- · Refraction (Libin
- Uncalibrated staff or levels
- Reading, booking, or computation errors
- Fore- and backsight distances different

ODINAFRICA/GLOSS Sea Level Training Course - Oostende, Belgium - 13-24 Nov. 2006

ا جنرون الما ف

Systematic and Random Errors

- Earth curvature Conce
- Refraction
- Collimation errors

Summary

ODINAFRICA/GLOSS Sea Level Training Course - Oostende, Belgium - 13-24 Nov. 2006

Procedure of leveling

- 1. The instrument must be check before use! (see lecture)
- 2. The instrument and level must be stable settled-up
- 3. The bubble tube must be leveled before the reading
 - Beware of sun exposure (will wander)
 - Ensure the instruments pendulum is in-limit
- 4. The instrument must be set up in the middle between two staffs
 - Prevents curvature effects
 - If impossible, use the same distances, but opposite for the next readings
- You must not use the parallax screw between the backsight and foresight readings

Procedure of Leveling

- 6. Readings must be taken 30-50 cm above the ground
 - Surface refractions
 - Beware also of temperature gradients (inside/outside buildings) !!!!
- 7. Staff should be set up vertically
- 8. A change plate should be used
- Leveling must be done in two opposite directions but the same line (beware of gravity gradients)
- 10. Staff should be calibrated, especially if INVAR
- 11. Be careful when crossing rivers (large water surfaces)
 - Use "same-time" (mutual) observations
 - Repeat it during different times of the day

ODINAFRICA/GLOSS Sea Level Training Course - Oostende, Belgium - 13-24 Nov. 2006

An Unhappy Surveyor

.. having a 2 centimeter difference